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conclude that the flux through A is

(24.2)

From this result, we see that the flux through a surface of fixed area A has a maxi-
mum value EA when the surface is perpendicular to the field (in other words,
when the normal to the surface is parallel to the field, that is, in Figure
24.2); the flux is zero when the surface is parallel to the field (in other words,
when the normal to the surface is perpendicular to the field, that is, 

We assumed a uniform electric field in the preceding discussion. In more gen-
eral situations, the electric field may vary over a surface. Therefore, our definition
of flux given by Equation 24.2 has meaning only over a small element of area.
Consider a general surface divided up into a large number of small elements, each
of area �A. The variation in the electric field over one element can be neglected if
the element is sufficiently small. It is convenient to define a vector �A i whose mag-
nitude represents the area of the ith element of the surface and whose direction is
defined to be perpendicular to the surface element, as shown in Figure 24.3. The elec-
tric flux ��E through this element is

where we have used the definition of the scalar product of two vectors
By summing the contributions of all elements, we obtain the

total flux through the surface.1 If we let the area of each element approach zero,
then the number of elements approaches infinity and the sum is replaced by an in-
tegral. Therefore, the general definition of electric flux is

(24.3)

Equation 24.3 is a surface integral, which means it must be evaluated over the sur-
face in question. In general, the value of �E depends both on the field pattern and
on the surface.

We are often interested in evaluating the flux through a closed surface, which is
defined as one that divides space into an inside and an outside region, so that one
cannot move from one region to the other without crossing the surface. The sur-
face of a sphere, for example, is a closed surface.

Consider the closed surface in Figure 24.4. The vectors �Ai point in different
directions for the various surface elements, but at each point they are normal to

dA�E � lim
�Ai :0

 � Ei � �Ai � �
surface

E �

(A � B � AB cos 	).

��E � Ei �Ai cos 	 � Ei � � Ai

	 � 90
).

	 � 0


�E � EA
 � EA cos 	

QuickLab
Shine a desk lamp onto a playing
card and notice how the size of the
shadow on your desk depends on the
orientation of the card with respect
to the beam of light. Could a formula
like Equation 24.2 be used to de-
scribe how much light was being
blocked by the card?

Definition of electric flux

1 It is important to note that drawings with field lines have their inaccuracies because a small area ele-
ment (depending on its location) may happen to have too many or too few field lines penetrating it.
We stress that the basic definition of electric flux is The use of lines is only an aid for visualiz-
ing the concept.

� E � dA.

A

θ

θ

A′ = A cos θ
E

Normal

θ

Figure 24.2 Field lines representing a
uniform electric field penetrating an
area A that is at an angle 	 to the field.
Because the number of lines that go
through the area A
 is the same as the
number that go through A, the flux
through A
 is equal to the flux through
A and is given by �E � EA cos 	.

∆A i

E i
θ

Figure 24.3 A small element of
surface area �Ai . The electric field
makes an angle 	 with the vector
�Ai , defined as being normal to
the surface element, and the flux
through the element is equal to
E i �Ai cos 	.
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the surface and, by convention, always point outward. At the element labeled �,
the field lines are crossing the surface from the inside to the outside and 
hence, the flux i through this element is positive. For element �,
the field lines graze the surface (perpendicular to the vector �Ai); thus, 
and the flux is zero. For elements such as �, where the field lines are crossing the
surface from outside to inside, and the flux is negative because 
cos 	 is negative. The net flux through the surface is proportional to the net num-
ber of lines leaving the surface, where the net number means the number leaving the
surface minus the number entering the surface. If more lines are leaving than entering,
the net flux is positive. If more lines are entering than leaving, the net flux is nega-
tive. Using the symbol to represent an integral over a closed surface, we can write
the net flux �E through a closed surface as

(24.4)

where En represents the component of the electric field normal to the surface.
Evaluating the net flux through a closed surface can be very cumbersome. How-
ever, if the field is normal to the surface at each point and constant in magnitude,
the calculation is straightforward, as it was in Example 24.1. The next example also
illustrates this point.

�E � � E � dA � � En dA

�

180
 � 	 � 90


	 � 90

��E � E � �A

	 � 90
;

∆A i

∆A i �
�

�

E

�
�

�

∆A i

E
θ

Eθ

Figure 24.4 A closed surface
in an electric field. The area vec-
tors �Ai are, by convention, nor-
mal to the surface and point out-
ward. The flux through an area
element can be positive (ele-
ment �), zero (element �), or
negative (element �).

Flux Through a CubeEXAMPLE 24.2
faces (�, �, and the unnumbered ones) is zero because E is
perpendicular to dA on these faces.

The net flux through faces � and � is

�E � �
1
 E � dA � �

2
 E � dA

Consider a uniform electric field E oriented in the x direc-
tion. Find the net electric flux through the surface of a cube
of edges �, oriented as shown in Figure 24.5.

Solution The net flux is the sum of the fluxes through all
faces of the cube. First, note that the flux through four of the

Karl Friedrich Gauss German
mathematician and astronomer
(1777 – 1855)
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GAUSS’S LAW
In this section we describe a general relationship between the net electric flux
through a closed surface (often called a gaussian surface) and the charge enclosed
by the surface. This relationship, known as Gauss’s law, is of fundamental impor-
tance in the study of electric fields.

Let us again consider a positive point charge q located at the center of a
sphere of radius r, as shown in Figure 24.6. From Equation 23.4 we know that the
magnitude of the electric field everywhere on the surface of the sphere is

As noted in Example 24.1, the field lines are directed radially outward
and hence perpendicular to the surface at every point on the surface. That is, at
each surface point, E is parallel to the vector �A i representing a local element of
area �Ai surrounding the surface point. Therefore,

and from Equation 24.4 we find that the net flux through the gaussian surface is

where we have moved E outside of the integral because, by symmetry, E is constant
over the surface and given by Furthermore, because the surface is
spherical, Hence, the net flux through the gaussian surface is

Recalling from Section 23.3 that we can write this equation in the
form

(24.5)

We can verify that this expression for the net flux gives the same result as Example
24.1: / C2/N�m2) � 1.13 � 105 N�m2/C.(8.85 � 10�12�E � (1.00 � 10�6 C)

�E �
q
�0

ke � 1/(4��0),

�E �
keq
r 2  (4�r 2) � 4�keq

� dA � A � 4�r 2.
E � keq /r 2.

�E � � E � dA � � E dA � E � dA

E � �Ai � E �Ai

E � keq /r 2.

24.2
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� dA4

For �, E is constant and directed inward but dA1 is directed
outward thus, the flux through this face is

because the area of each face is 
For �, E is constant and outward and in the same direc-

tion as dA2(	 � 0°); hence, the flux through this face is

Therefore, the net flux over all six faces is

0�E � �E�2 � E�2 � 0 � 0 � 0 � 0 �

�
2
 E � dA � �

2
 E(cos 0
)dA � E �

2
 dA � �EA � E �2

A � �2.

�
1

E � dA � �
1
 E(cos 180
)dA � �E �

1
 dA � �EA � �E�2

(	 � 180
);

Figure 24.5 A closed surface in the shape of a cube in a uniform
electric field oriented parallel to the x axis. The net flux through the
closed surface is zero. Side � is the bottom of the cube, and side �
is opposite side �.

11.6

Gaussian
surface

r

q

dA

E
+ i

Figure 24.6 A spherical gaussian
surface of radius r surrounding a
point charge q. When the charge is
at the center of the sphere, the
electric field is everywhere normal
to the surface and constant in mag-
nitude.
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Note from Equation 24.5 that the net flux through the spherical surface is
proportional to the charge inside. The flux is independent of the radius r because
the area of the spherical surface is proportional to r 2, whereas the electric field is
proportional to 1/r 2. Thus, in the product of area and electric field, the depen-
dence on r cancels.

Now consider several closed surfaces surrounding a charge q, as shown in Fig-
ure 24.7. Surface S1 is spherical, but surfaces S2 and S3 are not. From Equation
24.5, the flux that passes through S1 has the value q/�0 . As we discussed in the pre-
vious section, flux is proportional to the number of electric field lines passing
through a surface. The construction shown in Figure 24.7 shows that the number
of lines through S1 is equal to the number of lines through the nonspherical sur-
faces S2 and S3 . Therefore, we conclude that the net flux through any closed sur-
face is independent of the shape of that surface. The net flux through any
closed surface surrounding a point charge q is given by q/�0 .

Now consider a point charge located outside a closed surface of arbitrary
shape, as shown in Figure 24.8. As you can see from this construction, any electric
field line that enters the surface leaves the surface at another point. The number
of electric field lines entering the surface equals the number leaving the surface.
Therefore, we conclude that the net electric flux through a closed surface that
surrounds no charge is zero. If we apply this result to Example 24.2, we can eas-
ily see that the net flux through the cube is zero because there is no charge inside
the cube.

Suppose that the charge in Example 24.1 is just outside the sphere, 1.01 m from its center.
What is the total flux through the sphere?

Let us extend these arguments to two generalized cases: (1) that of many
point charges and (2) that of a continuous distribution of charge. We once again
use the superposition principle, which states that the electric field due to many
charges is the vector sum of the electric fields produced by the individual
charges. Therefore, we can express the flux through any closed surface as

where E is the total electric field at any point on the surface produced by the vec-
tor addition of the electric fields at that point due to the individual charges.

� E � dA � � (E1 � E2 � ���) � dA

Quick Quiz 24.1

The net electric flux through a
closed surface is zero if there is no
charge inside

S3

S2

S1

q

q

Figure 24.7 Closed surfaces of various shapes surround-
ing a charge q. The net electric flux is the same through all
surfaces.

Figure 24.8 A point charge lo-
cated outside a closed surface. The
number of lines entering the sur-
face equals the number leaving the
surface.
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Consider the system of charges shown in Figure 24.9. The surface S surrounds
only one charge, q1 ; hence, the net flux through S is q1/�0 . The flux through S
due to charges q2 and q3 outside it is zero because each electric field line that en-
ters S at one point leaves it at another. The surface S
 surrounds charges q2 and q3 ;
hence, the net flux through it is Finally, the net flux through surface
S � is zero because there is no charge inside this surface. That is, all the electric
field lines that enter S � at one point leave at another.

Gauss’s law, which is a generalization of what we have just described, states
that the net flux through any closed surface is

(24.6)

where q in represents the net charge inside the surface and E represents the elec-
tric field at any point on the surface.

A formal proof of Gauss’s law is presented in Section 24.6. When using Equa-
tion 24.6, you should note that although the charge q in is the net charge inside the
gaussian surface, E represents the total electric field, which includes contributions
from charges both inside and outside the surface.

In principle, Gauss’s law can be solved for E to determine the electric field
due to a system of charges or a continuous distribution of charge. In practice, how-
ever, this type of solution is applicable only in a limited number of highly symmet-
ric situations. As we shall see in the next section, Gauss’s law can be used to evalu-
ate the electric field for charge distributions that have spherical, cylindrical, or
planar symmetry. If one chooses the gaussian surface surrounding the charge dis-
tribution carefully, the integral in Equation 24.6 can be simplified. You should also
note that a gaussian surface is a mathematical construction and need not coincide
with any real physical surface.

For a gaussian surface through which the net flux is zero, the following four statements
could be true. Which of the statements must be true? (a) There are no charges inside the sur-
face. (b) The net charge inside the surface is zero. (c) The electric field is zero everywhere
on the surface. (d) The number of electric field lines entering the surface equals the num-
ber leaving the surface.

Quick Quiz 24.2

�E � � E � dA �
q in

�0

(q2 � q3)/�0.

S

q1

q2

q3 S ′

S ′′

Figure 24.9 The net electric flux
through any closed surface de-
pends only on the charge inside
that surface. The net flux through
surface S is q1/�0 , the net flux
through surface S 
 is 
and the net flux through surface
S � is zero.

(q2 � q3 )/�0 ,

Gauss’s law

Gauss’s law is useful for evaluating
E when the charge distribution has
high symmetry

CONCEPTUAL EXAMPLE 24.3
lines from the charge pass through the sphere, regardless of
its radius.

(c) The flux does not change when the shape of the gauss-
ian surface changes because all electric field lines from the
charge pass through the surface, regardless of its shape.

(d) The flux does not change when the charge is moved
to another location inside that surface because Gauss’s law
refers to the total charge enclosed, regardless of where the
charge is located inside the surface.

A spherical gaussian surface surrounds a point charge q. De-
scribe what happens to the total flux through the surface if
(a) the charge is tripled, (b) the radius of the sphere is dou-
bled, (c) the surface is changed to a cube, and (d) the charge
is moved to another location inside the surface.

Solution (a) The flux through the surface is tripled 
because flux is proportional to the amount of charge inside
the surface.

(b) The flux does not change because all electric field
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APPLICATION OF GAUSS’S LAW TO
CHARGED INSULATORS

As mentioned earlier, Gauss’s law is useful in determining electric fields when the
charge distribution is characterized by a high degree of symmetry. The following
examples demonstrate ways of choosing the gaussian surface over which the sur-
face integral given by Equation 24.6 can be simplified and the electric field deter-
mined. In choosing the surface, we should always take advantage of the symmetry
of the charge distribution so that we can remove E from the integral and solve for
it. The goal in this type of calculation is to determine a surface that satisfies one or
more of the following conditions:

1. The value of the electric field can be argued by symmetry to be constant over
the surface.

2. The dot product in Equation 24.6 can be expressed as a simple algebraic prod-
uct E dA because E and dA are parallel.

3. The dot product in Equation 24.6 is zero because E and dA are perpendicular.
4. The field can be argued to be zero over the surface.

All four of these conditions are used in examples throughout the remainder of
this chapter.

24.3

The Electric Field Due to a Point ChargeEXAMPLE 24.4
Starting with Gauss’s law, calculate the electric field due to an
isolated point charge q.

Solution A single charge represents the simplest possible
charge distribution, and we use this familiar case to show how
to solve for the electric field with Gauss’s law. We choose a
spherical gaussian surface of radius r centered on the point
charge, as shown in Figure 24.10. The electric field due to a
positive point charge is directed radially outward by symmetry
and is therefore normal to the surface at every point. Thus, as
in condition (2), E is parallel to dA at each point. Therefore,

and Gauss’s law gives

By symmetry, E is constant everywhere on the surface, which
satisfies condition (1), so it can be removed from the inte-
gral. Therefore,

� E dA � E � dA � E(4�r 2) �
q
�0

�E � � E � dA � � E dA �
q
�0

E � dA � E dA

Gaussian
surface

r

q

dA

E
+

Figure 24.10 The point charge q is at the center of the spherical
gaussian surface, and E is parallel to d A at every point on the
surface.

where we have used the fact that the surface area of a sphere
is 4�r 2. Now, we solve for the electric field:

This is the familiar electric field due to a point charge that we
developed from Coulomb’s law in Chapter 23.

ke 
q
r 2E �

q
4��0r 2 �

A Spherically Symmetric Charge DistributionEXAMPLE 24.5
Solution Because the charge distribution is spherically
symmetric, we again select a spherical gaussian surface of ra-
dius r, concentric with the sphere, as shown in Figure 24.11a.
For this choice, conditions (1) and (2) are satisfied, as they

An insulating solid sphere of radius a has a uniform volume
charge density � and carries a total positive charge Q (Fig.
24.11). (a) Calculate the magnitude of the electric field at a
point outside the sphere.

11.6
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(a)

Gaussian
sphere

(b)

Gaussian
spherer

a

r

a

Figure 24.11 A uniformly charged insulating sphere of radius a
and total charge Q. (a) The magnitude of the electric field at a point
exterior to the sphere is (b) The magnitude of the electric
field inside the insulating sphere is due only to the charge within the
gaussian sphere defined by the dashed circle and is ke Qr /a3.

ke Q /r 2.

E

a

E =
keQ
r2

r

a

Figure 24.12 A plot of E versus r for a uniformly charged insulat-
ing sphere. The electric field inside the sphere varies linearly
with r. The field outside the sphere is the same as that of a
point charge Q located at r � 0.

(r � a)
(r � a)

were for the point charge in Example 24.4. Following the line
of reasoning given in Example 24.4, we find that

(for 

Note that this result is identical to the one we obtained for a
point charge. Therefore, we conclude that, for a uniformly
charged sphere, the field in the region external to the sphere
is equivalent to that of a point charge located at the center of
the sphere.

(b) Find the magnitude of the electric field at a point in-
side the sphere.

Solution In this case we select a spherical gaussian surface
having radius r � a, concentric with the insulated sphere
(Fig. 24.11b). Let us denote the volume of this smaller
sphere by V 
. To apply Gauss’s law in this situation, it is im-
portant to recognize that the charge q in within the gaussian
surface of volume V 
 is less than Q . To calculate q in , we use
the fact that 

By symmetry, the magnitude of the electric field is constant
everywhere on the spherical gaussian surface and is normal

q in � �V 
 � �(4
3�r 3)

q in � �V 
:

r � a)ke 
Q
r 2E �

to the surface at each point—both conditions (1) and (2)
are satisfied. Therefore, Gauss’s law in the region gives

Solving for E gives

Because by definition and since 
this expression for E can be written as

(for r � a)

Note that this result for E differs from the one we ob-
tained in part (a). It shows that E : 0 as r : 0. Therefore,
the result eliminates the problem that would exist at r � 0 if
E varied as 1/r 2 inside the sphere as it does outside the
sphere. That is, if for r � a, the field would be infi-
nite at r � 0, which is physically impossible. Note also that
the expressions for parts (a) and (b) match when r � a.

A plot of E versus r is shown in Figure 24.12. 

E � 1/r 2

keQ
a3  rE �

Qr
4��0a3 �

ke � 1/(4��0),� � Q /4
3�a3

E �
q in

4��0r 2 �
� 4

3�r 3

4��0r 2 �
�

3�0
 r

� E dA � E � dA � E(4�r 2) �
q in

�0

r � a

The Electric Field Due to a Thin Spherical ShellEXAMPLE 24.6
the shell is equivalent to that due to a point charge Q located
at the center:

(for r � a)

(b) The electric field inside the spherical shell is zero.
This follows from Gauss’s law applied to a spherical surface of
radius r � a concentric with the shell (Fig. 24.13c). Because

ke 
Q
r 2E �

A thin spherical shell of radius a has a total charge Q distrib-
uted uniformly over its surface (Fig. 24.13a). Find the electric
field at points (a) outside and (b) inside the shell.

Solution (a) The calculation for the field outside the shell
is identical to that for the solid sphere shown in Example
24.5a. If we construct a spherical gaussian surface of radius 
r � a concentric with the shell (Fig. 24.13b), the charge in-
side this surface is Q . Therefore, the field at a point outside
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A Cylindrically Symmetric Charge DistributionEXAMPLE 24.7
Find the electric field a distance r from a line of positive
charge of infinite length and constant charge per unit length
� (Fig. 24.14a).

Solution The symmetry of the charge distribution re-
quires that E be perpendicular to the line charge and di-
rected outward, as shown in Figure 24.14a and b. To reflect
the symmetry of the charge distribution, we select a cylindri-
cal gaussian surface of radius r and length � that is coaxial
with the line charge. For the curved part of this surface, E is
constant in magnitude and perpendicular to the surface at
each point—satisfaction of conditions (1) and (2). Further-
more, the flux through the ends of the gaussian cylinder is
zero because E is parallel to these surfaces—the first applica-
tion we have seen of condition (3).

We take the surface integral in Gauss’s law over the entire
gaussian surface. Because of the zero value of for the
ends of the cylinder, however, we can restrict our attention to
only the curved surface of the cylinder.

The total charge inside our gaussian surface is ��. Apply-
ing Gauss’s law and conditions (1) and (2), we find that for
the curved surface

�E � � E � dA � E � dA � EA �
q in

�0
�

��

�0

E � dA
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Gaussian
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(a) (c)(b)

Ein = 0

r

Figure 24.13 (a) The electric field inside a uniformly charged spherical shell is zero. The field
outside is the same as that due to a point charge Q located at the center of the shell. (b) Gaussian
surface for r � a. (c) Gaussian surface for r � a.

Gaussian
surface

+
+
+

+
+
+

E

dA�

r

(a)

E

(b)

Figure 24.14 (a) An infinite line of charge surrounded by a cylin-
drical gaussian surface concentric with the line. (b) An end view
shows that the electric field at the cylindrical surface is constant in
magnitude and perpendicular to the surface.

of the spherical symmetry of the charge distribution and be-
cause the net charge inside the surface is zero—satisfaction
of conditions (1) and (2) again—application of Gauss’s law
shows that E � 0 in the region r � a.

We obtain the same results using Equation 23.6 and inte-
grating over the charge distribution. This calculation is
rather complicated. Gauss’s law allows us to determine these
results in a much simpler way.



24.3 Application of Gauss’s Law to Charged Insulators 753

The area of the curved surface is therefore,

(24.7)

Thus, we see that the electric field due to a cylindrically sym-
metric charge distribution varies as 1/r, whereas the field ex-
ternal to a spherically symmetric charge distribution varies as
1/r2. Equation 24.7 was also derived in Chapter 23 (see Prob-
lem 35[b]), by integration of the field of a point charge.

If the line charge in this example were of finite length,
the result for E would not be that given by Equation 24.7. A
finite line charge does not possess sufficient symmetry for us
to make use of Gauss’s law. This is because the magnitude of

2ke 
�

r
E �

�

2��0r
�

E(2�r�) �
��

�0

A � 2�r�;

A Nonconducting Plane of ChargeEXAMPLE 24.8
Because the distance from each flat end of the cylinder to

the plane does not appear in Equation 24.8, we conclude that
E � �/2�0 at any distance from the plane. That is, the field is
uniform everywhere.

An important charge configuration related to this exam-
ple consists of two parallel planes, one positively charged and
the other negatively charged, and each with a surface charge
density � (see Problem 58). In this situation, the electric
fields due to the two planes add in the region between the
planes, resulting in a field of magnitude �/�0 , and cancel
elsewhere to give a field of zero.

Find the electric field due to a nonconducting, infinite plane
of positive charge with uniform surface charge density �.

Solution By symmetry, E must be perpendicular to the
plane and must have the same magnitude at all points
equidistant from the plane. The fact that the direction of E is
away from positive charges indicates that the direction of E
on one side of the plane must be opposite its direction on the
other side, as shown in Figure 24.15. A gaussian surface that
reflects the symmetry is a small cylinder whose axis is perpen-
dicular to the plane and whose ends each have an area A and
are equidistant from the plane. Because E is parallel to the
curved surface—and, therefore, perpendicular to dA every-
where on the surface—condition (3) is satisfied and there is
no contribution to the surface integral from this surface. For
the flat ends of the cylinder, conditions (1) and (2) are satis-
fied. The flux through each end of the cylinder is EA; 
hence, the total flux through the entire gaussian surface is
just that through the ends, 

Noting that the total charge inside the surface is q in � �A,
we use Gauss’s law and find that

(24.8)
�

2�0
E �

�E � 2EA �
q in

�0
�

�A
�0

�E � 2EA.
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Figure 24.15 A cylindrical gaussian surface penetrating an infi-
nite plane of charge. The flux is EA through each end of the gauss-
ian surface and zero through its curved surface.

the electric field is no longer constant over the surface of
the gaussian cylinder—the field near the ends of the line
would be different from that far from the ends. Thus, condi-
tion (1) would not be satisfied in this situation. Further-
more, E is not perpendicular to the cylindrical surface at all
points—the field vectors near the ends would have a compo-
nent parallel to the line. Thus, condition (2) would not be
satisfied. When there is insufficient symmetry in the charge
distribution, as in this situation, it is necessary to use Equa-
tion 23.6 to calculate E.

For points close to a finite line charge and far from the
ends, Equation 24.7 gives a good approximation of the value
of the field.

It is left for you to show (see Problem 29) that the electric
field inside a uniformly charged rod of finite radius and infi-
nite length is proportional to r.

CONCEPTUAL EXAMPLE 24.9
Explain why Gauss’s law cannot be used to calculate the electric field near an electric di-
pole, a charged disk, or a triangle with a point charge at each corner.
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CONDUCTORS IN ELECTROSTATIC EQUILIBRIUM
As we learned in Section 23.2, a good electrical conductor contains charges (elec-
trons) that are not bound to any atom and therefore are free to move about within
the material. When there is no net motion of charge within a conductor, the con-
ductor is in electrostatic equilibrium. As we shall see, a conductor in electrosta-
tic equilibrium has the following properties:

1. The electric field is zero everywhere inside the conductor.
2. If an isolated conductor carries a charge, the charge resides on its surface.
3. The electric field just outside a charged conductor is perpendicular to the sur-

face of the conductor and has a magnitude �/�0 , where � is the surface charge
density at that point.

4. On an irregularly shaped conductor, the surface charge density is greatest at lo-
cations where the radius of curvature of the surface is smallest.

We verify the first three properties in the discussion that follows. The fourth
property is presented here without further discussion so that we have a complete
list of properties for conductors in electrostatic equilibrium.

We can understand the first property by considering a conducting slab placed
in an external field E (Fig. 24.16). We can argue that the electric field inside the
conductor must be zero under the assumption that we have electrostatic equilib-
rium. If the field were not zero, free charges in the conductor would accelerate
under the action of the field. This motion of electrons, however, would mean that
the conductor is not in electrostatic equilibrium. Thus, the existence of electro-
static equilibrium is consistent only with a zero field in the conductor.

Let us investigate how this zero field is accomplished. Before the external field
is applied, free electrons are uniformly distributed throughout the conductor.
When the external field is applied, the free electrons accelerate to the left in Fig-
ure 24.16, causing a plane of negative charge to be present on the left surface. The
movement of electrons to the left results in a plane of positive charge on the right
surface. These planes of charge create an additional electric field inside the con-
ductor that opposes the external field. As the electrons move, the surface charge
density increases until the magnitude of the internal field equals that of the exter-
nal field, and the net result is a net field of zero inside the conductor. The time it
takes a good conductor to reach equilibrium is of the order of 10�16 s, which for
most purposes can be considered instantaneous.

We can use Gauss’s law to verify the second property of a conductor in electro-
static equilibrium. Figure 24.17 shows an arbitrarily shaped conductor. A gaussian
surface is drawn inside the conductor and can be as close to the conductor’s sur-
face as we wish. As we have just shown, the electric field everywhere inside the con-
ductor is zero when it is in electrostatic equilibrium. Therefore, the electric field
must be zero at every point on the gaussian surface, in accordance with condition
(4) in Section 24.3. Thus, the net flux through this gaussian surface is zero. From
this result and Gauss’s law, we conclude that the net charge inside the gaussian sur-

24.4

Properties of a conductor in
electrostatic equilibrium

Solution The charge distributions of all these configurations do not have sufficient
symmetry to make the use of Gauss’s law practical. We cannot find a closed surface sur-
rounding any of these distributions that satisfies one or more of conditions (1) through
(4) listed at the beginning of this section.

+
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E E

Figure 24.17 A conductor of ar-
bitrary shape. The broken line rep-
resents a gaussian surface just in-
side the conductor.

Figure 24.16 A conducting slab
in an external electric field E. The
charges induced on the two sur-
faces of the slab produce an elec-
tric field that opposes the external
field, giving a resultant field of zero
inside the slab.

Gaussian
surface
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face is zero. Because there can be no net charge inside the gaussian surface (which
is arbitrarily close to the conductor’s surface), any net charge on the conductor
must reside on its surface. Gauss’s law does not indicate how this excess charge
is distributed on the conductor’s surface.

We can also use Gauss’s law to verify the third property. We draw a gaussian
surface in the shape of a small cylinder whose end faces are parallel to the surface
of the conductor (Fig. 24.18). Part of the cylinder is just outside the conductor,
and part is inside. The field is normal to the conductor’s surface from the condi-
tion of electrostatic equilibrium. (If E had a component parallel to the conduc-
tor’s surface, the free charges would move along the surface; in such a case, the
conductor would not be in equilibrium.) Thus, we satisfy condition (3) in Section
24.3 for the curved part of the cylindrical gaussian surface—there is no flux
through this part of the gaussian surface because E is parallel to the surface.
There is no flux through the flat face of the cylinder inside the conductor because
here E � 0—satisfaction of condition (4). Hence, the net flux through the gauss-
ian surface is that through only the flat face outside the conductor, where the field
is perpendicular to the gaussian surface. Using conditions (1) and (2) for this
face, the flux is EA, where E is the electric field just outside the conductor and A is
the area of the cylinder’s face. Applying Gauss’s law to this surface, we obtain

where we have used the fact that q in � �A. Solving for E gives

(24.9)E �
�

�0

�E � � E dA � EA �
q in

�0
�

�A
�0

Electric field just outside a
charged conductor

A
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Figure 24.18 A gaussian surface
in the shape of a small cylinder is
used to calculate the electric field
just outside a charged conductor.
The flux through the gaussian sur-
face is EnA . Remember that E is
zero inside the conductor.

Electric field pattern surrounding a charged conducting
plate placed near an oppositely charged conducting cylin-
der. Small pieces of thread suspended in oil align with the
electric field lines. Note that (1) the field lines are perpen-
dicular to both conductors and (2) there are no lines inside
the cylinder (E � 0).

A Sphere Inside a Spherical ShellEXAMPLE 24.10
Solution First note that the charge distributions on both
the sphere and the shell are characterized by spherical sym-
metry around their common center. To determine the elec-
tric field at various distances r from this center, we construct a
spherical gaussian surface for each of the four regions of in-
terest. Such a surface for region � is shown in Figure 24.19.

To find E inside the solid sphere (region �), consider a

A solid conducting sphere of radius a carries a net positive
charge 2Q . A conducting spherical shell of inner radius b
and outer radius c is concentric with the solid sphere and car-
ries a net charge �Q . Using Gauss’s law, find the electric
field in the regions labeled �, �, �, and � in Figure 24.19
and the charge distribution on the shell when the entire sys-
tem is in electrostatic equilibrium.
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How would the electric flux through a gaussian surface surrounding the shell in Example
24.10 change if the solid sphere were off-center but still inside the shell?

Optional Section

EXPERIMENTAL VERIFICATION OF
GAUSS’S LAW AND COULOMB’S LAW

When a net charge is placed on a conductor, the charge distributes itself on the
surface in such a way that the electric field inside the conductor is zero. Gauss’s
law shows that there can be no net charge inside the conductor in this situation. In
this section, we investigate an experimental verification of the absence of this
charge.

We have seen that Gauss’s law is equivalent to Equation 23.6, the expression
for the electric field of a distribution of charge. Because this equation arises
from Coulomb’s law, we can claim theoretically that Gauss’s law and Coulomb’s
law are equivalent. Hence, it is possible to test the validity of both laws by at-
tempting to detect a net charge inside a conductor or, equivalently, a nonzero
electric field inside the conductor. If a nonzero field is detected within the con-
ductor, Gauss’s law and Coulomb’s law are invalid. Many experiments, including

24.5

Quick Quiz 24.3

–Q

r
a

b

c

2Q

�

��

�

Figure 24.19 A solid conducting sphere of radius a and carrying a
charge 2Q surrounded by a conducting spherical shell carrying a
charge �Q.

gaussian surface of radius r � a. Because there can be no
charge inside a conductor in electrostatic equilibrium, we see
that q in � 0; thus, on the basis of Gauss’s law and symmetry,

for r � a.
In region �—between the surface of the solid sphere and

the inner surface of the shell—we construct a spherical
gaussian surface of radius r where a � r � b and note that the
charge inside this surface is � 2Q (the charge on the solid
sphere). Because of the spherical symmetry, the electric field

E1 � 0

lines must be directed radially outward and be constant in
magnitude on the gaussian surface. Following Example 24.4
and using Gauss’s law, we find that

(for a � r � b)

In region �, where r � c, the spherical gaussian surface
we construct surrounds a total charge of 

Therefore, application of Gauss’s law to
this surface gives

(for r � c)

In region �, the electric field must be zero because the
spherical shell is also a conductor in equilibrium. If we con-
struct a gaussian surface of radius r where b � r � c, we see
that q in must be zero because From this argument, we
conclude that the charge on the inner surface of the spheri-
cal shell must be � 2Q to cancel the charge � 2Q on the solid
sphere. Because the net charge on the shell is � Q , we con-
clude that its outer surface must carry a charge � Q .

E3 � 0.

keQ
r 2E4 �

2Q � (�Q ) � Q.
q in �

2keQ
r 2 E2 �

2Q
4��0r 2 �

E2A � E2(4�r 2) �
q in

�0
�

2Q
�0
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early work by Faraday, Cavendish, and Maxwell, have been performed to detect
the field inside a conductor. In all reported cases, no electric field could be de-
tected inside a conductor.

Here is one of the experiments that can be performed.2 A positively charged
metal ball at the end of a silk thread is lowered through a small opening into an
uncharged hollow conductor that is insulated from ground (Fig. 24.20a). The pos-
itively charged ball induces a negative charge on the inner wall of the hollow con-
ductor, leaving an equal positive charge on the outer wall (Fig. 24.20b). The pres-
ence of positive charge on the outer wall is indicated by the deflection of the
needle of an electrometer (a device used to measure charge and that measures
charge only on the outer surface of the conductor). The ball is then lowered and
allowed to touch the inner surface of the hollow conductor (Fig. 24.20c). Charge
is transferred between the ball and the inner surface so that neither is charged af-
ter contact is made. The needle deflection remains unchanged while this happens,
indicating that the charge on the outer surface is unaffected. When the ball is re-
moved, the electrometer reading remains the same (Fig. 24.20d). Furthermore,
the ball is found to be uncharged; this verifies that charge was transferred between
the ball and the inner surface of the hollow conductor. The overall effect is 
that the charge that was originally on the ball now appears on the hollow conduc-
tor. The fact that the deflection of the needle on the electrometer measuring the
charge on the outer surface remained unchanged regardless of what was happen-
ing inside the hollow conductor indicates that the net charge on the system always
resided on the outer surface of the conductor.

If we now apply another positive charge to the metal ball and place it near the
outside of the conductor, it is repelled by the conductor. This demonstrates that

outside the conductor, a finding consistent with the fact that the conductor
carries a net charge. If the charged metal ball is now lowered into the interior of
the charged hollow conductor, it exhibits no evidence of an electric force. This
shows that E � 0 inside the hollow conductor.

This experiment verifies the predictions of Gauss’s law and therefore verifies
Coulomb’s law. The equivalence of Gauss’s law and Coulomb’s law is due to the
inverse-square behavior of the electric force. Thus, we can interpret this experi-
ment as verifying the exponent of 2 in the 1/r 2 behavior of the electric force. Ex-
periments by Williams, Faller, and Hill in 1971 showed that the exponent of r in
Coulomb’s law is (2 � �), where 

In the experiment we have described, the charged ball hanging in the hollow
conductor would show no deflection even in the case in which an external electric
field is applied to the entire system. The field inside the conductor is still zero.
This ability of conductors to “block” external electric fields is utilized in many
places, from electromagnetic shielding for computer components to thin metal
coatings on the glass in airport control towers to keep radar originating outside
the tower from disrupting the electronics inside. Cellular telephone users riding
trains like the one pictured at the beginning of the chapter have to speak loudly to
be heard above the noise of the train. In response to complaints from other pas-
sengers, the train companies are considering coating the windows with a thin
metallic conductor. This coating, combined with the metal frame of the train car,
blocks cellular telephone transmissions into and out of the train.

� � (2.7 � 3.1) � 10�16!

E � 0

2 The experiment is often referred to as Faraday’s ice-pail experiment because Faraday, the first to perform
it, used an ice pail for the hollow conductor.
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Figure 24.20 An experiment
showing that any charge trans-
ferred to a conductor resides on its
surface in electrostatic equilibrium.
The hollow conductor is insulated
from ground, and the small metal
ball is supported by an insulating
thread.

QuickLab
Wrap a radio or cordless telephone in
aluminum foil and see if it still works.
Does it matter if the foil touches the
antenna?
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Optional Section

FORMAL DERIVATION OF GAUSS’S LAW
One way of deriving Gauss’s law involves solid angles. Consider a spherical surface
of radius r containing an area element �A. The solid angle �� (uppercase Greek
omega) subtended at the center of the sphere by this element is defined to be

From this equation, we see that has no dimensions because �A and r2 both have
dimensions L2. The dimensionless unit of a solid angle is the steradian. (You may
want to compare this equation to Equation 10.1b, the definition of the radian.) Be-
cause the surface area of a sphere is 4�r2, the total solid angle subtended by the
sphere is

Now consider a point charge q surrounded by a closed surface of arbitrary
shape (Fig. 24.21). The total electric flux through this surface can be obtained by
evaluating for each small area element �A and summing over all elements.
The flux through each element is

where r is the distance from the charge to the area element, 	 is the angle between
the electric field E and �A for the element, and for a point charge. In
Figure 24.22, we see that the projection of the area element perpendicular to the
radius vector is �A cos 	. Thus, the quantity �A cos 	/r2 is equal to the solid angle
�� that the surface element �A subtends at the charge q. We also see that �� is
equal to the solid angle subtended by the area element of a spherical surface of ra-
dius r. Because the total solid angle at a point is 4� steradians, the total flux

E � keq /r 2

��E � E � �A � E �A cos 	 � keq 
�A cos 	

r 2

E � �A

� �
4�r 2

r 2 � 4� steradians

��

�� �
�A
r 2

24.6

θ

∆A

∆Ω
q

E

∆Ω
q

r

∆A

∆A

θ
E

∆A cos θ

θ

Figure 24.21 A closed surface of
arbitrary shape surrounds a point
charge q. The net electric flux
through the surface is independent
of the shape of the surface.

Figure 24.22 The area element �A subtends a solid angle at the 
charge q.

�� � (�A cos 	)/r 2
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through the closed surface is

Thus we have derived Gauss’s law, Equation 24.6. Note that this result is indepen-
dent of the shape of the closed surface and independent of the position of the
charge within the surface.

SUMMARY

Electric flux is proportional to the number of electric field lines that penetrate a
surface. If the electric field is uniform and makes an angle 	 with the normal to a
surface of area A, the electric flux through the surface is

(24.2)

In general, the electric flux through a surface is

(24.3)

You need to be able to apply Equations 24.2 and 24.3 in a variety of situations, par-
ticularly those in which symmetry simplifies the calculation.

Gauss’s law says that the net electric flux �E through any closed gaussian sur-
face is equal to the net charge inside the surface divided by �0 :

(24.6)

Using Gauss’s law, you can calculate the electric field due to various symmetric
charge distributions. Table 24.1 lists some typical results.

�E � � E � dA �
q in

�0

�E � �
surface

E � dA

�E � EA cos 	

�E � keq � 
dA cos 	

r 2 � keq �d� � 4�keq �
q
�0

TABLE 24.1 Typical Electric Field Calculations Using Gauss’s Law

Charge Distribution Electric Field Location

Insulating sphere of radius
R, uniform charge density,
and total charge Q

Thin spherical shell of radius
R and total charge Q

Line charge of infinite length Outside the
and charge per unit length � line

Nonconducting, infinite Everywhere
charged plane having outside
surface charge density � the plane

Conductor having surface Just outside
charge density � the conductor

Inside the
conductor

ke 
Q
R3  r

ke 
Q
r 2

r � R

r � R

0

ke 
Q
r 2

r � R

r � R�

0

�

�0

�

2�0

2ke 
�

r

�

�
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A conductor in electrostatic equilibrium has the following properties:

1. The electric field is zero everywhere inside the conductor.
2. Any net charge on the conductor resides entirely on its surface.
3. The electric field just outside the conductor is perpendicular to its surface and

has a magnitude �/�0 , where � is the surface charge density at that point.
4. On an irregularly shaped conductor, the surface charge density is greatest

where the radius of curvature of the surface is the smallest.

Problem-Solving Hints
Gauss’s law, as we have seen, is very powerful in solving problems involving
highly symmetric charge distributions. In this chapter, you encountered three
kinds of symmetry: planar, cylindrical, and spherical. It is important to review
Examples 24.4 through 24.10 and to adhere to the following procedure when
using Gauss’s law:

• Select a gaussian surface that has a symmetry to match that of the charge
distribution and satisfies one or more of the conditions listed in Section
24.3. For point charges or spherically symmetric charge distributions, the
gaussian surface should be a sphere centered on the charge as in Examples
24.4, 24.5, 24.6, and 24.10. For uniform line charges or uniformly charged
cylinders, your gaussian surface should be a cylindrical surface that is coax-
ial with the line charge or cylinder as in Example 24.7. For planes of charge,
a useful choice is a cylindrical gaussian surface that straddles the plane, as
shown in Example 24.8. These choices enable you to simplify the surface in-
tegral that appears in Gauss’s law and represents the total electric flux
through that surface.

• Evaluate the q in/�0 term in Gauss’s law, which amounts to calculating the to-
tal electric charge q in inside the gaussian surface. If the charge density is
uniform (that is, if �, �, or � is constant), simply multiply that charge density
by the length, area, or volume enclosed by the gaussian surface. If the
charge distribution is nonuniform, integrate the charge density over the re-
gion enclosed by the gaussian surface. For example, if the charge is distrib-
uted along a line, integrate the expression where dq is the charge
on an infinitesimal length element dx. For a plane of charge, integrate

where dA is an infinitesimal element of area. For a volume of
charge, integrate where dV is an infinitesimal element of volume.

• Once the terms in Gauss’s law have been evaluated, solve for the electric
field on the gaussian surface if the charge distribution is given in the prob-
lem. Conversely, if the electric field is known, calculate the charge distribu-
tion that produces the field.

dq � � dV,
dq � � dA,

dq � � dx,

QUESTIONS

3. If more electric field lines are leaving a gaussian surface
than entering, what can you conclude about the net
charge enclosed by that surface?

4. A uniform electric field exists in a region of space in
which there are no charges. What can you conclude
about the net electric flux through a gaussian surface
placed in this region of space?

1. The Sun is lower in the sky during the winter than it is in
the summer. How does this change the flux of sunlight
hitting a given area on the surface of the Earth? How
does this affect the weather?

2. If the electric field in a region of space is zero, can you
conclude no electric charges are in that region? 
Explain.
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5. If the total charge inside a closed surface is known but
the distribution of the charge is unspecified, can you use
Gauss’s law to find the electric field? Explain.

6. Explain why the electric flux through a closed surface
with a given enclosed charge is independent of the size or
shape of the surface.

7. Consider the electric field due to a nonconducting infi-
nite plane having a uniform charge density. Explain why
the electric field does not depend on the distance from
the plane in terms of the spacing of the electric field
lines.

8. Use Gauss’s law to explain why electric field lines must be-
gin or end on electric charges. (Hint: Change the size of
the gaussian surface.)

9. On the basis of the repulsive nature of the force between
like charges and the freedom of motion of charge within
the conductor, explain why excess charge on an isolated
conductor must reside on its surface.

10. A person is placed in a large, hollow metallic sphere that
is insulated from ground. If a large charge is placed on
the sphere, will the person be harmed upon touching the
inside of the sphere? Explain what will happen if the per-

son also has an initial charge whose sign is opposite that
of the charge on the sphere.

11. How would the observations described in Figure 24.20
differ if the hollow conductor were grounded? How
would they differ if the small charged ball were an insula-
tor rather than a conductor?

12. What other experiment might be performed on the ball
in Figure 24.20 to show that its charge was transferred to
the hollow conductor?

13. What would happen to the electrometer reading if the
charged ball in Figure 24.20 touched the inner wall of the
conductor? the outer wall?

14. You may have heard that one of the safer places to be dur-
ing a lightning storm is inside a car. Why would this be
the case?

15. Two solid spheres, both of radius R , carry identical total
charges Q . One sphere is a good conductor, while the
other is an insulator. If the charge on the insulating
sphere is uniformly distributed throughout its interior
volume, how do the electric fields outside these two
spheres compare? Are the fields identical inside the two
spheres?

PROBLEMS

6. A uniform electric field intersects a surface of
area A. What is the flux through this area if the surface
lies (a) in the yz plane? (b) in the xz plane? (c) in the xy
plane?

7. A point charge q is located at the center of a uniform
ring having linear charge density � and radius a, as
shown in Figure P24.7. Determine the total electric flux

a i � b j

Section 24.1 Electric Flux
1. An electric field with a magnitude of 3.50 kN/C is ap-

plied along the x axis. Calculate the electric flux
through a rectangular plane 0.350 m wide and 0.700 m
long if (a) the plane is parallel to the yz plane; (b) the
plane is parallel to the xy plane; and (c) the plane con-
tains the y axis, and its normal makes an angle of 40.0°
with the x axis.

2. A vertical electric field of magnitude 2.00 � 104 N/C
exists above the Earth’s surface on a day when a thun-
derstorm is brewing. A car with a rectangular size of ap-
proximately 6.00 m by 3.00 m is traveling along a road-
way sloping downward at 10.0°. Determine the electric
flux through the bottom of the car.

3. A 40.0-cm-diameter loop is rotated in a uniform electric
field until the position of maximum electric flux is
found. The flux in this position is measured to be 
5.20 � 105 N� m2/C. What is the magnitude of the elec-
tric field?

4. A spherical shell is placed in a uniform electric field.
Find the total electric flux through the shell.

5. Consider a closed triangular box resting within a hori-
zontal electric field of magnitude N/C,
as shown in Figure P24.5. Calculate the electric flux
through (a) the vertical rectangular surface, (b) the
slanted surface, and (c) the entire surface of the box.

E � 7.80 � 104

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

30.0 cm

60.0°10.0 cm

E

Figure P24.5

Figure P24.7

R

q a

λ
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WEB

through a sphere centered at the point charge and hav-
ing radius R , where 

8. A pyramid with a 6.00-m-square base and height of 
4.00 m is placed in a vertical electric field of 52.0 N/C.
Calculate the total electric flux through the pyramid’s
four slanted surfaces.

9. A cone with base radius R and height h is located on a
horizontal table. A horizontal uniform field E pene-
trates the cone, as shown in Figure P24.9. Determine
the electric flux that enters the left-hand side of the
cone.

R � a.
located a very small distance from the center of a very
large square on the line perpendicular to the square and
going through its center. Determine the approximate
electric flux through the square due to the point
charge. (c) Explain why the answers to parts (a) and
(b) are identical.

14. Calculate the total electric flux through the parabo-
loidal surface due to a constant electric field of magni-
tude E 0 in the direction shown in Figure P24.14.

16. A point charge of 12.0 �C is placed at the center of a
spherical shell of radius 22.0 cm. What is the total elec-
tric flux through (a) the surface of the shell and 
(b) any hemispherical surface of the shell? (c) Do the
results depend on the radius? Explain.

17. A point charge of 0.046 2 �C is inside a pyramid. Deter-
mine the total electric flux through the surface of the
pyramid.

18. An infinitely long line charge having a uniform charge
per unit length � lies a distance d from point O, as
shown in Figure P24.18. Determine the total electric
flux through the surface of a sphere of radius 
R centered at O resulting from this line charge. 
(Hint: Consider both cases: when and when
R � d.)

R � d,

15. A point charge Q is located just above the center of the
flat face of a hemisphere of radius R , as shown in Figure
P24.15. What is the electric flux (a) through the curved
surface and (b) through the flat face?

13. (a) A point charge q is located a distance d from an infi-
nite plane. Determine the electric flux through the
plane due to the point charge. (b) A point charge q is

Section 24.2 Gauss’s Law
10. The electric field everywhere on the surface of a thin

spherical shell of radius 0.750 m is measured to be
equal to 890 N/C and points radially toward the center
of the sphere. (a) What is the net charge within the
sphere’s surface? (b) What can you conclude about the
nature and distribution of the charge inside the spheri-
cal shell?

11. The following charges are located inside a submarine:
and (a) Calcu-

late the net electric flux through the submarine. 
(b) Is the number of electric field lines leaving the sub-
marine greater than, equal to, or less than the number
entering it?

12. Four closed surfaces, S1 through S4 , together with the
charges � 2Q , Q , and �Q are sketched in Figure
P24.12. Find the electric flux through each surface.

�84.0 �C.27.0 �C,5.00 �C, �9.00 �C,

h

R

E

Figure P24.9

Figure P24.12

Figure P24.14

Figure P24.15
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19. A point charge is located at the center of a
cube of side In addition, six other identi-
cal point charges having are positioned
symmetrically around Q , as shown in Figure P24.19. De-
termine the electric flux through one face of the cube.

20. A point charge Q is located at the center of a cube of
side L . In addition, six other identical negative point
charges are positioned symmetrically around Q , as
shown in Figure P24.19. Determine the electric flux
through one face of the cube.

q � �1.00 �C
L � 0.100 m.

Q � 5.00 �C

23. A charge of 170 �C is at the center of a cube of side
80.0 cm. (a) Find the total flux through each face of the
cube. (b) Find the flux through the whole surface of
the cube. (c) Would your answers to parts (a) or 
(b) change if the charge were not at the center? Ex-
plain.

24. The total electric flux through a closed surface in the
shape of a cylinder is (a) What is
the net charge within the cylinder? (b) From the infor-
mation given, what can you say about the charge within
the cylinder? (c) How would your answers to parts 
(a) and (b) change if the net flux were

25. The line ag is a diagonal of a cube (Fig. P24.25). A
point charge q is located on the extension of line ag ,
very close to vertex a of the cube. Determine the elec-
tric flux through each of the sides of the cube that meet
at the point a.

�8.60 � 104 N�m2/C?

8.60 � 104 N�m2/C.

WEB

Section 24.3 Application of Gauss’s Law to 
Charged Insulators

26. Determine the magnitude of the electric field at the sur-
face of a lead-208 nucleus, which contains 82 protons
and 126 neutrons. Assume that the lead nucleus has a
volume 208 times that of one proton, and consider a
proton to be a sphere of radius 1.20 � 10�15 m.

27. A solid sphere of radius 40.0 cm has a total positive
charge of 26.0 �C uniformly distributed throughout its
volume. Calculate the magnitude of the electric field
(a) 0 cm, (b) 10.0 cm, (c) 40.0 cm, and (d) 60.0 cm
from the center of the sphere.

28. A cylindrical shell of radius 7.00 cm and length 240 cm
has its charge uniformly distributed on its curved surface.
The magnitude of the electric field at a point 19.0 cm ra-
dially outward from its axis (measured from the midpoint
of the shell) is 36.0 kN/C. Use approximate relationships
to find (a) the net charge on the shell and (b) the electric
field at a point 4.00 cm from the axis, measured radially
outward from the midpoint of the shell.

29. Consider a long cylindrical charge distribution of radius
R with a uniform charge density �. Find the electric
field at distance r from the axis where r � R .

21. Consider an infinitely long line charge having uniform
charge per unit length �. Determine the total electric
flux through a closed right circular cylinder of length L
and radius R that is parallel to the line charge, if the dis-
tance between the axis of the cylinder and the line
charge is d. (Hint: Consider both cases: when 
and when 

22. A 10.0-�C charge located at the origin of a cartesian co-
ordinate system is surrounded by a nonconducting hol-
low sphere of radius 10.0 cm. A drill with a radius of
1.00 mm is aligned along the z axis, and a hole is drilled
in the sphere. Calculate the electric flux through the
hole.

R � d.)
R � d,

Figure P24.18
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30. A nonconducting wall carries a uniform charge density
of 8.60 �C/cm2. What is the electric field 7.00 cm in
front of the wall? Does your result change as the dis-
tance from the wall is varied?

31. Consider a thin spherical shell of radius 14.0 cm with a
total charge of 32.0 �C distributed uniformly on its sur-
face. Find the electric field (a) 10.0 cm and (b) 20.0 cm
from the center of the charge distribution.

32. In nuclear fission, a nucleus of uranium-238, which con-
tains 92 protons, divides into two smaller spheres, each
having 46 protons and a radius of 5.90 � 10�15 m. What
is the magnitude of the repulsive electric force pushing
the two spheres apart?

33. Fill two rubber balloons with air. Suspend both of them
from the same point on strings of equal length. Rub
each with wool or your hair, so that they hang apart with
a noticeable separation between them. Make order-of-
magnitude estimates of (a) the force on each, (b) the
charge on each, (c) the field each creates at the center
of the other, and (d) the total flux of electric field cre-
ated by each balloon. In your solution, state the quanti-
ties you take as data and the values you measure or esti-
mate for them.

34. An insulating sphere is 8.00 cm in diameter and carries
a 5.70-�C charge uniformly distributed throughout its
interior volume. Calculate the charge enclosed by a
concentric spherical surface with radius (a) r � 2.00 cm
and (b) r � 6.00 cm.

35. A uniformly charged, straight filament 7.00 m in length
has a total positive charge of 2.00 �C. An uncharged
cardboard cylinder 2.00 cm in length and 10.0 cm in ra-
dius surrounds the filament at its center, with the fila-
ment as the axis of the cylinder. Using reasonable ap-
proximations, find (a) the electric field at the surface of
the cylinder and (b) the total electric flux through the
cylinder.

36. The charge per unit length on a long, straight filament
is � 90.0 �C/m. Find the electric field (a) 10.0 cm, 
(b) 20.0 cm, and (c) 100 cm from the filament, where
distances are measured perpendicular to the length of
the filament.

37. A large flat sheet of charge has a charge per unit area of
9.00 �C/m2. Find the electric field just above the sur-
face of the sheet, measured from its midpoint.

Section 24.4 Conductors in Electrostatic Equilibrium
38. On a clear, sunny day, a vertical electrical field of about

130 N/C points down over flat ground. What is the sur-
face charge density on the ground for these conditions?

39. A long, straight metal rod has a radius of 5.00 cm and a
charge per unit length of 30.0 nC/m. Find the electric
field (a) 3.00 cm, (b) 10.0 cm, and (c) 100 cm from the
axis of the rod, where distances are measured perpen-
dicular to the rod.

40. A very large, thin, flat plate of aluminum of area A has a
total charge Q uniformly distributed over its surfaces. If

the same charge is spread uniformly over the upper
surface of an otherwise identical glass plate, compare
the electric fields just above the center of the upper sur-
face of each plate.

41. A square plate of copper with 50.0-cm sides has no net
charge and is placed in a region of uniform electric
field of 80.0 kN/C directed perpendicularly to the
plate. Find (a) the charge density of each face of the
plate and (b) the total charge on each face.

42. A hollow conducting sphere is surrounded by a larger
concentric, spherical, conducting shell. The inner
sphere has a charge � Q , and the outer sphere has a
charge 3Q. The charges are in electrostatic equilibrium.
Using Gauss’s law, find the charges and the electric
fields everywhere.

43. Two identical conducting spheres each having a radius
of 0.500 cm are connected by a light 2.00-m-long con-
ducting wire. Determine the tension in the wire if 
60.0 �C is placed on one of the conductors. (Hint: As-
sume that the surface distribution of charge on each
sphere is uniform.)

44. The electric field on the surface of an irregularly
shaped conductor varies from 56.0 kN/C to 28.0 kN/C.
Calculate the local surface charge density at the point
on the surface where the radius of curvature of the sur-
face is (a) greatest and (b) smallest.

45. A long, straight wire is surrounded by a hollow metal
cylinder whose axis coincides with that of the wire. The
wire has a charge per unit length of �, and the cylinder
has a net charge per unit length of 2�. From this infor-
mation, use Gauss’s law to find (a) the charge per unit
length on the inner and outer surfaces of the cylinder
and (b) the electric field outside the cylinder, a distance
r from the axis.

46. A conducting spherical shell of radius 15.0 cm carries a
net charge of � 6.40 �C uniformly distributed on its
surface. Find the electric field at points (a) just outside
the shell and (b) inside the shell.

47. A thin conducting plate 50.0 cm on a side lies in the xy
plane. If a total charge of 4.00 � 10�8 C is placed on
the plate, find (a) the charge density on the plate, 
(b) the electric field just above the plate, and (c) the
electric field just below the plate.

48. A conducting spherical shell having an inner radius of 
a and an outer radius of b carries a net charge Q . If a
point charge q is placed at the center of this shell, 
determine the surface charge density on (a) the inner
surface of the shell and (b) the outer surface of the
shell.

49. A solid conducting sphere of radius 2.00 cm has a
charge 8.00 �C. A conducting spherical shell of inner
radius 4.00 cm and outer radius 5.00 cm is concentric
with the solid sphere and has a charge � 4.00 �C. Find
the electric field at (a) r � 1.00 cm, (b) r � 3.00 cm,
(c) r � 4.50 cm, and (d) r � 7.00 cm from the center of
this charge configuration.

WEB



Problems 765

50. A positive point charge is at a distance of R/2 from the
center of an uncharged thin conducting spherical shell
of radius R. Sketch the electric field lines set up by this
arrangement both inside and outside the shell.

(Optional)
Section 24.5 Experimental Verification of 
Gauss’s Law and Coulomb’s Law

Section 24.6 Formal Derivation of Gauss’s Law
51. A sphere of radius R surrounds a point charge Q , lo-

cated at its center. (a) Show that the electric flux
through a circular cap of half-angle 	 (Fig. P24.51) is

What is the flux for (b) 	 � 90° and (c) 	 � 180°?

�E �
Q

2�0
 (1 � cos 	)

net charge enclosed by this surface, as a function of r.
Note that the charge inside this surface is less than 3Q .
(i) Find the electric field in the region r � a. ( j) Deter-
mine the charge on the inner surface of the conducting
shell. (k) Determine the charge on the outer surface of
the conducting shell. (l) Make a plot of the magnitude
of the electric field versus r.

54. Consider two identical conducting spheres whose sur-
faces are separated by a small distance. One sphere is
given a large net positive charge, while the other is
given a small net positive charge. It is found that the
force between them is attractive even though both
spheres have net charges of the same sign. Explain how
this is possible.

55. A solid, insulating sphere of radius a has a uniform
charge density � and a total charge Q . Concentric with
this sphere is an uncharged, conducting hollow sphere
whose inner and outer radii are b and c, as shown in Fig-
ure P24.55. (a) Find the magnitude of the electric field
in the regions and r � c. 
(b) Determine the induced charge per unit area on the
inner and outer surfaces of the hollow sphere.

b � r � c,r � a, a � r � b,

WEB

56. For the configuration shown in Figure P24.55, suppose
that a � 5.00 cm, b � 20.0 cm, and c � 25.0 cm.
Furthermore, suppose that the electric field at a point
10.0 cm from the center is 3.60 � 103 N/C radially in-
ward, while the electric field at a point 50.0 cm from the
center is 2.00 � 102 N/C radially outward. From this in-
formation, find (a) the charge on the insulating sphere,

ADDITIONAL PROBLEMS

52. A nonuniform electric field is given by the expression
where a, b, and c are constants.

Determine the electric flux through a rectangular sur-
face in the xy plane, extending from x � 0 to x � w and
from y � 0 to y � h.

53. A solid insulating sphere of radius a carries a net positive
charge 3Q , uniformly distributed throughout its vol-
ume. Concentric with this sphere is a conducting spheri-
cal shell with inner radius b and outer radius c, and hav-
ing a net charge �Q , as shown in Figure P24.53. 
(a) Construct a spherical gaussian surface of radius 
r � c and find the net charge enclosed by this surface. 
(b) What is the direction of the electric field at r � c?
(c) Find the electric field at r � c. (d) Find the electric
field in the region with radius r where c � r � b. 
(e) Construct a spherical gaussian surface of radius r ,
where c � r � b, and find the net charge enclosed by
this surface. (f) Construct a spherical gaussian surface
of radius r, where b � r � a, and find the net charge en-
closed by this surface. (g) Find the electric field in the
region b � r � a. (h) Construct a spherical gaussian
surface of radius r � a, and find an expression for the

E � ay i � bz j � cxk,

Figure P24.51

Figure P24.53

Figure P24.55 Problems 55 and 56.
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(b) the net charge on the hollow conducting sphere,
and (c) the total charge on the inner and outer surfaces
of the hollow conducting sphere.

57. An infinitely long cylindrical insulating shell of inner ra-
dius a and outer radius b has a uniform volume charge
density � (C/m3). A line of charge density � (C/m) is
placed along the axis of the shell. Determine the elec-
tric field intensity everywhere.

58. Two infinite, nonconducting sheets of charge are paral-
lel to each other, as shown in Figure P24.58. The sheet
on the left has a uniform surface charge density �, and
the one on the right has a uniform charge density � �.
Calculate the value of the electric field at points (a) to
the left of, (b) in between, and (c) to the right of the
two sheets. (Hint: See Example 24.8.)

the size of the cavity with a uniform negative charge
density � �.)

61. Review Problem. An early (incorrect) model of the
hydrogen atom, suggested by J. J. Thomson, proposed
that a positive cloud of charge �e was uniformly distrib-
uted throughout the volume of a sphere of radius R ,
with the electron an equal-magnitude negative point
charge �e at the center. (a) Using Gauss’s law, show
that the electron would be in equilibrium at the center
and, if displaced from the center a distance 
would experience a restoring force of the form

where K is a constant. (b) Show that
(c) Find an expression for the frequency f

of simple harmonic oscillations that an electron of mass
me would undergo if displaced a short distance (� R )
from the center and released. (d) Calculate a numerical
value for R that would result in a frequency of electron
vibration of 2.47 � 1015 Hz, the frequency of the light
in the most intense line in the hydrogen spectrum.

62. A closed surface with dimensions and
is located as shown in Figure P24.62. The

electric field throughout the region is nonuniform and
given by N/C, where x is in meters.
Calculate the net electric flux leaving the closed sur-
face. What net charge is enclosed by the surface?

E � (3.0 � 2.0x2) i

c � 0.600 m
a � b � 0.400 m

K � ke e2/R3.
F � �Kr,

r � R ,

59. Repeat the calculations for Problem 58 when both
sheets have positive uniform surface charge densities of
value �.

60. A sphere of radius 2a is made of a nonconducting mate-
rial that has a uniform volume charge density �. (As-
sume that the material does not affect the electric
field.) A spherical cavity of radius a is now removed
from the sphere, as shown in Figure P24.60. Show that
the electric field within the cavity is uniform and is
given by and (Hint: The field
within the cavity is the superposition of the field due to
the original uncut sphere, plus the field due to a sphere

Ey � �a/3�0 .Ex � 0

Figure P24.58

Figure P24.60

Figure P24.62
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63. A solid insulating sphere of radius R has a nonuniform
charge density that varies with r according to the expres-
sion where A is a constant and is meas-
ured from the center of the sphere. (a) Show that the
electric field outside the sphere is

(b) Show that the electric field inside
the sphere is (Hint: Note that the

total charge Q on the sphere is equal to the integral of 
� dV, where r extends from 0 to R ; also note that the
charge q within a radius r � R is less than Q. To evaluate
the integrals, note that the volume element dV for a
spherical shell of radius r and thickness dr is equal to

64. A point charge Q is located on the axis of a disk of ra-
dius R at a distance b from the plane of the disk (Fig.
P24.64). Show that if one fourth of the electric flux
from the charge passes through the disk, then R � !3b.

4�r 2 dr.)

E � Ar 3/5�0 .(r � R)
E � AR5/5�0r 2.

(r � R )

r � R� � Ar 2,
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Answers to Quick Quizzes 767

ANSWERS TO QUICK QUIZZES

24.3 Any gaussian surface surrounding the system encloses
the same amount of charge, regardless of how the com-
ponents of the system are moved. Thus, the flux
through the gaussian surface would be the same as it is
when the sphere and shell are concentric.

24.1 Zero, because there is no net charge within the surface.
24.2 (b) and (d). Statement (a) is not necessarily true be-

cause an equal number of positive and negative charges
could be present inside the surface. Statement (c) is not
necessarily true, as can be seen from Figure 24.8: A
nonzero electric field exists everywhere on the surface,
but the charge is not enclosed within the surface; thus,
the net flux is zero.

a frequency described by the expression

f �
1

2�
 ! �e

me �0

Figure P24.64

Figure P24.67 Problems 67 and 68.

65. A spherically symmetric charge distribution has a
charge density given by where a is constant.
Find the electric field as a function of r. (Hint: Note that
the charge within a sphere of radius R is equal to the in-
tegral of � dV, where r extends from 0 to R . To evaluate
the integral, note that the volume element dV for a
spherical shell of radius r and thickness dr is equal to

66. An infinitely long insulating cylinder of radius R has a
volume charge density that varies with the radius as

where �0 , a, and b are positive constants and r is the dis-
tance from the axis of the cylinder. Use Gauss’s law to
determine the magnitude of the electric field at radial
distances (a) r � R and (b) r � R.

67. Review Problem. A slab of insulating material (infi-
nite in two of its three dimensions) has a uniform posi-
tive charge density �. An edge view of the slab is shown
in Figure P24.67. (a) Show that the magnitude of the
electric field a distance x from its center and inside the
slab is (b) Suppose that an electron of
charge �e and mass me is placed inside the slab. If it is
released from rest at a distance x from the center, show
that the electron exhibits simple harmonic motion with

E � �x/�0 .

� � �0�a �
r
b �

4�r 2 dr.)

� � a/r,

R

Q

b

x

y

O

d

68. A slab of insulating material has a nonuniform positive
charge density where x is measured from the
center of the slab, as shown in Figure P24.67, and C is a
constant. The slab is infinite in the y and z directions.
Derive expressions for the electric field in (a) the exte-
rior regions and (b) the interior region of the slab

69. (a) Using the mathematical similarity between
Coulomb’s law and Newton’s law of universal gravita-
tion, show that Gauss’s law for gravitation can be written
as

where m in is the mass inside the gaussian surface and
represents the gravitational field at any point

on the gaussian surface. (b) Determine the gravita-
tional field at a distance r from the center of the Earth
where r � R E , assuming that the Earth’s mass density is
uniform.

g � Fg /m

�g � dA � �4�Gm in

(�d/2 � x � d/2).

� � Cx2,
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Electric Potential

P U Z Z L E R

Jennifer is holding on to an electrically
charged sphere that reaches an electric
potential of about 100 000 V. The device
that generates this high electric potential
is called a Van de Graaff generator. What
causes Jennifer’s hair to stand on end
like the needles of a porcupine? Why is
she safe in this situation in view of the
fact that 110 V from a wall outlet can kill
you? (Henry Leap and Jim Lehman)
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25.1 Potential Difference and Electric
Potential

25.2 Potential Differences in a
Uniform Electric Field

25.3 Electric Potential and Potential
Energy Due to Point Charges

25.4 Obtaining the Value of the
Electric Field from the Electric
Potential

25.5 Electric Potential Due to
Continuous Charge Distributions

25.6 Electric Potential Due to a
Charged Conductor

25.7 (Optional) The Millikan Oil-Drop
Experiment

25.8 (Optional) Applications of
Electrostatics
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25.1 Potential Difference and Electric Potential 769

he concept of potential energy was introduced in Chapter 8 in connection
with such conservative forces as the force of gravity and the elastic force exerted
by a spring. By using the law of conservation of energy, we were able to avoid

working directly with forces when solving various problems in mechanics. In this
chapter we see that the concept of potential energy is also of great value in the
study of electricity. Because the electrostatic force given by Coulomb’s law is con-
servative, electrostatic phenomena can be conveniently described in terms of an
electric potential energy. This idea enables us to define a scalar quantity known as
electric potential. Because the electric potential at any point in an electric field is a
scalar function, we can use it to describe electrostatic phenomena more simply
than if we were to rely only on the concepts of the electric field and electric forces.
In later chapters we shall see that the concept of electric potential is of great prac-
tical value.

POTENTIAL DIFFERENCE AND ELECTRIC POTENTIAL
When a test charge q0 is placed in an electric field E created by some other
charged object, the electric force acting on the test charge is q0E. (If the field is
produced by more than one charged object, this force acting on the test charge is
the vector sum of the individual forces exerted on it by the various other charged
objects.) The force q 0E is conservative because the individual forces described by
Coulomb’s law are conservative. When the test charge is moved in the field by
some external agent, the work done by the field on the charge is equal to the neg-
ative of the work done by the external agent causing the displacement. For an in-
finitesimal displacement ds, the work done by the electric field on the charge is

As this amount of work is done by the field, the potential energy
of the charge–field system is decreased by an amount For a finite
displacement of the charge from a point A to a point B, the change in potential
energy of the system is

(25.1)

The integration is performed along the path that q0 follows as it moves from A to
B, and the integral is called either a path integral or a line integral (the two terms are
synonymous). Because the force q0E is conservative, this line integral does not
depend on the path taken from A to B.

If the path between A and B does not make any difference in Equation 25.1, why don’t we
just use the expression where d is the straight-line distance between A and B?

The potential energy per unit charge U/q0 is independent of the value of q0
and has a unique value at every point in an electric field. This quantity U/q0 is
called the electric potential (or simply the potential) V. Thus, the electric poten-
tial at any point in an electric field is

(25.2)V �
U
q0

�U � �q0Ed,

Quick Quiz 25.1

�U � �q0 �B

A
 E � ds

�U � UB � UA

dU � �q0E � ds.
F � ds � q0E � ds.

25.1

T

Change in potential energy
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The fact that potential energy is a scalar quantity means that electric potential also
is a scalar quantity.

The potential difference between any two points A and B in an
electric field is defined as the change in potential energy of the system divided by
the test charge q0 :

(25.3)

Potential difference should not be confused with difference in potential energy.
The potential difference is proportional to the change in potential energy, and we
see from Equation 25.3 that the two are related by 

Electric potential is a scalar characteristic of an electric field, indepen-
dent of the charges that may be placed in the field. However, when we speak
of potential energy, we are referring to the charge–field system. Because we
are usually interested in knowing the electric potential at the location of a charge
and the potential energy resulting from the interaction of the charge with the
field, we follow the common convention of speaking of the potential energy as if it
belonged to the charge.

Because the change in potential energy of a charge is the negative of the work
done by the electric field on the charge (as noted in Equation 25.1), the potential
difference �V between points A and B equals the work per unit charge that an ex-
ternal agent must perform to move a test charge from A to B without changing the
kinetic energy of the test charge.

Just as with potential energy, only differences in electric potential are meaning-
ful. To avoid having to work with potential differences, however, we often take the
value of the electric potential to be zero at some convenient point in an electric
field. This is what we do here: arbitrarily establish the electric potential to be zero
at a point that is infinitely remote from the charges producing the field. Having
made this choice, we can state that the electric potential at an arbitrary point
in an electric field equals the work required per unit charge to bring a posi-
tive test charge from infinity to that point. Thus, if we take point A in Equation
25.3 to be at infinity, the electric potential at any point P is

(25.4)

In reality, VP represents the potential difference �V between the point P and a
point at infinity. (Eq. 25.4 is a special case of Eq. 25.3.)

Because electric potential is a measure of potential energy per unit charge, the
SI unit of both electric potential and potential difference is joules per coulomb,
which is defined as a volt (V):

That is, 1 J of work must be done to move a 1-C charge through a potential differ-
ence of 1 V.

Equation 25.3 shows that potential difference also has units of electric field
times distance. From this, it follows that the SI unit of electric field (N/C) can also
be expressed in volts per meter:

1 
N
C

� 1 
V
m

1 V � 1 
J
C

VP � ��P

�
 E � ds

�U � q0�V.

�V �
�U
q0

� ��B

A
 E � ds

�V � VB � VA
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Potential difference

Definition of volt

25.2 Potential Differences in a Uniform Electric Field 771

A unit of energy commonly used in atomic and nuclear physics is the electron
volt (eV), which is defined as the energy an electron (or proton) gains or loses
by moving through a potential difference of 1 V. Because 1 V � 1 J/C and be-
cause the fundamental charge is approximately the electron volt is
related to the joule as follows:

(25.5)

For instance, an electron in the beam of a typical television picture tube may have
a speed of 3.5 � 107 m/s. This corresponds to a kinetic energy of 5.6 � 10�16 J,
which is equivalent to 3.5 � 103 eV. Such an electron has to be accelerated from
rest through a potential difference of 3.5 kV to reach this speed.

POTENTIAL DIFFERENCES IN A
UNIFORM ELECTRIC FIELD

Equations 25.1 and 25.3 hold in all electric fields, whether uniform or varying, but
they can be simplified for a uniform field. First, consider a uniform electric field
directed along the negative y axis, as shown in Figure 25.1a. Let us calculate the
potential difference between two points A and B separated by a distance d, where
d is measured parallel to the field lines. Equation 25.3 gives

Because E is constant, we can remove it from the integral sign; this gives

(25.6)

The minus sign indicates that point B is at a lower electric potential than point A;
that is, Electric field lines always point in the direction of decreas-
ing electric potential, as shown in Figure 25.1a.

Now suppose that a test charge q0 moves from A to B. We can calculate the
change in its potential energy from Equations 25.3 and 25.6:

(25.7)�U � q0 �V � �q0Ed

VB � VA .

�V � �E �B

A
 ds � �Ed

VB � VA � �V � ��B

A
 E � ds � ��B

A
 E cos 0� ds � ��B

A
 E ds

25.2

1 eV � 1.60 � 10�19 C�V � 1.60 � 10�19 J

1.60 � 10�19 C,

d

B

A
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d
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m
Figure 25.1 (a) When the
electric field E is directed down-
ward, point B is at a lower elec-
tric potential than point A. A
positive test charge that moves
from point A to point B loses
electric potential energy. (b) A
mass m moving downward in the
direction of the gravitational
field g loses gravitational poten-
tial energy.

The electron volt

Potential difference in a uniform
electric field
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From this result, we see that if q0 is positive, then �U is negative. We conclude that
a positive charge loses electric potential energy when it moves in the direc-
tion of the electric field. This means that an electric field does work on a positive
charge when the charge moves in the direction of the electric field. (This is analo-
gous to the work done by the gravitational field on a falling mass, as shown in Fig-
ure 25.1b.) If a positive test charge is released from rest in this electric field, it ex-
periences an electric force q0E in the direction of E (downward in Fig. 25.1a).
Therefore, it accelerates downward, gaining kinetic energy. As the charged parti-
cle gains kinetic energy, it loses an equal amount of potential energy.

If q0 is negative, then �U is positive and the situation is reversed: A negative
charge gains electric potential energy when it moves in the direction of the
electric field. If a negative charge is released from rest in the field E, it acceler-
ates in a direction opposite the direction of the field.

Now consider the more general case of a charged particle that is free to move
between any two points in a uniform electric field directed along the x axis, as
shown in Figure 25.2. (In this situation, the charge is not being moved by an exter-
nal agent as before.) If s represents the displacement vector between points A and
B, Equation 25.3 gives

(25.8)

where again we are able to remove E from the integral because it is constant. The
change in potential energy of the charge is

(25.9)

Finally, we conclude from Equation 25.8 that all points in a plane perpendicu-
lar to a uniform electric field are at the same electric potential. We can see this in
Figure 25.2, where the potential difference is equal to the potential differ-
ence (Prove this to yourself by working out the dot product for

where the angle 	 between E and s is arbitrary as shown in Figure 25.2, and
the dot product for where 	 � 0.) Therefore, The name equipo-
tential surface is given to any surface consisting of a continuous distribu-
tion of points having the same electric potential.

Note that because no work is done in moving a test charge be-
tween any two points on an equipotential surface. The equipotential surfaces of a
uniform electric field consist of a family of planes that are all perpendicular to the
field. Equipotential surfaces for fields with other symmetries are described in later
sections.

The labeled points in Figure 25.3 are on a series of equipotential surfaces associated with an
electric field. Rank (from greatest to least) the work done by the electric field on a posi-
tively charged particle that moves from A to B; from B to C ; from C to D; from D to E.

Quick Quiz 25.2

�U � q0�V,

VB � VC . sA:C ,
sA:B ,

E � sVC � VA .
VB � VA

�U � q0 �V � �q0 E � s

�V � �  �B

A
 E � ds � � E ��B

A
 ds � � E � s

An equipotential surface

11.9

QuickLab
It takes an electric field of about 
30 000 V/cm to cause a spark in dry
air. Shuffle across a rug and reach to-
ward a doorknob. By estimating the
length of the spark, determine the
electric potential difference between
your finger and the doorknob after
shuffling your feet but before touch-
ing the knob. (If it is very humid on
the day you attempt this, it may not
work. Why?)

E

B

CA

s

Figure 25.2 A uniform electric
field directed along the positive x
axis. Point B is at a lower electric
potential than point A. Points B
and C are at the same electric po-
tential.

A

B

C

E
D

9 V

8 V

7 V

6 V Figure 25.3 Four equipotential surfaces.
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The Electric Field Between Two Parallel Plates of Opposite ChargeEXAMPLE 25.1
A battery produces a specified potential difference between
conductors attached to the battery terminals. A 12-V battery
is connected between two parallel plates, as shown in Figure
25.4. The separation between the plates is d � 0.30 cm, and
we assume the electric field between the plates to be uniform.

1 The electric field vanishes within a conductor in electrostatic equilibrium; thus, the path integral
between any two points in the conductor must be zero. A more complete discussion of this

point is given in Section 25.6.
� E � ds

+ –
12 V

A

B

d

Figure 25.4 A 12-V battery connected to two parallel plates. The
electric field between the plates has a magnitude given by the poten-
tial difference �V divided by the plate separation d.

(This assumption is reasonable if the plate separation is small
relative to the plate dimensions and if we do not consider
points near the plate edges.) Find the magnitude of the elec-
tric field between the plates.

Solution The electric field is directed from the positive
plate (A) to the negative one (B ), and the positive plate is at
a higher electric potential than the negative plate is. The po-
tential difference between the plates must equal the potential
difference between the battery terminals. We can understand
this by noting that all points on a conductor in equilibrium
are at the same electric potential1; no potential difference ex-
ists between a terminal and any portion of the plate to which
it is connected. Therefore, the magnitude of the electric field
between the plates is, from Equation 25.6,

This configuration, which is shown in Figure 25.4 and
called a parallel-plate capacitor, is examined in greater detail in
Chapter 26.

4.0 � 103 V/mE �
� VB � VA �

d
�

12 V
0.30 � 10�2 m

�

Motion of a Proton in a Uniform Electric FieldEXAMPLE 25.2
From Equation 25.6, we have

(b) Find the change in potential energy of the proton for
this displacement.

Solution

The negative sign means the potential energy of the proton
decreases as it moves in the direction of the electric field. As
the proton accelerates in the direction of the field, it gains ki-
netic energy and at the same time loses electric potential en-
ergy (because energy is conserved).

Exercise Use the concept of conservation of energy to find
the speed of the proton at point B.

Answer 2.77 � 106 m/s.

�6.4 � 10�15 J �

 � (1.6 � 10�19 C)(�4.0 � 104 V)

�U � q0 �V � e �V 

�4.0 � 104 V�

�V � �Ed � �(8.0 � 104 V/m)(0.50 m)

A proton is released from rest in a uniform electric field that
has a magnitude of 8.0 � 104 V/m and is directed along the
positive x axis (Fig. 25.5). The proton undergoes a displace-
ment of 0.50 m in the direction of E. (a) Find the change in
electric potential between points A and B.

Solution Because the proton (which, as you remember,
carries a positive charge) moves in the direction of the field,
we expect it to move to a position of lower electric potential.

d

B
A

+

+

+

+

+

+

+

+

–

–

–

–

–

–

–

vBvA = 0

E

Figure 25.5 A proton accelerates from A to B in the direction of
the electric field.
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ELECTRIC POTENTIAL AND POTENTIAL ENERGY
DUE TO POINT CHARGES

Consider an isolated positive point charge q. Recall that such a charge produces an
electric field that is directed radially outward from the charge. To find the electric
potential at a point located a distance r from the charge, we begin with the gen-
eral expression for potential difference:

where A and B are the two arbitrary points shown in Figure 25.6. At any field
point, the electric field due to the point charge is (Eq. 23.4), where 
is a unit vector directed from the charge toward the field point. The quantity 
can be expressed as

Because the magnitude of is 1, the dot product where 	 is 
the angle between and ds. Furthermore, ds cos 	 is the projection of ds
onto r; thus, ds cos 	 � dr. That is, any displacement ds along the path from
point A to point B produces a change dr in the magnitude of r, the radial 
distance to the charge creating the field. Making these substitutions, we find 
that hence, the expression for the potential difference be-
comes

(25.10)

The integral of is independent of the path between points A and B—as it must
be because the electric field of a point charge is conservative. Furthermore, Equa-
tion 25.10 expresses the important result that the potential difference between any
two points A and B in a field created by a point charge depends only on the radial
coordinates rA and rB . It is customary to choose the reference of electric potential
to be zero at With this reference, the electric potential created by a point
charge at any distance r from the charge is

(25.11)

Electric potential is graphed in Figure 25.7 as a function of r, the radial dis-
tance from a positive charge in the xy plane. Consider the following analogy to
gravitational potential: Imagine trying to roll a marble toward the top of a hill
shaped like Figure 25.7a. The gravitational force experienced by the marble is
analogous to the repulsive force experienced by a positively charged object as it
approaches another positively charged object. Similarly, the electric potential
graph of the region surrounding a negative charge is analogous to a “hole” with
respect to any approaching positively charged objects. A charged object must be
infinitely distant from another charge before the surface is “flat” and has an elec-
tric potential of zero.

V � ke 
q
r

rA � �.

E � ds

VB � VA � keq � 1
rB

�
1
rA
� 

VB � VA � �  � Er dr � �keq �rB

rA

 
dr
r 2 �

keq
r �

rB

rA

E � ds � (keq/r 2)dr ;

r̂
r̂ � ds � ds cos 	,r̂

E � ds � ke 
q
r 2  r̂ � ds

E � ds
r̂E � ke q r̂/r 2

VB � VA � ��B

A
 E � ds

25.3

dr ds
θ

r

A

rB

B

q

r
rA

ˆ

Figure 25.6 The potential differ-
ence between points A and B due
to a point charge q depends only on
the initial and final radial coordi-
nates rA and rB . The two dashed cir-
cles represent cross-sections of
spherical equipotential surfaces.

Electric potential created by a
point charge

25.3 Electric Potential and Potential Energy Due to Point Charges 775

2.5

2.0

1.5

1.0

0.5

0
x

y

E
le

ct
ri

c 
po

te
n

ti
al

 (
V

)

(b)

(a)

+

Figure 25.7 (a) The electric potential in the plane around a single positive charge is plotted
on the vertical axis. (The electric potential function for a negative charge would look like a hole
instead of a hill.) The red line shows the 1/r nature of the electric potential, as given by Equation
25.11. (b) View looking straight down the vertical axis of the graph in part (a), showing concen-
tric circles where the electric potential is constant. These circles are cross sections of equipoten-
tial spheres having the charge at the center.
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A spherical balloon contains a positively charged object at its center. As the balloon is in-
flated to a greater volume while the charged object remains at the center, does the electric
potential at the surface of the balloon increase, decrease, or remain the same? How about
the magnitude of the electric field? The electric flux?

We obtain the electric potential resulting from two or more point charges by
applying the superposition principle. That is, the total electric potential at some
point P due to several point charges is the sum of the potentials due to the individ-
ual charges. For a group of point charges, we can write the total electric potential
at P in the form

(25.12)

where the potential is again taken to be zero at infinity and ri is the distance from
the point P to the charge qi . Note that the sum in Equation 25.12 is an algebraic
sum of scalars rather than a vector sum (which we use to calculate the electric field
of a group of charges). Thus, it is often much easier to evaluate V than to evaluate
E. The electric potential around a dipole is illustrated in Figure 25.8.

We now consider the potential energy of a system of two charged particles. If
V1 is the electric potential at a point P due to charge q1 ,  then the work an external
agent must do to bring a second charge q2 from infinity to P without acceleration
is q2V1. By definition, this work equals the potential energy U of the two-particle
system when the particles are separated by a distance r 12 (Fig. 25.9). Therefore, we
can express the potential energy as2

(25.13)

Note that if the charges are of the same sign, U is positive. This is consistent with
the fact that positive work must be done by an external agent on the system to
bring the two charges near one another (because like charges repel). If the
charges are of opposite sign, U is negative; this means that negative work must be
done against the attractive force between the unlike charges for them to be
brought near each other.

If more than two charged particles are in the system, we can obtain the total
potential energy by calculating U for every pair of charges and summing the terms
algebraically. As an example, the total potential energy of the system of three
charges shown in Figure 25.10 is

(25.14)

Physically, we can interpret this as follows: Imagine that q1 is fixed at the position
shown in Figure 25.10 but that q2 and q3 are at infinity. The work an external
agent must do to bring q2 from infinity to its position near q1 is which
is the first term in Equation 25.14. The last two terms represent the work required
to bring q3 from infinity to its position near q1 and q2 . (The result is independent
of the order in which the charges are transported.)

keq1q2/r12 ,

U � ke � q1q2

r12
�

q1q3

r13
�

q2q3

r23
�

U � ke 
q1q2

r12

V � ke �
i

q i

r i

Quick Quiz 25.3

2 The expression for the electric potential energy of a system made up of two point charges, Equation
25.13, is of the same form as the equation for the gravitational potential energy of a system made up of
two point masses, Gm1m2/r (see Chapter 14). The similarity is not surprising in view of the fact that
both expressions are derived from an inverse-square force law.

Electric potential due to several
point charges

Electric potential energy due to
two charges
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Figure 25.8 (a) The electric potential in the plane containing a dipole. (b) Top view of the
function graphed in part (a).

q1

q2r12

q2

q1

q3

r13

r12

r23

Figure 25. 9 If two point charges
are separated by a distance r12 , the
potential energy of the pair of
charges is given by keq1q2/r 12 .

Figure 25.10 Three point
charges are fixed at the positions
shown. The potential energy of this
system of charges is given by Equa-
tion 25.14.
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The Electric Potential Due to Two Point ChargesEXAMPLE 25.3
Solution When the charge is at infinity, , and when
the charge is at P, ; therefore,

Therefore, because , positive work would have to
be done by an external agent to remove the charge from
point P back to infinity.

Exercise Find the total potential energy of the system illus-
trated in Figure 25.11b.

Answer � 5.48 � 10�2 J.

W � ��U

�18.9 � 10�3 J�

�U � q3VP � 0 � (3.00 � 10�6 C)(�6.29 � 103 V)

Uf � q3VP

Ui � 0A charge q1 � 2.00 
C is located at the origin, and a charge
q2 � � 6.00 
C is located at (0, 3.00) m, as shown in Figure
25.11a. (a) Find the total electric potential due to these
charges at the point P, whose coordinates are (4.00, 0) m.

Solution For two charges, the sum in Equation 25.12 gives

(b) Find the change in potential energy of a 3.00-
C
charge as it moves from infinity to point P (Fig. 25.11b).

�6.29 � 103 V�

VP � ke � q1

r1
�

q2

r2
� 

OBTAINING THE VALUE OF THE ELECTRIC FIELD
FROM THE ELECTRIC POTENTIAL

The electric field E and the electric potential V are related as shown in Equation
25.3. We now show how to calculate the value of the electric field if the electric po-
tential is known in a certain region.

From Equation 25.3 we can express the potential difference dV between two
points a distance ds apart as

(25.15)

If the electric field has only one component Ex , then Therefore,
Equation 25.15 becomes or

(25.16)Ex � �
dV
dx

dV � �Ex dx,
E � ds � Ex dx.

dV � � E � ds

25.4

(a)

3.00 m

4.00 m

P
x

–6.00 µC

y

2.00 µC

(b)

3.00 m

4.00 m
x

–6.00 µC

y

2.00 µC 3.00 µC

µ

µ µ µ

µ

Figure 25.11 (a) The electric potential at P due to the two charges is the algebraic sum of the poten-
tials due to the individual charges. (b) What is the potential energy of the three-charge system?

� 8.99 � 109 
N�m2

C2  � 2.00 � 10�6 C
4.00 m

�
�6.00 � 10�6 C

5.00 m �
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That is, the magnitude of the electric field in the direction of some coordinate is
equal to the negative of the derivative of the electric potential with respect to that
coordinate. Recall from the discussion following Equation 25.8 that the electric
potential does not change for any displacement perpendicular to an electric field.
This is consistent with the notion, developed in Section 25.2, that equipotential
surfaces are perpendicular to the field, as shown in Figure 25.12. A small positive
charge placed at rest on an electric field line begins to move along the direction of
E because that is the direction of the force exerted on the charge by the charge
distribution creating the electric field (and hence is the direction of a). Because
the charge starts with zero velocity, it moves in the direction of the change in ve-
locity—that is, in the direction of a. In Figures 25.12a and 25.12b, a charge placed
at rest in the field will move in a straight line because its acceleration vector is al-
ways parallel to its velocity vector. The magnitude of v increases, but its direction
does not change. The situation is different in Figure 25.12c. A positive charge
placed at some point near the dipole first moves in a direction parallel to E at that
point. Because the direction of the electric field is different at different locations,
however, the force acting on the charge changes direction, and a is no longer par-
allel to v. This causes the moving charge to change direction and speed, but it
does not necessarily follow the electric field lines. Recall that it is not the velocity
vector but rather the acceleration vector that is proportional to force.

If the charge distribution creating an electric field has spherical symmetry
such that the volume charge density depends only on the radial distance r, then
the electric field is radial. In this case, and thus we can express dV
in the form dV Therefore,

(25.17)

For example, the electric potential of a point charge is Because V is a
function of r only, the potential function has spherical symmetry. Applying Equa-
tion 25.17, we find that the electric field due to the point charge is a
familiar result. Note that the potential changes only in the radial direction, not in

Er � keq/r 2,

V � keq/r.

Er � �
dV
dr

� �Er dr.
E � ds � Er dr,

(a)

E

(b)

q

(c)

+

Figure 25.12 Equipotential surfaces (dashed blue lines) and electric field lines (red lines) for
(a) a uniform electric field produced by an infinite sheet of charge, (b) a point charge, and 
(c) an electric dipole. In all cases, the equipotential surfaces are perpendicular to the electric field
lines at every point. Compare these drawings with Figures 25.2, 25.7b, and 25.8b.
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any direction perpendicular to r. Thus, V (like Er) is a function only of r. Again,
this is consistent with the idea that equipotential surfaces are perpendicular to
field lines. In this case the equipotential surfaces are a family of spheres concen-
tric with the spherically symmetric charge distribution (Fig. 25.12b).

The equipotential surfaces for an electric dipole are sketched in Figure
25.12c. When a test charge undergoes a displacement ds along an equipotential
surface, then because the potential is constant along an equipotential sur-
face. From Equation 25.15, then, ; thus, E must be perpendicu-
lar to the displacement along the equipotential surface. This shows that the
equipotential surfaces must always be perpendicular to the electric field lines.

In general, the electric potential is a function of all three spatial coordinates.
If V(r) is given in terms of the cartesian coordinates, the electric field components
Ex , Ey , and Ez can readily be found from V(x, y, z) as the partial derivatives3

For example, if then

�V
�x

�
�

�x
 (3x2y � y2 � yz) �

�

�x
 (3x2y) � 3y 

d
dx

 (x2) � 6xy

V � 3x2y � y2 � yz,

Ex � �
�V
�x

  Ey � �
�V
�y

  Ez � �
�V
�z

dV � �E � ds � 0
dV � 0

The Electric Potential Due to a DipoleEXAMPLE 25.4
(How would this result change if point P happened to be lo-
cated to the left of the negative charge?)

(b) Calculate V and Ex at a point far from the dipole.

Solution If point P is far from the dipole, such that 
then a2 can be neglected in the term and V becomes

Using Equation 25.16 and this result, we can calculate the
electric field at a point far from the dipole:

( )

(c) Calculate V and Ex if point P is located anywhere be-
tween the two charges.

Solution

Ex � �
dV
dx

� �
d
dx

 ��
2keqx

x2 � a2 � � 2keq � �x2 � a2

(x2 � a2)2 �

V � ke �
qi

r i
� ke � q

a � x
�

q
x � a � � �

2keqx
x2 � a2

x W a
4keqa

x 3Ex � �
dV
dx

�

(x W a)
2keqa

x 2V �

x2 � a2,
x W a,

An electric dipole consists of two charges of equal magnitude
and opposite sign separated by a distance 2a, as shown in Fig-
ure 25.13. The dipole is along the x axis and is centered at
the origin. (a) Calculate the electric potential at point P.

Solution For point P in Figure 25.13,

2keqa
x2 � a2�V � ke �

qi

r i
� ke � q

x � a
�

q
x � a �

3 In vector notation, E is often written 

where � is called the gradient operator.

E � ��V � �� i 
�

�x
� j 

�

�y
� k 

�

�z �V

Equipotential surfaces are
perpendicular to the electric field
lines

aa

q

P

x

x

y

–q

Figure 25.13 An electric dipole located on the x axis.
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ELECTRIC POTENTIAL DUE TO CONTINUOUS CHARGE
DISTRIBUTIONS

We can calculate the electric potential due to a continuous charge distribution in
two ways. If the charge distribution is known, we can start with Equation 25.11 for
the electric potential of a point charge. We then consider the potential due to a
small charge element dq, treating this element as a point charge (Fig. 25.14). The
electric potential dV at some point P due to the charge element dq is

(25.18)

where r is the distance from the charge element to point P. To obtain the total po-
tential at point P, we integrate Equation 25.18 to include contributions from all el-
ements of the charge distribution. Because each element is, in general, a different
distance from point P and because ke is constant, we can express V as

(25.19)

In effect, we have replaced the sum in Equation 25.12 with an integral. Note that
this expression for V uses a particular reference: The electric potential is taken to
be zero when point P is infinitely far from the charge distribution.

If the electric field is already known from other considerations, such as Gauss’s
law, we can calculate the electric potential due to a continuous charge distribution
using Equation 25.3. If the charge distribution is highly symmetric, we first evalu-
ate E at any point using Gauss’s law and then substitute the value obtained into
Equation 25.3 to determine the potential difference �V between any two points.
We then choose the electric potential V to be zero at some convenient point.

We illustrate both methods with several examples.

V � ke � 
dq
r

dV � ke 
dq
r

25.5

Electric Potential Due to a Uniformly Charged RingEXAMPLE 25.5
we can remove from the integral, and V reduces to

(25.20)

The only variable in this expression for V is x. This is not sur-
prising because our calculation is valid only for points along
the x axis, where y and z are both zero.

(b) Find an expression for the magnitude of the electric
field at point P.

Solution From symmetry, we see that along the x axis E
can have only an x component. Therefore, we can use Equa-

keQ

!x2 � a2
V �

ke

!x 2 � a2
 � dq �

!x2 � a2(a) Find an expression for the electric potential at a point P
located on the perpendicular central axis of a uniformly
charged ring of radius a and total charge Q.

Solution Let us orient the ring so that its plane is perpen-
dicular to an x axis and its center is at the origin. We can then
take point P to be at a distance x from the center of the ring,
as shown in Figure 25.15. The charge element dq is at a dis-
tance from point P. Hence, we can express V as

Because each element dq is at the same distance from point P,

V � ke � 
dq
r

� ke � 
dq

!x2 � a2

!x2 � a2

We can check these results by considering the situation at 
the center of the dipole, where x � 0, V � 0, and 
�2keq/a2.

Ex �
Exercise Verify the electric field result in part (c) by calcu-
lating the sum of the individual electric field vectors at the
origin due to the two charges.

r

P

dq

Figure 25.14 The electric poten-
tial at the point P due to a continu-
ous charge distribution can be cal-
culated by dividing the charged
body into segments of charge dq
and summing the electric potential
contributions over all segments.
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P
x

√x2 + a2

dq

a

Figure 25.15 A uniformly charged ring of radius a lies in a plane
perpendicular to the x axis. All segments dq of the ring are the same
distance from any point P lying on the x axis.

tion 25.16:

(25.21)

This result agrees with that obtained by direct integration
(see Example 23.8). Note that at x � 0 (the center of
the ring). Could you have guessed this from Coulomb’s law?

Exercise What is the electric potential at the center of the
ring? What does the value of the field at the center tell you
about the value of V at the center?

Answer Because at the cen-Ex � �dV/dx � 0V � keQ /a.

Ex � 0

keQx
(x2 � a2)3/2 �

 � �keQ(�1
2 )(x2 � a2)�3/2(2x) 

Ex � �
dV
dx

� �keQ 
d
dx

 (x2 � a2)�1/2

ter, V has either a maximum or minimum value; it is, in fact,
a maximum.

Electric Potential Due to a Uniformly Charged DiskEXAMPLE 25.6
from the definition of surface charge density (see Section
23.5), we know that the charge on the ring is 

Hence, the potential at the point P due to
this ring is

To find the total electric potential at P, we sum over all rings
making up the disk. That is, we integrate dV from r � 0 to 
r � a:

This integral is of the form un du and has the value
where and This gives

(25.22)

(b) As in Example 25.5, we can find the electric field at
any axial point from

(25.23)

The calculation of V and E for an arbitrary point off the axis
is more difficult to perform, and we do not treat this situation
in this text.

2�ke � �1 �
x

!x2 � a2�Ex � �
dV
dx

�

2�ke �[(x2 � a2)1/2 � x]V �

u � r 2 � x2.n � �1
2un�1/(n � 1),

V � �ke ��a

0
 

2r dr

!r 2 � x2
� �ke ��a

0
 (r 2 � x2)�1/2 2r dr

dV �
ke dq

!r 2 � x2
�

ke �2�r dr

!r 2 � x2

� dA � �2�r dr.
dq �

Find (a) the electric potential and (b) the magnitude of the
electric field along the perpendicular central axis of a uni-
formly charged disk of radius a and surface charge density �.

Solution (a) Again, we choose the point P to be at a dis-
tance x from the center of the disk and take the plane of the
disk to be perpendicular to the x axis. We can simplify the
problem by dividing the disk into a series of charged rings.
The electric potential of each ring is given by Equation 25.20.
Consider one such ring of radius r and width dr, as indicated
in Figure 25.16. The surface area of the ring is dA � 2�r dr ;

Figure 25.16 A uniformly charged disk of radius a lies in a plane
perpendicular to the x axis. The calculation of the electric potential
at any point P on the x axis is simplified by dividing the disk into
many rings each of area 2�r dr.

dr

dA = 2πrdr

√ r 2 + x 2

x P

r
a

π
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Electric Potential Due to a Finite Line of ChargeEXAMPLE 25.7
Evaluating V, we find that

(25.24)
keQ

�
 ln� � � !�2 � a2

a �V �

A rod of length located along the x axis has a total charge
Q and a uniform linear charge density � � Q / . Find the
electric potential at a point P located on the y axis a distance
a from the origin (Fig. 25.17).

Solution The length element dx has a charge dq � � dx.
Because this element is a distance from point P,
we can express the potential at point P due to this element 
as

To obtain the total potential at P, we integrate this expression
over the limits x � 0 to x � . Noting that ke and � are con-
stants, we find that

This integral has the following value (see Appendix B):

� 
dx

!x2 � a2
� ln(x � !x2 � a2)

V � ke � ��

0
 

dx

!x2 � a2
� ke 

Q
�

 ��

0
 

dx

!x2 � a2

�

dV � ke 
dq
r

� ke 
� dx

!x 2 � a 2

r � !x2 � a2

�
�

Electric Potential Due to a Uniformly Charged SphereEXAMPLE 25.8
Because the potential must be continuous at r � R , we

can use this expression to obtain the potential at the surface
of the sphere. That is, the potential at a point such as C
shown in Figure 25.18 is

(for 

(b) Find the potential at a point inside the sphere, that is,
for r � R .

r � R )VC � ke 
Q
R

An insulating solid sphere of radius R has a uniform positive
volume charge density and total charge Q. (a) Find the elec-
tric potential at a point outside the sphere, that is, for 
Take the potential to be zero at 

Solution In Example 24.5, we found that the magnitude
of the electric field outside a uniformly charged sphere of ra-
dius R is

(for 

where the field is directed radially outward when Q is posi-
tive. In this case, to obtain the electric potential at an exterior
point, such as B in Figure 25.18, we use Equation 25.4 and
the expression for Er given above:

(for 

Note that the result is identical to the expression for the elec-
tric potential due to a point charge (Eq. 25.11).

r � R )VB � ke 
Q
r

VB � ��r

�
 Er dr � �keQ �r

�
 

dr
r 2

r � R )Er � ke 
Q
r 2

r � �.
r � R.

dx

�

x
x

0

dq

ra

P

y

Figure 25.17 A uniform line charge of length located along 
the x axis. To calculate the electric potential at P, the line charge is
divided into segments each of length dx and each carrying a charge
dq � � dx.

�

R

r
Q

D
C

B

Figure 25.18 A uniformly charged insulating sphere of radius R
and total charge Q . The electric potentials at points B and C are
equivalent to those produced by a point charge Q located at the cen-
ter of the sphere, but this is not true for point D.



ELECTRIC POTENTIAL DUE TO A
CHARGED CONDUCTOR

In Section 24.4 we found that when a solid conductor in equilibrium carries a net
charge, the charge resides on the outer surface of the conductor. Furthermore, we
showed that the electric field just outside the conductor is perpendicular to the
surface and that the field inside is zero.

We now show that every point on the surface of a charged conductor in
equilibrium is at the same electric potential. Consider two points A and B on
the surface of a charged conductor, as shown in Figure 25.20. Along a surface path
connecting these points, E is always perpendicular to the displacement ds; there-

25.6
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Solution In Example 24.5 we found that the electric field
inside an insulating uniformly charged sphere is

(for 

We can use this result and Equation 25.3 to evaluate the po-
tential difference at some interior point D:

Substituting into this expression and solving for
VD , we obtain

(for (25.25)

At r � R , this expression gives a result that agrees with that
for the potential at the surface, that is, VC . A plot of V versus
r for this charge distribution is given in Figure 25.19.

Exercise What are the magnitude of the electric field and
the electric potential at the center of the sphere?

r � R )VD �
keQ
2R

 �3 �
r 2

R2 �

VC � keQ /R

VD � VC � ��r

R
 Er dr � �

keQ
R3  �r

R
 r dr �

keQ
2R3  (R2 � r 2)

VD � VC

r � R )Er �
keQ
R3 r

Answer V0 � 3keQ /2R .E � 0;

V

V0

V0
2
3

R r

VB =
keQ

r

VD =
keQ
2R

(3 –
r 2

R2 )

V0 =
3keQ
2R

Figure 25.19 A plot of electric potential V versus distance r from
the center of a uniformly charged insulating sphere of radius R . The
curve for VD inside the sphere is parabolic and joins smoothly with
the curve for VB outside the sphere, which is a hyperbola. The poten-
tial has a maximum value V0 at the center of the sphere. We could
make this graph three dimensional (similar to Figures 25.7a and
25.8a) by spinning it around the vertical axis.

+
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+
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+
+
+
+

+
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+
+

+
+
+++ + +++

+
+

+
+
+ Figure 25.20 An arbitrarily shaped conductor carrying a posi-

tive charge. When the conductor is in electrostatic equilibrium,
all of the charge resides at the surface, E � 0 inside the conduc-
tor, and the direction of E just outside the conductor is perpen-
dicular to the surface. The electric potential is constant inside
the conductor and is equal to the potential at the surface. Note
from the spacing of the plus signs that the surface charge density
is nonuniform.
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the surface of any charged conductor in electrostatic equilibrium is an equipo-
tential surface. Furthermore, because the electric field is zero inside the con-
ductor, we conclude from the relationship that the electric poten-
tial is constant everywhere inside the conductor and equal to its value at the
surface.

Er � �dV/dr

fore Using this result and Equation 25.3, we conclude that the potential
difference between A and B is necessarily zero:

This result applies to any two points on the surface. Therefore, V is constant every-
where on the surface of a charged conductor in equilibrium. That is,

VB � VA � ��B

A
 E � ds � 0

E � ds � 0.

(a) + +
+ +

+ +
+ ++

+ +
+ +

+ ++

R

V

keQ
R

keQ
r

(b)

r

E
keQ

r 2

r
R

(c)

Figure 25.21 (a) The excess
charge on a conducting sphere of
radius R is uniformly distributed on
its surface. (b) Electric potential
versus distance r from the center of
the charged conducting sphere. 
(c) Electric field magnitude versus
distance r from the center of the
charged conducting sphere.

Electric field pattern of a charged conducting plate
placed near an oppositely charged pointed conductor.
Small pieces of thread suspended in oil align with the
electric field lines. The field surrounding the pointed
conductor is most intense near the pointed end and at
other places where the radius of curvature is small.

Because this is true about the electric potential, no work is required to move a test
charge from the interior of a charged conductor to its surface.

Consider a solid metal conducting sphere of radius R and total positive charge
Q , as shown in Figure 25.21a. The electric field outside the sphere is keQ /r2 and
points radially outward. From Example 25.8, we know that the electric potential at
the interior and surface of the sphere must be keQ /R relative to infinity. The po-
tential outside the sphere is keQ /r. Figure 25.21b is a plot of the electric potential
as a function of r, and Figure 25.21c shows how the electric field varies with r.

When a net charge is placed on a spherical conductor, the surface charge den-
sity is uniform, as indicated in Figure 25.21a. However, if the conductor is non-
spherical, as in Figure 25.20, the surface charge density is high where the radius of
curvature is small and the surface is convex (as noted in Section 24.4), and it is low
where the radius of curvature is small and the surface is concave. Because the elec-
tric field just outside the conductor is proportional to the surface charge density,
we see that the electric field is large near convex points having small radii of
curvature and reaches very high values at sharp points.

Figure 25.22 shows the electric field lines around two spherical conductors:
one carrying a net charge Q , and a larger one carrying zero net charge. In this
case, the surface charge density is not uniform on either conductor. The sphere
having zero net charge has negative charges induced on its side that faces the

The surface of a charged
conductor is an equipotential
surface
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charged sphere and positive charges induced on its side opposite the charged
sphere. The blue curves in the figure represent the cross-sections of the equipo-
tential surfaces for this charge configuration. As usual, the field lines are perpen-
dicular to the conducting surfaces at all points, and the equipotential surfaces are
perpendicular to the field lines everywhere. Trying to move a positive charge in
the region of these conductors would be like moving a marble on a hill that is flat
on top (representing the conductor on the left) and has another flat area partway
down the side of the hill (representing the conductor on the right).

Two Connected Charged SpheresEXAMPLE 25.9
Two spherical conductors of radii r 1 and r 2 are separated by a
distance much greater than the radius of either sphere. The
spheres are connected by a conducting wire, as shown in Fig-
ure 25.23. The charges on the spheres in equilibrium are q1
and q2 , respectively, and they are uniformly charged. Find
the ratio of the magnitudes of the electric fields at the sur-
faces of the spheres.

Solution Because the spheres are connected by a conduct-
ing wire, they must both be at the same electric potential:

Therefore, the ratio of charges is

V � ke 
q1

r1
� ke 

q2

r2

Q Q = 0––
––

–

––
––

+

+

+

+
+
+
+

+
+

++++
++
++++

+++++++++

+++++++

++++++

Figure 25.22 The electric field lines (in red) around two spherical conductors. The smaller
sphere has a net charge Q , and the larger one has zero net charge. The blue curves are cross-
sections of equipotential surfaces.

r1

r2

q1

q2

Figure 25.23 Two charged spherical conductors connected by a
conducting wire. The spheres are at the same electric potential V.
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A Cavity Within a Conductor

Now consider a conductor of arbitrary shape containing a cavity as shown in Fig-
ure 25.24. Let us assume that no charges are inside the cavity. In this case, the
electric field inside the cavity must be zero regardless of the charge distribu-
tion on the outside surface of the conductor. Furthermore, the field in the cavity is
zero even if an electric field exists outside the conductor.

To prove this point, we use the fact that every point on the conductor is at the
same electric potential, and therefore any two points A and B on the surface of the
cavity must be at the same potential. Now imagine that a field E exists in the cavity
and evaluate the potential difference defined by Equation 25.3:

If E is nonzero, we can always find a path between A and B for which is a
positive number; thus, the integral must be positive. However, because

the integral of must be zero for all paths between any two
points on the conductor, which implies that E is zero everywhere. This contradic-
tion can be reconciled only if E is zero inside the cavity. Thus, we conclude that a
cavity surrounded by conducting walls is a field-free region as long as no charges
are inside the cavity.

Corona Discharge

A phenomenon known as corona discharge is often observed near a conductor
such as a high-voltage power line. When the electric field in the vicinity of the con-
ductor is sufficiently strong, electrons are stripped from air molecules. This causes
the molecules to be ionized, thereby increasing the air’s ability to conduct. The
observed glow (or corona discharge) results from the recombination of free elec-
trons with the ionized air molecules. If a conductor has an irregular shape, the
electric field can be very high near sharp points or edges of the conductor; conse-
quently, the ionization process and corona discharge are most likely to occur
around such points.

(a) Is it possible for the magnitude of the electric field to be zero at a location where the
electric potential is not zero? (b) Can the electric potential be zero where the electric field
is nonzero?

Quick Quiz 25.4

E � dsVB � VA � 0,

E � ds

VB � VA � ��B

A
 E � ds

VB � VA

(1)

Because the spheres are very far apart and their surfaces uni-
formly charged, we can express the magnitude of the electric
fields at their surfaces as

and E2 � ke 
q2

r2 

2E1 � ke 
q1

r1 

2

q1

q2
�

r1

r2

Taking the ratio of these two fields and making use of Equa-
tion (1), we find that

Hence, the field is more intense in the vicinity of the smaller
sphere even though the electric potentials of both spheres
are the same.

E1

E2
�

r2

r1

A

B

Figure 25.24 A conductor in
electrostatic equilibrium contain-
ing a cavity. The electric field in the
cavity is zero, regardless of the
charge on the conductor.
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Optional Section

THE MILLIKAN OIL-DROP EXPERIMENT
During the period from 1909 to 1913, Robert Millikan performed a brilliant set of
experiments in which he measured e, the elementary charge on an electron, and
demonstrated the quantized nature of this charge. His apparatus, diagrammed in
Figure 25.25, contains two parallel metallic plates. Charged oil droplets from an at-
omizer are allowed to pass through a small hole in the upper plate. A horizontally
directed light beam (not shown in the diagram) is used to illuminate the oil
droplets, which are viewed through a telescope whose long axis is at right angles to
the light beam. When the droplets are viewed in this manner, they appear as shin-
ing stars against a dark background, and the rate at which individual drops fall can
be determined.4

Let us assume that a single drop having a mass m and carrying a charge q is be-
ing viewed and that its charge is negative. If no electric field is present between the
plates, the two forces acting on the charge are the force of gravity mg acting down-
ward and a viscous drag force FD acting upward as indicated in Figure 25.26a. The
drag force is proportional to the drop’s speed. When the drop reaches its terminal
speed v, the two forces balance each other (mg � FD).

Now suppose that a battery connected to the plates sets up an electric field be-
tween the plates such that the upper plate is at the higher electric potential. In this
case, a third force qE acts on the charged drop. Because q is negative and E is di-
rected downward, this electric force is directed upward, as shown in Figure 25.26b.
If this force is sufficiently great, the drop moves upward and the drag force acts
downward. When the upward electric force q E balances the sum of the gravita-
tional force and the downward drag force the drop reaches a new terminal
speed v� in the upward direction.

With the field turned on, a drop moves slowly upward, typically at rates of hun-
dredths of a centimeter per second. The rate of fall in the absence of a field is
comparable. Hence, one can follow a single droplet for hours, alternately rising
and falling, by simply turning the electric field on and off.

F�D ,

F�D

25.7

4 At one time, the oil droplets were termed “Millikan’s Shining Stars.” Perhaps this description has lost
its popularity because of the generations of physics students who have experienced hallucinations, near
blindness, migraine headaches, and so forth, while repeating Millikan’s experiment!

q

v

– +

Battery

Switch

Charged plate

Charged plate

Telescope

Atomizer

Oil droplets

Pin hole

FD

FD

qE

mg

E
v ′

(b) Field on

v

mg

q

(a) Field off

′

Figure 25.25 Schematic drawing of the Millikan oil-drop apparatus.

Figure 25.26 The forces acting
on a negatively charged oil droplet
in the Millikan experiment.
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After recording measurements on thousands of droplets, Millikan and his co-
workers found that all droplets, to within about 1% precision, had a charge equal
to some integer multiple of the elementary charge e :

� 1, � 2, � 3, . . .

where Millikan’s experiment yields conclusive evidence that
charge is quantized. For this work, he was awarded the Nobel Prize in Physics in
1923.

Optional Section

APPLICATIONS OF ELECTROSTATICS
The practical application of electrostatics is represented by such devices as light-
ning rods and electrostatic precipitators and by such processes as xerography and
the painting of automobiles. Scientific devices based on the principles of electro-
statics include electrostatic generators, the field-ion microscope, and ion-drive
rocket engines.

The Van de Graaff Generator

In Section 24.5 we described an experiment that demonstrates a method for trans-
ferring charge to a hollow conductor (the Faraday ice-pail experiment). When a
charged conductor is placed in contact with the inside of a hollow conductor, all
of the charge of the charged conductor is transferred to the hollow conductor. In
principle, the charge on the hollow conductor and its electric potential can be in-
creased without limit by repetition of the process.

In 1929 Robert J. Van de Graaff (1901–1967) used this principle to design and
build an electrostatic generator. This type of generator is used extensively in nu-
clear physics research. A schematic representation of the generator is given in Fig-
ure 25.27. Charge is delivered continuously to a high-potential electrode by means
of a moving belt of insulating material. The high-voltage electrode is a hollow con-
ductor mounted on an insulating column. The belt is charged at point A by means
of a corona discharge between comb-like metallic needles and a grounded grid.
The needles are maintained at a positive electric potential of typically 104 V. The
positive charge on the moving belt is transferred to the hollow conductor by a sec-
ond comb of needles at point B. Because the electric field inside the hollow con-
ductor is negligible, the positive charge on the belt is easily transferred to the con-
ductor regardless of its potential. In practice, it is possible to increase the electric
potential of the hollow conductor until electrical discharge occurs through the air.
Because the “breakdown” electric field in air is about 3 � 106 V/m, a sphere 1 m
in radius can be raised to a maximum potential of 3 � 106 V. The potential can be
increased further by increasing the radius of the hollow conductor and by placing
the entire system in a container filled with high-pressure gas.

Van de Graaff generators can produce potential differences as large as 20 mil-
lion volts. Protons accelerated through such large potential differences receive
enough energy to initiate nuclear reactions between themselves and various target
nuclei. Smaller generators are often seen in science classrooms and museums. If a
person insulated from the ground touches the sphere of a Van de Graaff genera-
tor, his or her body can be brought to a high electric potential. The hair acquires a
net positive charge, and each strand is repelled by all the others. The result is a

25.8

e � 1.60 � 10�19 C.

q � ne  n � 0,

11.10
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Figure 25.27 Schematic diagram
of a Van de Graaff generator.
Charge is transferred to the hollow
conductor at the top by means of a
moving belt. The charge is de-
posited on the belt at point A and
transferred to the hollow conduc-
tor at point B.
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scene such as that depicted in the photograph at the beginning of this chapter. In
addition to being insulated from ground, the person holding the sphere is safe in
this demonstration because the total charge on the sphere is very small (on the or-
der of 1 
C). If this amount of charge accidentally passed from the sphere
through the person to ground, the corresponding current would do no harm.

The Electrostatic Precipitator

One important application of electrical discharge in gases is the electrostatic precipi-
tator. This device removes particulate matter from combustion gases, thereby re-
ducing air pollution. Precipitators are especially useful in coal-burning power
plants and in industrial operations that generate large quantities of smoke. Cur-
rent systems are able to eliminate more than 99% of the ash from smoke.

Figure 25.28a shows a schematic diagram of an electrostatic precipitator. A
high potential difference (typically 40 to 100 kV) is maintained between a wire
running down the center of a duct and the walls of the duct, which are grounded.
The wire is maintained at a negative electric potential with respect to the walls, so
the electric field is directed toward the wire. The values of the field near the wire
become high enough to cause a corona discharge around the wire; the discharge
ionizes some air molecules to form positive ions, electrons, and such negative ions
as O2

�. The air to be cleaned enters the duct and moves near the wire. As the elec-
trons and negative ions created by the discharge are accelerated toward the outer
wall by the electric field, the dirt particles in the air become charged by collisions
and ion capture. Because most of the charged dirt particles are negative, they too
are drawn to the duct walls by the electric field. When the duct is periodically
shaken, the particles break loose and are collected at the bottom.

Insulator

Clean air
out

Weight
Dirty
air in

Dirt out

(a) (c)(b)

Figure 25.28 (a) Schematic diagram of an electrostatic precipitator. The high negative electric
potential maintained on the central coiled wire creates an electrical discharge in the vicinity of
the wire. Compare the air pollution when the electrostatic precipitator is (b) operating and 
(c) turned off. 

QuickLab
Sprinkle some salt and pepper on an
open dish and mix the two together.
Now pull a comb through your hair
several times and bring the comb to
within 1 cm of the salt and pepper.
What happens? How is what happens
here related to the operation of an
electrostatic precipitator?
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In addition to reducing the level of particulate matter in the atmosphere
(compare Figs. 25.28b and c), the electrostatic precipitator recovers valuable mate-
rials in the form of metal oxides.

Xerography and Laser Printers

The basic idea of xerography5 was developed by Chester Carlson, who was granted
a patent for the xerographic process in 1940. The one feature of this process that
makes it unique is the use of a photoconductive material to form an image. (A pho-
toconductor is a material that is a poor electrical conductor in the dark but that be-
comes a good electrical conductor when exposed to light.)

The xerographic process is illustrated in Figure 25.29a to d. First, the surface 
of a plate or drum that has been coated with a thin film of photoconductive mater-
ial (usually selenium or some compound of selenium) is given a positive electrosta-
tic charge in the dark. An image of the page to be copied is then focused by a lens
onto the charged surface. The photoconducting surface becomes conducting only
in areas where light strikes it. In these areas, the light produces charge carriers in
the photoconductor that move the positive charge off the drum. However, positive

5 The prefix xero - is from the Greek word meaning “dry.” Note that no liquid ink is used anywhere in 
xerography.

Selenium-coated
drum

(a) Charging the drum (b) Imaging the document

(d) Transferring the
       toner to the paper

Laser
beam

Interlaced pattern
of laser lines

(e) Laser printer drum

Negatively
charged

toner
(c) Applying the toner

Lens

Light causes some areas
of drum to become
electrically conducting,
removing positive charge

Figure 25.29 The xerographic process: (a) The photoconductive surface of the drum is posi-
tively charged. (b) Through the use of a light source and lens, an image is formed on the surface
in the form of positive charges. (c) The surface containing the image is covered with a negatively
charged powder, which adheres only to the image area. (d) A piece of paper is placed over the
surface and given a positive charge. This transfers the image to the paper as the negatively
charged powder particles migrate to the paper. The paper is then heat-treated to “fix” the pow-
der. (e) A laser printer operates similarly except the image is produced by turning a laser beam
on and off as it sweeps across the selenium-coated drum.
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charges remain on those areas of the photoconductor not exposed to light, 
leaving a latent image of the object in the form of a positive surface charge dis-
tribution.

Next, a negatively charged powder called a toner is dusted onto the photocon-
ducting surface. The charged powder adheres only to those areas of the surface
that contain the positively charged image. At this point, the image becomes visible.
The toner (and hence the image) are then transferred to the surface of a sheet of
positively charged paper.

Finally, the toner is “fixed” to the surface of the paper as the toner melts while
passing through high-temperature rollers. This results in a permanent copy of the
original.

A laser printer (Fig. 25.29e) operates by the same principle, with the excep-
tion that a computer-directed laser beam is used to illuminate the photoconductor
instead of a lens.

SUMMARY

When a positive test charge q0 is moved between points A and B in an electric field
E, the change in the potential energy is

(25.1)

The electric potential is a scalar quantity and has units of joules per
coulomb ( J/C), where 

The potential difference �V between points A and B in an electric field E is
defined as

(25.3)

The potential difference between two points A and B in a uniform electric
field E is

(25.6)

where d is the magnitude of the displacement in the direction parallel to E.
An equipotential surface is one on which all points are at the same electric

potential. Equipotential surfaces are perpendicular to electric field lines. 
If we define at the electric potential due to a point charge at

any distance r from the charge is

(25.11)

We can obtain the electric potential associated with a group of point charges by
summing the potentials due to the individual charges.

The potential energy associated with a pair of point charges separated by
a distance r 12 is

(25.13)

This energy represents the work required to bring the charges from an infinite
separation to the separation r12 . We obtain the potential energy of a distribution
of point charges by summing terms like Equation 25.13 over all pairs of particles.

U � ke 
q1q2

r12

V � ke 
q
r

rA � �,V � 0

�V � �Ed

�V �
�U
q0

� ��B

A
 E � ds

1 J/C � 1 V.
V � U/q0

�U � �q0 �B

A
 E � ds
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If we know the electric potential as a function of coordinates x, y, z, we can ob-
tain the components of the electric field by taking the negative derivative of the
electric potential with respect to the coordinates. For example, the x component
of the electric field is

(25.16)

The electric potential due to a continuous charge distribution is

(25.19)

Every point on the surface of a charged conductor in electrostatic equilibrium
is at the same electric potential. The potential is constant everywhere inside the
conductor and equal to its value at the surface.

Table 25.1 lists electric potentials due to several charge distributions.

V � ke � 
dq
r

Ex � �
dV
dx

Problem-Solving Hints
Calculating Electric Potential

• Remember that electric potential is a scalar quantity, so components need
not be considered. Therefore, when using the superposition principle to
evaluate the electric potential at a point due to a system of point charges,
simply take the algebraic sum of the potentials due to the various charges.
However, you must keep track of signs. The potential is positive for positive
charges, and it is negative for negative charges.

• Just as with gravitational potential energy in mechanics, only changes in elec-
tric potential are significant; hence, the point where you choose the poten-

TABLE 25.1 Electric Potential Due to Various Charge Distributions

Charge Distribution Electric Potential Location

Uniformly charged Along perpendicular central
ring of radius a axis of ring, distance x

from ring center

Uniformly charged Along perpendicular central
disk of radius a axis of disk, distance x

from disk center

Uniformly charged,
insulating solid
sphere of radius R
and total charge Q

Isolated conducting
sphere of radius R
and total charge Q

V � ke 
Q
R

V � ke 
Q
r

r � R

r � R

V � ke 
Q

!x2 � a2

V �
keQ
2R

 �3 �
r 2

R2 �
V � ke 

Q
r	

	

V � 2�ke �[(x2 � a2)1/2 � x]

r � R

r � R
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tial to be zero is arbitrary. When dealing with point charges or a charge dis-
tribution of finite size, we usually define V � 0 to be at a point infinitely far
from the charges.

• You can evaluate the electric potential at some point P due to a continuous
distribution of charge by dividing the charge distribution into infinitesimal
elements of charge dq located at a distance r from P. Then, treat one charge
element as a point charge, such that the potential at P due to the element is

Obtain the total potential at P by integrating dV over the en-
tire charge distribution. In performing the integration for most problems,
you must express dq and r in terms of a single variable. To simplify the inte-
gration, consider the geometry involved in the problem carefully. Review Ex-
amples 25.5 through 25.7 for guidance.

• Another method that you can use to obtain the electric potential due to a fi-
nite continuous charge distribution is to start with the definition of poten-
tial difference given by Equation 25.3. If you know or can easily obtain E
(from Gauss’s law), then you can evaluate the line integral of An ex-
ample of this method is given in Example 25.8.

• Once you know the electric potential at a point, you can obtain the electric
field at that point by remembering that the electric field component in 
a specified direction is equal to the negative of the derivative of the electric
potential in that direction. Example 25.4 illustrates this procedure.

E � ds.

dV � kedq/r.

QUESTIONS

sphere is zero. Does this imply that the potential is zero
inside the sphere? Explain.

9. The potential of a point charge is defined to be zero at an
infinite distance. Why can we not define the potential of
an infinite line of charge to be zero at 

10. Two charged conducting spheres of different radii are
connected by a conducting wire, as shown in Figure
25.23. Which sphere has the greater charge density?

11. What determines the maximum potential to which the
dome of a Van de Graaff generator can be raised?

12. Explain the origin of the glow sometimes observed
around the cables of a high-voltage power line.

13. Why is it important to avoid sharp edges or points on con-
ductors used in high-voltage equipment?

14. How would you shield an electronic circuit or laboratory
from stray electric fields? Why does this work?

15. Why is it relatively safe to stay in an automobile with a
metal body during a severe thunderstorm?

16. Walking across a carpet and then touching someone can
result in a shock. Explain why this occurs.

r � � ?

1. Distinguish between electric potential and electric poten-
tial energy.

2. A negative charge moves in the direction of a uniform
electric field. Does the potential energy of the charge in-
crease or decrease? Does it move to a position of higher
or lower potential?

3. Give a physical explanation of the fact that the poten-
tial energy of a pair of like charges is positive whereas 
the potential energy of a pair of unlike charges is nega-
tive.

4. A uniform electric field is parallel to the x axis. In what
direction can a charge be displaced in this field without
any external work being done on the charge?

5. Explain why equipotential surfaces are always perpendic-
ular to electric field lines.

6. Describe the equipotential surfaces for (a) an infinite line
of charge and (b) a uniformly charged sphere.

7. Explain why, under static conditions, all points in a con-
ductor must be at the same electric potential.

8. The electric field inside a hollow, uniformly charged

Problems 795

PROBLEMS

11. A 4.00-kg block carrying a charge Q � 50.0 
C is con-
nected to a spring for which k � 100 N/m. The block
lies on a frictionless horizontal track, and the system is
immersed in a uniform electric field of magnitude E �
5.00 � 105 V/m, directed as shown in Figure P25.11. If
the block is released from rest when the spring is un-
stretched (at x � 0), (a) by what maximum amount
does the spring expand? (b) What is the equilibrium
position of the block? (c) Show that the block’s motion
is simple harmonic, and determine its period. 
(d) Repeat part (a) if the coefficient of kinetic friction
between block and surface is 0.200.

12. A block having mass m and charge Q is connected to a
spring having constant k . The block lies on a frictionless
horizontal track, and the system is immersed in a uni-
form electric field of magnitude E, directed as shown in
Figure P25.11. If the block is released from rest when
the spring is unstretched (at x � 0), (a) by what maxi-
mum amount does the spring expand? (b) What is the
equilibrium position of the block? (c) Show that the
block’s motion is simple harmonic, and determine its
period.(d) Repeat part (a) if the coefficient of kinetic
friction between block and surface is 
k .

Section 25.1 Potential Difference and Electric Potential
1. How much work is done (by a battery, generator, or

some other source of electrical energy) in moving Avo-
gadro’s number of electrons from an initial point where
the electric potential is 9.00 V to a point where the po-
tential is � 5.00 V ? (The potential in each case is mea-
sured relative to a common reference point.)

2. An ion accelerated through a potential difference of
115 V experiences an increase in kinetic energy of 
7.37 � 10�17 J. Calculate the charge on the ion.

3. (a) Calculate the speed of a proton that is accelerated
from rest through a potential difference of 120 V. 
(b) Calculate the speed of an electron that is acceler-
ated through the same potential difference.

4. Review Problem. Through what potential difference
would an electron need to be accelerated for it to
achieve a speed of 40.0% of the speed of light, starting
from rest? The speed of light is c � 3.00 � 108 m/s; 
review Section 7.7.

5. What potential difference is needed to stop an electron
having an initial speed of 4.20 � 105 m/s?

Section 25.2 Potential Differences in a 
Uniform Electric Field

6. A uniform electric field of magnitude 250 V/m is 
directed in the positive x direction. A � 12.0-
C 
charge moves from the origin to the point (x, y) �
(20.0 cm, 50.0 cm). (a) What was the change in the 
potential energy of this charge? (b) Through what po-
tential difference did the charge move?

7. The difference in potential between the accelerating
plates of a TV set is about 25 000 V. If the distance be-
tween these plates is 1.50 cm, find the magnitude of the
uniform electric field in this region.

8. Suppose an electron is released from rest in a uniform
electric field whose magnitude is 5.90 � 103 V/m. 
(a) Through what potential difference will it have
passed after moving 1.00 cm? (b) How fast will the elec-
tron be moving after it has traveled 1.00 cm?

9. An electron moving parallel to the x axis has an initial
speed of 3.70 � 106 m/s at the origin. Its speed is re-
duced to 1.40 � 105 m/s at the point x � 2.00 cm. Cal-
culate the potential difference between the origin and
that point. Which point is at the higher potential?

10. A uniform electric field of magnitude 325 V/m is 
directed in the negative y direction as shown in 
Figure P25.10. The coordinates of point A are 
(� 0.200, � 0.300) m, and those of point B are 
(0.400, 0.500) m. Calculate the potential difference

using the blue path.VB � VA ,

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

y

B

x

E

A

Figure P25.10

Figure P25.11 Problems 11 and 12.

k
m, Q

E

x = 0

WEB
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13. On planet Tehar, the acceleration due to gravity is the
same as that on Earth but there is also a strong down-
ward electric field with the field being uniform close to
the planet’s surface. A 2.00-kg ball having a charge of 
5.00 
C is thrown upward at a speed of 20.1 m/s and it
hits the ground after an interval of 4.10 s. What is the
potential difference between the starting point and the
top point of the trajectory?

14. An insulating rod having linear charge density � �
40.0 
C/m and linear mass density 
 � 0.100 kg/m is
released from rest in a uniform electric field E �
100 V/m directed perpendicular to the rod (Fig.
P25.14). (a) Determine the speed of the rod after it has
traveled 2.00 m. (b) How does your answer to part (a)
change if the electric field is not perpendicular to the
rod? Explain.

18. A charge � q is at the origin. A charge � 2q is at x �
2.00 m on the x axis. For what finite value(s) of x is 
(a) the electric field zero? (b) the electric potential zero?

19. The Bohr model of the hydrogen atom states that the
single electron can exist only in certain allowed orbits
around the proton. The radius of each Bohr orbit is r �
n2 (0.052 9 nm) where n � 1, 2, 3, . . . . Calculate
the electric potential energy of a hydrogen atom when
the electron is in the (a) first allowed orbit, n � 1; 
(b) second allowed orbit, n � 2; and (c) when the elec-
tron has escaped from the atom Express your
answers in electron volts.

20. Two point charges nC and 
are separated by 35.0 cm. (a) What is the potential en-
ergy of the pair? What is the significance of the alge-
braic sign of your answer? (b) What is the electric po-
tential at a point midway between the charges?

21. The three charges in Figure P25.21 are at the vertices of
an isosceles triangle. Calculate the electric potential at
the midpoint of the base, taking q � 7.00 
C.

22. Compare this problem with Problem 55 in Chapter 23. Four
identical point charges (q � � 10.0 
C) are located on
the corners of a rectangle, as shown in Figure P23.55.
The dimensions of the rectangle are L � 60.0 cm and
W � 15.0 cm. Calculate the electric potential energy of
the charge at the lower left corner due to the other
three charges.

Q 2 � �3.00 nCQ 1 � �5.00

(r � �).

string makes an angle 	 � 60.0° with a uniform electric
field of magnitude E � 300 V/m. Determine the speed
of the particle when the string is parallel to the electric
field (point a in Fig. P25.15).

Section 25.3 Electric Potential and Potential Energy 
Due to Point Charges
Note: Unless stated otherwise, assume a reference level of po-
tential at 

16. (a) Find the potential at a distance of 1.00 cm from a
proton. (b) What is the potential difference between
two points that are 1.00 cm and 2.00 cm from a proton?
(c) Repeat parts (a) and (b) for an electron.

17. Given two 2.00-
C charges, as shown in Figure P25.17,
and a positive test charge � 10�18 C at the ori-
gin, (a) what is the net force exerted on q by the two
2.00-
C charges? (b) What is the electric field at the ori-
gin due to the two 2.00-
C charges? (c) What is the
electric potential at the origin due to the two 2.00-
C
charges?

q � 1.28

r � �.V � 0

15. A particle having charge 
C and mass m �
0.010 0 kg is connected to a string that is L � 1.50 m
long and is tied to the pivot point P in Figure P25.15.
The particle, string, and pivot point all lie on a horizon-
tal table. The particle is released from rest when the

q � �2.00

2.00
y

q

0 x = 0.800 mx = –0.800 m
x

C Cµ 2.00 µ

θ

Top View

E
P

a

m
q

L

λ, µ

EE

,

Figure P25.14

Figure P25.15

Figure P25.17
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collide? (Hint: Consider conservation of energy and
conservation of linear momentum.) (b) If the spheres
were conductors, would the speeds be greater or less
than those calculated in part (a)?

29. A small spherical object carries a charge of 8.00 nC. At
what distance from the center of the object is the poten-
tial equal to 100 V ? 50.0 V ? 25.0 V ? Is the spacing of the
equipotentials proportional to the change in potential?

30. Two point charges of equal magnitude are located
along the y axis equal distances above and below the 
x axis, as shown in Figure P25.30. (a) Plot a graph of
the potential at points along the x axis over the interval

You should plot the potential in units of
keQ /a. (b) Let the charge located at �a be negative
and plot the potential along the y axis over the interval
� 4a � y � 4a.

�3a � x � 3a.

31. In Rutherford’s famous scattering experiments that led
to the planetary model of the atom, alpha particles
(charge � 2e, mass � 6.64 � 10�27 kg) were fired at 
a gold nucleus (charge � 79e). An alpha particle, ini-
tially very far from the gold nucleus, is fired with a ve-
locity of 2.00 � 107 m/s directly toward the center of
the nucleus. How close does the alpha particle get to
this center before turning around? Assume the gold nu-
cleus remains stationary.

32. An electron starts from rest 3.00 cm from the center of
a uniformly charged insulating sphere of radius 2.00 cm
and total charge 1.00 nC. What is the speed of the elec-
tron when it reaches the surface of the sphere?

33. Calculate the energy required to assemble the array of
charges shown in Figure P25.33, where a � 0.200 m, 
b � 0.400 m, and q � 6.00 
C.

34. Four identical particles each have charge q and mass m.
They are released from rest at the vertices of a square of
side L . How fast is each charge moving when their dis-
tance from the center of the square doubles?

23. Show that the amount of work required to assemble
four identical point charges of magnitude Q at the cor-
ners of a square of side s is 5.41keQ2/s.

24. Compare this problem with Problem 18 in Chapter 23. Two
point charges each of magnitude 2.00 
C are located
on the x axis. One is at x � 1.00 m, and the other is at 
x � � 1.00 m. (a) Determine the electric potential on
the y axis at y � 0.500 m. (b) Calculate the electric po-
tential energy of a third charge, of � 3.00 
C, placed on
the y axis at y � 0.500 m.

25. Compare this problem with Problem 22 in Chapter 23. Five
equal negative point charges �q are placed symmetri-
cally around a circle of radius R. Calculate the electric
potential at the center of the circle.

26. Compare this problem with Problem 17 in Chapter 23.
Three equal positive charges q are at the corners of an
equilateral triangle of side a, as shown in Figure P23.17.
(a) At what point, if any, in the plane of the charges is
the electric potential zero? (b) What is the electric po-
tential at the point P due to the two charges at the base
of the triangle?

27. Review Problem. Two insulating spheres having radii
0.300 cm and 0.500 cm, masses 0.100 kg and 0.700 kg,
and charges � 2.00 
C and 3.00 
C are released from
rest when their centers are separated by 1.00 m. 
(a) How fast will each be moving when they collide?
(Hint: Consider conservation of energy and linear mo-
mentum.) (b) If the spheres were conductors would the
speeds be larger or smaller than those calculated in part
(a)? Explain.

28. Review Problem. Two insulating spheres having radii
r 1 and r 2 , masses m 1 and m 2 , and charges �q1 and q2
are released from rest when their centers are separated
by a distance d. (a) How fast is each moving when they

2.00 cm

4.00 cm

q

–q –q

Figure P25.21

a

a

x

y

Q >O

Q

Figure P25.30

WEB
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35. How much work is required to assemble eight identical
point charges, each of magnitude q, at the corners of a
cube of side s?

Section 25.4 Obtaining the Value of the Electric Field
from the Electric Potential

36. The potential in a region between x � 0 and x �
6.00 m is where a � 10.0 V and b �
� 7.00 V/m. Determine (a) the potential at x �
0, 3.00 m, and 6.00 m and (b) the magnitude and 
direction of the electric field at x � 0, 3.00 m, and 
6.00 m.

37. Over a certain region of space, the electric potential is
Find the expressions for the x, y,

and z components of the electric field over this region.
What is the magnitude of the field at the point P, which
has coordinates (1, 0, � 2) m?

38. The electric potential inside a charged spherical
conductor of radius R is given by V � ke Q /R and
outside the conductor is given by V � ke Q /r. Using

derive the electric field (a) inside and
(b) outside this charge distribution.

39. It is shown in Example 25.7 that the potential at a point
P a distance a above one end of a uniformly charged
rod of length lying along the x axis is

Use this result to derive an expression for the y compo-
nent of the electric field at P. (Hint: Replace a with y.)

40. When an uncharged conducting sphere of radius a is
placed at the origin of an xyz coordinate system that lies
in an initially uniform electric field the result-
ing electric potential is 

for points outside the sphere, where V0 is the (constant)
electric potential on the conductor. Use this equation to
determine the x, y, and z components of the resulting
electric field.

V(x, y, z) � V0 � E0z �
E0a3z

(x2 � y2 � z2)3/2

E � E0k,

V �
keQ

�
 ln� � � !�2 � a2

a �
�

Er � �dV/dr,

V � 5x � 3x2y � 2yz2.

V � a � bx

Section 25.5 Electric Potential Due to Continuous 
Charge Distributions

41. Consider a ring of radius R with the total charge Q
spread uniformly over its perimeter. What is the poten-
tial difference between the point at the center of the
ring and a point on its axis a distance 2R from the 
center?

42. Compare this problem with Problem 33 in Chapter 23. A
uniformly charged insulating rod of length 14.0 cm is
bent into the shape of a semicircle, as shown in Figure
P23.33. If the rod has a total charge of � 7.50 
C, find
the electric potential at O, the center of the semicircle.

43. A rod of length L (Fig. P25.43) lies along the x axis with
its left end at the origin and has a nonuniform charge
density � � �x (where � is a positive constant). 
(a) What are the units of �? (b) Calculate the electric
potential at A.

46. A wire of finite length that has a uniform linear charge
density � is bent into the shape shown in Figure P25.46.
Find the electric potential at point O.

44. For the arrangement described in the previous prob-
lem, calculate the electric potential at point B that lies
on the perpendicular bisector of the rod a distance 
b above the x axis.

45. Calculate the electric potential at point P on the axis of
the annulus shown in Figure P25.45, which has a uni-
form charge density �.

a
b

x
P

b

B
y

x

L

d

A

q –2q

2q 3q
b

a

Figure P25.33

Figure P25.43 Problems 43 and 44.

Figure P25.45
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Section 25.6 Electric Potential Due to a 
Charged Conductor

47. How many electrons should be removed from an ini-
tially uncharged spherical conductor of radius 0.300 m
to produce a potential of 7.50 kV at the surface?

48. Two charged spherical conductors are connected by a
long conducting wire, and a charge of 20.0 
C is placed
on the combination. (a) If one sphere has a radius of
4.00 cm and the other has a radius of 6.00 cm, what is
the electric field near the surface of each sphere? 
(b) What is the electric potential of each sphere?

49. A spherical conductor has a radius of 14.0 cm and
charge of 26.0 
C. Calculate the electric field and the
electric potential at (a) r � 10.0 cm, (b) r � 20.0 cm,
and (c) r � 14.0 cm from the center.

50. Two concentric spherical conducting shells of radii a �
0.400 m and b � 0.500 m are connected by a thin wire,
as shown in Figure P25.50. If a total charge Q �
10.0 
C is placed on the system, how much charge
settles on each sphere?

ADDITIONAL PROBLEMS

53. The liquid-drop model of the nucleus suggests that
high-energy oscillations of certain nuclei can split the
nucleus into two unequal fragments plus a few neu-
trons. The fragments acquire kinetic energy from their
mutual Coulomb repulsion. Calculate the electric po-
tential energy (in electron volts) of two spherical frag-
ments from a uranium nucleus having the following
charges and radii: 38e and 5.50 � 10�15 m; 54e and 
6.20 � 10�15 m. Assume that the charge is distributed
uniformly throughout the volume of each spherical
fragment and that their surfaces are initially in contact
at rest. (The electrons surrounding the nucleus can be
neglected.)

54. On a dry winter day you scuff your leather-soled shoes
across a carpet and get a shock when you extend the tip
of one finger toward a metal doorknob. In a dark room
you see a spark perhaps 5 mm long. Make order-of-
magnitude estimates of (a) your electric potential and
(b) the charge on your body before you touch the door-
knob. Explain your reasoning.

55. The charge distribution shown in Figure P25.55 is re-
ferred to as a linear quadrupole. (a) Show that the po-
tential at a point on the x axis where x � a is

(b) Show that the expression obtained in part (a) when
reduces to

V �
2keQa2

x3

x W a

V �
2keQa2

x3 � xa2

WEB

56. (a) Use the exact result from Problem 55 to find the
electric field at any point along the axis of the linear
quadrupole for (b) Evaluate E at x � 3a if a �
2.00 mm and Q � 3.00 
C.

57. At a certain distance from a point charge, the magni-
tude of the electric field is 500 V/m and the electric po-
tential is � 3.00 kV. (a) What is the distance to the
charge? (b) What is the magnitude of the charge?

58. An electron is released from rest on the axis of a uni-
form positively charged ring, 0.100 m from the ring’s

x � a.

(Optional)
Section 25.7 The Millikan Oil-Drop Experiment
(Optional)
Section 25.8 Applications of Electrostatics

51. Consider a Van de Graaff generator with a 30.0-cm-
diameter dome operating in dry air. (a) What is the
maximum potential of the dome? (b) What is the maxi-
mum charge on the dome?

52. The spherical dome of a Van de Graaff generator can
be raised to a maximum potential of 600 kV; then addi-
tional charge leaks off in sparks, by producing break-
down of the surrounding dry air. Determine (a) the
charge on the dome and (b) the radius of the dome.

+Q –2Q +Q

x

y

(a, 0)(–a, 0)

Quadrupole

a

b

q 1

q 2

Wire

2R 2R
O

R

Figure P25.46

Figure P25.50

Figure P25.55
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center. If the linear charge density of the ring is 
� 0.100 
C/m and the radius of the ring is 0.200 m,
how fast will the electron be moving when it reaches the
center of the ring?

59. (a) Consider a uniformly charged cylindrical shell hav-
ing total charge Q , radius R , and height h. Determine
the electrostatic potential at a point a distance d from
the right side of the cylinder, as shown in Figure P25.59.
(Hint: Use the result of Example 25.5 by treating the
cylinder as a collection of ring charges.) (b) Use the re-
sult of Example 25.6 to solve the same problem for a
solid cylinder.

63. From Gauss’s law, the electric field set up by a uniform
line of charge is

where is a unit vector pointing radially away from the
line and � is the charge per unit length along the line.
Derive an expression for the potential difference be-
tween and 

64. A point charge q is located at x � �R , and a point
charge � 2q is located at the origin. Prove that the
equipotential surface that has zero potential is a sphere
centered at (� 4R/3, 0, 0) and having a radius r �
2R/3.

65. Consider two thin, conducting, spherical shells as
shown in cross-section in Figure P25.65. The inner shell
has a radius r 1 � 15.0 cm and a charge of 10.0 nC. The
outer shell has a radius r 2 � 30.0 cm and a charge of
� 15.0 nC. Find (a) the electric field E and (b) the
electric potential V in regions A, B, and C, with V � 0 at
r � �.

r � r2 .r � r1

r̂

E � � �

2��0r � r̂

WEB

66. The x axis is the symmetry axis of a uniformly charged
ring of radius R and charge Q (Fig. P25.66). A point
charge Q of mass M is located at the center of the ring.
When it is displaced slightly, the point charge acceler-

60. Two parallel plates having charges of equal magnitude
but opposite sign are separated by 12.0 cm. Each plate
has a surface charge density of 36.0 nC/m2. A proton is
released from rest at the positive plate. Determine 
(a) the potential difference between the plates, (b) the
energy of the proton when it reaches the negative plate,
(c) the speed of the proton just before it strikes the neg-
ative plate, (d) the acceleration of the proton, and 
(e) the force on the proton. (f) From the force, find
the magnitude of the electric field and show that it is
equal to that found from the charge densities on the
plates.

61. Calculate the work that must be done to charge a spher-
ical shell of radius R to a total charge Q.

62. A Geiger–Müller counter is a radiation detector that es-
sentially consists of a hollow cylinder (the cathode) of
inner radius ra and a coaxial cylindrical wire (the an-
ode) of radius rb (Fig. P25.62). The charge per unit
length on the anode is �, while the charge per unit
length on the cathode is � �. (a) Show that the magni-
tude of the potential difference between the wire and
the cylinder in the sensitive region of the detector is

(b) Show that the magnitude of the electric field over
that region is given by

where r is the distance from the center of the anode to
the point where the field is to be calculated.

E �
�V

ln(ra/rb)
 � 1

r �

�V � 2ke � ln� ra

rb
�

d

R

h

Figure P25.59

rb
λ

ra –λ

Cathode

Anode

λ

C

B

A

r1

r2

Figure P25.62

Figure P25.65

Problems 801

ates along the x axis to infinity. Show that the ultimate
speed of the point charge is

v � � 2keQ2

MR �
1/2

R
Q

v

x

Uniformly
charged ring

Q

Figure P25.66

Figure P25.68

Figure P25.69

Figure P25.70

(b) For the dipole arrangement shown, express V in
terms of cartesian coordinates using r � (x2 + y2)1/2

and

Using these results and taking calculate the field
components Ex and Ey .

70. Figure P25.70 shows several equipotential lines each la-
beled by its potential in volts. The distance between the
lines of the square grid represents 1.00 cm. (a) Is the
magnitude of the field bigger at A or at B? Why? 
(b) What is E at B? (c) Represent what the field looks
like by drawing at least eight field lines.

r W a,

cos 	 �
y

(x2 � y2)1/2

69. A dipole is located along the y axis as shown in Figure
P25.69. (a) At a point P, which is far from the dipole

the electric potential is

where p � 2qa. Calculate the radial component Er and
the perpendicular component E	 of the associated elec-
tric field. Note that Do these re-
sults seem reasonable for 	 � 90° and 0°? for r � 0? 

E	 � �(1/r)(�V/�	).

V � ke 
p cos 	

r 2

(r W a),

67. An infinite sheet of charge that has a surface charge
density of 25.0 nC/m2 lies in the yz plane, passes
through the origin, and is at a potential of 1.00 kV at
the point . A long wire having a linear
charge density of 80.0 nC/m lies parallel to the y axis
and intersects the x axis at x � 3.00 m. (a) Determine,
as a function of x, the potential along the x axis between
wire and sheet. (b) What is the potential energy of a
2.00-nC charge placed at x � 0.800 m?

68. The thin, uniformly charged rod shown in Figure
P25.68 has a linear charge density �. Find an expression
for the electric potential at P.

y � 0, z � 0

a

–q

a

+q

r 1

r 2

r

θ
x

y
P

Er

Eθθ

b

a L

x

P

y

71. A disk of radius R has a nonuniform surface charge
density � � Cr, where C is a constant and r is measured
from the center of the disk (Fig. P25.71). Find (by di-
rect integration) the potential at P.

×

B

×0
2

4
6

8

A
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ANSWERS TO QUICK QUIZZES

electric potential is zero at the center of the dipole, but
the magnitude of the field at that point is not zero. (The
two charges in a dipole are by definition of opposite
sign; thus, the electric field lines created by the two
charges extend from the positive to the negative charge
and do not cancel anywhere.) This is the situation we
presented in Example 25.4c, in which the equations we
obtained give and .Ex � 0V � 0

25.1 We do if the electric field is uniform. (This is precisely
what we do in the next section.) In general, however, an
electric field changes from one place to another.

25.2 B : C, C : D, A : B, D : E. Moving from B to C de-
creases the electric potential by 2 V, so the electric field
performs 2 J of work on each coulomb of charge that
moves. Moving from C to D decreases the electric poten-
tial by 1 V, so 1 J of work is done by the field. It takes no
work to move the charge from A to B because the elec-
tric potential does not change. Moving from D to E in-
creases the electric potential by 1 V, and thus the field
does � 1 J of work, just as raising a mass to a higher ele-
vation causes the gravitational field to do negative work
on the mass.

25.3 The electric potential decreases in inverse proportion to
the radius (see Eq. 25.11). The electric field magnitude
decreases as the reciprocal of the radius squared (see
Eq. 23.4). Because the surface area increases as r 2 while
the electric field magnitude decreases as 1/r 2, the elec-
tric flux through the surface remains constant (see 
Eq. 24.1).

25.4 (a) Yes. Consider four equal charges placed at the cor-
ners of a square. The electric potential graph for this sit-
uation is shown in the figure. At the center of the
square, the electric field is zero because the individual
fields from the four charges cancel, but the potential is
not zero. This is also the situation inside a charged con-
ductor. (b) Yes again. In Figure 25.8, for instance, the

Figure P25.71

electric potential energy. (Hint: Imagine that the sphere
is constructed by adding successive layers of concentric
shells of charge and use 

73. The results of Problem 62 apply also to an electrostatic
precipitator (see Figs. 25.28a and P25.62). An applied
voltage is to produce an elec-
tric field of magnitude 5.50 MV/m at the surface of the
central wire. The outer cylindrical wall has uniform ra-
dius ra � 0.850 m. (a) What should be the radius rb of
the central wire? You will need to solve a transcendental
equation. (b) What is the magnitude of the electric
field at the outer wall?

�V � Va � Vb � 50.0 kV

dU � V dq.)dq � (4�r 2 dr)�
R

P

x

x

yE
le

ct
ri

c 
po

te
n

ti
al

 (
V

)

6

5

4

3

2

1

0

72. A solid sphere of radius R has a uniform charge density
� and total charge Q. Derive an expression for its total
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Many electronic components carry a
warning label like this one. What is there
inside these devices that makes them so
dangerous? Why wouldn’t you be safe if
you unplugged the equipment before
opening the case? (George Semple)
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n this chapter, we discuss capacitors—devices that store electric charge. Capaci-
tors are commonly used in a variety of electric circuits. For instance, they are
used to tune the frequency of radio receivers, as filters in power supplies, to

eliminate sparking in automobile ignition systems, and as energy-storing devices in
electronic flash units.

A capacitor consists of two conductors separated by an insulator. We shall see
that the capacitance of a given capacitor depends on its geometry and on the ma-
terial—called a dielectric—that separates the conductors.

DEFINITION OF CAPACITANCE
Consider two conductors carrying charges of equal magnitude but of opposite
sign, as shown in Figure 26.1. Such a combination of two conductors is called a ca-
pacitor. The conductors are called plates. A potential difference �V exists between
the conductors due to the presence of the charges. Because the unit of potential
difference is the volt, a potential difference is often called a voltage. We shall use
this term to describe the potential difference across a circuit element or between
two points in space.

What determines how much charge is on the plates of a capacitor for a given
voltage? In other words, what is the capacity of the device for storing charge at a
particular value of �V ? Experiments show that the quantity of charge Q on a ca-
pacitor1 is linearly proportional to the potential difference between the conduc-
tors; that is, The proportionality constant depends on the shape and sepa-
ration of the conductors.2 We can write this relationship as if we define
capacitance as follows:

Q � C �V
Q � �V.

26.1

The capacitance C of a capacitor is the ratio of the magnitude of the charge on
either conductor to the magnitude of the potential difference between them:

(26.1)C �
Q

�V

I

Note that by definition capacitance is always a positive quantity. Furthermore, the po-
tential difference �V is always expressed in Equation 26.1 as a positive quantity. Be-
cause the potential difference increases linearly with the stored charge, the ratio
Q /�V is constant for a given capacitor. Therefore, capacitance is a measure of a
capacitor’s ability to store charge and electric potential energy.

From Equation 26.1, we see that capacitance has SI units of coulombs per volt.
The SI unit of capacitance is the farad (F), which was named in honor of Michael
Faraday:

The farad is a very large unit of capacitance. In practice, typical devices have ca-
pacitances ranging from microfarads (10�6 F) to picofarads (10�12 F). For practi-
cal purposes, capacitors often are labeled “mF” for microfarads and “mmF” for mi-
cromicrofarads or, equivalently, “pF” for picofarads.

1 F � 1 C/V

Definition of capacitance

1 Although the total charge on the capacitor is zero (because there is as much excess positive charge
on one conductor as there is excess negative charge on the other), it is common practice to refer to the
magnitude of the charge on either conductor as “the charge on the capacitor.”
2 The proportionality between �V and Q can be proved from Coulomb’s law or by experiment.

13.5

–Q

+Q

Figure 26.1 A capacitor consists
of two conductors carrying charges
of equal magnitude but opposite
sign.
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Let us consider a capacitor formed from a pair of parallel plates, as shown in
Figure 26.2. Each plate is connected to one terminal of a battery (not shown in
Fig. 26.2), which acts as a source of potential difference. If the capacitor is initially
uncharged, the battery establishes an electric field in the connecting wires when
the connections are made. Let us focus on the plate connected to the negative ter-
minal of the battery. The electric field applies a force on electrons in the wire just
outside this plate; this force causes the electrons to move onto the plate. This
movement continues until the plate, the wire, and the terminal are all at the same
electric potential. Once this equilibrium point is attained, a potential difference
no longer exists between the terminal and the plate, and as a result no electric
field is present in the wire, and the movement of electrons stops. The plate now
carries a negative charge. A similar process occurs at the other capacitor plate,
with electrons moving from the plate to the wire, leaving the plate positively
charged. In this final configuration, the potential difference across the capacitor
plates is the same as that between the terminals of the battery.

Suppose that we have a capacitor rated at 4 pF. This rating means that the ca-
pacitor can store 4 pC of charge for each volt of potential difference between the
two conductors. If a 9-V battery is connected across this capacitor, one of the con-
ductors ends up with a net charge of � 36 pC and the other ends up with a net
charge of � 36 pC.

CALCULATING CAPACITANCE
We can calculate the capacitance of a pair of oppositely charged conductors in the
following manner: We assume a charge of magnitude Q , and we calculate the po-
tential difference using the techniques described in the preceding chapter. We
then use the expression to evaluate the capacitance. As we might ex-
pect, we can perform this calculation relatively easily if the geometry of the capaci-
tor is simple.

We can calculate the capacitance of an isolated spherical conductor of radius
R and charge Q if we assume that the second conductor making up the capacitor is
a concentric hollow sphere of infinite radius. The electric potential of the sphere
of radius R is simply keQ /R, and setting at infinity as usual, we have

(26.2)

This expression shows that the capacitance of an isolated charged sphere is pro-
portional to its radius and is independent of both the charge on the sphere and
the potential difference.

C �
Q
�V

�
Q

keQ /R
�

R
ke

� 4��0R

V � 0

C � Q /�V

26.2

QuickLab
Roll some socks into balls and stuff
them into a shoebox. What deter-
mines how many socks fit in the box?
Relate how hard you push on the
socks to �V for a capacitor. How does
the size of the box influence its “sock
capacity”?

A collection of capacitors used in a variety of applica-
tions. 

d

–Q
+Q

Area = A

Figure 26.2 A parallel-plate ca-
pacitor consists of two parallel con-
ducting plates, each of area A, sepa-
rated by a distance d. When the
capacitor is charged, the plates
carry equal amounts of charge.
One plate carries positive charge,
and the other carries negative
charge.
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The capacitance of a pair of conductors depends on the geometry of the con-
ductors. Let us illustrate this with three familiar geometries, namely, parallel
plates, concentric cylinders, and concentric spheres. In these examples, we assume
that the charged conductors are separated by a vacuum. The effect of a dielectric
material placed between the conductors is treated in Section 26.5.

Parallel-Plate Capacitors

Two parallel metallic plates of equal area A are separated by a distance d, as shown
in Figure 26.2. One plate carries a charge Q , and the other carries a charge �Q .
Let us consider how the geometry of these conductors influences the capacity of
the combination to store charge. Recall that charges of like sign repel one an-
other. As a capacitor is being charged by a battery, electrons flow into the negative
plate and out of the positive plate. If the capacitor plates are large, the accumu-
lated charges are able to distribute themselves over a substantial area, and the
amount of charge that can be stored on a plate for a given potential difference in-
creases as the plate area is increased. Thus, we expect the capacitance to be pro-
portional to the plate area A.

Now let us consider the region that separates the plates. If the battery has a
constant potential difference between its terminals, then the electric field between
the plates must increase as d is decreased. Let us imagine that we move the plates
closer together and consider the situation before any charges have had a chance
to move in response to this change. Because no charges have moved, the electric
field between the plates has the same value but extends over a shorter distance.
Thus, the magnitude of the potential difference between the plates (Eq.
25.6) is now smaller. The difference between this new capacitor voltage and the
terminal voltage of the battery now exists as a potential difference across the wires
connecting the battery to the capacitor. This potential difference results in an elec-
tric field in the wires that drives more charge onto the plates, increasing the po-
tential difference between the plates. When the potential difference between the
plates again matches that of the battery, the potential difference across the wires
falls back to zero, and the flow of charge stops. Thus, moving the plates closer to-
gether causes the charge on the capacitor to increase. If d is increased, the charge
decreases. As a result, we expect the device’s capacitance to be inversely propor-
tional to d.

�V � Ed

Figure 26.3 (a) The electric field between the plates of a parallel-plate capacitor is uniform
near the center but nonuniform near the edges. (b) Electric field pattern of two oppositely
charged conducting parallel plates. Small pieces of thread on an oil surface align with the elec-
tric field.

+Q

–Q

(a) (b)
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We can verify these physical arguments with the following derivation. The sur-
face charge density on either plate is If the plates are very close to-
gether (in comparison with their length and width), we can assume that the elec-
tric field is uniform between the plates and is zero elsewhere. According to the last
paragraph of Example 24.8, the value of the electric field between the plates is

Because the field between the plates is uniform, the magnitude of the potential
difference between the plates equals Ed (see Eq. 25.6); therefore,

Substituting this result into Equation 26.1, we find that the capacitance is

(26.3)

That is, the capacitance of a parallel-plate capacitor is proportional to the
area of its plates and inversely proportional to the plate separation, just as
we expect from our conceptual argument.

A careful inspection of the electric field lines for a parallel-plate capacitor re-
veals that the field is uniform in the central region between the plates, as shown in
Figure 26.3a. However, the field is nonuniform at the edges of the plates. Figure
26.3b is a photograph of the electric field pattern of a parallel-plate capacitor.
Note the nonuniform nature of the electric field at the ends of the plates. Such
end effects can be neglected if the plate separation is small compared with the
length of the plates.

Many computer keyboard buttons are constructed of capacitors, as shown in Figure 26.4.
When a key is pushed down, the soft insulator between the movable plate and the fixed
plate is compressed. When the key is pressed, the capacitance (a) increases, (b) decreases,
or (c) changes in a way that we cannot determine because the complicated electric circuit
connected to the keyboard button may cause a change in �V.

Quick Quiz 26.1

C �
�0A
d

C �
Q
�V

�
Q

Qd/�0A

�V � Ed �
Qd
�0A

E �
�

�0
�

Q
�0A

� � Q /A.

Key

Movable
plate

Soft
insulator

Fixed
plate

B

Parallel-Plate CapacitorEXAMPLE 26.1

Exercise What is the capacitance for a plate separation of
3.00 mm?

Answer 0.590 pF.

1.77 pF � 1.77 	 10�12 F �
A parallel-plate capacitor has an area 
and a plate separation mm. Find its capacitance.

Solution From Equation 26.3, we find that

C � �0 
A
d

� (8.85 	 10�12 C2/N
m2)� 2.00 	 10�4 m2

1.00 	 10�3 m �

d � 1.00
A � 2.00 	 10�4 m2

Figure 26.4 One type of com-
puter keyboard button.
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The Cylindrical CapacitorEXAMPLE 26.2
by (b/a), a positive quantity. As
predicted, the capacitance is proportional to the length of
the cylinders. As we might expect, the capacitance also de-
pends on the radii of the two cylindrical conductors. From
Equation 26.4, we see that the capacitance per unit length of
a combination of concentric cylindrical conductors is

(26.5)

An example of this type of geometric arrangement is a coaxial
cable, which consists of two concentric cylindrical conductors
separated by an insulator. The cable carries electrical signals
in the inner and outer conductors. Such a geometry is espe-
cially useful for shielding the signals from any possible exter-
nal influences.

C
�

�
1

2ke ln� b
a �

�V � � Vb � Va � � 2ke � lnA solid cylindrical conductor of radius a and charge Q is
coaxial with a cylindrical shell of negligible thickness, radius

and charge �Q (Fig. 26.5a). Find the capacitance of
this cylindrical capacitor if its length is �.

Solution It is difficult to apply physical arguments to this
configuration, although we can reasonably expect the capaci-
tance to be proportional to the cylinder length � for the same
reason that parallel-plate capacitance is proportional to plate
area: Stored charges have more room in which to be distrib-
uted. If we assume that � is much greater than a and b, we can
neglect end effects. In this case, the electric field is perpen-
dicular to the long axis of the cylinders and is confined to the
region between them (Fig. 26.5b). We must first calculate the
potential difference between the two cylinders, which is given
in general by

where E is the electric field in the region In Chap-
ter 24, we showed using Gauss’s law that the magnitude of the
electric field of a cylindrical charge distribution having linear
charge density � is (Eq. 24.7). The same result
applies here because, according to Gauss’s law, the charge on
the outer cylinder does not contribute to the electric field in-
side it. Using this result and noting from Figure 26.5b that E
is along r, we find that

Substituting this result into Equation 26.1 and using the fact
that we obtain

(26.4)

where �V is the magnitude of the potential difference, given

�

2ke ln� b
a �

C �
Q

�V
�

Q

2keQ
�

 ln� b
a �

�

� � Q /�,

Vb � Va � ��b

a
 Er dr � �2ke � �b

a
 
dr
r

� �2ke � ln� b
a �

Er � 2ke �/r

a � r � b.

Vb � Va � ��b

a
 E � ds

b 
 a,

The Spherical CapacitorEXAMPLE 26.3
Solution As we showed in Chapter 24, the field outside
a spherically symmetric charge distribution is radial and
given by the expression In this case, this result ap-
plies to the field between the spheres From(a � r � b).

keQ /r 2.

A spherical capacitor consists of a spherical conducting shell
of radius b and charge �Q concentric with a smaller conduct-
ing sphere of radius a and charge Q (Fig. 26.6). Find the ca-
pacitance of this device.

b
a

�

(a) (b)

Gaussian
surface

–Q
a

Q

b

r

Figure 26.5 (a) A cylindrical capacitor consists of a solid cylindri-
cal conductor of radius a and length � surrounded by a coaxial cylin-
drical shell of radius b. (b) End view. The dashed line represents the
end of the cylindrical gaussian surface of radius r and length �.

Cylindrical and Spherical Capacitors

From the definition of capacitance, we can, in principle, find the capacitance of
any geometric arrangement of conductors. The following examples demonstrate
the use of this definition to calculate the capacitance of the other familiar geome-
tries that we mentioned: cylinders and spheres.
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What is the magnitude of the electric field in the region outside the spherical capacitor de-
scribed in Example 26.3?

COMBINATIONS OF CAPACITORS
Two or more capacitors often are combined in electric circuits. We can calculate
the equivalent capacitance of certain combinations using methods described in
this section. The circuit symbols for capacitors and batteries, as well as the color
codes used for them in this text, are given in Figure 26.7. The symbol for the ca-
pacitor reflects the geometry of the most common model for a capacitor—a pair
of parallel plates. The positive terminal of the battery is at the higher potential
and is represented in the circuit symbol by the longer vertical line.

Parallel Combination

Two capacitors connected as shown in Figure 26.8a are known as a parallel combina-
tion of capacitors. Figure 26.8b shows a circuit diagram for this combination of ca-
pacitors. The left plates of the capacitors are connected by a conducting wire to
the positive terminal of the battery and are therefore both at the same electric po-
tential as the positive terminal. Likewise, the right plates are connected to the neg-
ative terminal and are therefore both at the same potential as the negative termi-
nal. Thus, the individual potential differences across capacitors connected in
parallel are all the same and are equal to the potential difference applied
across the combination.

In a circuit such as that shown in Figure 26.8, the voltage applied across the
combination is the terminal voltage of the battery. Situations can occur in which

26.3

Quick Quiz 26.2

Figure 26.6 A spherical capacitor consists of an inner sphere of
radius a surrounded by a concentric spherical shell of radius b. The
electric field between the spheres is directed radially outward when
the inner sphere is positively charged.

a

b

– Q

+Q

Exercise Show that as the radius b of the outer sphere ap-
proaches infinity, the capacitance approaches the value
a/ke � 4��0a .

Figure 26.7 Circuit symbols for
capacitors, batteries, and switches.
Note that capacitors are in blue
and batteries and switches are in
red.

Capacitor
symbol

Battery
symbol +–

Switch
symbol

13.5

Gauss’s law we see that only the inner sphere contributes 
to this field. Thus, the potential difference between the
spheres is

The magnitude of the potential difference is

Substituting this value for �V into Equation 26.1, we obtain

(26.6)
ab

ke(b � a)
C �

Q
�V

�

�V � � Vb � Va � � keQ 
(b � a)

ab

 � keQ � 1
b

�
1
a �

Vb � Va � ��b

a
 Er dr � �keQ �b

a
 
dr
r 2 � keQ � 1

r �
b

a
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the parallel combination is in a circuit with other circuit elements; in such situa-
tions, we must determine the potential difference across the combination by ana-
lyzing the entire circuit.

When the capacitors are first connected in the circuit shown in Figure 26.8,
electrons are transferred between the wires and the plates; this transfer leaves the
left plates positively charged and the right plates negatively charged. The energy
source for this charge transfer is the internal chemical energy stored in the bat-
tery, which is converted to electric potential energy associated with the charge sep-
aration. The flow of charge ceases when the voltage across the capacitors is equal
to that across the battery terminals. The capacitors reach their maximum charge
when the flow of charge ceases. Let us call the maximum charges on the two ca-
pacitors Q 1 and Q 2 . The total charge Q stored by the two capacitors is

(26.7)

That is, the total charge on capacitors connected in parallel is the sum of the
charges on the individual capacitors. Because the voltages across the capacitors
are the same, the charges that they carry are

Suppose that we wish to replace these two capacitors by one equivalent capacitor
having a capacitance Ceq , as shown in Figure 26.8c. The effect this equivalent ca-
pacitor has on the circuit must be exactly the same as the effect of the combina-
tion of the two individual capacitors. That is, the equivalent capacitor must store Q
units of charge when connected to the battery. We can see from Figure 26.8c that
the voltage across the equivalent capacitor also is �V because the equivalent capac-

Q 1 � C1 �V  Q 2 � C2 �V

Q � Q 1 � Q 2

(a)

+ –

C2

+ –

C1

+ –

(b)

∆V

+ –

Q2

C2

Q1

C1

∆V1 = ∆V2 = ∆V

∆V

+ –

Ceq = C1 + C2

(c)

∆V

Figure 26.8 (a) A parallel combination of two capacitors in an electric circuit in which the po-
tential difference across the battery terminals is �V. (b) The circuit diagram for the parallel com-
bination. (c) The equivalent capacitance is C eq � C 1 � C 2 .
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itor is connected directly across the battery terminals. Thus, for the equivalent ca-
pacitor,

Substituting these three relationships for charge into Equation 26.7, we have

If we extend this treatment to three or more capacitors connected in parallel,
we find the equivalent capacitance to be

(26.8)

Thus, the equivalent capacitance of a parallel combination of capacitors is
greater than any of the individual capacitances. This makes sense because we
are essentially combining the areas of all the capacitor plates when we connect
them with conducting wire.

Series Combination

Two capacitors connected as shown in Figure 26.9a are known as a series combina-
tion of capacitors. The left plate of capacitor 1 and the right plate of capacitor 2
are connected to the terminals of a battery. The other two plates are connected to
each other and to nothing else; hence, they form an isolated conductor that is ini-
tially uncharged and must continue to have zero net charge. To analyze this com-
bination, let us begin by considering the uncharged capacitors and follow what
happens just after a battery is connected to the circuit. When the battery is con-

Ceq � C1 � C2 � C3 � 


  (parallel combination)

Ceq � C1 � C2  �parallel
combination�

Ceq �V � C1 �V � C2 �V 

Q � Ceq �V

(a)

+ –

C2

∆V

C1
∆V1 ∆V2

+Q –Q +Q –Q

(b)

+ –

∆V

Ceq

Figure 26.9 (a) A series combination of two capacitors. The charges on the two capacitors are
the same. (b) The capacitors replaced by a single equivalent capacitor. The equivalent capaci-
tance can be calculated from the relationship

1
C eq

�
1

C 1
�

1
C 2
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nected, electrons are transferred out of the left plate of C1 and into the right plate
of C2 . As this negative charge accumulates on the right plate of C2 , an equivalent
amount of negative charge is forced off the left plate of C2 , and this left plate
therefore has an excess positive charge. The negative charge leaving the left plate
of C2 travels through the connecting wire and accumulates on the right plate of
C1 . As a result, all the right plates end up with a charge �Q , and all the left plates
end up with a charge �Q. Thus, the charges on capacitors connected in series
are the same.

From Figure 26.9a, we see that the voltage �V across the battery terminals is
split between the two capacitors:

(26.9)

where �V1 and �V2 are the potential differences across capacitors C1 and C2 , re-
spectively. In general, the total potential difference across any number of ca-
pacitors connected in series is the sum of the potential differences across
the individual capacitors.

Suppose that an equivalent capacitor has the same effect on the circuit as the
series combination. After it is fully charged, the equivalent capacitor must have a
charge of �Q on its right plate and a charge of �Q on its left plate. Applying the
definition of capacitance to the circuit in Figure 26.9b, we have

Because we can apply the expression to each capacitor shown in Figure
26.9a, the potential difference across each is

Substituting these expressions into Equation 26.9 and noting that 
we have

Canceling Q , we arrive at the relationship

When this analysis is applied to three or more capacitors connected in series, the
relationship for the equivalent capacitance is

(26.10)

This demonstrates that the equivalent capacitance of a series combination is
always less than any individual capacitance in the combination.
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1
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Q
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Q
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�
Q
C2

�V � Q /Ceq ,

�V1 �
Q
C1

  �V2 �
Q
C2

Q � C �V

�V �
Q

Ceq

�V � �V1 � �V2

Equivalent CapacitanceEXAMPLE 26.4
Solution Using Equations 26.8 and 26.10, we reduce the
combination step by step as indicated in the figure. The 
1.0-�F and 3.0-�F capacitors are in parallel and combine ac-

Find the equivalent capacitance between a and b for the com-
bination of capacitors shown in Figure 26.10a. All capaci-
tances are in microfarads.
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ENERGY STORED IN A CHARGED CAPACITOR
Almost everyone who works with electronic equipment has at some time verified
that a capacitor can store energy. If the plates of a charged capacitor are con-
nected by a conductor, such as a wire, charge moves between the plates and the
connecting wire until the capacitor is uncharged. The discharge can often be ob-
served as a visible spark. If you should accidentally touch the opposite plates of a
charged capacitor, your fingers act as a pathway for discharge, and the result is an
electric shock. The degree of shock you receive depends on the capacitance and
on the voltage applied to the capacitor. Such a shock could be fatal if high voltages
are present, such as in the power supply of a television set. Because the charges
can be stored in a capacitor even when the set is turned off, unplugging the televi-
sion does not make it safe to open the case and touch the components inside.

Consider a parallel-plate capacitor that is initially uncharged, such that the ini-
tial potential difference across the plates is zero. Now imagine that the capacitor is
connected to a battery and develops a maximum charge Q. (We assume that the
capacitor is charged slowly so that the problem can be considered as an electrosta-
tic system.) When the capacitor is connected to the battery, electrons in the wire
just outside the plate connected to the negative terminal move into the plate to
give it a negative charge. Electrons in the plate connected to the positive terminal
move out of the plate into the wire to give the plate a positive charge. Thus,
charges move only a small distance in the wires. 

To calculate the energy of the capacitor, we shall assume a different process—
one that does not actually occur but gives the same final result. We can make this

26.4

cording to the expression �F. The 
2.0-�F and 6.0-�F capacitors also are in parallel and have an
equivalent capacitance of 8.0 �F. Thus, the upper branch in
Figure 26.10b consists of two 4.0-�F capacitors in series,
which combine as follows:

Ceq �
1

1/2.0 �F
� 2.0 �F 

1
Ceq

�
1

C1
�

1
C2

�
1

4.0 �F
�

1
4.0 �F

�
1

2.0 �F

Ceq � C1 � C2 � 4.0 The lower branch in Figure 26.10b consists of two 8.0-�F ca-
pacitors in series, which combine to yield an equivalent ca-
pacitance of 4.0 �F. Finally, the 2.0-�F and 4.0-�F capacitors
in Figure 26.10c are in parallel and thus have an equivalent
capacitance of 6.0 �F.

Exercise Consider three capacitors having capacitances of
3.0 �F, 6.0 �F, and 12 �F. Find their equivalent capacitance
when they are connected (a) in parallel and (b) in series.

Answer (a) 21 �F; (b) 1.7 �F.

4.0
4.0

8.0
8.0

ba

(b)

4.0

ba

(c)

2.0

6.0 ba

(d)

4.0

8.0

ba

(a)

2.0

6.0

3.0

1.0

Figure 26.10 To find the equivalent capacitance of the capacitors in part (a), we
reduce the various combinations in steps as indicated in parts (b), (c), and (d), using
the series and parallel rules described in the text.

13.5
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assumption because the energy in the final configuration does not depend on the
actual charge-transfer process. We imagine that we reach in and grab a small
amount of positive charge on the plate connected to the negative terminal and ap-
ply a force that causes this positive charge to move over to the plate connected to
the positive terminal. Thus, we do work on the charge as we transfer it from one
plate to the other. At first, no work is required to transfer a small amount of
charge dq from one plate to the other.3 However, once this charge has been trans-
ferred, a small potential difference exists between the plates. Therefore, work
must be done to move additional charge through this potential difference. As
more and more charge is transferred from one plate to the other, the potential dif-
ference increases in proportion, and more work is required.

Suppose that q is the charge on the capacitor at some instant during the
charging process. At the same instant, the potential difference across the capacitor
is �V � q/C . From Section 25.2, we know that the work necessary to transfer an in-
crement of charge dq from the plate carrying charge �q to the plate carrying
charge q (which is at the higher electric potential) is

This is illustrated in Figure 26.11. The total work required to charge the capacitor
from to some final charge is

The work done in charging the capacitor appears as electric potential energy U
stored in the capacitor. Therefore, we can express the potential energy stored in a
charged capacitor in the following forms:

(26.11)

This result applies to any capacitor, regardless of its geometry. We see that for a
given capacitance, the stored energy increases as the charge increases and as the
potential difference increases. In practice, there is a limit to the maximum energy

U �
Q2

2C
� 1

2Q �V � 1
2C(�V )2

W � �Q

0
 

q
C

 dq �
1
C

 �Q

0
 q dq �

Q2

2C

q � Qq � 0

dW � �V dq �
q
C

 dq

Energy stored in a charged
capacitor

QuickLab
Here’s how to find out whether your
calculator has a capacitor to protect
values or programs during battery
changes: Store a number in your cal-
culator’s memory, remove the calcu-
lator battery for a moment, and then
quickly replace it. Was the number
that you stored preserved while the
battery was out of the calculator?
(You may want to write down any crit-
ical numbers or programs that are
stored in the calculator before trying
this!)

3 We shall use lowercase q for the varying charge on the capacitor while it is charging, to distinguish it
from uppercase Q , which is the total charge on the capacitor after it is completely charged.

V

dq

q

∆

Figure 26.11 A plot of potential difference versus charge for
a capacitor is a straight line having a slope 1/C. The work re-
quired to move charge dq through the potential difference �V
across the capacitor plates is given by the area of the shaded
rectangle. The total work required to charge the capacitor to a
final charge Q is the triangular area under the straight line,

. (Don’t forget that J/C; hence, the unit
for the area is the joule.)

1 V � 1W � 1
2Q �V
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(or charge) that can be stored because, at a sufficiently great value of �V, dis-
charge ultimately occurs between the plates. For this reason, capacitors are usually
labeled with a maximum operating voltage.

You have three capacitors and a battery. How should you combine the capacitors and the
battery in one circuit so that the capacitors will store the maximum possible energy?

We can consider the energy stored in a capacitor as being stored in the elec-
tric field created between the plates as the capacitor is charged. This description is
reasonable in view of the fact that the electric field is proportional to the charge
on the capacitor. For a parallel-plate capacitor, the potential difference is related
to the electric field through the relationship �V � Ed. Furthermore, its capaci-
tance is (Eq. 26.3). Substituting these expressions into Equation 26.11,
we obtain

(26.12)

Because the volume V (volume, not voltage!) occupied by the electric field is Ad,
the energy per unit volume known as the energy density, is

(26.13)

Although Equation 26.13 was derived for a parallel-plate capacitor, the expression
is generally valid. That is, the energy density in any electric field is propor-
tional to the square of the magnitude of the electric field at a given point.

uE � 1
2�0E2

uE � U/V � U/Ad,

U �
1
2

 
�0A

d
 (E2d2) �

1
2

 (�0Ad)E2

C � �0A/d

Quick Quiz 26.3

Energy stored in a parallel-plate
capacitor

Energy density in an electric field

This bank of capacitors stores electrical en-
ergy for use in the particle accelerator at
FermiLab, located outside Chicago. Be-
cause the electric utility company cannot
provide a large enough burst of energy to
operate the equipment, these capacitors
are slowly charged up, and then the energy
is rapidly “dumped” into the accelerator. In
this sense, the setup is much like a fire-
protection water tank on top of a building.
The tank collects water and stores it for sit-
uations in which a lot of water is needed in
a short time. 
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Rewiring Two Charged CapacitorsEXAMPLE 26.5

As noted earlier, 
To express �Vf in terms of the given quantities and

we substitute the value of Q from Equation (1) to obtain

(b) Find the total energy stored in the capacitors before
and after the switches are closed and the ratio of the final en-
ergy to the initial energy.

Solution Before the switches are closed, the total energy
stored in the capacitors is

After the switches are closed, the total energy stored in the
capacitors is

Using Equation (1), we can express this as

Therefore, the ratio of the final energy stored to the initial
energy stored is

� C1 � C2
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2C1(�Vf)2 � 1

2C2(�Vf)2 � 1
2 (C1 � C2)(�Vf)2

1
2 (C1 � C2)(�Vi)2Ui � 1

2C1(�Vi)2 � 1
2C2(�Vi)2 �

�Vf � � C1 � C2

C1 � C2
� �Vi

�Vi ,
C1, C2,

�V1f � �V2 f � �Vf .

�V2 f �
Q 2 f

C2
�

Q � C2

C1 � C2
�

C2
�

Q

C1 � C2

Two capacitors C1 and C2 (where are charged to
the same initial potential difference �Vi , but with opposite
polarity. The charged capacitors are removed from the bat-
tery, and their plates are connected as shown in Figure
26.12a. The switches S1 and S2 are then closed, as shown in
Figure 26.12b. (a) Find the final potential difference �Vf be-
tween a and b after the switches are closed.

Solution Let us identify the left-hand plates of the capaci-
tors as an isolated system because they are not connected to
the right-hand plates by conductors. The charges on the left-
hand plates before the switches are closed are

The negative sign for Q 2i is necessary because the charge on
the left plate of capacitor C2 is negative. The total charge Q
in the system is

(1)

After the switches are closed, the total charge in the system
remains the same:

(2)

The charges redistribute until the entire system is at the same
potential �Vf . Thus, the final potential difference across C1
must be the same as the final potential difference across C2 .
To satisfy this requirement, the charges on the capacitors af-
ter the switches are closed are

Dividing the first equation by the second, we have

(3)

Combining Equations (2) and (3), we obtain

Using Equation (3) to find Q 1 f in terms of Q , we have

Finally, using Equation 26.1 to find the voltage across each ca-
pacitor, we find that
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Q 1f � C1 �Vf  and  Q 2f � C2 �Vf
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Figure 26.12
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You charge a parallel-plate capacitor, remove it from the battery, and prevent the wires con-
nected to the plates from touching each other. When you pull the plates apart, do the fol-
lowing quantities increase, decrease, or stay the same? (a) C ; (b) Q ; (c) E between the
plates; (d) �V ; (e) energy stored in the capacitor.

Repeat Quick Quiz 26.4, but this time answer the questions for the situation in which the
battery remains connected to the capacitor while you pull the plates apart.

One device in which capacitors have an important role is the defibrillator (Fig.
26.13). Up to 360 J is stored in the electric field of a large capacitor in a defibrilla-
tor when it is fully charged. The defibrillator can deliver all this energy to a patient
in about 2 ms. (This is roughly equivalent to 3 000 times the power output of a 
60-W lightbulb!) The sudden electric shock stops the fibrillation (random contrac-
tions) of the heart that often accompanies heart attacks and helps to restore the
correct rhythm.

A camera’s flash unit also uses a capacitor, although the total amount of en-
ergy stored is much less than that stored in a defibrillator. After the flash unit’s ca-
pacitor is charged, tripping the camera’s shutter causes the stored energy to be
sent through a special lightbulb that briefly illuminates the subject being pho-
tographed.

Quick Quiz 26.5

Quick Quiz 26.4

web
To learn more about defibrillators, visit
www.physiocontrol.com

This ratio is less than unity, indicating that the final energy 
is less than the initial energy. At first, you might think that
the law of energy conservation has been violated, but this 

is not the case. The “missing” energy is radiated away in 
the form of electromagnetic waves, as we shall see in Chap-
ter 34.

Figure 26.13 In a hospital
or at an emergency scene, you
might see a patient being re-
vived with a defibrillator. The
defibrillator’s paddles are ap-
plied to the patient’s chest,
and an electric shock is sent
through the chest cavity. The
aim of this technique is to re-
store the heart’s normal
rhythm pattern.
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CAPACITORS WITH DIELECTRICS
A dielectric is a nonconducting material, such as rubber, glass, or waxed paper.
When a dielectric is inserted between the plates of a capacitor, the capacitance in-
creases. If the dielectric completely fills the space between the plates, the capaci-
tance increases by a dimensionless factor �, which is called the dielectric con-
stant. The dielectric constant is a property of a material and varies from one
material to another. In this section, we analyze this change in capacitance in terms
of electrical parameters such as electric charge, electric field, and potential differ-
ence; in Section 26.7, we shall discuss the microscopic origin of these changes.

We can perform the following experiment to illustrate the effect of a dielectric
in a capacitor: Consider a parallel-plate capacitor that without a dielectric has a
charge Q 0 and a capacitance C 0 . The potential difference across the capacitor is

Figure 26.14a illustrates this situation. The potential difference is
measured by a voltmeter, which we shall study in greater detail in Chapter 28. Note
that no battery is shown in the figure; also, we must assume that no charge can
flow through an ideal voltmeter, as we shall learn in Section 28.5. Hence, there is
no path by which charge can flow and alter the charge on the capacitor. If a dielec-
tric is now inserted between the plates, as shown in Figure 26.14b, the voltmeter
indicates that the voltage between the plates decreases to a value �V. The voltages
with and without the dielectric are related by the factor � as follows:

Because �V � �V0 , we see that 
Because the charge Q 0 on the capacitor does not change, we conclude that

the capacitance must change to the value

(26.14)

That is, the capacitance increases by the factor � when the dielectric completely fills
the region between the plates.4 For a parallel-plate capacitor, where 
(Eq. 26.3), we can express the capacitance when the capacitor is filled with a di-
electric as

(26.15)

From Equations 26.3 and 26.15, it would appear that we could make the ca-
pacitance very large by decreasing d, the distance between the plates. In practice,
the lowest value of d is limited by the electric discharge that could occur through
the dielectric medium separating the plates. For any given separation d, the maxi-
mum voltage that can be applied to a capacitor without causing a discharge de-
pends on the dielectric strength (maximum electric field) of the dielectric. If the
magnitude of the electric field in the dielectric exceeds the dielectric strength,
then the insulating properties break down and the dielectric begins to conduct.
Insulating materials have values of � greater than unity and dielectric strengths

C � � 
�0A
d

C0 � �0A/d

C � �C0

C �
Q 0

�V
�

Q 0

�V0/�
� � 

Q 0

�V0

� 
 1.

�V �
�V0

�

�V0 � Q 0/C0 .

26.5

The capacitance of a filled
capacitor is greater than that of an
empty one by a factor �.

4 If the dielectric is introduced while the potential difference is being maintained constant by a battery,
the charge increases to a value Q � �Q 0 . The additional charge is supplied by the battery, and the ca-
pacitance again increases by the factor �.
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greater than that of air, as Table 26.1 indicates. Thus, we see that a dielectric pro-
vides the following advantages:

• Increase in capacitance
• Increase in maximum operating voltage
• Possible mechanical support between the plates, which allows the plates to be

close together without touching, thereby decreasing d and increasing C

C0 Q 0

+
–

C Q 0

Dielectric

∆V∆V0

+
–

(a) (b)

Figure 26.14 A charged capacitor (a) before and (b) after insertion of a dielectric between the
plates. The charge on the plates remains unchanged, but the potential difference decreases from
�V0 to �V � �V0/�. Thus, the capacitance increases from C0 to �C0 .

TABLE 26.1 Dielectric Constants and Dielectric Strengths
of Various Materials at Room Temperature

Dielectric Dielectric
Material Constant � Strengtha (V/m)

Air (dry) 1.000 59 3 	 106

Bakelite 4.9 24 	 106

Fused quartz 3.78 8 	 106

Neoprene rubber 6.7 12 	 106

Nylon 3.4 14 	 106

Paper 3.7 16 	 106

Polystyrene 2.56 24 	 106

Polyvinyl chloride 3.4 40 	 106

Porcelain 6 12 	 106

Pyrex glass 5.6 14 	 106

Silicone oil 2.5 15 	 106

Strontium titanate 233 8 	 106

Teflon 2.1 60 	 106

Vacuum 1.000 00 —
Water 80 —

a The dielectric strength equals the maximum electric field that can exist in a
dielectric without electrical breakdown. Note that these values depend
strongly on the presence of impurities and flaws in the materials.
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Types of Capacitors

Commercial capacitors are often made from metallic foil interlaced with thin
sheets of either paraffin-impregnated paper or Mylar as the dielectric material.
These alternate layers of metallic foil and dielectric are rolled into a cylinder to
form a small package (Fig. 26.15a). High-voltage capacitors commonly consist of a
number of interwoven metallic plates immersed in silicone oil (Fig. 26.15b). Small
capacitors are often constructed from ceramic materials. Variable capacitors (typi-
cally 10 to 500 pF) usually consist of two interwoven sets of metallic plates, one
fixed and the other movable, and contain air as the dielectric.

Often, an electrolytic capacitor is used to store large amounts of charge at rela-
tively low voltages. This device, shown in Figure 26.15c, consists of a metallic foil in
contact with an electrolyte—a solution that conducts electricity by virtue of the mo-
tion of ions contained in the solution. When a voltage is applied between the foil
and the electrolyte, a thin layer of metal oxide (an insulator) is formed on the foil,

(a) Kirlian photograph created by dropping a steel ball into a high-energy electric field. Kirlian
photography is also known as electrophotography. (b) Sparks from static electricity discharge be-
tween a fork and four electrodes. Many sparks were used to create this image because only one
spark forms for a given discharge. Note that the bottom prong discharges to both electrodes at
the bottom right. The light of each spark is created by the excitation of gas atoms along its path.

(a) (b)

Metal foil

Paper

Plates

Oil

Electrolyte

Case

Metallic foil + oxide layer

Contacts

(a) (b) (c)

Figure 26.15 Three commercial capacitor designs. (a) A tubular capacitor, whose plates are
separated by paper and then rolled into a cylinder. (b) A high-voltage capacitor consisting of
many parallel plates separated by insulating oil. (c) An electrolytic capacitor.
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A Paper-Filled CapacitorEXAMPLE 26.6
the paper is 1.0 mm, the maximum voltage that can be ap-
plied before breakdown is

Hence, the maximum charge is

Exercise What is the maximum energy that can be stored
in the capacitor?

Answer 2.6 	 10�3 J.

0.32 �CQ max � C �Vmax � (20 	 10�12 F)(16 	 103 V) �

 � 16 	 103 V

�Vmax � Emaxd � (16 	 106 V/m)(1.0 	 10�3 m)

A parallel-plate capacitor has plates of dimensions 2.0 cm by
3.0 cm separated by a 1.0-mm thickness of paper. (a) Find its
capacitance.

Solution Because � � 3.7 for paper (see Table 26.1), we
have

(b) What is the maximum charge that can be placed on
the capacitor?

Solution From Table 26.1 we see that the dielectric
strength of paper is 16 	 106 V/m. Because the thickness of

20 pF � 20 	 10�12 F �

C � � 
�0A

d
� 3.7(8.85 	 10�12 C2/N
m2)� 6.0 	 10�4 m2

1.0 	 10�3 m �

and this layer serves as the dielectric. Very large values of capacitance can be ob-
tained in an electrolytic capacitor because the dielectric layer is very thin, and thus
the plate separation is very small.

Electrolytic capacitors are not reversible as are many other capacitors—they
have a polarity, which is indicated by positive and negative signs marked on the de-
vice. When electrolytic capacitors are used in circuits, the polarity must be aligned
properly. If the polarity of the applied voltage is opposite that which is intended,
the oxide layer is removed and the capacitor conducts electricity instead of storing
charge.

If you have ever tried to hang a picture, you know it can be difficult to locate a wooden stud
in which to anchor your nail or screw. A carpenter’s stud-finder is basically a capacitor with
its plates arranged side by side instead of facing one another, as shown in Figure 26.16.
When the device is moved over a stud, does the capacitance increase or decrease?

Quick Quiz 26.6

Capacitor
plates

Stud-finder

Wall board

Stud

(b)(a)

Figure 26.16 A stud-finder. (a)The materials between the plates of the capacitor are the wall-
board and air. (b) When the capacitor moves across a stud in the wall, the materials between the
plates are the wallboard and the wood. The change in the dielectric constant causes a signal light
to illuminate.
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Energy Stored Before and AfterEXAMPLE 26.7
Exercise Suppose that the capacitance in the absence of a
dielectric is 8.50 pF and that the capacitor is charged to a po-
tential difference of 12.0 V. If the battery is disconnected and
a slab of polystyrene is inserted between the plates, what is

Answer 373 pJ.

U0 � U  ?

A parallel-plate capacitor is charged with a battery to a charge
Q 0 , as shown in Figure 26.17a. The battery is then removed,
and a slab of material that has a dielectric constant � is in-
serted between the plates, as shown in Figure 26.17b. Find
the energy stored in the capacitor before and after the dielec-
tric is inserted.

Solution The energy stored in the absence of the dielec-
tric is (see Eq. 26.11):

After the battery is removed and the dielectric inserted, the
charge on the capacitor remains the same. Hence, the energy
stored in the presence of the dielectric is

But the capacitance in the presence of the dielectric is
so U becomes

Because � 
 1, the final energy is less than the initial energy.
We can account for the “missing” energy by noting that the
dielectric, when inserted, gets pulled into the device (see the
following discussion and Figure 26.18). An external agent
must do negative work to keep the dielectric from accelerat-
ing. This work is simply the difference (Alternatively,
the positive work done by the system on the external agent is
U0 � U.)

U � U0 .

U �
Q 0 

2

2�C0
�

U0

�

C � �C0 ,

U �
Q 0 

2

2C

U0 �
Q 0 

2

2C0

As we have seen, the energy of a capacitor not connected to a battery is low-
ered when a dielectric is inserted between the plates; this means that negative
work is done on the dielectric by the external agent inserting the dielectric into
the capacitor. This, in turn, implies that a force that draws it into the capacitor
must be acting on the dielectric. This force originates from the nonuniform na-
ture of the electric field of the capacitor near its edges, as indicated in Figure
26.18. The horizontal component of this fringe field acts on the induced charges on
the surface of the dielectric, producing a net horizontal force directed into the
space between the capacitor plates.

A fully charged parallel-plate capacitor remains connected to a battery while you slide a di-
electric between the plates. Do the following quantities increase, decrease, or stay the same?
(a) C ; (b) Q ; (c) E between the plates; (d) �V ; (e) energy stored in the capacitor.

Quick Quiz 26.7

Figure 26.17

–+

Q 0
C 0

∆V 0

(a)

Dielectric

–+
Q 0

(b)



26.6 Electric Dipole in an Electric Field 823

Optional Section

ELECTRIC DIPOLE IN AN ELECTRIC FIELD
We have discussed the effect on the capacitance of placing a dielectric between the
plates of a capacitor. In Section 26.7, we shall describe the microscopic origin of
this effect. Before we can do so, however, we need to expand upon the discussion
of the electric dipole that we began in Section 23.4 (see Example 23.6). The elec-
tric dipole consists of two charges of equal magnitude but opposite sign separated
by a distance 2a, as shown in Figure 26.19. The electric dipole moment of this
configuration is defined as the vector p directed from �q to � q along the line
joining the charges and having magnitude 2aq:

(26.16)

Now suppose that an electric dipole is placed in a uniform electric field E, as
shown in Figure 26.20. We identify E as the field external to the dipole, distin-
guishing it from the field due to the dipole, which we discussed in Section 23.4.
The field E is established by some other charge distribution, and we place the di-
pole into this field. Let us imagine that the dipole moment makes an angle �
with the field. 

The electric forces acting on the two charges are equal in magnitude but op-
posite in direction as shown in Figure 26.20 (each has a magnitude Thus,
the net force on the dipole is zero. However, the two forces produce a net torque
on the dipole; as a result, the dipole rotates in the direction that brings the dipole
moment vector into greater alignment with the field. The torque due to the force
on the positive charge about an axis through O in Figure 26.20 is Fa sin �, where 
a sin � is the moment arm of F about O. This force tends to produce a clockwise
rotation. The torque about O on the negative charge also is Fa sin �; here again,
the force tends to produce a clockwise rotation. Thus, the net torque about O is

Because and we can express � as

(26.17)� � 2aqE sin � � pE sin �

p � 2aq,F � qE

� � 2Fa sin �

F � qE).

p � 2aq

26.6
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Figure 26.18 The nonuniform electric field near the edges of a parallel-plate capacitor causes
a dielectric to be pulled into the capacitor. Note that the field acts on the induced surface
charges on the dielectric, which are nonuniformly distributed.

+ q
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– q
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E
– F

O

+

–

Figure 26.20 An electric dipole
in a uniform external electric field.
The dipole moment p is at an an-
gle � to the field, causing the di-
pole to experience a torque.

+ q

– q

2a

p–

+

Figure 26.19 An electric dipole
consists of two charges of equal
magnitude but opposite sign sepa-
rated by a distance of 2a . The elec-
tric dipole moment p is directed
from �q to �q .
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It is convenient to express the torque in vector form as the cross product of the
vectors p and E:

(26.18)

We can determine the potential energy of the system of an electric dipole in
an external electric field as a function of the orientation of the dipole with respect
to the field. To do this, we recognize that work must be done by an external agent
to rotate the dipole through an angle so as to cause the dipole moment vector to
become less aligned with the field. The work done is then stored as potential en-
ergy in the system of the dipole and the external field. The work dW required to
rotate the dipole through an angle d� is (Eq. 10.22). Because

and because the work is transformed into potential energy U, we find
that, for a rotation from �i to �f , the change in potential energy is

The term that contains cos �i is a constant that depends on the initial orienta-
tion of the dipole. It is convenient for us to choose so that cos 
90° � 0. Furthermore, let us choose at as our reference of poten-
tial energy. Hence, we can express a general value of as

(26.19)

We can write this expression for the potential energy of a dipole in an electric field
as the dot product of the vectors p and E:

(26.20)

To develop a conceptual understanding of Equation 26.19, let us compare this
expression with the expression for the potential energy of an object in the gravita-
tional field of the Earth, (see Chapter 8). The gravitational expression in-
cludes a parameter associated with the object we place in the field—its mass m.
Likewise, Equation 26.19 includes a parameter of the object in the electric field—
its dipole moment p. The gravitational expression includes the magnitude of the
gravitational field g. Similarly, Equation 26.19 includes the magnitude of the elec-
tric field E . So far, these two contributions to the potential energy expressions ap-
pear analogous. However, the final contribution is somewhat different in the two
cases. In the gravitational expression, the potential energy depends on how high
we lift the object, measured by h. In Equation 26.19, the potential energy depends
on the angle � through which we rotate the dipole. In both cases, we are making a
change in the system. In the gravitational case, the change involves moving an ob-
ject in a translational sense, whereas in the electrical case, the change involves mov-
ing an object in a rotational sense. In both cases, however, once the change is
made, the system tends to return to the original configuration when the object is
released: the object of mass m falls back to the ground, and the dipole begins to
rotate back toward the configuration in which it was aligned with the field. Thus,
apart from the type of motion, the expressions for potential energy in these two
cases are similar.

U � mgh

U � �p � E

U � �pE cos �

U � Uf

�i � 90�Ui � 0
�i � cos�i � 90�,

 � pE ��cos ���f

�i

� pE(cos �i � cos �f)

Uf � Ui � ��f

�i

 � d� � ��f

�i

 p� sin � d� � pE ��f

�i

 sin � d�

� � pE sin �
dW � � d�

� � p � ETorque on an electric dipole in an
external electric field

Potential energy of a dipole in an
electric field
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Molecules are said to be polarized when a separation exists between the average
position of the negative charges and the average position of the positive charges in
the molecule. In some molecules, such as water, this condition is always present—
such molecules are called polar molecules. Molecules that do not possess a per-
manent polarization are called nonpolar molecules.

We can understand the permanent polarization of water by inspecting the
geometry of the water molecule. In the water molecule, the oxygen atom is
bonded to the hydrogen atoms such that an angle of 105° is formed between the
two bonds (Fig. 26.21). The center of the negative charge distribution is near the
oxygen atom, and the center of the positive charge distribution lies at a point mid-
way along the line joining the hydrogen atoms (the point labeled 	 in Fig. 26.21).
We can model the water molecule and other polar molecules as dipoles because
the average positions of the positive and negative charges act as point charges. As a
result, we can apply our discussion of dipoles to the behavior of polar molecules.

Microwave ovens take advantage of the polar nature of the water molecule.
When in operation, microwave ovens generate a rapidly changing electric field
that causes the polar molecules to swing back and forth, absorbing energy from
the field in the process. Because the jostling molecules collide with each other, the
energy they absorb from the field is converted to internal energy, which corre-
sponds to an increase in temperature of the food.

Another household scenario in which the dipole structure of water is ex-
ploited is washing with soap and water. Grease and oil are made up of nonpolar
molecules, which are generally not attracted to water. Plain water is not very useful
for removing this type of grime. Soap contains long molecules called surfactants. In
a long molecule, the polarity characteristics of one end of the molecule can be dif-
ferent from those at the other end. In a surfactant molecule, one end acts like a
nonpolar molecule and the other acts like a polar molecule. The nonpolar end
can attach to a grease or oil molecule, and the polar end can attach to a water mol-
ecule. Thus, the soap serves as a chain, linking the dirt and water molecules to-
gether. When the water is rinsed away, the grease and oil go with it.

A symmetric molecule (Fig. 26.22a) has no permanent polarization, but polar-
ization can be induced by placing the molecule in an electric field. A field directed
to the left, as shown in Figure 26.22b, would cause the center of the positive
charge distribution to shift to the left from its initial position and the center of the
negative charge distribution to shift to the right. This induced polarization is the ef-
fect that predominates in most materials used as dielectrics in capacitors.

The H2O MoleculeEXAMPLE 26.8
obtain

Because there are 1021 molecules in the sample, the total
work required is

1.6 	 10�3 JWtotal � (1021)(1.6 	 10�24 J) �

 � 1.6 	 10�24 J 

 � pE � (6.3 	 10�30 C 
m)(2.5 	 105 N/C)

W � U90 � U0 � (�pE cos 90�) � (�pE cos 0�) 

The water (H2O) molecule has an electric dipole moment of
6.3 	 10�30 C 
 m. A sample contains 1021 water molecules,
with the dipole moments all oriented in the direction of an
electric field of magnitude 2.5 	 105 N/C. How much work
is required to rotate the dipoles from this orientation

to one in which all the dipole moments are perpen-
dicular to the field 

Solution The work required to rotate one molecule 90° is
equal to the difference in potential energy between the 90°
orientation and the 0° orientation. Using Equation 26.19, we

(� � 90�)?
(� � 0�)

O

HH 105°

−−

+ +	

E

(a)

(b)

++ −

−+ − +

Figure 26.21 The water mole-
cule, H2O, has a permanent polar-
ization resulting from its bent
geometry. The center of the posi-
tive charge distribution is at the
point 	.

Figure 26.22 (a) A symmetric
molecule has no permanent polar-
ization. (b) An external electric
field induces a polarization in the
molecule.
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Optional Section

AN ATOMIC DESCRIPTION OF DIELECTRICS
In Section 26.5 we found that the potential difference �V0 between the plates of a
capacitor is reduced to V0/� when a dielectric is introduced. Because the poten-
tial difference between the plates equals the product of the electric field and the
separation d, the electric field is also reduced. Thus, if E0 is the electric field with-
out the dielectric, the field in the presence of a dielectric is

(26.21)

Let us first consider a dielectric made up of polar molecules placed in the
electric field between the plates of a capacitor. The dipoles (that is, the polar mol-
ecules making up the dielectric) are randomly oriented in the absence of an elec-
tric field, as shown in Figure 26.23a. When an external field E0 due to charges on
the capacitor plates is applied, a torque is exerted on the dipoles, causing them to
partially align with the field, as shown in Figure 26.23b. We can now describe the
dielectric as being polarized. The degree of alignment of the molecules with the
electric field depends on temperature and on the magnitude of the field. In gen-
eral, the alignment increases with decreasing temperature and with increasing
electric field.

If the molecules of the dielectric are nonpolar, then the electric field due to
the plates produces some charge separation and an induced dipole moment. These
induced dipole moments tend to align with the external field, and the dielectric is
polarized. Thus, we can polarize a dielectric with an external field regardless of
whether the molecules are polar or nonpolar.

With these ideas in mind, consider a slab of dielectric material placed between
the plates of a capacitor so that it is in a uniform electric field E0 , as shown in Fig-
ure 26.24a. The electric field due to the plates is directed to the right and polar-
izes the dielectric. The net effect on the dielectric is the formation of an induced
positive surface charge density �ind on the right face and an equal negative surface
charge density � �ind on the left face, as shown in Figure 26.24b. These induced
surface charges on the dielectric give rise to an induced electric field Eind in the
direction opposite the external field E0 . Therefore, the net electric field E in the

E �
E0

�

�

26.7
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Figure 26.23 (a) Polar mole-
cules are randomly oriented in the
absence of an external electric
field. (b) When an external field is
applied, the molecules partially
align with the field.

Figure 26.24 (a) When a dielectric is polarized, the dipole moments of the molecules in the
dielectric are partially aligned with the external field E0 . (b) This polarization causes an induced
negative surface charge on one side of the dielectric and an equal induced positive surface
charge on the opposite side. This separation of charge results in a reduction in the net electric
field within the dielectric.
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dielectric has a magnitude

(26.22)

In the parallel-plate capacitor shown in Figure 26.25, the external field E0 is
related to the charge density � on the plates through the relationship 
The induced electric field in the dielectric is related to the induced charge density
�ind through the relationship Because substitu-
tion into Equation 26.22 gives

(26.23)

Because this expression shows that the charge density �ind induced on the
dielectric is less than the charge density � on the plates. For instance, if we
see that the induced charge density is two-thirds the charge density on the plates.
If no dielectric is present, then and as expected. However, if the di-
electric is replaced by an electrical conductor, for which then Equation
26.22 indicates that this corresponds to That is, the surface
charge induced on the conductor is equal in magnitude but opposite in sign to
that on the plates, resulting in a net electric field of zero in the conductor.

�ind � �.E0 � E ind ;
E � 0,

�ind � 0� � 1

� � 3,
� 
 1,

�ind � � � � 1
� � �

�

��0
�

�

�0
�

�ind

�0

E � E0/� � �/��0 ,E ind � �ind/�0 .

E0 � �/�0 .

E � E0 � E ind

Effect of a Metallic SlabEXAMPLE 26.9
Solution In the result for part (a), we let a : 0:

which is the original capacitance.

C � lim
a :0

 
�0A

d � a
�

�0A
d

A parallel-plate capacitor has a plate separation d and plate
area A. An uncharged metallic slab of thickness a is inserted
midway between the plates. (a) Find the capacitance of the
device.

Solution We can solve this problem by noting that any
charge that appears on one plate of the capacitor must in-
duce a charge of equal magnitude but opposite sign on the
near side of the slab, as shown in Figure 26.26a. Conse-
quently, the net charge on the slab remains zero, and the
electric field inside the slab is zero. Hence, the capacitor is
equivalent to two capacitors in series, each having a plate sep-
aration as shown in Figure 26.26b.

Using the rule for adding two capacitors in series (Eq.
26.10), we obtain

Note that C approaches infinity as a approaches d. Why?

(b) Show that the capacitance is unaffected if the metallic
slab is infinitesimally thin.

C �
�0A

d � a

1
C

�
1

C1
�

1
C2

�
1

�0A
(d � a)/2

�
1

�0A
(d � a)/2

(d � a)/2,

+

+

+

+

+

+

+
+

+
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+
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Figure 26.25 Induced charge on
a dielectric placed between the
plates of a charged capacitor. Note
that the induced charge density on
the dielectric is less than the charge
density on the plates.

(b)

(d – a)/2

(d – a)/2

(a)

d a

(d – a)/2

(d – a)/2
σ
–

σ

–– – – – –

– – – – –

+ + + + +

+ + + + +

σ

σ

Figure 26.26 (a) A parallel-plate capacitor of plate separation d
partially filled with a metallic slab of thickness a. (b) The equivalent
circuit of the device in part (a) consists of two capacitors in series,
each having a plate separation (d � a)/2.
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A Partially Filled CapacitorEXAMPLE 26.10
Solution In Example 26.9, we found that we could insert a
metallic slab between the plates of a capacitor and consider
the combination as two capacitors in series. The resulting ca-
pacitance was independent of the location of the slab. Fur-
thermore, if the thickness of the slab approaches zero, then
the capacitance of the system approaches the capacitance
when the slab is absent. From this, we conclude that we can
insert an infinitesimally thin metallic slab anywhere between
the plates of a capacitor without affecting the capacitance.
Thus, let us imagine sliding an infinitesimally thin metallic
slab along the bottom face of the dielectric shown in Figure
26.27a. We can then consider this system to be the series com-
bination of the two capacitors shown in Figure 26.27b: one
having a plate separation d/3 and filled with a dielectric, and
the other having a plate separation 2d/3 and air between its
plates.

From Equations 26.15 and 26.3, the two capacitances are

Using Equation 26.10 for two capacitors combined in series,
we have

Because the capacitance without the dielectric is 
we see that

C � � 3�

2� � 1 � C0

C0 � �0A/d,

C � � 3�

2� � 1 � 
�0A

d
 

�
d

3�0A
 � 1

�
� 2� �

d
3�0A

 � 1 � 2�

� �

1
C

�
1

C1
�

1
C2

�
d/3

��0A
�

2d/3
�0A

C1 �
��0A
d/3

  and  C2 �
�0A

2d/3

A parallel-plate capacitor with a plate separation d has a ca-
pacitance C0 in the absence of a dielectric. What is the capac-
itance when a slab of dielectric material of dielectric constant
� and thickness is inserted between the plates (Fig.
26.27a)?

1
3d

(c) Show that the answer to part (a) does not depend on
where the slab is inserted.

Solution Let us imagine that the slab in Figure 26.26a is
moved upward so that the distance between the upper edge
of the slab and the upper plate is b. Then, the distance be-
tween the lower edge of the slab and the lower plate is

As in part (a), we find the total capacitance of the
series combination:
d � b � a.

This is the same result as in part (a). It is independent of the
value of b, so it does not matter where the slab is located.

C �
�0A

d � a
 

 �
b

�0A
�

d � b � a
�0A

�
d � a
�0A

1
C

�
1

C1
�

1
C2

�
1

�0A
b

�
1

�0A
d � b � a

1
3
– d

2
3
– d d

(a)

κ

(b)

C 1

C 2

1
3
– d

2
3
– d

κ

Figure 26.27 (a) A parallel-plate capacitor of plate separation d
partially filled with a dielectric of thickness d/3. (b) The equivalent
circuit of the capacitor consists of two capacitors connected in series.
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SUMMARY

A capacitor consists of two conductors carrying charges of equal magnitude but
opposite sign. The capacitance C of any capacitor is the ratio of the charge Q on
either conductor to the potential difference �V between them:

(26.1)

This relationship can be used in situations in which any two of the three variables
are known. It is important to remember that this ratio is constant for a given con-
figuration of conductors because the capacitance depends only on the geometry
of the conductors and not on an external source of charge or potential difference.

The SI unit of capacitance is coulombs per volt, or the farad (F), and

Capacitance expressions for various geometries are summarized in Table 26.2. 
If two or more capacitors are connected in parallel, then the potential differ-

ence is the same across all of them. The equivalent capacitance of a parallel com-
bination of capacitors is

(26.8)

If two or more capacitors are connected in series, the charge is the same on all
of them, and the equivalent capacitance of the series combination is given by

(26.10)

These two equations enable you to simplify many electric circuits by replacing mul-
tiple capacitors with a single equivalent capacitance.

Work is required to charge a capacitor because the charging process is equiva-
lent to the transfer of charges from one conductor at a lower electric potential to
another conductor at a higher potential. The work done in charging the capacitor
to a charge Q equals the electric potential energy U stored in the capacitor, where

(26.11)U �
Q2

2C
� 1

2Q �V � 1
2C(�V )2

1
Ceq

�
1

C1
�

1
C2

�
1

C3
� 




Ceq � C1 � C2 � C3 � 




1 F � 1 C/V.

C �
Q

�V

TABLE 26.2 Capacitance and Geometry

Geometry Capacitance Equation

Isolated charged sphere of radius
R (second charged conductor 26.2
assumed at infinity)

Parallel-plate capacitor of plate
area A and plate separation d

26.3

Cylindrical capacitor of length
� and inner and outer radii 26.4
a and b, respectively

Spherical capacitor with inner 
and outer radii a and b, 26.6
respectively

C �
ab

ke (b � a)

C � 4��0R

C �
�

2ke ln� b
a �

C � �0 
A
d
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When a dielectric material is inserted between the plates of a capacitor, the ca-
pacitance increases by a dimensionless factor �, called the dielectric constant:

(26.14)

where C 0 is the capacitance in the absence of the dielectric. The increase in capac-
itance is due to a decrease in the magnitude of the electric field in the presence of
the dielectric and to a corresponding decrease in the potential difference between
the plates—if we assume that the charging battery is removed from the circuit be-
fore the dielectric is inserted. The decrease in the magnitude of E arises from an
internal electric field produced by aligned dipoles in the dielectric. This internal
field produced by the dipoles opposes the applied field due to the capacitor
plates, and the result is a reduction in the net electric field.

The electric dipole moment p of an electric dipole has a magnitude

(26.16)

The direction of the electric dipole moment vector is from the negative charge to-
ward the positive charge.

The torque acting on an electric dipole in a uniform electric field E is

(26.18)

The potential energy of an electric dipole in a uniform external electric field
E is

(26.20)U � � p � E

� � p � E

p � 2aq

C � �C0

Problem-Solving Hints
Capacitors

• Be careful with units. When you calculate capacitance in farads, make sure
that distances are expressed in meters and that you use the SI value of �0 .
When checking consistency of units, remember that the unit for electric
fields can be either N/C or V/m.

• When two or more capacitors are connected in parallel, the potential differ-
ence across each is the same. The charge on each capacitor is proportional
to its capacitance; hence, the capacitances can be added directly to give the
equivalent capacitance of the parallel combination. The equivalent capaci-
tance is always larger than the individual capacitances.

• When two or more capacitors are connected in series, they carry the same
charge, and the sum of the potential differences equals the total potential
difference applied to the combination. The sum of the reciprocals of the ca-
pacitances equals the reciprocal of the equivalent capacitance, which is al-
ways less than the capacitance of the smallest individual capacitor.

• A dielectric increases the capacitance of a capacitor by a factor � (the dielec-
tric constant) over its capacitance when air is between the plates.

• For problems in which a battery is being connected or disconnected, note
whether modifications to the capacitor are made while it is connected to the
battery or after it has been disconnected. If the capacitor remains con-
nected to the battery, the voltage across the capacitor remains unchanged
(equal to the battery voltage), and the charge is proportional to the capaci-
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tance, although it may be modified (for instance, by the insertion of a di-
electric). If you disconnect the capacitor from the battery before making
any modifications to the capacitor, then its charge remains fixed. In this
case, as you vary the capacitance, the voltage across the plates changes ac-
cording to the expression �V � Q /C .

QUESTIONS

10. Explain why the work needed to move a charge Q
through a potential difference �V is whereas 
the energy stored in a charged capacitor is 
Where does the factor come from?

11. If the potential difference across a capacitor is doubled,
by what factor does the stored energy change?

12. Why is it dangerous to touch the terminals of a high-
voltage capacitor even after the applied voltage has been
turned off? What can be done to make the capacitor safe
to handle after the voltage source has been removed?

13. Describe how you can increase the maximum operating
voltage of a parallel-plate capacitor for a fixed plate sepa-
ration.

14. An air-filled capacitor is charged, disconnected from the
power supply, and, finally, connected to a voltmeter. Ex-
plain how and why the voltage reading changes when a
dielectric is inserted between the plates of the capacitor.

15. Using the polar molecule description of a dielectric, ex-
plain how a dielectric affects the electric field inside a ca-
pacitor.

16. Explain why a dielectric increases the maximum operat-
ing voltage of a capacitor even though the physical size of
the capacitor does not change.

17. What is the difference between dielectric strength and
the dielectric constant?

18. Explain why a water molecule is permanently polarized.
What type of molecule has no permanent polarization?

19. If a dielectric-filled capacitor is heated, how does its ca-
pacitance change? (Neglect thermal expansion and as-
sume that the dipole orientations are temperature depen-
dent.)

1
2

U � 1
2Q �V.

W � Q �V,
1. If you were asked to design a capacitor in a situation for

which small size and large capacitance were required,
what factors would be important in your design?

2. The plates of a capacitor are connected to a battery. What
happens to the charge on the plates if the connecting
wires are removed from the battery? What happens to the
charge if the wires are removed from the battery and con-
nected to each other?

3. A farad is a very large unit of capacitance. Calculate the
length of one side of a square, air-filled capacitor that has
a plate separation of 1 m. Assume that it has a capaci-
tance of 1 F.

4. A pair of capacitors are connected in parallel, while an
identical pair are connected in series. Which pair would
be more dangerous to handle after being connected to
the same voltage source? Explain.

5. If you are given three different capacitors C1 , C2 , C3 ,
how many different combinations of capacitance can you
produce?

6. What advantage might there be in using two identical ca-
pacitors in parallel connected in series with another iden-
tical parallel pair rather than a single capacitor?

7. Is it always possible to reduce a combination of capacitors
to one equivalent capacitor with the rules we have devel-
oped? Explain.

8. Because the net charge in a capacitor is always zero, what
does a capacitor store?

9. Because the charges on the plates of a parallel-plate ca-
pacitor are of opposite sign, they attract each other.
Hence, it would take positive work to increase the plate
separation. What happens to the external work done in
this process?

PROBLEMS

2. Two conductors having net charges of � 10.0 �C and
� 10.0 �C have a potential difference of 10.0 V. Deter-
mine (a) the capacitance of the system and (b) the poten-
tial difference between the two conductors if the charges
on each are increased to � 100 �C and � 100 �C.

Section 26.1 Definition of Capacitance
1. (a) How much charge is on each plate of a 4.00-�F ca-

pacitor when it is connected to a 12.0-V battery? 
(b) If this same capacitor is connected to a 1.50-V bat-
tery, what charge is stored?

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems
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WEB

WEB

Section 26.2 Calculating Capacitance
3. An isolated charged conducting sphere of radius 

12.0 cm creates an electric field of 4.90 	 104 N/C at a
distance 21.0 cm from its center. (a) What is its surface
charge density? (b) What is its capacitance?

4. (a) If a drop of liquid has capacitance 1.00 pF, what is
its radius? (b) If another drop has radius 2.00 mm, what
is its capacitance? (c) What is the charge on the smaller
drop if its potential is 100 V?

5. Two conducting spheres with diameters of 0.400 m and
1.00 m are separated by a distance that is large com-
pared with the diameters. The spheres are connected by
a thin wire and are charged to 7.00 �C. (a) How is this
total charge shared between the spheres? (Neglect any
charge on the wire.) (b) What is the potential of the sys-
tem of spheres when the reference potential is taken to
be at 

6. Regarding the Earth and a cloud layer 800 m above the
Earth as the “plates” of a capacitor, calculate the capaci-
tance if the cloud layer has an area of 1.00 km2. Assume
that the air between the cloud and the ground is pure
and dry. Assume that charge builds up on the cloud and 
on the ground until a uniform electric field with a mag-
nitude of 3.00 	 106 N/C throughout the space be-
tween them makes the air break down and conduct
electricity as a lightning bolt. What is the maximum
charge the cloud can hold?

7. An air-filled capacitor consists of two parallel plates,
each with an area of 7.60 cm2, separated by a distance
of 1.80 mm. If a 20.0-V potential difference is applied to
these plates, calculate (a) the electric field between the
plates, (b) the surface charge density, (c) the capaci-
tance, and (d) the charge on each plate.

8. A 1-megabit computer memory chip contains many
60.0-fF capacitors. Each capacitor has a plate area of
21.0 	 10�12 m2. Determine the plate separation of
such a capacitor (assume a parallel-plate configura-
tion). The characteristic atomic diameter is 10�10 m �
0.100 nm. Express the plate separation in nanometers.

9. When a potential difference of 150 V is applied to the
plates of a parallel-plate capacitor, the plates carry a sur-
face charge density of 30.0 nC/cm2. What is the spacing
between the plates?

10. A variable air capacitor used in tuning circuits is made
of N semicircular plates each of radius R and positioned
a distance d from each other. As shown in Figure
P26.10, a second identical set of plates is enmeshed with
its plates halfway between those of the first set. The sec-
ond set can rotate as a unit. Determine the capacitance
as a function of the angle of rotation �, where 
corresponds to the maximum capacitance.

11. A 50.0-m length of coaxial cable has an inner conductor
that has a diameter of 2.58 mm and carries a charge of
8.10 �C. The surrounding conductor has an inner di-
ameter of 7.27 mm and a charge of � 8.10 �C. 
(a) What is the capacitance of this cable? (b) What is

� � 0

r � � ?V � 0

the potential difference between the two conductors?
Assume the region between the conductors is air.

12. A 20.0-�F spherical capacitor is composed of two metal-
lic spheres, one having a radius twice as large as the
other. If the region between the spheres is a vacuum,
determine the volume of this region.

13. A small object with a mass of 350 mg carries a charge of
30.0 nC and is suspended by a thread between the verti-
cal plates of a parallel-plate capacitor. The plates are
separated by 4.00 cm. If the thread makes an angle of
15.0° with the vertical, what is the potential difference
between the plates?

14. A small object of mass m carries a charge q and is sus-
pended by a thread between the vertical plates of a
parallel-plate capacitor. The plate separation is d. If the
thread makes an angle � with the vertical, what is the
potential difference between the plates?

15. An air-filled spherical capacitor is constructed with in-
ner and outer shell radii of 7.00 and 14.0 cm, respec-
tively. (a) Calculate the capacitance of the device. 
(b) What potential difference between the spheres re-
sults in a charge of 4.00 �C on the capacitor?

16. Find the capacitance of the Earth. (Hint: The outer
conductor of the “spherical capacitor” may be consid-
ered as a conducting sphere at infinity where V ap-
proaches zero.)

Section 26.3 Combinations of Capacitors
17. Two capacitors and C2 � 12.0 �F are con-

nected in parallel, and the resulting combination is con-
nected to a 9.00-V battery. (a) What is the value of the
equivalent capacitance of the combination? What are
(b) the potential difference across each capacitor and
(c) the charge stored on each capacitor?

18. The two capacitors of Problem 17 are now connected in
series and to a 9.00-V battery. Find (a) the value of the
equivalent capacitance of the combination, (b) the volt-
age across each capacitor, and (c) the charge on each
capacitor.

19. Two capacitors when connected in parallel give an
equivalent capacitance of 9.00 pF and an equivalent ca-

C1 � 5.00 �F

R

d

�

Figure P26.10
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pacitance of 2.00 pF when connected in series. What is
the capacitance of each capacitor?

20. Two capacitors when connected in parallel give an
equivalent capacitance of Cp and an equivalent capaci-
tance of Cs when connected in series. What is the capac-
itance of each capacitor?

21. Four capacitors are connected as shown in Figure
P26.21. (a) Find the equivalent capacitance between
points a and b. (b) Calculate the charge on each capaci-
tor if �Vab � 15.0 V.

24. According to its design specification, the timer circuit
delaying the closing of an elevator door is to have a ca-
pacitance of 32.0 �F between two points A and B. 
(a) When one circuit is being constructed, the inexpen-
sive capacitor installed between these two points is
found to have capacitance 34.8 �F. To meet the specifi-
cation, one additional capacitor can be placed between
the two points. Should it be in series or in parallel with
the 34.8-�F capacitor? What should be its capacitance?
(b) The next circuit comes down the assembly line with
capacitance 29.8 �F between A and B. What additional
capacitor should be installed in series or in parallel in
that circuit, to meet the specification?

25. The circuit in Figure P26.25 consists of two identical
parallel metallic plates connected by identical metallic
springs to a 100-V battery. With the switch open, the
plates are uncharged, are separated by a distance

and have a capacitance 
When the switch is closed, the distance between the
plates decreases by a factor of 0.500. (a) How much
charge collects on each plate and (b) what is the spring
constant for each spring? (Hint: Use the result of Prob-
lem 35.)

C � 2.00 �F.d � 8.00 mm,

WEB

26. Figure P26.26 shows six concentric conducting spheres,
A, B, C, D, E, and F having radii R, 2R, 3R, 4R, 5R, and
6R, respectively. Spheres B and C are connected by a
conducting wire, as are spheres D and E. Determine the
equivalent capacitance of this system.

27. A group of identical capacitors is connected first in se-
ries and then in parallel. The combined capacitance in
parallel is 100 times larger than for the series connec-
tion. How many capacitors are in the group?

28. Find the equivalent capacitance between points a and b
for the group of capacitors connected as shown in Fig-
ure P26.28 if and

29. For the network described in the previous problem if
the potential difference between points a and b is 
60.0 V, what charge is stored on C3 ?

C3 � 2.00 �F.
C2 � 10.0 �F,C1 � 5.00 �F,

23. Consider the circuit shown in Figure P26.23, where
and Capaci-

tor C1 is first charged by the closing of switch S1 . Switch
S1 is then opened, and the charged capacitor is con-
nected to the uncharged capacitor by the closing of S2 .
Calculate the initial charge acquired by C1 and the final
charge on each.

�V � 20.0 V.C2 � 3.00 �F,C1 � 6.00 �F,

22. Evaluate the equivalent capacitance of the configura-
tion shown in Figure P26.22. All the capacitors are iden-
tical, and each has capacitance C.

6.00 µF

20.0 µF

3.00 µF15.0 µF

a b

µ µ

µ

µ

+ –

kk

d

∆V

S

C1 C2

S2S1

∆V

CC

C

C CC

Figure P26.21

Figure P26.22

Figure P26.23

Figure P26.25
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30. Find the equivalent capacitance between points a and b
in the combination of capacitors shown in Figure
P26.30.

energy stored in the two capacitors. (b) What potential
difference would be required across the same two ca-
pacitors connected in series so that the combination
stores the same energy as in part (a)? Draw a circuit dia-
gram of this circuit.

33. A parallel-plate capacitor is charged and then discon-
nected from a battery. By what fraction does the stored
energy change (increase or decrease) when the plate
separation is doubled?

34. A uniform electric field exists within a
certain region. What volume of space contains an en-
ergy equal to 1.00 	 10�7 J ? Express your answer in cu-
bic meters and in liters.

35. A parallel-plate capacitor has a charge Q and plates of
area A. Show that the force exerted on each plate by the
other is (Hint: Let for an arbi-
trary plate separation x ; then require that the work
done in separating the two charged plates be

36. Plate a of a parallel-plate, air-filled capacitor is con-
nected to a spring having force constant k , and plate b is
fixed. They rest on a table top as shown (top view) in
Figure P26.36. If a charge � Q is placed on plate a and a
charge �Q is placed on plate b, by how much does the
spring expand?

W � � F dx.)

C � �0A/xF � Q2/2�0A.

E � 3 000 V/m

WEB

37. Review Problem. A certain storm cloud has a potential
difference of 1.00 	 108 V relative to a tree. If, during a
lightning storm, 50.0 C of charge is transferred through
this potential difference and 1.00% of the energy is ab-
sorbed by the tree, how much water (sap in the tree)
initially at 30.0°C can be boiled away? Water has a spe-
cific heat of 4 186 J/kg 
 °C, a boiling point of 100°C,
and a heat of vaporization of 2.26 	 106 J/kg.

38. Show that the energy associated with a conducting
sphere of radius R and charge Q surrounded by a vac-
uum is 

39. Einstein said that energy is associated with mass accord-
ing to the famous relationship Estimate the ra-
dius of an electron, assuming that its charge is distrib-
uted uniformly over the surface of a sphere of radius R
and that the mass–energy of the electron is equal to the
total energy stored in the resulting nonzero electric
field between R and infinity. (See Problem 38. Experi-
mentally, an electron nevertheless appears to be a point
particle. The electric field close to the electron must be
described by quantum electrodynamics, rather than the
classical electrodynamics that we study.)

E � mc 2.

U � keQ2/2R.

Section 26.4 Energy Stored in a Charged Capacitor
31. (a) A 3.00-�F capacitor is connected to a 12.0-V battery.

How much energy is stored in the capacitor? (b) If the
capacitor had been connected to a 6.00-V battery, how
much energy would have been stored?

32. Two capacitors and are con-
nected in parallel and charged with a 100-V power sup-
ply. (a) Draw a circuit diagram and calculate the total

C2 � 5.00 �FC1 � 25.0 �F

ba

6.0 µF

5.0 µF

7.0 µF

4.0 µFµ

µ

µ

µ

C2 C2

C1 C1

C2 C2

C3

b

a

k

a b

A
B

C
D

E
F

Figure P26.26

Figure P26.28 Problems 28 and 29.

Figure P26.30

Figure P26.36
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Section 26.5 Capacitors with Dielectrics
40. Find the capacitance of a parallel-plate capacitor that

uses Bakelite as a dielectric, if each of the plates has an
area of 5.00 cm2 and the plate separation is 2.00 mm.

41. Determine (a) the capacitance and (b) the maximum
voltage that can be applied to a Teflon-filled parallel-
plate capacitor having a plate area of 1.75 cm2 and plate
separation of 0.040 0 mm.

42. (a) How much charge can be placed on a capacitor with
air between the plates before it breaks down, if the area
of each of the plates is 5.00 cm2? (b) Find the maxi-
mum charge if polystyrene is used between the plates
instead of air.

43. A commercial capacitor is constructed as shown in Fig-
ure 26.15a. This particular capacitor is rolled from two
strips of aluminum separated by two strips of paraffin-
coated paper. Each strip of foil and paper is 7.00 cm
wide. The foil is 0.004 00 mm thick, and the paper is
0.025 0 mm thick and has a dielectric constant of 
3.70. What length should the strips be if a capacitance
of 9.50 	 10�8 F is desired? (Use the parallel-plate
formula.)

44. The supermarket sells rolls of aluminum foil, plastic
wrap, and waxed paper. Describe a capacitor made from
supermarket materials. Compute order-of-magnitude es-
timates for its capacitance and its breakdown voltage.

45. A capacitor that has air between its plates is connected
across a potential difference of 12.0 V and stores 
48.0 �C of charge. It is then disconnected from the
source while still charged. (a) Find the capacitance of
the capacitor. (b) A piece of Teflon is inserted between
the plates. Find its new capacitance. (c) Find the voltage
and charge now on the capacitor.

46. A parallel-plate capacitor in air has a plate separation of
1.50 cm and a plate area of 25.0 cm2. The plates are
charged to a potential difference of 250 V and discon-
nected from the source. The capacitor is then im-
mersed in distilled water. Determine (a) the charge on
the plates before and after immersion, (b) the capaci-
tance and voltage after immersion, and (c) the change
in energy of the capacitor. Neglect the conductance of
the liquid.

47. A conducting spherical shell has inner radius a and
outer radius c . The space between these two surfaces is
filled with a dielectric for which the dielectric constant
is �1 between a and b, and �2 between b and c (Fig.
P26.47). Determine the capacitance of this system.

48. A wafer of titanium dioxide has an area of
1.00 cm2 and a thickness of 0.100 mm. Aluminum is
evaporated on the parallel faces to form a parallel-plate
capacitor. (a) Calculate the capacitance. (b) When the
capacitor is charged with a 12.0-V battery, what is the
magnitude of charge delivered to each plate? (c) For
the situation in part (b), what are the free and induced
surface charge densities? (d) What is the magnitude E
of the electric field?

(� � 173)

49. Each capacitor in the combination shown in Figure
P26.49 has a breakdown voltage of 15.0 V. What is the
breakdown voltage of the combination?

(Optional)
Section 26.6 Electric Dipole in an Electric Field

50. A small rigid object carries positive and negative 3.50-nC
charges. It is oriented so that the positive charge is at the
point (� 1.20 mm, 1.10 mm) and the negative charge is
at the point (1.40 mm, � 1.30 mm). (a) Find the electric
dipole moment of the object. The object is placed in an
electric field E � (7 800i � 4 900j) N/C. (b) Find the
torque acting on the object. (c) Find the potential en-
ergy of the object in this orientation. (d) If the orienta-
tion of the object can change, find the difference be-
tween its maximum and its minimum potential energies.

51. A small object with electric dipole moment p is placed
in a nonuniform electric field That is, the
field is in the x direction, and its magnitude depends on
the coordinate x . Let � represent the angle between the
dipole moment and the x direction. (a) Prove that the
dipole experiences a net force cos � in
the direction toward which the field increases. (b) Con-
sider the field created by a spherical balloon centered
at the origin. The balloon has a radius of 15.0 cm and
carries a charge of 2.00 �C. Evaluate dE/dx at the point
(16 cm, 0, 0). Assume that a water droplet at this point
has an induced dipole moment of (6.30i) nC 
 m. Find
the force on it.

(Optional)
Section 26.7 An Atomic Description of Dielectrics

52. A detector of radiation called a Geiger–Muller counter
consists of a closed, hollow, conducting cylinder with a

F � p(dE/dx)

E � E(x) i.

20.0 µF

10.0 µF

20.0 µF

20.0 µF

20.0 µF

µ

µ

µ

µ

µ

a

b

c

–Q

+Q
κ2

κ1

Figure P26.47

Figure P26.49
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fine wire along its axis. Suppose that the internal diame-
ter of the cylinder is 2.50 cm and that the wire along the
axis has a diameter of 0.200 mm. If the dielectric
strength of the gas between the central wire and the
cylinder is 1.20 	 106 V/m, calculate the maximum
voltage that can be applied between the wire and the
cylinder before breakdown occurs in the gas.

53. The general form of Gauss’s law describes how a charge
creates an electric field in a material, as well as in a vac-
uum. It is

where is the permittivity of the material. 
(a) A sheet with charge Q uniformly distributed over 
its area A is surrounded by a dielectric. Show that the
sheet creates a uniform electric field with magnitude

at nearby points. (b) Two large sheets of
area A carrying opposite charges of equal magnitude Q
are a small distance d apart. Show that they create a uni-
form electric field of magnitude between
them. (c) Assume that the negative plate is at zero po-
tential. Show that the positive plate is at a potential
Qd /A�. (d) Show that the capacitance of the pair of
plates is 

ADDITIONAL PROBLEMS

54. For the system of capacitors shown in Figure P26.54,
find (a) the equivalent capacitance of the system, 
(b) the potential difference across each capacitor, 
(c) the charge on each capacitor, and (d) the total 
energy stored by the group.

A�/d � �A�0/d .

E � Q /A�

E � Q /2A�

� � ��0

� E � dA �
q
�

56. A 2.00-nF parallel-plate capacitor is charged to an initial
potential difference and then isolated. The
dielectric material between the plates is mica (� �
5.00). (a) How much work is required to withdraw the
mica sheet? (b) What is the potential difference of the
capacitor after the mica is withdrawn?

57. A parallel-plate capacitor is constructed using a dielec-
tric material whose dielectric constant is 3.00 and whose
dielectric strength is 2.00 	 108 V/m. The desired ca-
pacitance is 0.250 �F, and the capacitor must withstand
a maximum potential difference of 4 000 V. Find the
minimum area of the capacitor plates.

58. A parallel-plate capacitor is constructed using three
dielectric materials, as shown in Figure P26.58. You may
assume that � d. (a) Find an expression for the ca-
pacitance of the device in terms of the plate area A and
d , �1 , �2 , and �3 . (b) Calculate the capacitance using
the values cm2, mm, �1 � 4.90, �2 �
5.60, and �3 � 2.10.

d � 2.00A � 1.00

W

�Vi � 100 V

60. (a) Two spheres have radii a and b and their centers are
a distance d apart. Show that the capacitance of this sys-
tem is

provided that d is large compared with a and b. (Hint:
Because the spheres are far apart, assume that the

C 	
4��0

1
a

�
1
b

�
2
d

59. A conducting slab of thickness d and area A is inserted
into the space between the plates of a parallel-plate ca-
pacitor with spacing s and surface area A, as shown in
Figure P26.59. The slab is not necessarily halfway be-
tween the capacitor plates. What is the capacitance of
the system?

55. Consider two long, parallel, and oppositely charged
wires of radius d with their centers separated by a dis-
tance D. Assuming the charge is distributed uniformly
on the surface of each wire, show that the capacitance
per unit length of this pair of wires is

C
�

�
��0

ln� D � d
d �

A

A

ds

d
d/2

�/2

�

κ2

κ3

κ1

κ

κ

κ

4.00 µF2.00 µF

6.00 µF3.00 µF

90.0 V

µ µ

µ µ

Figure P26.54

Figure P26.58

Figure P26.59

WEB
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68. It is possible to obtain large potential differences by first
charging a group of capacitors connected in parallel
and then activating a switch arrangement that in effect
disconnects the capacitors from the charging source
and from each other and reconnects them in a series
arrangement. The group of charged capacitors is then
discharged in series. What is the maximum potential
difference that can be obtained in this manner by using
ten capacitors each of 500 �F and a charging source of
800 V?

69. A parallel-plate capacitor of plate separation d is
charged to a potential difference �V0 . A dielectric slab

64. When considering the energy supply for an automobile,
the energy per unit mass of the energy source is an im-
portant parameter. Using the following data, compare
the energy per unit mass ( J/kg) for gasoline, lead–acid
batteries, and capacitors. (The ampere A will be intro-
duced in Chapter 27 and is the SI unit of electric cur-
rent. 1 A � 1 C/s.)

Gasoline: 126 000 Btu/gal; density � 670 kg/m3

Lead–acid battery: 12.0 V; 100 A 
 h; mass � 16.0 kg
Capacitor: potential difference at full charge �

12.0 V; capacitance � 0.100 F; mass � 0.100 kg

65. An isolated capacitor of unknown capacitance has been
charged to a potential difference of 100 V. When the
charged capacitor is then connected in parallel to an
uncharged 10.0-�F capacitor, the voltage across the
combination is 30.0 V. Calculate the unknown capaci-
tance.

66. A certain electronic circuit calls for a capacitor having a
capacitance of 1.20 pF and a breakdown potential of 
1 000 V. If you have a supply of 6.00-pF capacitors, each
having a breakdown potential of 200 V, how could you
meet this circuit requirement?

67. In the arrangement shown in Figure P26.67, a potential
difference �V is applied, and C1 is adjusted so that the
voltmeter between points b and d reads zero. This “bal-
ance” occurs when If and

calculate the value of C2 .C4 � 12.0 �F,
C3 � 9.00 �FC1 � 4.00 �F.

63. A capacitor is constructed from two square plates of
sides � and separation d, as suggested in Figure P26.62.
You may assume that d is much less than �. The plates
carry charges �Q 0 and �Q 0 . A block of metal has a
width �, a length �, and a thickness slightly less than d. It
is inserted a distance x into the capacitor. The charges
on the plates are not disturbed as the block slides in. 
In a static situation, a metal prevents an electric field
from penetrating it. The metal can be thought of as a
perfect dielectric, with � : �. (a) Calculate the stored
energy as a function of x. (b) Find the direction and
magnitude of the force that acts on the metallic block. 
(c) The area of the advancing front face of the block is
essentially equal to �d. Considering the force on the
block as acting on this face, find the stress (force per
area) on it. (d) For comparison, express the energy
density in the electric field between the capacitor plates
in terms of Q 0 , �, d, and �0 .

charge on one sphere does not perturb the charge dis-
tribution on the other sphere. Thus, the potential of
each sphere is expressed as that of a symmetric charge
distribution, , and the total potential at each
sphere is the sum of the potentials due to each sphere.
(b) Show that as d approaches infinity the above result
reduces to that of two isolated spheres in series.

61. When a certain air-filled parallel-plate capacitor is con-
nected across a battery, it acquires a charge (on each
plate) of q0 . While the battery connection is main-
tained, a dielectric slab is inserted into and fills the re-
gion between the plates. This results in the accumula-
tion of an additional charge q on each plate. What is the
dielectric constant of the slab?

62. A capacitor is constructed from two square plates of
sides � and separation d. A material of dielectric con-
stant � is inserted a distance x into the capacitor, as
shown in Figure P26.62. (a) Find the equivalent capaci-
tance of the device. (b) Calculate the energy stored in
the capacitor if the potential difference is �V. (c) Find
the direction and magnitude of the force exerted on
the dielectric, assuming a constant potential difference
�V. Neglect friction. (d) Obtain a numerical value for
the force assuming that �V � 2 000 V,

and the dielectric is glass (� � 4.50).
(Hint: The system can be considered as two capacitors
connected in parallel.)

d � 2.00 mm,
� � 5.00 cm,

V � keQ /r

C 1

C 2

C 4

C 3
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d∆V V

x
d

�

κ

Figure P26.62 Problems 62 and 63.

Figure P26.67
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76. Determine the effective capacitance of the combination
shown in Figure P26.76. (Hint: Consider the symmetry
involved!)

pacitors are disconnected from the battery and from
each other. They are then connected positive plate to
negative plate and negative plate to positive plate. Cal-
culate the resulting charge on each capacitor.

73. The inner conductor of a coaxial cable has a radius of
0.800 mm, and the outer conductor’s inside radius is
3.00 mm. The space between the conductors is filled
with polyethylene, which has a dielectric constant of
2.30 and a dielectric strength of 18.0 	 106 V/m. What
is the maximum potential difference that this cable can
withstand?

74. You are optimizing coaxial cable design for a major
manufacturer. Show that for a given outer conductor ra-
dius b, maximum potential difference capability is at-
tained when the radius of the inner conductor is

where e is the base of natural logarithms.
75. Calculate the equivalent capacitance between the points

a and b in Figure P26.75. Note that this is not a simple
series or parallel combination. (Hint: Assume a poten-
tial difference �V between points a and b. Write expres-
sions for �Vab in terms of the charges and capacitances
for the various possible pathways from a to b, and re-
quire conservation of charge for those capacitor plates
that are connected to each other.)

a � b/e

72. Capacitors and are charged
as a parallel combination across a 250-V battery. The ca-

C2 � 2.00 �FC1 � 6.00 �F

71. A vertical parallel-plate capacitor is half filled with a di-
electric for which the dielectric constant is 2.00 (Fig.
P26.71a). When this capacitor is positioned horizon-
tally, what fraction of it should be filled with the same
dielectric (Fig. P26.71b) so that the two capacitors have
equal capacitance?

of thickness d and dielectric constant � is introduced
between the plates while the battery remains connected to the
plates. (a) Show that the ratio of energy stored after the
dielectric is introduced to the energy stored in the
empty capacitor is Give a physical explana-
tion for this increase in stored energy. (b) What hap-
pens to the charge on the capacitor? (Note that this sit-
uation is not the same as Example 26.7, in which the
battery was removed from the circuit before the dielec-
tric was introduced.)

70. A parallel-plate capacitor with plates of area A and plate
separation d has the region between the plates filled
with two dielectric materials as in Figure P26.70. As-
sume that and that (a) Determine the
capacitance and (b) show that when �1 � �2 � � your
result becomes the same as that for a capacitor contain-
ing a single dielectric, C � ��0A/d.

d V W.d V L

U/U0 � �.

C

C

3C

2C

2C

a

b2.00 µF

4.00 µF

2.00 µF 4.00 µF8.00 µF

µ

µ µ

µ

µ

(b)(a)

d
κ1

κ2

L
W
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Figure P26.71

Figure P26.76

Figure P26.75
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crease. (c) E decreases because the charge density on
the plates decreases. (d) �V remains constant because
of the presence of the battery. (e) The energy stored in
the capacitor decreases (Eq. 26.11).

26.6 It increases. The dielectric constant of wood (and of all
other insulating materials, for that matter) is greater
than 1; therefore, the capacitance increases (Eq. 26.14).
This increase is sensed by the stud-finder’s special cir-
cuitry, which causes an indicator on the device to light
up.

26.7 (a) C increases (Eq. 26.14). (b) Q increases. Because
the battery maintains a constant �V, Q must increase if
C increases. (c) E between the plates remains
constant because �V � Ed and neither �V nor d
changes. The electric field due to the charges on the
plates increases because more charge has flowed onto
the plates. The induced surface charges on the dielec-
tric create a field that opposes the increase in the field
caused by the greater number of charges on the plates.
(d) The battery maintains a constant �V. (e) The energy
stored in the capacitor increases (Eq. 26.11). You would
have to push the dielectric into the capacitor, just as you
would have to do positive work to raise a mass and in-
crease its gravitational potential energy.

(�Q /�V )

26.1 (a) because the plate separation is decreased. Capaci-
tance depends only on how a capacitor is constructed
and not on the external circuit.

26.2 Zero. If you construct a spherical gaussian surface out-
side and concentric with the capacitor, the net charge
inside the surface is zero. Applying Gauss’s law to this
configuration, we find that at points outside the
capacitor.

26.3 For a given voltage, the energy stored in a capacitor is
proportional to C : . Thus, you want to
maximize the equivalent capacitance. You do this by
connecting the three capacitors in parallel, so that the
capacitances add.

26.4 (a) C decreases (Eq. 26.3). (b) Q stays the same because
there is no place for the charge to flow. (c) E remains
constant (see Eq. 24.8 and the paragraph following it). 
(d) �V increases because �V � Q /C , Q is constant
(part b), and C decreases (part a). (e) The energy
stored in the capacitor is proportional to both Q and 
�V (Eq. 26.11) and thus increases. The additional en-
ergy comes from the work you do in pulling the two
plates apart.

26.5 (a) C decreases (Eq. 26.3). (b) Q decreases. The battery
supplies a constant potential difference �V ; thus, charge
must flow out of the capacitor if is to de-C � Q /�V

U � C(�V )2/2

E � 0
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Electrical workers restoring power to the
eastern Ontario town of St. Isadore,
which was without power for several
days in January 1998 because of a se-
vere ice storm. It is very dangerous to
touch fallen power transmission lines be-
cause of their high electric potential,
which might be hundreds of thousands of
volts relative to the ground. Why is such
a high potential difference used in power
transmission if it is so dangerous, and
why aren’t birds that perch on the wires
electrocuted? (AP/Wide World

Photos/Fred Chartrand)
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27.1 Electric Current 841

hus far our treatment of electrical phenomena has been confined to the study
of charges at rest, or electrostatics. We now consider situations involving electric
charges in motion. We use the term electric current, or simply current, to describe

the rate of flow of charge through some region of space. Most practical applica-
tions of electricity deal with electric currents. For example, the battery in a flash-
light supplies current to the filament of the bulb when the switch is turned on. A
variety of home appliances operate on alternating current. In these common situa-
tions, the charges flow through a conductor, such as a copper wire. It also is possi-
ble for currents to exist outside a conductor. For instance, a beam of electrons in a
television picture tube constitutes a current.

This chapter begins with the definitions of current and current density. A mi-
croscopic description of current is given, and some of the factors that contribute
to the resistance to the flow of charge in conductors are discussed. A classical
model is used to describe electrical conduction in metals, and some of the limita-
tions of this model are cited.

ELECTRIC CURRENT
It is instructive to draw an analogy between water flow and current. In many locali-
ties it is common practice to install low-flow showerheads in homes as a water-
conservation measure. We quantify the flow of water from these and similar de-
vices by specifying the amount of water that emerges during a given time interval,
which is often measured in liters per minute. On a grander scale, we can charac-
terize a river current by describing the rate at which the water flows past a particu-
lar location. For example, the flow over the brink at Niagara Falls is maintained at
rates between 1 400 m3/s and 2 800 m3/s.

Now consider a system of electric charges in motion. Whenever there is a net
flow of charge through some region, a current is said to exist. To define current
more precisely, suppose that the charges are moving perpendicular to a surface of
area A, as shown in Figure 27.1. (This area could be the cross-sectional area of a wire,
for example.) The current is the rate at which charge flows through this sur-
face. If �Q is the amount of charge that passes through this area in a time interval �t,
the average current Iav is equal to the charge that passes through A per unit time:

(27.1)

If the rate at which charge flows varies in time, then the current varies in time; we
define the instantaneous current I as the differential limit of average current:

(27.2)

The SI unit of current is the ampere (A):

(27.3)

That is, 1 A of current is equivalent to 1 C of charge passing through the surface
area in 1 s.

The charges passing through the surface in Figure 27.1 can be positive or neg-
ative, or both. It is conventional to assign to the current the same direction
as the flow of positive charge. In electrical conductors, such as copper or alu-

1 A �
1 C
1 s

I �
dQ
dt

Iav �
�Q
�t

27.1

T

Electric current

13.2

A

I

+

+

+
+

+

Figure 27.1 Charges in motion
through an area A. The time rate at
which charge flows through the
area is defined as the current I.
The direction of the current is the
direction in which positive charges
flow when free to do so.

The direction of the current
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minum, the current is due to the motion of negatively charged electrons. There-
fore, when we speak of current in an ordinary conductor, the direction of the
current is opposite the direction of flow of electrons. However, if we are con-
sidering a beam of positively charged protons in an accelerator, the current is in
the direction of motion of the protons. In some cases—such as those involving
gases and electrolytes, for instance—the current is the result of the flow of both
positive and negative charges.

If the ends of a conducting wire are connected to form a loop, all points on
the loop are at the same electric potential, and hence the electric field is zero
within and at the surface of the conductor. Because the electric field is zero, there
is no net transport of charge through the wire, and therefore there is no current.
The current in the conductor is zero even if the conductor has an excess of charge
on it. However, if the ends of the conducting wire are connected to a battery, all
points on the loop are not at the same potential. The battery sets up a potential
difference between the ends of the loop, creating an electric field within the wire.
The electric field exerts forces on the conduction electrons in the wire, causing
them to move around the loop and thus creating a current.

It is common to refer to a moving charge (positive or negative) as a mobile
charge carrier. For example, the mobile charge carriers in a metal are electrons.

Microscopic Model of Current

We can relate current to the motion of the charge carriers by describing a micro-
scopic model of conduction in a metal. Consider the current in a conductor of
cross-sectional area A (Fig. 27.2). The volume of a section of the conductor of
length �x (the gray region shown in Fig. 27.2) is A �x. If n represents the number
of mobile charge carriers per unit volume (in other words, the charge carrier den-
sity), the number of carriers in the gray section is nA �x. Therefore, the charge
�Q in this section is

�Q � number of carriers in section � charge per carrier � (nA �x)q

where q is the charge on each carrier. If the carriers move with a speed vd , the dis-
tance they move in a time �t is �x � vd �t. Therefore, we can write �Q in the
form

If we divide both sides of this equation by �t , we see that the average current in
the conductor is

(27.4)

The speed of the charge carriers vd is an average speed called the drift speed.
To understand the meaning of drift speed, consider a conductor in which the
charge carriers are free electrons. If the conductor is isolated—that is, the poten-
tial difference across it is zero—then these electrons undergo random motion
that is analogous to the motion of gas molecules. As we discussed earlier, when a
potential difference is applied across the conductor (for example, by means of a
battery), an electric field is set up in the conductor; this field exerts an electric
force on the electrons, producing a current. However, the electrons do not move
in straight lines along the conductor. Instead, they collide repeatedly with the
metal atoms, and their resultant motion is complicated and zigzag (Fig. 27.3). De-
spite the collisions, the electrons move slowly along the conductor (in a direction
opposite that of E) at the drift velocity vd .

Iav �
�Q
�t

� nqvdA

�Q � (nAvd �t)q

Average current in a conductor

∆x

A
q

vd

vd∆t

Figure 27.2 A section of a uni-
form conductor of cross-sectional
area A. The mobile charge carriers
move with a speed vd , and the dis-
tance they travel in a time �t is
�x � vd �t . The number of carriers
in the section of length �x is 
nAvd �t, where n is the number of
carriers per unit volume.

We can think of the atom–electron collisions in a conductor as an effective inter-
nal friction (or drag force) similar to that experienced by the molecules of a liquid
flowing through a pipe stuffed with steel wool. The energy transferred from the elec-
trons to the metal atoms during collision causes an increase in the vibrational energy
of the atoms and a corresponding increase in the temperature of the conductor.

Consider positive and negative charges moving horizontally through the four regions shown
in Figure 27.4. Rank the current in these four regions, from lowest to highest.

Quick Quiz 27.1
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–

–

vd

E

Figure 27.3 A schematic representation of the zigzag
motion of an electron in a conductor. The changes in di-
rection are the result of collisions between the electron
and atoms in the conductor. Note that the net motion of
the electron is opposite the direction of the electric field.
Each section of the zigzag path is a parabolic segment.
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+

+

+
+

+
+

+
+
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(b) (c) (d) Figure 27.4

Drift Speed in a Copper WireEXAMPLE 27.1
From Equation 27.4, we find that the drift speed is

where q is the absolute value of the charge on each electron.
Thus,

Exercise If a copper wire carries a current of 80.0 mA, how
many electrons flow past a given cross-section of the wire in
10.0 min?

Answer 3.0 � 1020 electrons.

2.22 � 10�4 m/s �

 �
10.0 C/s

(8.49 � 1028 m�3)(1.60 � 10�19 C)(3.31 � 10�6 m2)

vd �
I

nqA
 

vd �
I

nqA

The 12-gauge copper wire in a typical residential building has
a cross-sectional area of 3.31 � 10�6 m2. If it carries a current
of 10.0 A, what is the drift speed of the electrons? Assume
that each copper atom contributes one free electron to the
current. The density of copper is 8.95 g/cm3.

Solution From the periodic table of the elements in
Appendix C, we find that the molar mass of copper is 
63.5 g/mol. Recall that 1 mol of any substance contains Avo-
gadro’s number of atoms (6.02 � 1023). Knowing the density
of copper, we can calculate the volume occupied by 63.5 g

of copper:

Because each copper atom contributes one free electron
to the current, we have

 � 8.49 � 1028 electrons/m3

n �
6.02 � 1023 electrons

7.09 cm3 
 (1.00 � 106 cm3/m3)

V �
m
�

�
63.5 g

8.95 g/cm3 � 7.09 cm3

(�1 mol)
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for many materials (including most metals), the ratio of the current density to
the electric field is a constant � that is independent of the electric field produc-
ing the current.

1 Do not confuse conductivity � with surface charge density, for which the same symbol is used.

Current density

Ohm’s law

13.3

Example 27.1 shows that typical drift speeds are very low. For instance, elec-
trons traveling with a speed of 2.46 � 10�4 m/s would take about 68 min to travel
1 m! In view of this, you might wonder why a light turns on almost instantaneously
when a switch is thrown. In a conductor, the electric field that drives the free elec-
trons travels through the conductor with a speed close to that of light. Thus, when
you flip on a light switch, the message for the electrons to start moving through
the wire (the electric field) reaches them at a speed on the order of 108 m/s.

RESISTANCE AND OHM’S LAW
In Chapter 24 we found that no electric field can exist inside a conductor. How-
ever, this statement is true only if the conductor is in static equilibrium. The pur-
pose of this section is to describe what happens when the charges in the conductor
are allowed to move.

Charges moving in a conductor produce a current under the action of an elec-
tric field, which is maintained by the connection of a battery across the conductor.
An electric field can exist in the conductor because the charges in this situation
are in motion—that is, this is a nonelectrostatic situation.

Consider a conductor of cross-sectional area A carrying a current I. The cur-
rent density J in the conductor is defined as the current per unit area. Because
the current the current density is

(27.5)

where J has SI units of A/m2. This expression is valid only if the current density is
uniform and only if the surface of cross-sectional area A is perpendicular to the di-
rection of the current. In general, the current density is a vector quantity:

(27.6)

From this equation, we see that current density, like current, is in the direction of
charge motion for positive charge carriers and opposite the direction of motion
for negative charge carriers.

A current density J and an electric field E are established in a conductor
whenever a potential difference is maintained across the conductor. If the
potential difference is constant, then the current also is constant. In some materi-
als, the current density is proportional to the electric field:

(27.7)

where the constant of proportionality � is called the conductivity of the con-
ductor.1 Materials that obey Equation 27.7 are said to follow Ohm’s law, named af-
ter Georg Simon Ohm (1787–1854). More specifically, Ohm’s law states that

J � �E

J � nqvd

J �
I
A

� nqvd

I � nqvdA,

27.2

Materials that obey Ohm’s law and hence demonstrate this simple relationship be-
tween E and J are said to be ohmic. Experimentally, it is found that not all materials
have this property, however, and materials that do not obey Ohm’s law are said to

27.2 Resistance and Ohm’s Law 845

be nonohmic. Ohm’s law is not a fundamental law of nature but rather an empirical
relationship valid only for certain materials.

Suppose that a current-carrying ohmic metal wire has a cross-sectional area that gradually
becomes smaller from one end of the wire to the other. How do drift velocity, current den-
sity, and electric field vary along the wire? Note that the current must have the same value
everywhere in the wire so that charge does not accumulate at any one point.

We can obtain a form of Ohm’s law useful in practical applications by consid-
ering a segment of straight wire of uniform cross-sectional area A and length , as
shown in Figure 27.5. A potential difference is maintained across
the wire, creating in the wire an electric field and a current. If the field is assumed
to be uniform, the potential difference is related to the field through the relation-
ship2

Therefore, we can express the magnitude of the current density in the wire as

Because we can write the potential difference as

The quantity /�A is called the resistance R of the conductor. We can define the
resistance as the ratio of the potential difference across a conductor to the current
through the conductor:

(27.8)

From this result we see that resistance has SI units of volts per ampere. One volt
per ampere is defined to be 1 ohm (�):

(27.9)1 � �
1 V
1 A

R �
�

�A
�

�V
I

�

�V �
�

�
 J � � �

�A �I

J � I/A,

J � �E � � 
�V
�

�V � E�

�V � Vb � Va

�

Quick Quiz 27.2

2 This result follows from the definition of potential difference:

Vb � Va � ��b

a
 E � ds � E ��

0
 dx � E�

�

E

Vb Va

IA

Figure 27.5 A uniform conductor of length 
and cross-sectional area A. A potential difference
�V � Vb � Va maintained across the conductor
sets up an electric field E, and this field produces
a current I that is proportional to the potential
difference.

�

Resistance of a conductor
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Resistance of a uniform conductor

This expression shows that if a potential difference of 1 V across a conductor
causes a current of 1 A, the resistance of the conductor is 1 �. For example, if an
electrical appliance connected to a 120-V source of potential difference carries a
current of 6 A, its resistance is 20 �. 

Equation 27.8 solved for potential difference (�V ) explains part of the
chapter-opening puzzler: How can a bird perch on a high-voltage power line without
being electrocuted? Even though the potential difference between the ground and
the wire might be hundreds of thousands of volts, that between the bird’s feet (which
is what determines how much current flows through the bird) is very small.

The inverse of conductivity is resistivity3 �:

(27.10)

where � has the units ohm-meters (� � m). We can use this definition and Equation
27.8 to express the resistance of a uniform block of material as

(27.11)

Every ohmic material has a characteristic resistivity that depends on the properties
of the material and on temperature. Additionally, as you can see from Equation
27.11, the resistance of a sample depends on geometry as well as on resistivity.
Table 27.1 gives the resistivities of a variety of materials at 20°C. Note the enor-
mous range, from very low values for good conductors such as copper and silver,
to very high values for good insulators such as glass and rubber. An ideal conduc-
tor would have zero resistivity, and an ideal insulator would have infinite resistivity.

Equation 27.11 shows that the resistance of a given cylindrical conductor is
proportional to its length and inversely proportional to its cross-sectional area. If
the length of a wire is doubled, then its resistance doubles. If its cross-sectional
area is doubled, then its resistance decreases by one half. The situation is analo-
gous to the flow of a liquid through a pipe. As the pipe’s length is increased, the

R � � 
�

A

� �
1
�

� I�/�A

Resistivity

3 Do not confuse resistivity with mass density or charge density, for which the same symbol is used.

An assortment of resistors used in electric circuits.

27.2 Resistance and Ohm’s Law 847

resistance to flow increases. As the pipe’s cross-sectional area is increased, more
liquid crosses a given cross-section of the pipe per unit time. Thus, more liquid
flows for the same pressure differential applied to the pipe, and the resistance to
flow decreases.

Most electric circuits use devices called resistors to control the current level
in the various parts of the circuit. Two common types of resistors are the composi-
tion resistor, which contains carbon, and the wire-wound resistor, which consists of a
coil of wire. Resistors’ values in ohms are normally indicated by color-coding, as
shown in Figure 27.6 and Table 27.2.

Ohmic materials have a linear current–potential difference relationship over
a broad range of applied potential differences (Fig. 27.7a). The slope of the 
I -versus-�V curve in the linear region yields a value for 1/R . Nonohmic materials

TABLE 27.1 Resistivities and Temperature Coefficients of
Resistivity for Various Materials

Resistivity a Temperature
Material (� m) Coefficient �[(�C)�1]

Silver 1.59 � 10�8 3.8 � 10�3

Copper 1.7 � 10�8 3.9 � 10�3

Gold 2.44 � 10�8 3.4 � 10�3

Aluminum 2.82 � 10�8 3.9 � 10�3

Tungsten 5.6 � 10�8 4.5 � 10�3

Iron 10 � 10�8 5.0 � 10�3

Platinum 11 � 10�8 3.92 � 10�3

Lead 22 � 10�8 3.9 � 10�3

Nichromeb 1.50 � 10�6 0.4 � 10�3

Carbon 3.5 � 10�5 � 0.5 � 10�3

Germanium 0.46 � 48 � 10�3

Silicon 640 � 75 � 10�3

Glass 1010 to 1014

Hard rubber � 1013

Sulfur 1015

Quartz (fused) 75 � 1016

a All values at 20°C.
b A nickel–chromium alloy commonly used in heating elements.

�

Figure 27.6 The colored bands on a re-
sistor represent a code for determining re-
sistance. The first two colors give the first
two digits in the resistance value. The third
color represents the power of ten for the
multiplier of the resistance value. The last
color is the tolerance of the resistance
value. As an example, the four colors on
the circled resistors are red black

orange and gold 
and so the resistance value is 20 � 103 � �
20 k� with a tolerance value of 5% � 1 k�.
(The values for the colors are from Table
27.2.)

(� 5%),(� 103),(� 0),
(� 2),
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have a nonlinear current–potential difference relationship. One common semi-
conducting device that has nonlinear I -versus-�V characteristics is the junction
diode (Fig. 27.7b). The resistance of this device is low for currents in one direction
(positive �V ) and high for currents in the reverse direction (negative �V ). In fact,
most modern electronic devices, such as transistors, have nonlinear current–
potential difference relationships; their proper operation depends on the particu-
lar way in which they violate Ohm’s law.

What does the slope of the curved line in Figure 27.7b represent?

Your boss asks you to design an automobile battery jumper cable that has a low resistance.
In view of Equation 27.11, what factors would you consider in your design?

Quick Quiz 27.4

Quick Quiz 27.3

TABLE 27.2 Color Coding for Resistors

Color Number Multiplier Tolerance

Black 0 1
Brown 1 101

Red 2 102

Orange 3 103

Yellow 4 104

Green 5 105

Blue 6 106

Violet 7 107

Gray 8 108

White 9 109

Gold 10�1 5%
Silver 10�2 10%
Colorless 20%

Figure 27.7 (a) The current–potential difference curve for an ohmic material. The curve is
linear, and the slope is equal to the inverse of the resistance of the conductor. (b) A nonlinear
current–potential difference curve for a semiconducting diode. This device does not obey
Ohm’s law.

(a)

I

Slope = 1
R

�V

(b)

I

�V
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The Resistance of a ConductorEXAMPLE 27.2
ties, the resistance of identically shaped cylinders of alu-
minum and glass differ widely. The resistance of the glass
cylinder is 18 orders of magnitude greater than that of the
aluminum cylinder.

Calculate the resistance of an aluminum cylinder that is 
10.0 cm long and has a cross-sectional area of 2.00 � 10�4 m2.
Repeat the calculation for a cylinder of the same dimensions
and made of glass having a resistivity of 

Solution From Equation 27.11 and Table 27.1, we can cal-
culate the resistance of the aluminum cylinder as follows:

Similarly, for glass we find that

As you might guess from the large difference in resistivi-

1.5 � 1013 ��

R � � 
�

A
� (3.0 � 1010 ��m) � 0.100 m

2.00 � 10�4 m2 �

1.41 � 10�5 ��

R � � 
�

A
� (2.82 � 10�8 ��m) � 0.100 m

2.00 � 10�4 m2 �

3.0 � 1010 ��m.

Electrical insulators on telephone poles are often made of glass because
of its low electrical conductivity. 

The Resistance of Nichrome WireEXAMPLE 27.3
Note from Table 27.1 that the resistivity of Nichrome wire

is about 100 times that of copper. A copper wire of the same
radius would have a resistance per unit length of only 
0.052 �/m. A 1.0-m length of copper wire of the same radius
would carry the same current (2.2 A) with an applied poten-
tial difference of only 0.11 V.

Because of its high resistivity and its resistance to oxida-
tion, Nichrome is often used for heating elements in toasters,
irons, and electric heaters.

Exercise What is the resistance of a 6.0-m length of 22-
gauge Nichrome wire? How much current does the wire carry
when connected to a 120-V source of potential difference?

Answer 28 �; 4.3 A.

Exercise Calculate the current density and electric field in
the wire when it carries a current of 2.2 A.

Answer 6.8 � 106 A/m2; 10 N/C.

(a) Calculate the resistance per unit length of a 22-gauge
Nichrome wire, which has a radius of 0.321 mm.

Solution The cross-sectional area of this wire is

The resistivity of Nichrome is (see Table
27.1). Thus, we can use Equation 27.11 to find the resistance
per unit length:

(b) If a potential difference of 10 V is maintained across a
1.0-m length of the Nichrome wire, what is the current in the
wire?

Solution Because a 1.0-m length of this wire has a resis-
tance of 4.6 �, Equation 27.8 gives

2.2 AI �
�V
R

�
10 V
4.6 �

�

4.6 �/m
R
�

�
�

A
�

1.5 � 10�6 ��m
3.24 � 10�7 m2 �

1.5 � 10�6 ��m

A � 	r 2 � 	(0.321 � 10�3 m)2 � 3.24 � 10�7 m2

The Radial Resistance of a Coaxial CableEXAMPLE 27.4
completely filled with silicon, as shown in Figure 27.8a, and
current leakage through the silicon is unwanted. (The cable
is designed to conduct current along its length.) The radius

Coaxial cables are used extensively for cable television and
other electronic applications. A coaxial cable consists of two
cylindrical conductors. The gap between the conductors is
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of the inner conductor is the radius of the
outer one is and the length of the cable is

Calculate the resistance of the silicon between
the two conductors.

Solution In this type of problem, we must divide the ob-
ject whose resistance we are calculating into concentric ele-
ments of infinitesimal thickness dr (Fig. 27.8b). We start by
using the differential form of Equation 27.11, replacing 
with r for the distance variable: where dR is the
resistance of an element of silicon of thickness dr and surface
area A. In this example, we take as our representative concen-
tric element a hollow silicon cylinder of radius r, thickness dr,
and length L, as shown in Figure 27.8. Any current that
passes from the inner conductor to the outer one must pass
radially through this concentric element, and the area
through which this current passes is (This is the
curved surface area—circumference multiplied by length—
of our hollow silicon cylinder of thickness dr .) Hence, we can
write the resistance of our hollow cylinder of silicon as

A � 2	rL .

dR � � dr/A,
�

L � 15.0 cm.
b � 1.75 cm,

a � 0.500 cm,

Because we wish to know the total resistance across the entire
thickness of the silicon, we must integrate this expression
from to 

Substituting in the values given, and using � � 640 � � m for
silicon, we obtain

Exercise If a potential difference of 12.0 V is applied be-
tween the inner and outer conductors, what is the value of
the total current that passes between them?

Answer 14.1 mA.
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Figure 27.8 A coaxial cable. (a) Silicon fills the gap between the two conductors. 
(b) End view, showing current leakage.

A MODEL FOR ELECTRICAL CONDUCTION
In this section we describe a classical model of electrical conduction in metals that
was first proposed by Paul Drude in 1900. This model leads to Ohm’s law and
shows that resistivity can be related to the motion of electrons in metals. Although
the Drude model described here does have limitations, it nevertheless introduces
concepts that are still applied in more elaborate treatments.

Consider a conductor as a regular array of atoms plus a collection of free elec-
trons, which are sometimes called conduction electrons. The conduction electrons,
although bound to their respective atoms when the atoms are not part of a solid,
gain mobility when the free atoms condense into a solid. In the absence of an elec-
tric field, the conduction electrons move in random directions through the con-

27.3
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ductor with average speeds of the order of 106 m/s. The situation is similar to the
motion of gas molecules confined in a vessel. In fact, some scientists refer to con-
duction electrons in a metal as an electron gas. There is no current through the con-
ductor in the absence of an electric field because the drift velocity of the free elec-
trons is zero. That is, on the average, just as many electrons move in one direction
as in the opposite direction, and so there is no net flow of charge.

This situation changes when an electric field is applied. Now, in addition to
undergoing the random motion just described, the free electrons drift slowly in a
direction opposite that of the electric field, with an average drift speed vd that is
much smaller (typically 10�4 m/s) than their average speed between collisions
(typically 106 m/s).

Figure 27.9 provides a crude description of the motion of free electrons in a
conductor. In the absence of an electric field, there is no net displacement after
many collisions (Fig. 27.9a). An electric field E modifies the random motion and
causes the electrons to drift in a direction opposite that of E (Fig. 27.9b). The
slight curvature in the paths shown in Figure 27.9b results from the acceleration of
the electrons between collisions, which is caused by the applied field.

In our model, we assume that the motion of an electron after a collision is in-
dependent of its motion before the collision. We also assume that the excess en-
ergy acquired by the electrons in the electric field is lost to the atoms of the con-
ductor when the electrons and atoms collide. The energy given up to the atoms
increases their vibrational energy, and this causes the temperature of the conduc-
tor to increase. The temperature increase of a conductor due to resistance is uti-
lized in electric toasters and other familiar appliances.

We are now in a position to derive an expression for the drift velocity. When a
free electron of mass me and charge is subjected to an electric field E, it
experiences a force Because we conclude that the acceleration
of the electron is

(27.12)

This acceleration, which occurs for only a short time between collisions, enables
the electron to acquire a small drift velocity. If t is the time since the last collision
and vi is the electron’s initial velocity the instant after that collision, then the veloc-
ity of the electron after a time t is

(27.13)

We now take the average value of vf over all possible times t and all possible values
of vi . If we assume that the initial velocities are randomly distributed over all possi-
ble values, we see that the average value of vi is zero. The term is the ve-
locity added by the field during one trip between atoms. If the electron starts with
zero velocity, then the average value of the second term of Equation 27.13 is

where 
 is the average time interval between successive collisions. Because the
average value of vf is equal to the drift velocity,4 we have

(27.14)vf � vd �
qE
me

 


(qE/me)
,

(qE/me)t

vf � vi � at � vi �
qE
me

 t

a �
qE
me

�F � mea,F � qE.
q (��e)

4 Because the collision process is random, each collision event is independent of what happened earlier.
This is analogous to the random process of throwing a die. The probability of rolling a particular num-
ber on one throw is independent of the result of the previous throw. On average, the particular num-
ber comes up every sixth throw, starting at any arbitrary time.

–

–

–

–

E

(a)

(b)

–

–

––

Figure 27.9 (a) A schematic dia-
gram of the random motion of two
charge carriers in a conductor in
the absence of an electric field.
The drift velocity is zero. (b) The
motion of the charge carriers in a
conductor in the presence of an
electric field. Note that the random
motion is modified by the field,
and the charge carriers have a drift
velocity.

Drift velocity
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Although this classical model of conduction is consistent with Ohm’s law, it is
not satisfactory for explaining some important phenomena. For example, classical
values for calculated on the basis of an ideal-gas model (see Section 21.6) are
smaller than the true values by about a factor of ten. Furthermore, if we substitute

/ for 
 in Equation 27.17 and rearrange terms so that appears in the numera-
tor, we find that the resistivity � is proportional to . According to the ideal-gas 
model, is proportional to hence, it should also be true that . This is in
disagreement with the fact that, for pure metals, resistivity depends linearly on
temperature. We are able to account for the linear dependence only by using a
quantum mechanical model, which we now describe briefly.

� 
 !T!T ;v
v

vv�

v

Electron Collisions in a WireEXAMPLE 27.5

(b) Assuming that the average speed for free electrons in
copper is 1.6 � 106 m/s and using the result from part (a),
calculate the mean free path for electrons in copper.

Solution

which is equivalent to 40 nm (compared with atomic spacings
of about 0.2 nm). Thus, although the time between collisions
is very short, an electron in the wire travels about 200 atomic
spacings between collisions.

4.0 � 10�8 m�

� � v 
 � (1.6 � 106 m/s)(2.5 � 10�14 s)

2.5 � 10�14 s �
(a) Using the data and results from Example 27.1 and the
classical model of electron conduction, estimate the average
time between collisions for electrons in household copper
wiring.

Solution From Equation 27.17, we see that

where for copper and the carrier den-
sity is n � 8.49 � 1028 electrons/m3 for the wire described in
Example 27.1. Substitution of these values into the expres-
sion above gives


 �
(9.11 � 10�31 kg)

(8.49 � 1028 m�3)(1.6 � 10�19 C)2(1.7 � 10�8 ��m)

� � 1.7 � 10�8 ��m


 �
me

nq2�

Conductivity

Resistivity

We can relate this expression for drift velocity to the current in the conductor.
Substituting Equation 27.14 into Equation 27.6, we find that the magnitude of the
current density is

(27.15)

where n is the number of charge carriers per unit volume. Comparing this expres-
sion with Ohm’s law, we obtain the following relationships for conductivity
and resistivity:

(27.16)

(27.17)

According to this classical model, conductivity and resistivity do not depend on the
strength of the electric field. This feature is characteristic of a conductor obeying
Ohm’s law.

The average time between collisions 
 is related to the average distance be-
tween collisions (that is, the mean free path; see Section 21.7) and the average
speed through the expression

(27.18)
 �
�

v

v
�

� �
1
�

�
me

nq 2


� �
nq2


me
 

J � �E,

J � nqvd �
nq 2E

me
 
Current density
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According to quantum mechanics, electrons have wave-like properties. If the
array of atoms in a conductor is regularly spaced (that is, it is periodic), then the
wave-like character of the electrons enables them to move freely through the con-
ductor, and a collision with an atom is unlikely. For an idealized conductor, no col-
lisions would occur, the mean free path would be infinite, and the resistivity would
be zero. Electron waves are scattered only if the atomic arrangement is irregular
(not periodic) as a result of, for example, structural defects or impurities. At low
temperatures, the resistivity of metals is dominated by scattering caused by colli-
sions between electrons and defects or impurities. At high temperatures, the resis-
tivity is dominated by scattering caused by collisions between electrons and atoms
of the conductor, which are continuously displaced from the regularly spaced ar-
ray as a result of thermal agitation. The thermal motion of the atoms causes the
structure to be irregular (compared with an atomic array at rest), thereby reduc-
ing the electron’s mean free path.

RESISTANCE AND TEMPERATURE
Over a limited temperature range, the resistivity of a metal varies approximately
linearly with temperature according to the expression

(27.19)

where � is the resistivity at some temperature T (in degrees Celsius), �0 is the resis-
tivity at some reference temperature T0 (usually taken to be 20°C), and � is the
temperature coefficient of resistivity. From Equation 27.19, we see that the tem-
perature coefficient of resistivity can be expressed as

(27.20)

where is the change in resistivity in the temperature interval

The temperature coefficients of resistivity for various materials are given in
Table 27.1. Note that the unit for � is degrees Celsius�1 [(°C)�1]. Because resis-
tance is proportional to resistivity (Eq. 27.11), we can write the variation of resis-
tance as

(27.21)

Use of this property enables us to make precise temperature measurements, as
shown in the following example.

R � R 0[1 � �(T � T0)]

�T � T � T0 .
�� � � � �0

� �
1
�0

 
��

�T

� � �0[1 � �(T � T0)]

27.4

A Platinum Resistance ThermometerEXAMPLE 27.6
value for platinum given in Table 27.1, we obtain

Because we find that T, the temperature of the 

melting indium sample, is 157�C.

T0 � 20.0°C,

�T �
R � R0

�R0
�

76.8 � � 50.0 �
[3.92 � 10�3 (�C)�1](50.0 �)

� 137�C

A resistance thermometer, which measures temperature by
measuring the change in resistance of a conductor, is made
from platinum and has a resistance of 50.0 � at 20.0°C.
When immersed in a vessel containing melting indium, its re-
sistance increases to 76.8 �. Calculate the melting point of
the indium.

Solution Solving Equation 27.21 for �T and using the �

Variation of � with temperature

Temperature coefficient of
resistivity
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For metals like copper, resistivity is nearly proportional to temperature, as
shown in Figure 27.10. However, a nonlinear region always exists at very low tem-
peratures, and the resistivity usually approaches some finite value as the tempera-
ture nears absolute zero. This residual resistivity near absolute zero is caused pri-
marily by the collision of electrons with impurities and imperfections in the metal.
In contrast, high-temperature resistivity (the linear region) is predominantly char-
acterized by collisions between electrons and metal atoms.

Notice that three of the � values in Table 27.1 are negative; this indicates that
the resistivity of these materials decreases with increasing temperature (Fig.
27.11). This behavior is due to an increase in the density of charge carriers at
higher temperatures. 

Because the charge carriers in a semiconductor are often associated with im-
purity atoms, the resistivity of these materials is very sensitive to the type and con-
centration of such impurities. We shall return to the study of semiconductors in
Chapter 43 of the extended version of this text.

When does a lightbulb carry more current—just after it is turned on and the glow of the
metal filament is increasing, or after it has been on for a few milliseconds and the glow is
steady?

Optional Section

SUPERCONDUCTORS
There is a class of metals and compounds whose resistance decreases to zero when
they are below a certain temperature Tc , known as the critical temperature. These
materials are known as superconductors. The resistance–temperature graph for
a superconductor follows that of a normal metal at temperatures above Tc (Fig.
27.12). When the temperature is at or below Tc , the resistivity drops suddenly to
zero. This phenomenon was discovered in 1911 by the Dutch physicist Heike
Kamerlingh-Onnes (1853–1926) as he worked with mercury, which is a supercon-
ductor below 4.2 K. Recent measurements have shown that the resistivities of su-
perconductors below their Tc values are less than m—around 1017

times smaller than the resistivity of copper and in practice considered to be zero.
Today thousands of superconductors are known, and as Figure 27.13 illus-

trates, the critical temperatures of recently discovered superconductors are sub-
stantially higher than initially thought possible. Two kinds of superconductors are
recognized. The more recently identified ones, such as YBa2Cu3O7 , are essentially
ceramics with high critical temperatures, whereas superconducting materials such

4 � 10�25 ��

27.5

Quick Quiz 27.5

T

ρ

0

T
ρ0

0

ρ

ρ

ρ

T Figure 27.11 Resistivity versus temperature for a pure
semiconductor, such as silicon or germanium.

Figure 27.10 Resistivity versus
temperature for a metal such as
copper. The curve is linear over a
wide range of temperatures, and �
increases with increasing tempera-
ture. As T approaches absolute
zero (inset), the resistivity ap-
proaches a finite value �0 .

27.5 Superconductors 855

as those observed by Kamerlingh-Onnes are metals. If a room-temperature super-
conductor is ever identified, its impact on technology could be tremendous. 

The value of Tc is sensitive to chemical composition, pressure, and molecular
structure. It is interesting to note that copper, silver, and gold, which are excellent
conductors, do not exhibit superconductivity.

Hg
0.125
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4.44.34.24.14.0
T(K)

0.15
R(Ω)

Tc

0.00
Figure 27.12 Resistance versus temperature for a sample
of mercury (Hg). The graph follows that of a normal metal
above the critical temperature Tc . The resistance drops to
zero at Tc , which is 4.2 K for mercury.
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Figure 27.13 Evolution of the superconducting critical temperature since the discovery of the
phenomenon.

A small permanent magnet levi-
tated above a disk of the supercon-
ductor Y Ba2Cu3O7 , which is at 
77 K.
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One of the truly remarkable features of superconductors is that once a current
is set up in them, it persists without any applied potential difference (because R � 0).
Steady currents have been observed to persist in superconducting loops for several
years with no apparent decay!

An important and useful application of superconductivity is in the develop-
ment of superconducting magnets, in which the magnitudes of the magnetic field
are about ten times greater than those produced by the best normal electromag-
nets. Such superconducting magnets are being considered as a means of storing en-
ergy. Superconducting magnets are currently used in medical magnetic resonance
imaging (MRI) units, which produce high-quality images of internal organs without
the need for excessive exposure of patients to x-rays or other harmful radiation.

For further information on superconductivity, see Section 43.8.

ELECTRICAL ENERGY AND POWER
If a battery is used to establish an electric current in a conductor, the chemical en-
ergy stored in the battery is continuously transformed into kinetic energy of the
charge carriers. In the conductor, this kinetic energy is quickly lost as a result of
collisions between the charge carriers and the atoms making up the conductor,
and this leads to an increase in the temperature of the conductor. In other words,
the chemical energy stored in the battery is continuously transformed to internal
energy associated with the temperature of the conductor.

Consider a simple circuit consisting of a battery whose terminals are con-
nected to a resistor, as shown in Figure 27.14. (Resistors are designated by the sym-
bol .) Now imagine following a positive quantity of charge �Q that is
moving clockwise around the circuit from point a through the battery and resistor
back to point a. Points a and d are grounded (ground is designated by the symbol

); that is, we take the electric potential at these two points to be zero. As the

charge moves from a to b through the battery, its electric potential energy U
increases by an amount �V �Q (where �V is the potential difference between b and
a), while the chemical potential energy in the battery decreases by the same
amount. (Recall from Eq. 25.9 that However, as the charge moves
from c to d through the resistor, it loses this electric potential energy as it collides
with atoms in the resistor, thereby producing internal energy. If we neglect the re-
sistance of the connecting wires, no loss in energy occurs for paths bc and da.
When the charge arrives at point a, it must have the same electric potential energy
(zero) that it had at the start.5 Note that because charge cannot build up at any
point, the current is the same everywhere in the circuit.

The rate at which the charge �Q loses potential energy in going through the
resistor is

where I is the current in the circuit. In contrast, the charge regains this energy
when it passes through the battery. Because the rate at which the charge loses en-
ergy equals the power delivered to the resistor (which appears as internal en-
ergy), we have

(27.22)� � I �V

�

�U
�t

�
�Q
�t

 �V � I �V

�U � q �V.)

27.6

Power

13.3

b

a

c

d

R

I

∆V
+

–

Figure 27.14 A circuit consisting
of a resistor of resistance R and a
battery having a potential differ-
ence �V across its terminals. Posi-
tive charge flows in the clockwise
direction. Points a and d are
grounded.

5 Note that once the current reaches its steady-state value, there is no change in the kinetic energy of
the charge carriers creating the current.
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In this case, the power is supplied to a resistor by a battery. However, we can use
Equation 27.22 to determine the power transferred to any device carrying a cur-
rent I and having a potential difference �V between its terminals.

Using Equation 27.22 and the fact that �V � IR for a resistor, we can express
the power delivered to the resistor in the alternative forms

(27.23)

When I is expressed in amperes, �V in volts, and R in ohms, the SI unit of power
is the watt, as it was in Chapter 7 in our discussion of mechanical power. The
power lost as internal energy in a conductor of resistance R is called joule heating 6;
this transformation is also often referred to as an I 2R loss.

A battery, a device that supplies electrical energy, is called either a source of elec-
tromotive force or, more commonly, an emf source. The concept of emf is discussed in
greater detail in Chapter 28. (The phrase electromotive force is an unfortunate
choice because it describes not a force but rather a potential difference in volts.)
When the internal resistance of the battery is neglected, the potential differ-
ence between points a and b in Figure 27.14 is equal to the emf � of the bat-
tery—that is, This being true, we can state that the current in
the circuit is Because �V � , the power supplied by the emf
source can be expressed as which equals the power delivered to the resis-
tor, I 2R.

When transporting electrical energy through power lines, such as those shown
in Figure 27.15, utility companies seek to minimize the power transformed to in-
ternal energy in the lines and maximize the energy delivered to the consumer. Be-
cause the same amount of power can be transported either at high cur-
rents and low potential differences or at low currents and high potential
differences. Utility companies choose to transport electrical energy at low currents
and high potential differences primarily for economic reasons. Copper wire is very
expensive, and so it is cheaper to use high-resistance wire (that is, wire having a
small cross-sectional area; see Eq. 27.11). Thus, in the expression for the power de-
livered to a resistor, , the resistance of the wire is fixed at a relatively high
value for economic considerations. The loss can be reduced by keeping the
current I as low as possible. In some instances, power is transported at potential
differences as great as 765 kV. Once the electricity reaches your city, the potential
difference is usually reduced to 4 kV by a device called a transformer. Another trans-
former drops the potential difference to 240 V before the electricity finally reaches
your home. Of course, each time the potential difference decreases, the current
increases by the same factor, and the power remains the same. We shall discuss
transformers in greater detail in Chapter 33.

The same potential difference is applied to the two lightbulbs shown in Figure 27.16. Which
one of the following statements is true?
(a) The 30-W bulb carries the greater current and has the higher resistance.
(b) The 30-W bulb carries the greater current, but the 60-W bulb has the higher resistance.

Quick Quiz 27.6

I 
2R

� � I 
2R

� � I �V,

� � I�,
�I � �V/R � �/R .

�V � Vb � Va � �.

� � I 2R �
(�V )2

R

QuickLab
If you have access to an ohmmeter,
verify your answer to Quick Quiz 27.6
by testing the resistance of a few light-
bulbs.

6 It is called joule heating even though the process of heat does not occur. This is another example of in-
correct usage of the word heat that has become entrenched in our language.

Power delivered to a resistor

Figure 27.15 Power companies
transfer electrical energy at high
potential differences.
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(c) The 30-W bulb has the higher resistance, but the 60-W bulb carries the greater current.
(d) The 60-W bulb carries the greater current and has the higher resistance.

For the two lightbulbs shown in Figure 27.17, rank the current values at points a through f ,
from greatest to least.

Quick Quiz 27.7

Power in an Electric HeaterEXAMPLE 27.7
We can find the power rating using the expression 

If we doubled the applied potential difference, the current
would double but the power would quadruple because
� � (�V )2/R .

1.80 kW� � I 2R � (15.0 A)2(8.00 �) �

� � I 2R :An electric heater is constructed by applying a potential dif-
ference of 120 V to a Nichrome wire that has a total resis-
tance of 8.00 �. Find the current carried by the wire and the
power rating of the heater.

Solution Because �V � IR , we have

15.0 AI �
�V
R

�
120 V
8.00 �

�

QuickLab
From the labels on household appli-
ances such as hair dryers, televisions,
and stereos, estimate the annual cost
of operating them. 

Figure 27.16 These light-
bulbs operate at their rated
power only when they are con-
nected to a 120-V source. 

∆V

30 W

60 W

e f

c d

a b
Figure 27.17 Two lightbulbs connected across the same poten-
tial difference. The bulbs operate at their rated power only if they
are connected to a 120-V battery.
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Current in an Electron BeamEXAMPLE 27.9

(b) What is the average current per pulse delivered by the
accelerator?

Solution Average current is given by Equation 27.1,
Because the time interval between pulses is

4.00 ms, and because we know the charge per pulse from part
(a), we obtain

This represents only 0.005% of the peak current, which is 
250 mA.

12.5 �AIav �
Q pulse

�t
�

5.00 � 10�8 C
4.00 � 10�3 s

�

Iav � �Q /�t.

3.13 � 1011 electrons/pulse �

Electrons per pulse �
5.00 � 10�8 C/pulse

1.60 � 10�19 C/electron

In a certain particle accelerator, electrons emerge with an en-
ergy of 40.0 MeV (1 MeV � 1.60 � 10�13 J). The electrons
emerge not in a steady stream but rather in pulses at the rate
of 250 pulses/s. This corresponds to a time between pulses of
4.00 ms (Fig. 27.18). Each pulse has a duration of 200 ns, and
the electrons in the pulse constitute a current of 250 mA.
The current is zero between pulses. (a) How many electrons
are delivered by the accelerator per pulse?

Solution We use Equation 27.2 in the form and
integrate to find the charge per pulse. While the pulse is on,
the current is constant; thus,

Dividing this quantity of charge per pulse by the electronic
charge gives the number of electrons per pulse:

 � 5.00 � 10�8 C

Q pulse � I � dt � I�t � (250 � 10�3 A)(200 � 10�9 s)

dQ � I dt

The Cost of Making DinnerEXAMPLE 27.8
Demands on our dwindling energy supplies have made it nec-
essary for us to be aware of the energy requirements of our
electrical devices. Every electrical appliance carries a label
that contains the information you need to calculate the appli-
ance’s power requirements. In many cases, the power con-
sumption in watts is stated directly, as it is on a lightbulb. In
other cases, the amount of current used by the device and
the potential difference at which it operates are given. This
information and Equation 27.22 are sufficient for calculating
the operating cost of any electrical device.

Exercise What does it cost to operate a 100-W lightbulb for 
24 h if the power company charges $0.08/kWh?

Answer $0.19.

Estimate the cost of cooking a turkey for 4 h in an oven that
operates continuously at 20.0 A and 240 V.

Solution The power used by the oven is

Because the energy consumed equals power � time, the
amount of energy for which you must pay is

If the energy is purchased at an estimated price of 8.00¢ per
kilowatt hour, the cost is

$1.54Cost � (19.2 kWh)($0.080/kWh) �

Energy � �t � (4.80 kW)(4 h) � 19.2 kWh

� � I �V � (20.0 A)(240 V) � 4 800 W � 4.80 kW

I 2.00 × 10–7 s

t (s)

4.00 ms

Figure 27.18 Current versus time for a pulsed beam of
electrons.
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SUMMARY

The electric current I in a conductor is defined as

(27.2)

where dQ is the charge that passes through a cross-section of the conductor in a
time dt. The SI unit of current is the ampere (A), where 1 A � 1 C/s.

The average current in a conductor is related to the motion of the charge car-
riers through the relationship

(27.4)

where n is the density of charge carriers, q is the charge on each carrier, vd is the
drift speed, and A is the cross-sectional area of the conductor.

The magnitude of the current density J in a conductor is the current per
unit area:

(27.5)

The current density in a conductor is proportional to the electric field accord-
ing to the expression

(27.7)

The proportionality constant � is called the conductivity of the material of which
the conductor is made. The inverse of � is known as resistivity � (� � 1/�). Equa-
tion 27.7 is known as Ohm’s law, and a material is said to obey this law if the ratio
of its current density J to its applied electric field E is a constant that is indepen-
dent of the applied field.

The resistance R of a conductor is defined either in terms of the length of
the conductor or in terms of the potential difference across it:

(27.8)

where is the length of the conductor, � is the conductivity of the material of
which it is made, A is its cross-sectional area, �V is the potential difference across
it, and I is the current it carries.

�

R �
�

�A
�

�V
I

J � �E

J �
I
A

� nqvd

Iav � nqvd A

I �
dQ
dt

(c) What is the maximum power delivered by the electron
beam?

Solution By definition, power is energy delivered per unit
time. Thus, the maximum power is equal to the energy deliv-
ered by a pulse divided by the pulse duration:

 �
(3.13 � 1011 electrons/pulse)(40.0 MeV/electron)

2.00 � 10�7 s/pulse

� �
E
�t

 

We could also compute this power directly. We assume that
each electron had zero energy before being accelerated.
Thus, by definition, each electron must have gone through a
potential difference of 40.0 MV to acquire a final energy of
40.0 MeV. Hence, we have

10.0 MW� � I �V � (250 � 10�3 A)(40.0 � 106 V) �

10.0 MW � 1.00 � 107 W �

 � (6.26 � 1019 MeV/s)(1.60 � 10�13 J/MeV )
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The SI unit of resistance is volts per ampere, which is defined to be 1 ohm
(�); that is, 1 � � 1 V/A. If the resistance is independent of the applied potential
difference, the conductor obeys Ohm’s law.

In a classical model of electrical conduction in metals, the electrons are
treated as molecules of a gas. In the absence of an electric field, the average veloc-
ity of the electrons is zero. When an electric field is applied, the electrons move
(on the average) with a drift velocity vd that is opposite the electric field and
given by the expression

(27.14)

where 
 is the average time between electron–atom collisions, me is the mass of the
electron, and q is its charge. According to this model, the resistivity of the metal is

(27.17)

where n is the number of free electrons per unit volume.
The resistivity of a conductor varies approximately linearly with temperature

according to the expression

(27.19)

where � is the temperature coefficient of resistivity and �0 is the resistivity at
some reference temperature T0 .

If a potential difference �V is maintained across a resistor, the power, or rate
at which energy is supplied to the resistor, is

(27.22)

Because the potential difference across a resistor is given by �V � IR , we can ex-
press the power delivered to a resistor in the form

(27.23)

The electrical energy supplied to a resistor appears in the form of internal energy
in the resistor.

� � I 
2R �

(�V )2

R

� � I �V

� � �0[1 � �(T � T0)]

� �
me

nq2


vd �
qE
me

 


QUESTIONS

7. In the water analogy of an electric circuit, what corre-
sponds to the power supply, resistor, charge, and poten-
tial difference?

8. Why might a “good” electrical conductor also be a “good”
thermal conductor?

9. On the basis of the atomic theory of matter, explain why
the resistance of a material should increase as its tempera-
ture increases.

10. How does the resistance for copper and silicon change
with temperature? Why are the behaviors of these two ma-
terials different?

11. Explain how a current can persist in a superconductor in
the absence of any applied voltage.

12. What single experimental requirement makes supercon-
ducting devices expensive to operate? In principle, can
this limitation be overcome?

1. Newspaper articles often contain statements such as 
“10 000 volts of electricity surged through the victim’s
body.” What is wrong with this statement?

2. What is the difference between resistance and resistivity?
3. Two wires A and B of circular cross-section are made of

the same metal and have equal lengths, but the resistance
of wire A is three times greater than that of wire B. What
is the ratio of their cross-sectional areas? How do their
radii compare?

4. What is required in order to maintain a steady current in
a conductor?

5. Do all conductors obey Ohm’s law? Give examples to jus-
tify your answer.

6. When the voltage across a certain conductor is doubled,
the current is observed to increase by a factor of three.
What can you conclude about the conductor?
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PROBLEMS

6. A small sphere that carries a charge q is whirled in a cir-
cle at the end of an insulating string. The angular fre-
quency of rotation is �. What average current does this
rotating charge represent?

7. The quantity of charge q (in coulombs) passing
through a surface of area 2.00 cm2 varies with time ac-
cording to the equation 
where t is in seconds. (a) What is the instantaneous cur-
rent through the surface at (b) What is the
value of the current density?

8. An electric current is given by the expression 
sin(120	t), where I is in amperes and t is in sec-

onds. What is the total charge carried by the current
from to 

9. Figure P27.9 represents a section of a circular conduc-
tor of nonuniform diameter carrying a current of 
5.00 A. The radius of cross-section A1 is 0.400 cm. 
(a) What is the magnitude of the current density across
A1 ? (b) If the current density across A2 is one-fourth the
value across A1 , what is the radius of the conductor at
A2 ?

t � 1/240 s?t � 0

100
I(t) �

t � 1.00 s?

q � 4.00t3 � 5.00t � 6.00,

Section 27.1 Electric Current
1. In a particular cathode ray tube, the measured beam

current is 30.0 �A. How many electrons strike the tube
screen every 40.0 s?

2. A teapot with a surface area of 700 cm2 is to be silver
plated. It is attached to the negative electrode of an
electrolytic cell containing silver nitrate (Ag�NO3

�). If
the cell is powered by a 12.0-V battery and has a resis-
tance of 1.80 �, how long does it take for a 0.133-mm
layer of silver to build up on the teapot? (The density of
silver is 10.5 � 103 kg/m3.)

3. Suppose that the current through a conductor de-
creases exponentially with time according to the expres-
sion where I0 is the initial current (at

and 
 is a constant having dimensions of time.
Consider a fixed observation point within the conduc-
tor. (a) How much charge passes this point between

and (b) How much charge passes this
point between and (c) How much
charge passes this point between and 

4. In the Bohr model of the hydrogen atom, an electron
in the lowest energy state follows a circular path at a dis-
tance of 5.29 � 10�11 m from the proton. (a) Show that
the speed of the electron is 2.19 � 106 m/s. (b) What is
the effective current associated with this orbiting elec-
tron?

5. A small sphere that carries a charge of 8.00 nC is
whirled in a circle at the end of an insulating string.
The angular frequency of rotation is 100	 rad/s. What
average current does this rotating charge represent?

t � � ?t � 0
t � 10
 ?t � 0

t � 
 ?t � 0

t � 0)
I(t) � I0e�t/
,

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB

13. What would happen to the drift velocity of the electrons
in a wire and to the current in the wire if the electrons
could move freely without resistance through the wire?

14. If charges flow very slowly through a metal, why does it
not require several hours for a light to turn on when you
throw a switch?

15. In a conductor, the electric field that drives the electrons
through the conductor propagates with a speed that is al-
most the same as the speed of light, even though the drift
velocity of the electrons is very small. Explain how these
can both be true. Does a given electron move from one
end of the conductor to the other?

16. Two conductors of the same length and radius are con-
nected across the same potential difference. One conduc-
tor has twice the resistance of the other. To which con-
ductor is more power delivered?

17. Car batteries are often rated in ampere-hours. Does this
designate the amount of current, power, energy, or
charge that can be drawn from the battery?

18. If you were to design an electric heater using Nichrome
wire as the heating element, what parameters of the wire
could you vary to meet a specific power output, such as 
1 000 W ?

19. Consider the following typical monthly utility rate struc-
ture: $2.00 for the first 16 kWh, 8.00¢/kWh for the next
34 kWh, 6.50¢/kWh for the next 50 kWh, 5.00¢/kWh for
the next 100 kWh, 4.00¢/kWh for the next 200 kWh, and
3.50¢/kWh for all kilowatt-hours in excess of 400 kWh.
On the basis of these rates, determine the amount
charged for 327 kWh.

A1

A2

I

Figure P27.9
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Figure P27.24

10. A Van de Graaff generator produces a beam of 
2.00-MeV deuterons, which are heavy hydrogen nuclei
containing a proton and a neutron. (a) If the beam
current is 10.0 �A, how far apart are the deuterons? 
(b) Is their electrostatic repulsion a factor in beam sta-
bility? Explain.

11. The electron beam emerging from a certain high-
energy electron accelerator has a circular cross-section
of radius 1.00 mm. (a) If the beam current is 8.00 �A,
what is the current density in the beam, assuming that it
is uniform throughout? (b) The speed of the electrons
is so close to the speed of light that their speed can be
taken as with negligible error. Find
the electron density in the beam. (c) How long does it
take for Avogadro’s number of electrons to emerge
from the accelerator?

12. An aluminum wire having a cross-sectional area of 
4.00 � 10�6 m2 carries a current of 5.00 A. Find the
drift speed of the electrons in the wire. The density of
aluminum is 2.70 g/cm3. (Assume that one electron is
supplied by each atom.)

Section 27.2 Resistance and Ohm’s Law
13. A lightbulb has a resistance of 240 � when operating at

a voltage of 120 V. What is the current through the
lightbulb?

14. A resistor is constructed of a carbon rod that has a uni-
form cross-sectional area of 5.00 mm2. When a potential
difference of 15.0 V is applied across the ends of the
rod, there is a current of 4.00 � 10�3 A in the rod. Find
(a) the resistance of the rod and (b) the rod’s length.

15. A 0.900-V potential difference is maintained across a
1.50-m length of tungsten wire that has a cross-sectional
area of 0.600 mm2. What is the current in the wire?

16. A conductor of uniform radius 1.20 cm carries a cur-
rent of 3.00 A produced by an electric field of 120 V/m.
What is the resistivity of the material?

17. Suppose that you wish to fabricate a uniform wire out 
of 1.00 g of copper. If the wire is to have a resistance of 
R � 0.500 �, and if all of the copper is to be used, what
will be (a) the length and (b) the diameter of this wire?

18. (a) Make an order-of-magnitude estimate of the resis-
tance between the ends of a rubber band. (b) Make an
order-of-magnitude estimate of the resistance between
the ‘heads’ and ‘tails’ sides of a penny. In each case,
state what quantities you take as data and the values you
measure or estimate for them. (c) What would be the
order of magnitude of the current that each carries if it
were connected across a 120-V power supply? 
(WARNING! Do not try this at home!)

19. A solid cube of silver (density � 10.5 g/cm3) has a mass
of 90.0 g. (a) What is the resistance between opposite
faces of the cube? (b) If there is one conduction elec-
tron for each silver atom, what is the average drift speed
of electrons when a potential difference of 
1.00 � 10�5 V is applied to opposite faces? (The 

c � 3.00 � 108 m/s

Section 27.3 A Model for Electrical Conduction
25. If the drift velocity of free electrons in a copper wire is

7.84 � 10�4 m/s, what is the electric field in the con-
ductor?

26. If the current carried by a conductor is doubled, what
happens to the (a) charge carrier density? (b) current
density? (c) electron drift velocity? (d) average time be-
tween collisions?

27. Use data from Example 27.1 to calculate the collision
mean free path of electrons in copper, assuming that
the average thermal speed of conduction electrons is
8.60 � 105 m/s.

Section 27.4 Resistance and Temperature
28. While taking photographs in Death Valley on a day when

the temperature is 58.0°C, Bill Hiker finds that a certain
voltage applied to a copper wire produces a current of
1.000 A. Bill then travels to Antarctica and applies the
same voltage to the same wire. What current does he
register there if the temperature is � 88.0°C? Assume
that no change occurs in the wire’s shape and size.

29. A certain lightbulb has a tungsten filament with a resis-
tance of 19.0 � when cold and of 140 � when hot. As-
suming that Equation 27.21 can be used over the large

atomic number of silver is 47, and its molar mass is
107.87 g/mol.)

20. A metal wire of resistance R is cut into three equal
pieces that are then connected side by side to form a
new wire whose length is equal to one-third the original
length. What is the resistance of this new wire?

21. A wire with a resistance R is lengthened to 1.25 times its
original length by being pulled through a small hole.
Find the resistance of the wire after it has been stretched.

22. Aluminum and copper wires of equal length are found
to have the same resistance. What is the ratio of their
radii?

23. A current density of 6.00 � 10�13 A/m2 exists in the at-
mosphere where the electric field (due to charged
thunderclouds in the vicinity) is 100 V/m. Calculate the
electrical conductivity of the Earth’s atmosphere in this
region.

24. The rod in Figure P27.24 (not drawn to scale) is made
of two materials. Both have a square cross section of
3.00 mm on a side. The first material has a resistivity of
4.00 � 10�3 � � m and is 25.0 cm long, while the second
material has a resistivity of 6.00 � 10�3 � � m and is 
40.0 cm long. What is the resistance between the ends
of the rod?

25.0 cm 40.0 cm

WEB

WEB
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temperature range involved here, find the temperature
of the filament when hot. (Assume an initial tempera-
ture of 20.0°C.)

30. A carbon wire and a Nichrome wire are connected in
series. If the combination has a resistance of 10.0 k� at
0°C, what is the resistance of each wire at 0°C such that
the resistance of the combination does not change with
temperature? (Note that the equivalent resistance of
two resistors in series is the sum of their resistances.)

31. An aluminum wire with a diameter of 0.100 mm has a
uniform electric field with a magnitude of 0.200 V/m
imposed along its entire length. The temperature of the
wire is 50.0°C. Assume one free electron per atom. 
(a) Using the information given in Table 27.1, deter-
mine the resistivity. (b) What is the current density in
the wire? (c) What is the total current in the wire? 
(d) What is the drift speed of the conduction electrons?
(e) What potential difference must exist between the
ends of a 2.00-m length of the wire if the stated electric
field is to be produced?

32. Review Problem. An aluminum rod has a resistance of
1.234 � at 20.0°C. Calculate the resistance of the rod at
120°C by accounting for the changes in both the resis-
tivity and the dimensions of the rod.

33. What is the fractional change in the resistance of an
iron filament when its temperature changes from
25.0°C to 50.0°C?

34. The resistance of a platinum wire is to be calibrated for
low-temperature measurements. A platinum wire with a
resistance of 1.00 � at 20.0°C is immersed in liquid ni-
trogen at 77 K (� 196°C). If the temperature response
of the platinum wire is linear, what is the expected resis-
tance of the platinum wire at � 196°C?

35. The temperature of a tungsten sample is raised while a
copper sample is maintained at 20°C. At what tempera-
ture will the resistivity of the tungsten sample be four
times that of the copper sample?

36. A segment of Nichrome wire is initially at 20.0°C. Using
the data from Table 27.1, calculate the temperature to
which the wire must be heated if its resistance is to be
doubled.

Section 27.6 Electrical Energy and Power
37. A toaster is rated at 600 W when connected to a 120-V

source. What current does the toaster carry, and what is
its resistance?

38. In a hydroelectric installation, a turbine delivers 
1 500 hp to a generator, which in turn converts 80.0%
of the mechanical energy into electrical energy. Under
these conditions, what current does the generator de-
liver at a terminal potential difference of 2 000 V ?

39. Review Problem. What is the required resistance of an
immersion heater that increases the temperature of
1.50 kg of water from 10.0°C to 50.0°C in 10.0 min
while operating at 110 V ?

(�platinum � 3.92 � 10�3/°C)

40. Review Problem. What is the required resistance of an
immersion heater that increases the temperature of a
mass m of liquid water from T1 to T2 in a time t while
operating at a voltage �V ?

41. Suppose that a voltage surge produces 140 V for a mo-
ment. By what percentage does the power output of a
120-V, 100-W lightbulb increase? (Assume that its resis-
tance does not change.)

42. A 500-W heating coil designed to operate from 110 V is
made of Nichrome wire 0.500 mm in diameter. (a) As-
suming that the resistivity of the Nichrome remains con-
stant at its 20.0°C value, find the length of wire used.
(b) Now consider the variation of resistivity with tem-
perature. What power does the coil of part (a) actually
deliver when it is heated to 1 200°C?

43. A coil of Nichrome wire is 25.0 m long. The wire has a
diameter of 0.400 mm and is at 20.0°C. If it carries a
current of 0.500 A, what are (a) the magnitude of the
electric field in the wire and (b) the power delivered to
it? (c) If the temperature is increased to 340°C and the
potential difference across the wire remains constant,
what is the power delivered?

44. Batteries are rated in terms of ampere-hours (A � h): For
example, a battery that can produce a current of 2.00 A
for 3.00 h is rated at 6.00 A � h. (a) What is the total en-
ergy, in kilowatt-hours, stored in a 12.0-V battery rated
at 55.0 A � h? (b) At a rate of $0.060 0 per kilowatt-hour,
what is the value of the electricity produced by this bat-
tery?

45. A 10.0-V battery is connected to a 120-� resistor. Ne-
glecting the internal resistance of the battery, calculate
the power delivered to the resistor.

46. It is estimated that each person in the United States
(population � 270 million) has one electric clock, and
that each clock uses energy at a rate of 2.50 W. To sup-
ply this energy, about how many metric tons of coal are
burned per hour in coal-fired electricity generating
plants that are, on average, 25.0% efficient? (The heat
of combustion for coal is 33.0 MJ/kg.)

47. Compute the cost per day of operating a lamp that
draws 1.70 A from a 110-V line if the cost of electrical
energy is $0.060 0/kWh.

48. Review Problem. The heating element of a coffee-
maker operates at 120 V and carries a current of 2.00 A.
Assuming that all of the energy transferred from the
heating element is absorbed by the water, calculate how
long it takes to heat 0.500 kg of water from room tem-
perature (23.0°C) to the boiling point.

49. A certain toaster has a heating element made of
Nichrome resistance wire. When the toaster is first con-
nected to a 120-V source of potential difference (and
the wire is at a temperature of 20.0°C), the initial cur-
rent is 1.80 A. However, the current begins to decrease
as the resistive element warms up. When the toaster has
reached its final operating temperature, the current has
dropped to 1.53 A. (a) Find the power the toaster con-

WEB
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sumes when it is at its operating temperature. (b) What
is the final temperature of the heating element?

50. To heat a room having ceilings 8.0 ft high, about 10.0 W
of electric power are required per square foot. At a cost
of $0.080 0/kWh, how much does it cost per day to use
electricity to heat a room measuring 10.0 ft � 15.0 ft?

51. Estimate the cost of one person’s routine use of a hair
dryer for 1 yr. If you do not use a blow dryer yourself,
observe or interview someone who does. State the quan-
tities you estimate and their values.

ADDITIONAL PROBLEMS

52. One lightbulb is marked “25 W 120 V,” and another
“100 W 120 V”; this means that each bulb converts its
respective power when plugged into a constant 120-V
potential difference. (a) Find the resistance of each
bulb. (b) How long does it take for 1.00 C to pass
through the dim bulb? How is this charge different at
the time of its exit compared with the time of its entry?
(c) How long does it take for 1.00 J to pass through the
dim bulb? How is this energy different at the time of its
exit compared with the time of its entry? (d) Find the
cost of running the dim bulb continuously for 30.0 days
if the electric company sells its product at $0.070 0 per
kWh. What product does the electric company sell? What
is its price for one SI unit of this quantity?

53. A high-voltage transmission line with a diameter of 
2.00 cm and a length of 200 km carries a steady current
of 1 000 A. If the conductor is copper wire with a free
charge density of 8.00 � 1028 electrons/m3, how long
does it take one electron to travel the full length of the
cable?

54. A high-voltage transmission line carries 1 000 A starting
at 700 kV for a distance of 100 mi. If the resistance in
the wire is 0.500 �/mi, what is the power loss due to re-
sistive losses?

55. A more general definition of the temperature coeffi-
cient of resistivity is

where � is the resistivity at temperature T. (a) Assuming
that � is constant, show that

where �0 is the resistivity at temperature T0 . (b) Using
the series expansion ( for show that
the resistivity is given approximately by the expression

for 
56. A copper cable is to be designed to carry a current of

300 A with a power loss of only 2.00 W/m. What is the
required radius of the copper cable?

57. An experiment is conducted to measure the electrical
resistivity of Nichrome in the form of wires with differ-
ent lengths and cross-sectional areas. For one set of

�(T � T0) V 1.� � �0[1 � �(T � T0)]

x V 1),ex � 1 � x

� � �0e�(T�T0 )

� �
1
�

 
d�

dT

measurements, a student uses 30-gauge wire, which has
a cross-sectional area of 7.30 � 10�8 m2. The student
measures the potential difference across the wire and
the current in the wire with a voltmeter and ammeter,
respectively. For each of the measurements given in the
table taken on wires of three different lengths, calculate
the resistance of the wires and the corresponding values
of the resistivity. What is the average value of the resistiv-
ity, and how does this value compare with the value
given in Table 27.1?

WEB

58. An electric utility company supplies a customer’s house
from the main power lines (120 V) with two copper
wires, each of which is 50.0 m long and has a resistance
of 0.108 � per 300 m. (a) Find the voltage at the cus-
tomer’s house for a load current of 110 A. For this load
current, find (b) the power that the customer is receiv-
ing and (c) the power lost in the copper wires.

59. A straight cylindrical wire lying along the x axis has a
length of 0.500 m and a diameter of 0.200 mm. It is
made of a material described by Ohm’s law with a resis-
tivity of Assume that a potential
of 4.00 V is maintained at and that at

Find (a) the electric field E in the wire,
(b) the resistance of the wire, (c) the electric current in
the wire, and (d) the current density J in the wire. Ex-
press vectors in vector notation. (e) Show that 

60. A straight cylindrical wire lying along the x axis has a
length L and a diameter d . It is made of a material de-
scribed by Ohm’s law with a resistivity �. Assume that a
potential V is maintained at and that at

In terms of L, d, V, �, and physical constants, de-
rive expressions for (a) the electric field in the wire, 
(b) the resistance of the wire, (c) the electric current in
the wire, and (d) the current density in the wire. Ex-
press vectors in vector notation. (e) Show that 

61. The potential difference across the filament of a lamp is
maintained at a constant level while equilibrium tem-
perature is being reached. It is observed that the steady-
state current in the lamp is only one tenth of the cur-
rent drawn by the lamp when it is first turned on. If the
temperature coefficient of resistivity for the lamp at
20.0°C is 0.004 50 (°C)�1, and if the resistance increases
linearly with increasing temperature, what is the final
operating temperature of the filament?

62. The current in a resistor decreases by 3.00 A when the
potential difference applied across the resistor de-
creases from 12.0 V to 6.00 V. Find the resistance of the
resistor.

E � �J.

x � L .
V � 0x � 0,

E � � J.

x � 0.500 m.
V � 0x � 0,

� � 4.00 � 10�8 ��m.

L (m) �V (V) I (A) R (�) � (��m)

0.540 5.22 0.500
1.028 5.82 0.276
1.543 5.94 0.187
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63. An electric car is designed to run off a bank of 12.0-V
batteries with a total energy storage of 2.00 � 107 J. 
(a) If the electric motor draws 8.00 kW, what is the cur-
rent delivered to the motor? (b) If the electric motor
draws 8.00 kW as the car moves at a steady speed of 
20.0 m/s, how far will the car travel before it is “out of
juice”?

64. Review Problem. When a straight wire is heated, 
its resistance is given by the expression 

according to Equation 27.21, 
where � is the temperature coefficient of resistivity. 
(a) Show that a more precise result, one that accounts
for the fact that the length and area of the wire change
when heated, is

where �� is the coefficient of linear expansion (see
Chapter 19). (b) Compare these two results for a 
2.00-m-long copper wire of radius 0.100 mm, first at
20.0°C and then heated to 100.0°C.

65. The temperature coefficients of resistivity in Table 
27.1 were determined at a temperature of 20°C. What
would they be at 0°C? (Hint: The temperature coeffi-
cient of resistivity at 20°C satisfies the expression 

where �0 is the resistivity of
the material at The temperature coefficient
of resistivity �� at 0°C must satisfy the expression

where is the resistivity of the mate-
rial at 0°C.)

66. A resistor is constructed by shaping a material of resis-
tivity � into a hollow cylinder of length L and with inner
and outer radii ra and rb , respectively (Fig. P27.66). In
use, the application of a potential difference between
the ends of the cylinder produces a current parallel to
the axis. (a) Find a general expression for the resistance
of such a device in terms of L, �, ra , and rb . (b) Obtain 
a numerical value for R when 

and 
(c) Now suppose that the potential difference is applied
between the inner and outer surfaces so that the result-
ing current flows radially outward. Find a general ex-
pression for the resistance of the device in terms of L, �,

105 ��m.� � 3.50 �rb � 1.20 cm,0.500 cm,
ra �L � 4.00 cm,

��0� � ��0[1 � ��T ],

T0 � 20�C.
�0[1 � �(T � T0)],

� �

R �
R 0[1 � �(T � T0)][1 � ��(T � T0)]

[1 � 2��(T � T0)]

R 0[1 � �(T � T0)]
R �

ra , and rb . (d) Calculate the value of R , using the para-
meter values given in part (b).

67. In a certain stereo system, each speaker has a resistance
of 4.00 �. The system is rated at 60.0 W in each chan-
nel, and each speaker circuit includes a fuse rated at
4.00 A. Is this system adequately protected against over-
load? Explain your reasoning.

68. A close analogy exists between the flow of energy due to
a temperature difference (see Section 20.7) and the
flow of electric charge due to a potential difference.
The energy dQ and the electric charge dq are both
transported by free electrons in the conducting mater-
ial. Consequently, a good electrical conductor is usually
a good thermal conductor as well. Consider a thin con-
ducting slab of thickness dx, area A, and electrical con-
ductivity �, with a potential difference dV between op-
posite faces. Show that the current is given by
the equation on the left:

Charge Analogous thermal
conduction conduction

(Eq. 20.14)

In the analogous thermal conduction equation on the
right, the rate of energy flow dQ /dt (in SI units of
joules per second) is due to a temperature gradient
dT/dx in a material of thermal conductivity k. State
analogous rules relating the direction of the electric
current to the change in potential and relating the di-
rection of energy flow to the change in temperature.

69. Material with uniform resistivity � is formed into a
wedge, as shown in Figure P27.69. Show that the resis-
tance between face A and face B of this wedge is

R � � 
L

w(y2 � y1)
 ln� y2

y1
�

dQ
dt

� kA � dT
dx �dq

dt
� �A � dV

dx �

I � dq/dt

Figure P27.69

Figure P27.66
70. A material of resistivity � is formed into the shape of a

truncated cone of altitude h, as shown in Figure P27.70.

Face A

Face B

L

w

y 1

y 2

ra

L

r b
ρ
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The bottom end has a radius b, and the top end has a
radius a. Assuming that the current is distributed uni-
formly over any particular cross-section of the cone so
that the current density is not a function of radial posi-
tion (although it does vary with position along the axis

of the cone), show that the resistance between the two
ends is given by the expression

71. The current–voltage characteristic curve for a semicon-
ductor diode as a function of temperature T is given by
the equation

Here, the first symbol e represents the base of the nat-
ural logarithm. The second e is the charge on the elec-
tron. The kB is Boltzmann’s constant, and T is the ab-
solute temperature. Set up a spreadsheet to calculate I
and R � (�V )/I for �V � 0.400 V to 0.600 V in incre-
ments of 0.005 V. Assume that Plot R ver-
sus �V for 300 K, and 320 K.T � 280 K,

I0 � 1.00 nA.

I � I0(e e�V/k BT � 1)

R �
�

	
 � h

ab �

Figure P27.70

a

h

b

ANSWERS TO QUICK QUIZZES

terial with a low resistivity �. Referring to Table 27.1, you
should probably choose copper or aluminum because
the only two materials in the table that have lower � val-
ues—silver and gold—are prohibitively expensive for
your purposes.

27.5 Just after it is turned on. When the filament is at room
temperature, its resistance is low, and hence the current
is relatively large As the filament warms up,
its resistance increases, and the current decreases. Older
lightbulbs often fail just as they are turned on because
this large initial current “spike” produces rapid tempera-
ture increase and stress on the filament.

27.6 (c). Because the potential difference �V is the same
across the two bulbs and because the power delivered to
a conductor is the 60-W bulb, with its higher
power rating, must carry the greater current. The 30-W
bulb has the higher resistance because it draws less cur-
rent at the same potential difference.

27.7 The current Ia leaves the
positive terminal of the battery and then splits to flow
through the two bulbs; thus, From Quick
Quiz 27.6, we know that the current in the 60-W bulb is
greater than that in the 30-W bulb. (Note that all the
current does not follow the “path of least resistance,”
which in this case is through the 60-W bulb.) Because
charge does not build up in the bulbs, we know that all
the charge flowing into a bulb from the left must flow
out on the right; consequently, and The
two currents leaving the bulbs recombine to form the
current back into the battery, I f � Id � I b .

I e � I f .Ic � Id 

Ia � I c � I e .

Ia � I b � I c � Id � I e � I f .

� � I �V,

(I � �V/R).

27.1 d, b � c, a. The current in part (d) is equivalent to two
positive charges moving to the left. Parts (b) and (c)
each represent four positive charges moving in the same
direction because negative charges moving to the left
are equivalent to positive charges moving to the right.
The current in part (a) is equivalent to five positive
charges moving to the right.

27.2 Every portion of the wire carries the same current even
though the wire constricts. As the cross-sectional area
decreases, the drift velocity must increase in order for
the constant current to be maintained, in accordance
with Equation 27.4. Equations 27.5 and 27.6 indicate
that the current density also increases. An increasing
electric field must be causing the increasing current
density, as indicated by Equation 27.7. If you were to
draw this situation, you would show the electric field
lines being compressed into the smaller area, indicating
increasing magnitude of the electric field.

27.3 The curvature of the line indicates that the device is
nonohmic (that is, its resistance varies with potential dif-
ference). Being the definition of resistance, Equation
27.8 still applies, giving different values for R at differ-
ent points on the curve. The slope of the tangent to the
graph line at a point is the reciprocal of the “dynamic
resistance” at that point. Note that the resistance of the
device (as measured by an ohmmeter) is the reciprocal
of the slope of a secant line joining the origin to a par-
ticular point on the curve.

27.4 The cable should be as short as possible but still able to
reach from one vehicle to another (small ), it should
be quite thick (large A), and it should be made of a ma-

�
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If all these appliances were operating at
one time, a circuit breaker would proba-
bly be tripped, preventing a potentially
dangerous situation. What causes a cir-
cuit breaker to trip when too many elec-
trical devices are plugged into one cir-
cuit? (George Semple)
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28.1 Electromotive Force 869

his chapter is concerned with the analysis of some simple electric circuits that
contain batteries, resistors, and capacitors in various combinations. The analysis
of these circuits is simplified by the use of two rules known as Kirchhoff ’s rules,

which follow from the laws of conservation of energy and conservation of electric
charge. Most of the circuits analyzed are assumed to be in steady state, which means
that the currents are constant in magnitude and direction. In Section 28.4 we dis-
cuss circuits in which the current varies with time. Finally, we describe a variety of
common electrical devices and techniques for measuring current, potential differ-
ence, resistance, and emf.

ELECTROMOTIVE FORCE
In Section 27.6 we found that a constant current can be maintained in a closed cir-
cuit through the use of a source of emf, which is a device (such as a battery or gen-
erator) that produces an electric field and thus may cause charges to move around
a circuit. One can think of a source of emf as a “charge pump.” When an electric
potential difference exists between two points, the source moves charges “uphill”
from the lower potential to the higher. The emf � describes the work done per
unit charge, and hence the SI unit of emf is the volt.

Consider the circuit shown in Figure 28.1, consisting of a battery connected to
a resistor. We assume that the connecting wires have no resistance. The positive
terminal of the battery is at a higher potential than the negative terminal. If we ne-
glect the internal resistance of the battery, the potential difference across it (called
the terminal voltage) equals its emf. However, because a real battery always has some
internal resistance r, the terminal voltage is not equal to the emf for a battery in a
circuit in which there is a current. To understand why this is so, consider the cir-
cuit diagram in Figure 28.2a, where the battery of Figure 28.1 is represented by
the dashed rectangle containing an emf � in series with an internal resistance r.
Now imagine moving through the battery clockwise from a to b and measuring the
electric potential at various locations. As we pass from the negative terminal to the
positive terminal, the potential increases by an amount �. However, as we move
through the resistance r, the potential decreases by an amount Ir, where I is the cur-
rent in the circuit. Thus, the terminal voltage of the battery is1�V � Vb � Va

28.1

T

1 The terminal voltage in this case is less than the emf by an amount Ir. In some situations, the terminal
voltage may exceed the emf by an amount Ir. This happens when the direction of the current is opposite
that of the emf, as in the case of charging a battery with another source of emf.

+

Resistor

Battery
–

Figure 28.1 A circuit consisting of a resistor con-
nected to the terminals of a battery.



(28.1)

From this expression, note that � is equivalent to the open-circuit voltage—that
is, the terminal voltage when the current is zero. The emf is the voltage labeled on a
battery—for example, the emf of a D cell is 1.5 V. The actual potential difference
between the terminals of the battery depends on the current through the battery,
as described by Equation 28.1.

Figure 28.2b is a graphical representation of the changes in electric potential
as the circuit is traversed in the clockwise direction. By inspecting Figure 28.2a, we
see that the terminal voltage �V must equal the potential difference across the ex-
ternal resistance R , often called the load resistance. The load resistor might be a
simple resistive circuit element, as in Figure 28.1, or it could be the resistance of
some electrical device (such as a toaster, an electric heater, or a lightbulb) con-
nected to the battery (or, in the case of household devices, to the wall outlet). The
resistor represents a load on the battery because the battery must supply energy to
operate the device. The potential difference across the load resistance is 
Combining this expression with Equation 28.1, we see that

(28.2)

Solving for the current gives

(28.3)

This equation shows that the current in this simple circuit depends on both the
load resistance R external to the battery and the internal resistance r. If R is much
greater than r, as it is in many real-world circuits, we can neglect r.

If we multiply Equation 28.2 by the current I, we obtain

(28.4)

This equation indicates that, because power (see Eq. 27.22), the total
power output I� of the battery is delivered to the external load resistance in the
amount I 2R and to the internal resistance in the amount I 2r. Again, if then
most of the power delivered by the battery is transferred to the load resistance.

r V R ,

� � I �V

I� � I 2R � I 2r

I �
�

R � r

� � IR � Ir

�V � IR .

�V � � � Ir
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Terminal Voltage of a BatteryEXAMPLE 28.1
(b) Calculate the power delivered to the load resistor, the

power delivered to the internal resistance of the battery, and
the power delivered by the battery.

Solution The power delivered to the load resistor is

The power delivered to the internal resistance is

Hence, the power delivered by the battery is the sum of these
quantities, or 47.1 W. You should check this result, using the
expression � � I�.

0.772 W�r � I 2r � (3.93 A)2 (0.05 �) �

46.3 W�R � I 2R � (3.93 A)2 (3.00 �) �

A battery has an emf of 12.0 V and an internal resistance of
0.05 �. Its terminals are connected to a load resistance of
3.00 �. (a) Find the current in the circuit and the terminal
voltage of the battery.

Solution Using first Equation 28.3 and then Equation
28.1, we obtain

To check this result, we can calculate the voltage across the
load resistance R :

�V � IR � (3.93 A)(3.00 �) � 11.8 V

11.8 V�V � � � Ir � 12.0 V � (3.93 A)(0.05 �) �

3.93 A I �
�

R � r
�

12.0 V
3.05 �

�

a c

(b)

Rr

db

V

IR
Ir

ε

ε

ε
a

d R

I

br
– +

c

(a)

I

Figure 28.2 (a) Circuit diagram
of a source of emf � (in this case, a
battery), of internal resistance r,
connected to an external resistor of
resistance R . (b) Graphical repre-
sentation showing how the electric
potential changes as the circuit in
part (a) is traversed clockwise.
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Matching the LoadEXAMPLE 28.2
Show that the maximum power delivered to the load resis-
tance R in Figure 28.2a occurs when the load resistance
matches the internal resistance—that is, when R � r .

Solution The power delivered to the load resistance is
equal to I 2R , where I is given by Equation 28.3:

When is plotted versus R as in Figure 28.3, we find that 
reaches a maximum value of at We can also
prove this by differentiating with respect to R , setting the
result equal to zero, and solving for R . The details are left as
a problem for you to solve (Problem 57).

�
R � r.�2/4r

��

� � I 2R �
�2R

(R � r)2

r 2r 3r
R

�max

�

Figure 28.3 Graph of the power delivered by a battery to a load
resistor of resistance R as a function of R . The power delivered to the
resistor is a maximum when the load resistance equals the internal
resistance of the battery.

�

RESISTORS IN SERIES AND IN PARALLEL
Suppose that you and your friends are at a crowded basketball game in a sports
arena and decide to leave early. You have two choices: (1) your whole group can
exit through a single door and walk down a long hallway containing several con-
cession stands, each surrounded by a large crowd of people waiting to buy food or
souvenirs; or (b) each member of your group can exit through a separate door in
the main hall of the arena, where each will have to push his or her way through a
single group of people standing by the door. In which scenario will less time be re-
quired for your group to leave the arena?

It should be clear that your group will be able to leave faster through the separate
doors than down the hallway where each of you has to push through several groups of
people. We could describe the groups of people in the hallway as acting in series, be-
cause each of you must push your way through all of the groups. The groups of peo-
ple around the doors in the arena can be described as acting in parallel. Each member
of your group must push through only one group of people, and each member
pushes through a different group of people. This simple analogy will help us under-
stand the behavior of currents in electric circuits containing more than one resistor.

When two or more resistors are connected together as are the lightbulbs in
Figure 28.4a, they are said to be in series. Figure 28.4b is the circuit diagram for the
lightbulbs, which are shown as resistors, and the battery. In a series connection, all
the charges moving through one resistor must also pass through the second resis-
tor. (This is analogous to all members of your group pushing through the crowds
in the single hallway of the sports arena.) Otherwise, charge would accumulate be-
tween the resistors. Thus,

28.2

for a series combination of resistors, the currents in the two resistors are the
same because any charge that passes through R1 must also pass through R2 .

The potential difference applied across the series combination of resistors will di-
vide between the resistors. In Figure 28.4b, because the voltage drop2 from a to b

2 The term voltage drop is synonymous with a decrease in electric potential across a resistor and is used
often by individuals working with electric circuits.
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equals IR1 and the voltage drop from b to c equals IR2 , the voltage drop from a to
c is

Therefore, we can replace the two resistors in series with a single resistor having an
equivalent resistance Req , where

(28.5)

The resistance Req is equivalent to the series combination in the sense
that the circuit current is unchanged when R eq replaces 

The equivalent resistance of three or more resistors connected in series is

(28.6)

This relationship indicates that the equivalent resistance of a series connec-
tion of resistors is always greater than any individual resistance.

If a piece of wire is used to connect points b and c in Figure 28.4b, does the brightness of
bulb R1 increase, decrease, or stay the same? What happens to the brightness of bulb R2 ?

Now consider two resistors connected in parallel, as shown in Figure 28.5.
When the current I reaches point a in Figure 28.5b, called a junction, it splits into
two parts, with I1 going through R1 and I2 going through R2 . A junction is any
point in a circuit where a current can split ( just as your group might split up and
leave the arena through several doors, as described earlier.) This split results in
less current in each individual resistor than the current leaving the battery. Be-
cause charge must be conserved, the current I that enters point a must equal the
total current leaving that point:

I � I1 � I2

Quick Quiz 28.1

R eq � R 1 � R 2 � R 3 � ���

R 1 � R 2 .
R 1 � R 2

R eq � R 1 � R 2

�V � IR 1 � IR 2 � I(R 1 � R 2)

+ –

(a) (b)

I

R1 R2

I

∆V
+ –

a b c

Battery

R1 R2

(c)

Req

I

∆V
+ –

a c

Figure 28.4 (a) A series connection of two resistors R1 and R2 . The current in R1 is the same
as that in R2 . (b) Circuit diagram for the two-resistor circuit. (c) The resistors replaced with a sin-
gle resistor having an equivalent resistance R eq � R 1 � R 2 .

A series connection of three light-
bulbs, all rated at 120 V but having
power ratings of 60 W, 75 W, and
200 W. Why are the intensities of
the bulbs different? Which bulb
has the greatest resistance? How
would their relative intensities dif-
fer if they were connected in paral-
lel?

28.2 Resistors in Series and in Parallel 873

As can be seen from Figure 28.5, both resistors are connected directly across
the terminals of the battery. Thus,

when resistors are connected in parallel, the potential differences across them
are the same.

Because the potential differences across the resistors are the same, the expression
gives

From this result, we see that the equivalent resistance of two resistors in parallel is
given by

(28.7)

or

An extension of this analysis to three or more resistors in parallel gives

(28.8)
1

R eq
�

1
R 1

�
1

R 2
�

1
R 3

� ���

R eq �
1

1
R 1

�
1

R 2

1
R eq

�
1

R 1
�

1
R 2

I � I1 � I2 �
�V
R 1

�
�V
R 2

� �V � 1
R 1

�
1

R 2
� �

�V
R eq

�V � IR

b

(c)

Req

I

∆V
+ –

+ –

(a)

R1

R2

Battery

(b)

I1

R1

R2

∆V
+ –

a

I
I2

Figure 28.5 (a) A parallel connection of two resistors R1 and R2 . The potential difference
across R1 is the same as that across R2 . (b) Circuit diagram for the two-resistor circuit. (c) The
resistors replaced with a single resistor having an equivalent resistance R eq � (R 1 

�1 � R 2 

�1 )�1.

Straws in series

Straws in parallel

The equivalent resistance of
several resistors in parallel

QuickLab
Tape one pair of drinking straws end
to end, and tape a second pair side by
side. Which pair is easier to blow
through? What would happen if you
were comparing three straws taped
end to end with three taped side by
side?
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We can see from this expression that the equivalent resistance of two or more
resistors connected in parallel is always less than the least resistance in the
group.

Household circuits are always wired such that the appliances are connected in
parallel. Each device operates independently of the others so that if one is
switched off, the others remain on. In addition, the devices operate on the same
voltage.

Assume that the battery of Figure 28.1 has zero internal resistance. If we add a second resis-
tor in series with the first, does the current in the battery increase, decrease, or stay the
same? How about the potential difference across the battery terminals? Would your answers
change if the second resistor were connected in parallel to the first one?

Are automobile headlights wired in series or in parallel? How can you tell?

Quick Quiz 28.3

Quick Quiz 28.2

Find the Equivalent ResistanceEXAMPLE 28.3
We could have guessed this at the start by noting

that the current through the 3.0-� resistor has to be twice that
through the 6.0-� resistor, in view of their relative resistances
and the fact that the same voltage is applied to each of them.

As a final check of our results, note that 
and therefore,

as it must.�Vac � �Vab � �Vbc � 42 V,
�Vab � (12 �)I � 36 V;(3.0 �)I2 � 6.0 V

�Vbc � (6.0 �)I1 �

I2 � 2.0 A.Four resistors are connected as shown in Figure 28.6a. 
(a) Find the equivalent resistance between points a and c.

Solution The combination of resistors can be reduced in
steps, as shown in Figure 28.6. The 8.0-� and 4.0-� resistors
are in series; thus, the equivalent resistance between a and b
is 12 � (see Eq. 28.5). The 6.0-� and 3.0-� resistors are in
parallel, so from Equation 28.7 we find that the equivalent re-
sistance from b to c is 2.0 �. Hence, the equivalent resistance 

from a to c is 

(b) What is the current in each resistor if a potential dif-
ference of 42 V is maintained between a and c?

Solution The currents in the 8.0-� and 4.0-� resistors are
the same because they are in series. In addition, this is the
same as the current that would exist in the 14-� equivalent
resistor subject to the 42-V potential difference. Therefore,
using Equation 27.8 and the results from part
(a), we obtain

This is the current in the 8.0-� and 4.0-� resistors. When this
3.0-A current enters the junction at b , however, it splits, with
part passing through the 6.0-� resistor (I1) and part through
the 3.0-� resistor (I2). Because the potential difference is �Vbc
across each of these resistors (since they are in parallel), we see
that (6.0 �) or Using this result and
the fact that we find that andI1 � 1.0 AI1 � I2 � 3.0 A,

I2 � 2I1 .I1 � (3.0 �)I2 ,

I �
�Vac

R eq
�

42 V
14 �

� 3.0 A

(R � �V/I )

14 �.

Three lightbulbs having power rat-
ings of 25 W, 75 W, and 150 W,
connected in parallel to a voltage
source of about 100 V. All bulbs are
rated at the same voltage. Why do
the intensities differ? Which bulb
draws the most current? Which has
the least resistance?

6.0 Ω

3.0 Ω

c
b

I1

I2

4.0 Ω8.0 Ω

a

c

2.0 Ω12 Ω

ba

14 Ω

ca

(a)

(b)

(c)

I

Figure 28.6
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Three Resistors in ParallelEXAMPLE 28.4
(c) Calculate the equivalent resistance of the circuit.

Solution We can use Equation 28.8 to find Req :

Exercise Use Req to calculate the total power delivered by
the battery.

Answer 200 W.

1.6 �R eq �
18 �
11

�

 �
6

18 �
�

3
18 �

�
2

18 �
�

11
18 �

1
R eq

�
1

3.0 �
�

1
6.0 �

�
1

9.0 �

Three resistors are connected in parallel as shown in Figure
28.7. A potential difference of 18 V is maintained between
points a and b. (a) Find the current in each resistor.

Solution The resistors are in parallel, and so the potential
difference across each must be 18 V. Applying the relation-
ship to each resistor gives

(b) Calculate the power delivered to each resistor and the
total power delivered to the combination of resistors.

Solution We apply the relationship to each
resistor and obtain

This shows that the smallest resistor receives the most power.
Summing the three quantities gives a total power of 200 W.

36 W �3 �
�V 2

R 3
�

(18 V)2

9.0 �
�

54 W �2 �
�V 2

R 2
�

(18 V)2

6.0 �
�

110 W�1 �
�V 2

R 1
�

(18 V)2

3.0 �
�

� � (�V )2/R

2.0 AI3 �
�V
R 3

�
18 V
9.0 �

�

3.0 AI2 �
�V
R 2

�
18 V
6.0 �

�

6.0 AI1 �
�V
R 1

�
18 V
3.0 �

�

�V � IR

Finding Req by Symmetry ArgumentsEXAMPLE 28.5
Solution In this type of problem, it is convenient to as-
sume a current entering junction a and then apply symmetry

Consider five resistors connected as shown in Figure 28.8a.
Find the equivalent resistance between points a and b.

(c)

1/2 Ω

ba c,d

1/2 Ω

(a)

1 Ω1 Ω

1 Ω1 Ω

5 Ω
ba

c

d

1 Ω

5 Ω

1 Ω
ba c,d

1 Ω

1 Ω

(b) (d)

1 Ω

ba

Figure 28.7 Three resistors connected in parallel. The voltage
across each resistor is 18 V.

3.0 Ω 6.0 Ω 9.0 Ω18 V

b

a

I1 I2 I3

I

Figure 28.8 Because of the symmetry in this circuit, the 5-� resistor does not contribute to the resistance between points a
and b and therefore can be disregarded when we calculate the equivalent resistance.
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Operation of a Three-Way LightbulbCONCEPTUAL EXAMPLE 28.6
Exercise Determine the resistances of the two filaments
and their parallel equivalent resistance.

Answer 144 �, 192 �, 82.3 �.

Figure 28.9 illustrates how a three-way lightbulb is con-
structed to provide three levels of light intensity. The socket
of the lamp is equipped with a three-way switch for selecting
different light intensities. The bulb contains two filaments.
When the lamp is connected to a 120-V source, one filament
receives 100 W of power, and the other receives 75 W. Ex-
plain how the two filaments are used to provide three differ-
ent light intensities.

Solution The three light intensities are made possible by
applying the 120 V to one filament alone, to the other fila-
ment alone, or to the two filaments in parallel. When switch
S1 is closed and switch S2 is opened, current passes only
through the 75-W filament. When switch S1 is open and
switch S2 is closed, current passes only through the 100-W fil-
ament. When both switches are closed, current passes
through both filaments, and the total power is 175 W.

If the filaments were connected in series and one of them
were to break, no current could pass through the bulb, and
the bulb would give no illumination, regardless of the switch
position. However, with the filaments connected in parallel, if
one of them (for example, the 75-W filament) breaks, the
bulb will still operate in two of the switch positions as current
passes through the other (100-W) filament.

120 V

100-W filament

75-W filament

S1

S2

arguments. Because of the symmetry in the circuit (all 1-� re-
sistors in the outside loop), the currents in branches ac and
ad must be equal; hence, the electric potentials at points c
and d must be equal. This means that and, as a re-
sult, points c and d may be connected together without affect-
ing the circuit, as in Figure 28.8b. Thus, the 5-� resistor may

�Vcd � 0

be removed from the circuit and the remaining circuit then
reduced as in Figures 28.8c and d. From this reduction we see
that the equivalent resistance of the combination is 1 �. Note
that the result is 1 � regardless of the value of the resistor
connected between c and d .

Figure 28.9 A three-way lightbulb.

Strings of LightsAPPLICATION
In a parallel-wired string, each bulb operates at 120 V. By

design, the bulbs are brighter and hotter than those on a
series-wired string. As a result, these bulbs are inherently
more dangerous (more likely to start a fire, for instance), but
if one bulb in a parallel-wired string fails or is removed, the
rest of the bulbs continue to glow. (A 25-bulb string of 4-W
bulbs results in a power of 100 W; the total power becomes
substantial when several strings are used.)

A new design was developed for so-called “miniature”
lights wired in series, to prevent the failure of one bulb from
extinguishing the entire string. The solution is to create a
connection (called a jumper) across the filament after it fails.
(If an alternate connection existed across the filament before

Strings of lights are used for many ornamental purposes,
such as decorating Christmas trees. Over the years, both par-
allel and series connections have been used for multilight
strings powered by 120 V.3 Series-wired bulbs are safer than
parallel-wired bulbs for indoor Christmas-tree use because 
series-wired bulbs operate with less light per bulb and at a
lower temperature. However, if the filament of a single bulb
fails (or if the bulb is removed from its socket), all the lights
on the string are extinguished. The popularity of series-wired
light strings diminished because troubleshooting a failed
bulb was a tedious, time-consuming chore that involved trial-
and-error substitution of a good bulb in each socket along
the string until the defective bulb was found.

3 These and other household devices, such as the three-way lightbulb in Conceptual Example 28.6 and
the kitchen appliances shown in this chapter’s Puzzler, actually operate on alternating current (ac), to
be introduced in Chapter 33.
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KIRCHHOFF’S RULES
As we saw in the preceding section, we can analyze simple circuits using the ex-
pression �V � IR and the rules for series and parallel combinations of resistors.
Very often, however, it is not possible to reduce a circuit to a single loop. The pro-
cedure for analyzing more complex circuits is greatly simplified if we use two prin-
ciples called Kirchhoff ’s rules:

28.3

Suppose that all the bulbs in a 50-bulb miniature-light
string are operating. A 2.4-V potential drop occurs across each
bulb because the bulbs are in series. The power input to this
style of bulb is 0.34 W, so the total power supplied to the
string is only 17 W. We calculate the filament resistance at 
the operating temperature to be (2.4 V)2/(0.34 W) � 17 �.
When the bulb fails, the resistance across its terminals is re-
duced to zero because of the alternate jumper connection
mentioned in the preceding paragraph. All the other bulbs
not only stay on but glow more brightly because the total resis-
tance of the string is reduced and consequently the current in
each bulb increases.

Let us assume that the operating resistance of a bulb re-
mains at 17 � even though its temperature rises as a result of
the increased current. If one bulb fails, the potential drop
across each of the remaining bulbs increases to 2.45 V, the
current increases from 0.142 A to 0.145 A, and the power in-
creases to 0.354 W. As more lights fail, the current keeps ris-
ing, the filament of each bulb operates at a higher tempera-
ture, and the lifetime of the bulb is reduced. It is therefore a
good idea to check for failed (nonglowing) bulbs in such a
series-wired string and replace them as soon as possible, in or-
der to maximize the lifetimes of all the bulbs.

it failed, each bulb would represent a parallel circuit; in this
circuit, the current would flow through the alternate connec-
tion, forming a short circuit, and the bulb would not glow.)
When the filament breaks in one of these miniature light-
bulbs, 120 V appears across the bulb because no current is
present in the bulb and therefore no drop in potential occurs
across the other bulbs. Inside the lightbulb, a small loop cov-
ered by an insulating material is wrapped around the fila-
ment leads. An arc burns the insulation and connects the fila-
ment leads when 120 V appears across the bulb—that is,
when the filament fails. This “short” now completes the cir-
cuit through the bulb even though the filament is no longer
active (Fig. 28.10).

Filament

Jumper

Glass insulator

(a)

Figure 28.10 (a) Schematic diagram of
a modern “miniature” holiday lightbulb,
with a jumper connection to provide a cur-
rent path if the filament breaks. (b) A
Christmas-tree lightbulb.

(b)

13.4

1. The sum of the currents entering any junction in a circuit must equal the
sum of the currents leaving that junction:

(28.9)�I in � �Iout



Kirchhoff’s first rule is a statement of conservation of electric charge. All cur-
rent that enters a given point in a circuit must leave that point because charge can-
not build up at a point. If we apply this rule to the junction shown in Figure
28.11a, we obtain

Figure 28.11b represents a mechanical analog of this situation, in which water
flows through a branched pipe having no leaks. The flow rate into the pipe equals
the total flow rate out of the two branches on the right.

Kirchhoff’s second rule follows from the law of conservation of energy. Let us
imagine moving a charge around the loop. When the charge returns to the start-
ing point, the charge–circuit system must have the same energy as when the
charge started from it. The sum of the increases in energy in some circuit ele-
ments must equal the sum of the decreases in energy in other elements. The po-
tential energy decreases whenever the charge moves through a potential drop �IR
across a resistor or whenever it moves in the reverse direction through a source of
emf. The potential energy increases whenever the charge passes through a battery
from the negative terminal to the positive terminal. Kirchhoff’s second rule ap-
plies only for circuits in which an electric potential is defined at each point; this
criterion may not be satisfied if changing electromagnetic fields are present, as we
shall see in Chapter 31.

In justifying our claim that Kirchhoff’s second rule is a statement of conserva-
tion of energy, we imagined carrying a charge around a loop. When applying this
rule, we imagine traveling around the loop and consider changes in electric potential,
rather than the changes in potential energy described in the previous paragraph.
You should note the following sign conventions when using the second rule:

• Because charges move from the high-potential end of a resistor to the low-
potential end, if a resistor is traversed in the direction of the current, the
change in potential �V across the resistor is �IR (Fig. 28.12a).

• If a resistor is traversed in the direction opposite the current, the change in po-
tential �V across the resistor is � IR (Fig. 28.12b).

• If a source of emf (assumed to have zero internal resistance) is traversed in the
direction of the emf (from � to �), the change in potential �V is �� (Fig.
28.12c). The emf of the battery increases the electric potential as we move
through it in this direction.

• If a source of emf (assumed to have zero internal resistance) is traversed in the
direction opposite the emf (from � to �), the change in potential �V is ��
(Fig. 28.12d). In this case the emf of the battery reduces the electric potential as
we move through it.

Limitations exist on the numbers of times you can usefully apply Kirchhoff’s
rules in analyzing a given circuit. You can use the junction rule as often as you
need, so long as each time you write an equation you include in it a current that
has not been used in a preceding junction-rule equation. In general, the number
of times you can use the junction rule is one fewer than the number of junction

I1 � I2 � I3
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2. The sum of the potential differences across all elements around any closed
circuit loop must be zero:

(28.10)�
closed
loop

 �V � 0

QuickLab
Draw an arbitrarily shaped closed
loop that does not cross over itself.
Label five points on the loop a, b, c, d,
and e, and assign a random number
to each point. Now start at a and
work your way around the loop, cal-
culating the difference between each
pair of adjacent numbers. Some of
these differences will be positive, and
some will be negative. Add the differ-
ences together, making sure you accu-
rately keep track of the algebraic
signs. What is the sum of the differ-
ences all the way around the loop?

Gustav Kirchhoff (1824– 1887)
Kirchhoff, a professor at Heidelberg,
Germany, and Robert Bunsen in-
vented the spectroscope and founded
the science of spectroscopy, which
we shall study in Chapter 40. They
discovered the elements cesium and
rubidium and invented astronomical
spectroscopy. Kirchhoff formulated
another Kirchhoff’s rule, namely, “a
cool substance will absorb light of the
same wavelengths that it emits when
hot.” (AIP ESVA/W. F. Meggers Collection)
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points in the circuit. You can apply the loop rule as often as needed, so long as a
new circuit element (resistor or battery) or a new current appears in each new
equation. In general, in order to solve a particular circuit problem, the num-
ber of independent equations you need to obtain from the two rules equals
the number of unknown currents.

Complex networks containing many loops and junctions generate great num-
bers of independent linear equations and a correspondingly great number of un-
knowns. Such situations can be handled formally through the use of matrix alge-
bra. Computer programs can also be written to solve for the unknowns.

The following examples illustrate how to use Kirchhoff’s rules. In all cases, it is
assumed that the circuits have reached steady-state conditions—that is, the cur-
rents in the various branches are constant. Any capacitor acts as an open circuit;
that is, the current in the branch containing the capacitor is zero under steady-
state conditions.

(a)

I1

I2

I3

(b)

Flow in

Flow out

(a)

I

a b∆V =  –IR

(b)

I

a b∆V =  +IR

(c)

ε
a b

∆V =  +ε
– +

(d)
a b

∆V =  –ε
–+

ε

ε

ε

Figure 28.11 (a) Kirchhoff’s
junction rule. Conservation of
charge requires that all current en-
tering a junction must leave that
junction. Therefore, 
(b) A mechanical analog of the
junction rule: the amount of water
flowing out of the branches on the
right must equal the amount flow-
ing into the single branch on the
left.

I 1 � I 2 � I 3 .
Figure 28.12 Rules for determin-
ing the potential changes across a
resistor and a battery. (The battery
is assumed to have no internal re-
sistance.) Each circuit element is
traversed from left to right.

Problem-Solving Hints
Kirchhoff’s Rules
• Draw a circuit diagram, and label all the known and unknown quantities.

You must assign a direction to the current in each branch of the circuit. Do
not be alarmed if you guess the direction of a current incorrectly; your re-
sult will be negative, but its magnitude will be correct. Although the assignment
of current directions is arbitrary, you must adhere rigorously to the assigned
directions when applying Kirchhoff’s rules.

• Apply the junction rule to any junctions in the circuit that provide new rela-
tionships among the various currents.
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A Single-Loop CircuitEXAMPLE 28.7

Solving for I and using the values given in Figure 28.13, we
obtain

The negative sign for I indicates that the direction of the cur-
rent is opposite the assumed direction.

(b) What power is delivered to each resistor? What power
is delivered by the 12-V battery?

Solution

Hence, the total power delivered to the resistors is

The 12-V battery delivers power Half of this
power is delivered to the two resistors, as we just calculated.
The other half is delivered to the 6-V battery, which is being
charged by the 12-V battery. If we had included the internal
resistances of the batteries in our analysis, some of the power
would appear as internal energy in the batteries; as a result,
we would have found that less power was being delivered to
the 6-V battery.

I�2 � 4.0 W.
�1 � �2 � 2.0 W.

1.1 W�2 � I 2R 2 � (0.33 A)2(10 �) �

0.87 W�1 � I 2R 1 � (0.33 A)2(8.0 �) �

�0.33 AI �
�1 � �2

R 1 � R 2
�

6.0 V � 12 V
8.0 � � 10 �

�

�1 � IR 1 � �2 � IR 2 � 0

 �  �V � 0A single-loop circuit contains two resistors and two batteries,
as shown in Figure 28.13. (Neglect the internal resistances of
the batteries.) (a) Find the current in the circuit.

Solution We do not need Kirchhoff’s rules to analyze this
simple circuit, but let us use them anyway just to see how they
are applied. There are no junctions in this single-loop circuit;
thus, the current is the same in all elements. Let us assume
that the current is clockwise, as shown in Figure 28.13. Tra-
versing the circuit in the clockwise direction, starting at a, we
see that a : b represents a potential change of ��1 , b : c
represents a potential change of �IR1 , c : d represents a po-
tential change of ��2 , and d : a represents a potential
change of �IR2 . Applying Kirchhoff’s loop rule gives

Applying Kirchhoff’s RulesEXAMPLE 28.8
We now have one equation with three unknowns— I1 , I2 , and
I3 . There are three loops in the circuit—abcda, befcb, and
aefda. We therefore need only two loop equations to deter-
mine the unknown currents. (The third loop equation would
give no new information.) Applying Kirchhoff’s loop rule to
loops abcda and befcb and traversing these loops clockwise, we
obtain the expressions

(2) abcda 10 V � (6 �)I1 � (2 �)I3 � 0

(3) befcb � 14 V � (6 �)I1 � 10 V � (4 �)I2 � 0

Find the currents I1 , I2 , and I3 in the circuit shown in Figure
28.14.

Solution Notice that we cannot reduce this circuit to a
simpler form by means of the rules of adding resistances in
series and in parallel. We must use Kirchhoff’s rules to ana-
lyze this circuit. We arbitrarily choose the directions of the
currents as labeled in Figure 28.14. Applying Kirchhoff’s
junction rule to junction c gives

(1) I1 � I2 � I3

• Apply the loop rule to as many loops in the circuit as are needed to solve for
the unknowns. To apply this rule, you must correctly identify the change in
potential as you imagine crossing each element in traversing the closed loop
(either clockwise or counterclockwise). Watch out for errors in sign!

• Solve the equations simultaneously for the unknown quantities.

a b
I

cd

  1 = 6.0 V

+–

R 1 = 8.0 ΩR 2 = 10 Ω

  2 = 12 V

+–
ε

ε

Figure 28.13 A series circuit containing two batteries and two re-
sistors, where the polarities of the batteries are in opposition.
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14 V
e

b

4 Ω

– +

10 V 6 Ω

–+ f

I2

c

I3

I1

2 Ω
da

Figure 28.14 A circuit containing three loops.

A Multiloop CircuitEXAMPLE 28.9

Because our value for I2 is negative, we conclude that the di-
rection of I2 is from c to f through the 3.00-� resistor. Despite

�0.364 AI2 � �
4.00 V
11.0 �

�
(a) Under steady-state conditions, find the unknown currents
I1 , I2 , and I3 in the multiloop circuit shown in Figure 28.15.

Solution First note that because the capacitor represents
an open circuit, there is no current between g and b along
path ghab under steady-state conditions. Therefore, when the
charges associated with I1 reach point g, they all go through
the 8.00-V battery to point b ; hence, Labeling the
currents as shown in Figure 28.15 and applying Equation 28.9
to junction c, we obtain

(1)

Equation 28.10 applied to loops defcd and cfgbc, traversed
clockwise, gives

(2) defcd 4.00 V � (3.00 �)I2 � (5.00 �)I3 � 0

(3) cfgbc (3.00 �)I2 � (5.00 �)I1 � 8.00 V � 0

From Equation (1) we see that which, when
substituted into Equation (3), gives

(4) (8.00 �)I2 � (5.00 �)I3 � 8.00 V � 0

Subtracting Equation (4) from Equation (2), we eliminate I3
and find that

I1 � I3 � I2 ,

I1 � I2 � I3

I gb � I1 .

Note that in loop befcb we obtain a positive value when travers-
ing the 6-� resistor because our direction of travel is opposite
the assumed direction of I1 .

Expressions (1), (2), and (3) represent three independent
equations with three unknowns. Substituting Equation (1)
into Equation (2) gives

(4) 10 V � (8 �)I1 � (2 �)I2

Dividing each term in Equation (3) by 2 and rearranging
gives

10 V � (6 �)I1 � (2 �) (I1 � I2) � 0

(5)

Subtracting Equation (5) from Equation (4) eliminates I2 ,
giving

Using this value of I1 in Equation (5) gives a value for I2 :

Finally,

The fact that I2 and I3 are both negative indicates only that
the currents are opposite the direction we chose for them.
However, the numerical values are correct. What would have
happened had we left the current directions as labeled in Fig-
ure 28.14 but traversed the loops in the opposite direction?

Exercise Find the potential difference between points b
and c .

Answer 2 V.

�1 AI3 � I1 � I2 �

�3 A I2 �

(2 �)I2 � (3 �)I1 � 12 V � (3 �) (2 A) � 12 V � �6 V

2 A I1 �

22 V � (11 �)I1

�12 V � �(3 �)I1 � (2 �)I2

4.00 V

d

c

5.00 Ω

–+

8.00 V

3.00 Ω

– + e

I3

f

I1

I2
5.00 Ω

ha

g

– +

3.00 V

–+

6.00   F

I = 0

b

I3

I1

µ

Figure 28.15 A multiloop circuit. Kirchhoff’s loop rule can be ap-
plied to any closed loop, including the one containing the capacitor.
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4 In previous discussions of capacitors, we assumed a steady-state situation, in which no current was
present in any branch of the circuit containing a capacitor. Now we are considering the case before the
steady-state condition is realized; in this situation, charges are moving and a current exists in the wires
connected to the capacitor.

RC CIRCUITS
So far we have been analyzing steady-state circuits, in which the current is con-
stant. In circuits containing capacitors, the current may vary in time. A circuit con-
taining a series combination of a resistor and a capacitor is called an RC circuit.

Charging a Capacitor

Let us assume that the capacitor in Figure 28.16 is initially uncharged. There is no
current while switch S is open (Fig. 28.16b). If the switch is closed at how-
ever, charge begins to flow, setting up a current in the circuit, and the capacitor
begins to charge.4 Note that during charging, charges do not jump across the ca-
pacitor plates because the gap between the plates represents an open circuit. In-
stead, charge is transferred between each plate and its connecting wire due to the
electric field established in the wires by the battery, until the capacitor is fully
charged. As the plates become charged, the potential difference across the capaci-
tor increases. The value of the maximum charge depends on the voltage of the
battery. Once the maximum charge is reached, the current in the circuit is zero
because the potential difference across the capacitor matches that supplied by the
battery.

To analyze this circuit quantitatively, let us apply Kirchhoff’s loop rule to the
circuit after the switch is closed. Traversing the loop clockwise gives

(28.11)

where q/C is the potential difference across the capacitor and IR is the potential

� �
q
C

� IR � 0

t � 0,

28.4

this interpretation of the direction, however, we must con-
tinue to use this negative value for I2 in subsequent calcula-
tions because our equations were established with our origi-
nal choice of direction.

Using in Equations (3) and (1) gives

(b) What is the charge on the capacitor?

Solution We can apply Kirchhoff’s loop rule to loop bghab
(or any other loop that contains the capacitor) to find the po-
tential difference �Vcap across the capacitor. We enter this po-
tential difference in the equation without reference to a sign
convention because the charge on the capacitor depends
only on the magnitude of the potential difference. Moving
clockwise around this loop, we obtain

 �Vcap � 11.0 V

�8.00 V � �Vcap � 3.00 V � 0 

1.02 AI3 �1.38 AI1 �

I2 � �0.364 A

Because (see Eq. 26.1), the charge on the capac-
itor is

Why is the left side of the capacitor positively charged?

Exercise Find the voltage across the capacitor by traversing
any other loop.

Answer 11.0 V.

Exercise Reverse the direction of the 3.00-V battery and an-
swer parts (a) and (b) again.

Answer (a) 
(b) 30 	C.

I3 � 1.02 A;I2 � �0.364 A,I1 � 1.38 A,

66.0 	CQ � (6.00 	F)(11.0 V) �

Q � C �Vcap
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difference across the resistor. We have used the sign conventions discussed earlier
for the signs on � and IR . For the capacitor, notice that we are traveling in the di-
rection from the positive plate to the negative plate; this represents a decrease in
potential. Thus, we use a negative sign for this voltage in Equation 28.11. Note that
q and I are instantaneous values that depend on time (as opposed to steady-state val-
ues) as the capacitor is being charged.

We can use Equation 28.11 to find the initial current in the circuit and the
maximum charge on the capacitor. At the instant the switch is closed the
charge on the capacitor is zero, and from Equation 28.11 we find that the initial
current in the circuit I0 is a maximum and is equal to

(current at (28.12)

At this time, the potential difference from the battery terminals appears entirely
across the resistor. Later, when the capacitor is charged to its maximum value Q ,
charges cease to flow, the current in the circuit is zero, and the potential differ-
ence from the battery terminals appears entirely across the capacitor. Substituting

into Equation 28.11 gives the charge on the capacitor at this time:

(maximum charge) (28.13)

To determine analytical expressions for the time dependence of the charge
and current, we must solve Equation 28.11—a single equation containing two vari-
ables, q and I. The current in all parts of the series circuit must be the same. Thus,
the current in the resistance R must be the same as the current flowing out of and
into the capacitor plates. This current is equal to the time rate of change of the
charge on the capacitor plates. Thus, we substitute into Equation 28.11
and rearrange the equation:

To find an expression for q , we first combine the terms on the right-hand side:

dq
dt

�
C�
RC

�
q

RC
� �

q � C�
RC

dq
dt

�
�
R

�
q

RC

I � dq /dt

Q � C�
I � 0

t � 0)I0 �
�
R

(t � 0),

Maximum current

Maximum charge on the capacitor

+ –

Resistor

Battery

Capacitor

Switch

(a)

ε
(b)

S

t < 0

R

C

(c) t > 0

ε

R

S

I
q–

+ q

Figure 28.16 (a) A capacitor in series with a resistor, switch, and battery. (b) Circuit diagram
representing this system at time before the switch is closed. (c) Circuit diagram at time

after the switch has been closed.t 
 0,
t � 0,
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Now we multiply by dt and divide by q � C� to obtain

Integrating this expression, using the fact that at , we obtain

From the definition of the natural logarithm, we can write this expression as

(28.14)

where e is the base of the natural logarithm and we have made the substitution
from Equation 28.13.

We can find an expression for the charging current by differentiating Equa-
tion 28.14 with respect to time. Using we find that

(28.15)

Plots of capacitor charge and circuit current versus time are shown in Figure
28.17. Note that the charge is zero at and approaches the maximum value
C� as t : �. The current has its maximum value at and decays ex-
ponentially to zero as t : �. The quantity RC , which appears in the exponents of
Equations 28.14 and 28.15, is called the time constant 
 of the circuit. It repre-
sents the time it takes the current to decrease to 1/e of its initial value; that is, in a
time 
, In a time 2
, and so forth. Like-
wise, in a time 
, the charge increases from zero to 

The following dimensional analysis shows that 
 has the units of time:

[
] � [RC] � � �V
I

�
Q
�V � � � Q

Q /�t � � [�t] � T

C� (1 � e�1) � 0.632C�.
I � e�2I0 � 0.135I0 ,I � e�1I0 � 0.368I0 .

t � 0I0 � �/R
t � 0

I(t ) �
�
R

 e�t /RC

I � dq /dt,

C� � Q

q(t ) � C� (1 � e�t/RC) � Q(1 � e�t /RC )

ln� q � C�
�C� � � �

t
RC

 

 �q

0
 

dq
q � C� � �

1
RC

 �t

0
 dt

t � 0q � 0

dq
q � C� � �

1
RC

 dt

Charge versus time for a capacitor
being charged

Current versus time for a charging
capacitor

q

=RC

τ t

C

0.632

(a)

I

τ t

0.368I0

(b)

I0 I0 =
R

ε

Cε τ

ε

Figure 28.17 (a) Plot of capacitor charge versus time for the circuit shown in Figure 28.16. Af-
ter a time interval equal to one time constant 
 has passed, the charge is 63.2% of the maximum
value C�. The charge approaches its maximum value as t approaches infinity. (b) Plot of current
versus time for the circuit shown in Figure 28.16. The current has its maximum value 
at and decays to zero exponentially as t approaches infinity. After a time interval equal to
one time constant 
 has passed, the current is 36.8% of its initial value.

t � 0
I 0 � �/R
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Because has units of time, the combination t /RC is dimensionless, as it
must be in order to be an exponent of e in Equations 28.14 and 28.15.

The energy output of the battery as the capacitor is fully charged is
After the capacitor is fully charged, the energy stored in the capacitor

is which is just half the energy output of the battery. It is left as a
problem (Problem 60) to show that the remaining half of the energy supplied by
the battery appears as internal energy in the resistor.

Discharging a Capacitor

Now let us consider the circuit shown in Figure 28.18, which consists of a capaci-
tor carrying an initial charge Q , a resistor, and a switch. The initial charge Q is
not the same as the maximum charge Q in the previous discussion, unless the dis-
charge occurs after the capacitor is fully charged (as described earlier). When the
switch is open, a potential difference Q /C exists across the capacitor and there is
zero potential difference across the resistor because If the switch is closed
at the capacitor begins to discharge through the resistor. At some time t
during the discharge, the current in the circuit is I and the charge on the capaci-
tor is q (Fig. 28.18b). The circuit in Figure 28.18 is the same as the circuit in Fig-
ure 28.16 except for the absence of the battery. Thus, we eliminate the emf �
from Equation 28.11 to obtain the appropriate loop equation for the circuit in
Figure 28.18:

(28.16)

When we substitute into this expression, it becomes

Integrating this expression, using the fact that at gives

(28.17)

Differentiating this expression with respect to time gives the instantaneous current
as a function of time:

(28.18)

where is the initial current. The negative sign indicates that the cur-
rent direction now that the capacitor is discharging is opposite the current direc-
tion when the capacitor was being charged. (Compare the current directions in
Figs. 28.16c and 28.18b.) We see that both the charge on the capacitor and the
current decay exponentially at a rate characterized by the time constant 
 � RC .

Q /RC � I0

I(t) �
dq
dt

�
d
dt

 (Qe�t /RC ) � �
Q

RC
 e�t /RC

q(t ) � Qe�t /RC

ln� q
Q � � �

t
RC

 

 �q

Q
 
dq
q

� �
1

RC
 �t

0
 dt

t � 0,q � Q

 
dq
q

� �
1

RC
 dt

�R 
dq
dt

�
q
C

 

I � dq /dt

�
q
C

� IR � 0

t � 0,
I � 0.

1
2Q� � 1

2C�2,
Q� � C�2.


 � RC

Charge versus time for a
discharging capacitor

Current versus time for a
discharging capacitor

(a)

S

RC

t < 0

–Q

+Q

R

S

I
–q

+q
C

(b)

t > 0

Figure 28.18 (a) A charged ca-
pacitor connected to a resistor and
a switch, which is open at 
(b) After the switch is closed, a cur-
rent that decreases in magnitude
with time is set up in the direction
shown, and the charge on the ca-
pacitor decreases exponentially
with time.

t � 0.
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Intermittent Windshield WipersCONCEPTUAL EXAMPLE 28.10
through a multiposition switch. As it increases with time, the
voltage across the capacitor reaches a point at which it trig-
gers the wipers and discharges, ready to begin another charg-
ing cycle. The time interval between the individual sweeps of
the wipers is determined by the value of the time constant.

Many automobiles are equipped with windshield wipers that
can operate intermittently during a light rainfall. How does
the operation of such wipers depend on the charging and dis-
charging of a capacitor?

Solution The wipers are part of an RC circuit whose time
constant can be varied by selecting different values of R

Charging a Capacitor in an RC CircuitEXAMPLE 28.11
Exercise Calculate the charge on the capacitor and the cur-
rent in the circuit after one time constant has elapsed.

Answer 37.9 	C, 5.52 	A.

An uncharged capacitor and a resistor are connected in se-
ries to a battery, as shown in Figure 28.19. If 

and find the time constant
of the circuit, the maximum charge on the capacitor, the
maximum current in the circuit, and the charge and current
as functions of time.

Solution The time constant of the circuit is 
The maximum

charge on the capacitor is 
The maximum current in the circuit is

Using these
values and Equations 28.14 and 28.15, we find that

Graphs of these functions are provided in Figure 28.20.

(15.0 	A) e�t/4.00 sI(t) �

(60.0 	C)(1 � e�t/4.00 s )q(t) �

I0 � �/R � (12.0 V)/(8.00 � 105 �) � 15.0 	A.
60.0 	C.

(12.0 V) �Q � C� � (5.00 	F)
(8.00 � 105 �)(5.00 � 10�6 F) � 4.00 s.


 � RC �
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Figure 28.19 The switch of this series RC circuit, open for times
is closed at t � 0.t � 0,

Figure 28.20 Plots of (a) charge versus time and (b) current ver-
sus time for the RC circuit shown in Figure 28.19, with 

, and C � 5.00 	F.R � 8.00 � 105 �
� � 12.0 V,

Discharging a Capacitor in an RC CircuitEXAMPLE 28.12
Solution The charge on the capacitor varies with time ac-
cording to Equation 28.17, To find the time
it takes q to drop to one-fourth its initial value, we substitute

into this expression and solve for t :q(t) � Q /4

q(t) � Qe�t /RC.
Consider a capacitor of capacitance C that is being dis-
charged through a resistor of resistance R , as shown in Figure
28.18. (a) After how many time constants is the charge on the
capacitor one-fourth its initial value?
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Taking logarithms of both sides, we find

(b) The energy stored in the capacitor decreases with
time as the capacitor discharges. After how many time con-
stants is this stored energy one-fourth its initial value?

Solution Using Equations 26.11 and 28.17,
we can express the energy stored in the capacitor at any time
t as

(U � Q2/2C)

1.39
 t � RC(ln 4) � 1.39RC �

�ln 4 � �
t

RC
 

 14 � e�t /RC 

Q
4

� Qe�t /RC

where is the initial energy stored in the capaci-
tor. As in part (a), we now set and solve for t :

Again, taking logarithms of both sides and solving for t gives

Exercise After how many time constants is the current in
the circuit one-half its initial value?

Answer 0.693RC � 0.693
.

0.693
t � 1
2RC(ln 4) � 0.693RC �

 14 � e�2t /RC 

U0

4
� U0e�2t /RC

U � U0/4
U0 � Q2/2C

U �
q 2

2C
�

(Q e�t /RC)2

2C
�

Q2

2C
 e�2t /RC � U0e�2t /RC

Energy Delivered to a ResistorEXAMPLE 28.13

To evaluate this integral, we note that the initial current is
equal to and that all parameters except t are constant.
Thus, we find

(1)

This integral has a value of RC/2; hence, we find

which agrees with the result we obtained using the simpler
approach, as it must. Note that we can use this second ap-
proach to find the total energy delivered to the resistor at any
time after the switch is closed by simply replacing the upper
limit in the integral with that specific value of t.

Exercise Show that the integral in Equation (1) has the
value RC/2.

Energy � 1
2C�2

Energy �
�2

R
 ��

0
 e�2t/RC dt

�/R
I0

Energy � ��

0
 I 2R dt � ��

0
 (I0e�t /RC)2 R dt

A 5.00-	F capacitor is charged to a potential difference of
800 V and then discharged through a 25.0-k� resistor. How
much energy is delivered to the resistor in the time it takes to
fully discharge the capacitor?

Solution We shall solve this problem in two ways. The first
way is to note that the initial energy in the circuit equals the
energy stored in the capacitor, C�2/2 (see Eq. 26.11). Once
the capacitor is fully discharged, the energy stored in it is
zero. Because energy is conserved, the initial energy stored in
the capacitor is transformed into internal energy in the resis-
tor. Using the given values of C and �, we find

The second way, which is more difficult but perhaps more
instructive, is to note that as the capacitor discharges through
the resistor, the rate at which energy is delivered to the resis-
tor is given by I 2R, where I is the instantaneous current given
by Equation 28.18. Because power is defined as the time rate
of change of energy, we conclude that the energy delivered to
the resistor must equal the time integral of I 2R dt:

1.60 JEnergy � 1
2 C�2 � 1

2(5.00 � 10�6 F)(800 V)2 �

Optional Section

ELECTRICAL INSTRUMENTS

The Ammeter

A device that measures current is called an ammeter. The current to be measured
must pass directly through the ammeter, so the ammeter must be connected in se-

28.5



ries with other elements in the circuit, as shown in Figure 28.21. When using an
ammeter to measure direct currents, you must be sure to connect it so that current
enters the instrument at the positive terminal and exits at the negative terminal.

Ideally, an ammeter should have zero resistance so that the current be-
ing measured is not altered. In the circuit shown in Figure 28.21, this condition
requires that the resistance of the ammeter be much less than Because
any ammeter always has some internal resistance, the presence of the ammeter in
the circuit slightly reduces the current from the value it would have in the meter’s
absence.

The Voltmeter

A device that measures potential difference is called a voltmeter. The potential
difference between any two points in a circuit can be measured by attaching the
terminals of the voltmeter between these points without breaking the circuit, as
shown in Figure 28.22. The potential difference across resistor R2 is measured by
connecting the voltmeter in parallel with R2 . Again, it is necessary to observe the
polarity of the instrument. The positive terminal of the voltmeter must be con-
nected to the end of the resistor that is at the higher potential, and the negative
terminal to the end of the resistor at the lower potential.

An ideal voltmeter has infinite resistance so that no current passes
through it. In Figure 28.22, this condition requires that the voltmeter have a resis-
tance much greater than R2 . In practice, if this condition is not met, corrections
should be made for the known resistance of the voltmeter.

The Galvanometer

The galvanometer is the main component in analog ammeters and voltmeters.
Figure 28.23a illustrates the essential features of a common type called the 
D’Arsonval galvanometer. It consists of a coil of wire mounted so that it is free to ro-
tate on a pivot in a magnetic field provided by a permanent magnet. The basic op-

R 1 � R 2 .
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R1

ε

–

+

R2

A

R1

ε

V

R2

Figure 28.21 Current can be
measured with an ammeter con-
nected in series with the resistor
and battery of a circuit. An ideal
ammeter has zero resistance.

Figure 28.22 The potential dif-
ference across a resistor can be
measured with a voltmeter con-
nected in parallel with the resistor.
An ideal voltmeter has infinite re-
sistance.

Spring

S

Coil

Scale

N

(a)

Figure 28.23 (a) The principal components of a D’Arsonval galvanometer. When the coil situ-
ated in a magnetic field carries a current, the magnetic torque causes the coil to twist. The angle
through which the coil rotates is proportional to the current in the coil because of the counter-
acting torque of the spring. (b) A large-scale model of a galvanometer movement. Why does the
coil rotate about the vertical axis after the switch is closed?

(b)
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eration of the galvanometer makes use of the fact that a torque acts on a current
loop in the presence of a magnetic field (Chapter 29). The torque experienced by
the coil is proportional to the current through it: the larger the current, the
greater the torque and the more the coil rotates before the spring tightens
enough to stop the rotation. Hence, the deflection of a needle attached to the coil
is proportional to the current. Once the instrument is properly calibrated, it can
be used in conjunction with other circuit elements to measure either currents or
potential differences.

A typical off-the-shelf galvanometer is often not suitable for use as an ammeter,
primarily because it has a resistance of about 60 �. An ammeter resistance this
great considerably alters the current in a circuit. You can understand this by con-
sidering the following example: The current in a simple series circuit containing a
3-V battery and a 3-� resistor is 1 A. If you insert a 60-� galvanometer in this cir-
cuit to measure the current, the total resistance becomes 63 � and the current is
reduced to 0.048 A!

A second factor that limits the use of a galvanometer as an ammeter is the fact
that a typical galvanometer gives a full-scale deflection for currents of the order of
1 mA or less. Consequently, such a galvanometer cannot be used directly to mea-
sure currents greater than this value. However, it can be converted to a useful am-
meter by placing a shunt resistor Rp in parallel with the galvanometer, as shown in
Figure 28.24a. The value of Rp must be much less than the galvanometer resis-
tance so that most of the current to be measured passes through the shunt resistor.

A galvanometer can also be used as a voltmeter by adding an external resistor
Rs in series with it, as shown in Figure 28.24b. In this case, the external resistor
must have a value much greater than the resistance of the galvanometer to ensure
that the galvanometer does not significantly alter the voltage being measured.

The Wheatstone Bridge

An unknown resistance value can be accurately measured using a circuit known as
a Wheatstone bridge (Fig. 28.25). This circuit consists of the unknown resistance
Rx , three known resistances R1 , R2 , and R3 (where R1 is a calibrated variable resis-
tor), a galvanometer, and a battery. The known resistor R1 is varied until the gal-
vanometer reading is zero—that is, until there is no current from a to b. Under
this condition the bridge is said to be balanced. Because the electric potential at

60 Ω

Rp

Galvanometer

(a)

60 Ω

Galvanometer

Rs

(b)

Figure 28.24 (a) When a galvanometer is to be used as an ammeter, a shunt resistor Rp is con-
nected in parallel with the galvanometer. (b) When the galvanometer is used as a voltmeter, a re-
sistor Rs is connected in series with the galvanometer.

Figure 28.25 Circuit diagram for
a Wheatstone bridge, an instru-
ment used to measure an unknown
resistance Rx in terms of known re-
sistances R1 , R2 , and R3 . When the
bridge is balanced, no current is
present in the galvanometer. The
arrow superimposed on the circuit
symbol for resistor R1 indicates that
the value of this resistor can be var-
ied by the person operating the
bridge.

G

R1 R2

R3 Rx

+

–
a b

I1 I2
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point a must equal the potential at point b when the bridge is balanced, the poten-
tial difference across R1 must equal the potential difference across R2 . Likewise,
the potential difference across R3 must equal the potential difference across Rx .
From these considerations we see that

(1)

(2)

Dividing Equation (1) by Equation (2) eliminates the currents, and solving for R x ,
we find that

(28.19)

A number of similar devices also operate on the principle of null measure-
ment (that is, adjustment of one circuit element to make the galvanometer read
zero). One example is the capacitance bridge used to measure unknown capaci-
tances. These devices do not require calibrated meters and can be used with any
voltage source.

Wheatstone bridges are not useful for resistances above 105 �, but modern
electronic instruments can measure resistances as high as 1012 �. Such instru-
ments have an extremely high resistance between their input terminals. For exam-
ple, input resistances of 1010 � are common in most digital multimeters, which are
devices that are used to measure voltage, current, and resistance (Fig. 28.26).

The Potentiometer

A potentiometer is a circuit that is used to measure an unknown emf �x by com-
parison with a known emf. In Figure 28.27, point d represents a sliding contact
that is used to vary the resistance (and hence the potential difference) between
points a and d. The other required components are a galvanometer, a battery of
known emf �0 , and a battery of unknown emf �x .

With the currents in the directions shown in Figure 28.27, we see from Kirch-
hoff’s junction rule that the current in the resistor Rx is where I is the cur-
rent in the left branch (through the battery of emf �0) and Ix is the current in the
right branch. Kirchhoff’s loop rule applied to loop abcda traversed clockwise gives

Because current Ix passes through it, the galvanometer displays a nonzero reading.
The sliding contact at d is now adjusted until the galvanometer reads zero (indicat-
ing a balanced circuit and that the potentiometer is another null-measurement de-
vice). Under this condition, the current in the galvanometer is zero, and the po-
tential difference between a and d must equal the unknown emf �x :

Next, the battery of unknown emf is replaced by a standard battery of known
emf �s , and the procedure is repeated. If Rs is the resistance between a and d
when balance is achieved this time, then

where it is assumed that I remains the same. Combining this expression with the
preceding one, we see that

(28.20)�x �
R x

R s
 �s

�s � IR s

�x � IR x

��x � (I � Ix)R x � 0

I � Ix ,

R x �
R 2R 3

R 1

I1R 3 � I2R x

I1R 1 � I2R 2

The strain gauge, a device used for
experimental stress analysis, con-
sists of a thin coiled wire bonded to
a flexible plastic backing. The
gauge measures stresses by detect-
ing changes in the resistance of the
coil as the strip bends. Resistance
measurements are made with this
device as one element of a Wheat-
stone bridge. Strain gauges are
commonly used in modern elec-
tronic balances to measure the
masses of objects.

Figure 28.26 Voltages, currents,
and resistances are frequently mea-
sured with digital multimeters like
this one.
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If the resistor is a wire of resistivity �, its resistance can be varied by using the
sliding contact to vary the length L, indicating how much of the wire is part of the
circuit. With the substitutions and Equation 28.20 be-
comes

(28.21)

where Lx is the resistor length when the battery of unknown emf �x is in the cir-
cuit and Ls is the resistor length when the standard battery is in the circuit.

The sliding-wire circuit of Figure 28.27 without the unknown emf and the 
galvanometer is sometimes called a voltage divider. This circuit makes it possible to
tap into any desired smaller portion of the emf �0 by adjusting the length of the
resistor.

Optional Section

HOUSEHOLD WIRING AND ELECTRICAL SAFETY
Household circuits represent a practical application of some of the ideas pre-
sented in this chapter. In our world of electrical appliances, it is useful to under-
stand the power requirements and limitations of conventional electrical systems
and the safety measures that prevent accidents. 

In a conventional installation, the utility company distributes electric power to
individual homes by means of a pair of wires, with each home connected in paral-
lel to these wires. One wire is called the live wire,5 as illustrated in Figure 28.28, and
the other is called the neutral wire. The potential difference between these two
wires is about 120 V. This voltage alternates in time, with the neutral wire con-
nected to ground and the potential of the live wire oscillating relative to ground.
Much of what we have learned so far for the constant-emf situation (direct cur-
rent) can also be applied to the alternating current that power companies supply
to businesses and households. (Alternating voltage and current are discussed in
Chapter 33.)

A meter is connected in series with the live wire entering the house to record
the household’s usage of electricity. After the meter, the wire splits so that there
are several separate circuits in parallel distributed throughout the house. Each cir-
cuit contains a circuit breaker (or, in older installations, a fuse). The wire and cir-
cuit breaker for each circuit are carefully selected to meet the current demands
for that circuit. If a circuit is to carry currents as large as 30 A, a heavy wire and an
appropriate circuit breaker must be selected to handle this current. A circuit used
to power only lamps and small appliances often requires only 15 A. Each circuit
has its own circuit breaker to accommodate various load conditions.

As an example, consider a circuit in which a toaster oven, a microwave oven,
and a coffee maker are connected (corresponding to R1 , R2 , and R 3 in Figure
28.28 and as shown in the chapter-opening photograph). We can calculate the cur-
rent drawn by each appliance by using the expression The toaster oven,
rated at 1 000 W, draws a current of 1 000 W/120 V � 8.33 A. The microwave
oven, rated at 1 300 W, draws 10.8 A, and the coffee maker, rated at 800 W, draws
6.67 A. If the three appliances are operated simultaneously, they draw a total cur-

� � I �V.

28.6

�x �
Lx

Ls
 �s

R x � �Lx /A,R s � �Ls /A

G

x

a b

d
c

ε0
Rx

I – Ix

I Ix

ε ε

Figure 28.27 Circuit diagram for
a potentiometer. The circuit is used
to measure an unknown emf �x .

R1

Live
120 V

Neutral

0 V

R2

Circuit
breaker

Meter

R3

Figure 28.28 Wiring diagram for
a household circuit. The resistances
represent appliances or other elec-
trical devices that operate with an
applied voltage of 120 V.

5 Live wire is a common expression for a conductor whose electric potential is above or below ground
potential.
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rent of 25.8 A. Therefore, the circuit should be wired to handle at least this much
current. If the rating of the circuit breaker protecting the circuit is too small—say,
20 A—the breaker will be tripped when the third appliance is turned on, prevent-
ing all three appliances from operating. To avoid this situation, the toaster oven
and coffee maker can be operated on one 20-A circuit and the microwave oven on
a separate 20-A circuit.

Many heavy-duty appliances, such as electric ranges and clothes dryers, require
240 V for their operation (Fig. 28.29). The power company supplies this voltage by
providing a third wire that is 120 V below ground potential. The potential differ-
ence between this live wire and the other live wire (which is 120 V above ground
potential) is 240 V. An appliance that operates from a 240-V line requires half the
current of one operating from a 120-V line; therefore, smaller wires can be used in
the higher-voltage circuit without overheating.

Electrical Safety

When the live wire of an electrical outlet is connected directly to ground, the cir-
cuit is completed and a short-circuit condition exists. A short circuit occurs when al-
most zero resistance exists between two points at different potentials; this results in
a very large current. When this happens accidentally, a properly operating circuit
breaker opens the circuit and no damage is done. However, a person in contact
with ground can be electrocuted by touching the live wire of a frayed cord or
other exposed conductor. An exceptionally good (although very dangerous)
ground contact is made when the person either touches a water pipe (normally at
ground potential) or stands on the ground with wet feet. The latter situation rep-
resents a good ground because normal, nondistilled water is a conductor because
it contains a large number of ions associated with impurities. This situation should
be avoided at all cost.

Electric shock can result in fatal burns, or it can cause the muscles of vital or-
gans, such as the heart, to malfunction. The degree of damage to the body de-
pends on the magnitude of the current, the length of time it acts, the part of the
body touched by the live wire, and the part of the body through which the current
passes. Currents of 5 mA or less cause a sensation of shock but ordinarily do little
or no damage. If the current is larger than about 10 mA, the muscles contract and
the person may be unable to release the live wire. If a current of about 100 mA
passes through the body for only a few seconds, the result can be fatal. Such a
large current paralyzes the respiratory muscles and prevents breathing. In some
cases, currents of about 1 A through the body can produce serious (and some-
times fatal) burns. In practice, no contact with live wires is regarded as safe when-
ever the voltage is greater than 24 V.

Many 120-V outlets are designed to accept a three-pronged power cord such as
the one shown in Figure 28.30. (This feature is required in all new electrical instal-
lations.) One of these prongs is the live wire at a nominal potential of 120 V. The
second, called the “neutral,” is nominally at 0 V and carries current to ground.
The third, round prong is a safety ground wire that normally carries no current
but is both grounded and connected directly to the casing of the appliance. If the
live wire is accidentally shorted to the casing (which can occur if the wire insula-
tion wears off), most of the current takes the low-resistance path through the ap-
pliance to ground. In contrast, if the casing of the appliance is not properly
grounded and a short occurs, anyone in contact with the appliance experiences an
electric shock because the body provides a low-resistance path to ground.

Figure 28.29 A power connec-
tion for a 240-V appliance. 

Figure 28.30 A three-pronged
power cord for a 120-V appliance.
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Special power outlets called ground-fault interrupters (GFIs) are now being used
in kitchens, bathrooms, basements, exterior outlets, and other hazardous areas of
new homes. These devices are designed to protect persons from electric shock by
sensing small currents (� 5 mA) leaking to ground. (The principle of their opera-
tion is described in Chapter 31.) When an excessive leakage current is detected,
the current is shut off in less than 1 ms.

Is a circuit breaker wired in series or in parallel with the device it is protecting?

SUMMARY

The emf of a battery is equal to the voltage across its terminals when the current is
zero. That is, the emf is equivalent to the open-circuit voltage of the battery.

The equivalent resistance of a set of resistors connected in series is

(28.6)

The equivalent resistance of a set of resistors connected in parallel is 

(28.8)

If it is possible to combine resistors into series or parallel equivalents, the preced-
ing two equations make it easy to determine how the resistors influence the rest of
the circuit.

Circuits involving more than one loop are conveniently analyzed with the use
of Kirchhoff ’s rules:

1. The sum of the currents entering any junction in an electric circuit must equal
the sum of the currents leaving that junction:

(28.9)

2. The sum of the potential differences across all elements around any circuit
loop must be zero:

(28.10)

The first rule is a statement of conservation of charge; the second is equivalent to
a statement of conservation of energy.

When a resistor is traversed in the direction of the current, the change in po-
tential �V across the resistor is �IR . When a resistor is traversed in the direction
opposite the current, When a source of emf is traversed in the direc-
tion of the emf (negative terminal to positive terminal), the change in potential is
��. When a source of emf is traversed opposite the emf (positive to negative),
the change in potential is ��. The use of these rules together with Equations 28.9
and 28.10 allows you to analyze electric circuits.

If a capacitor is charged with a battery through a resistor of resistance R , the
charge on the capacitor and the current in the circuit vary in time according to

�V � �IR .

�
closed
loop

 �V � 0

�I in � �Iout

1
R eq

�
1

R 1
�

1
R 2

�
1

R 3
� ���

R eq � R 1 � R 2 � R 3 � ���

Quick Quiz 28.4
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the expressions

(28.14)

(28.15)

where is the maximum charge on the capacitor. The product RC is called
the time constant 
 of the circuit. If a charged capacitor is discharged through a
resistor of resistance R , the charge and current decrease exponentially in time ac-
cording to the expressions

(28.17)

(28.18)

where Q is the initial charge on the capacitor and is the initial current
in the circuit. Equations 28.14, 28.15, 28.17, and 28.18 permit you to analyze the
current and potential differences in an RC circuit and the charge stored in the cir-
cuit’s capacitor.

Q /RC � I0

I(t) � �
Q

RC
 e�t/RC

q(t) � Qe�t/RC 

Q � C�

I(t) �
�
R

 e�t /RC 

q(t) � Q(1 � e�t /RC)

QUESTIONS

13. Describe what happens to the lightbulb shown in Figure
Q28.13 after the switch is closed. Assume that the capaci-
tor has a large capacitance and is initially uncharged, and
assume that the light illuminates when connected directly
across the battery terminals.

1. Explain the difference between load resistance in a cir-
cuit and internal resistance in a battery.

2. Under what condition does the potential difference
across the terminals of a battery equal its emf ? Can the
terminal voltage ever exceed the emf ? Explain.

3. Is the direction of current through a battery always from
the negative terminal to the positive one? Explain.

4. How would you connect resistors so that the equivalent
resistance is greater than the greatest individual resis-
tance? Give an example involving three resistors.

5. How would you connect resistors so that the equivalent
resistance is less than the least individual resistance? Give
an example involving three resistors.

6. Given three lightbulbs and a battery, sketch as many dif-
ferent electric circuits as you can.

7. Which of the following are the same for each resistor in a
series connection—potential difference, current, power?

8. Which of the following are the same for each resistor in a
parallel connection—potential difference, current,
power?

9. What advantage might there be in using two identical re-
sistors in parallel connected in series with another identi-
cal parallel pair, rather than just using a single resistor?

10. An incandescent lamp connected to a 120-V source with a
short extension cord provides more illumination than the
same lamp connected to the same source with a very long
extension cord. Explain why.

11. When can the potential difference across a resistor be
positive?

12. In Figure 28.15, suppose the wire between points g and h
is replaced by a 10-� resistor. Explain why this change
does not affect the currents calculated in Example 28.9.

14. What are the internal resistances of an ideal ammeter? of
an ideal voltmeter? Do real meters ever attain these
ideals?

15. Although the internal resistances of all sources of emf
were neglected in the treatment of the potentiometer
(Section 28.5), it is really not necessary to make this as-
sumption. Explain why internal resistances play no role in
the measurement of �x .

Switch
Battery
+ –

C

Figure Q28.13

Problems 895

16. Why is it dangerous to turn on a light when you are in the
bathtub?

17. Suppose you fall from a building, and on your way down
you grab a high-voltage wire. Assuming that you are hang-
ing from the wire, will you be electrocuted? If the wire
then breaks, should you continue to hold onto an end of
the wire as you fall?

18. What advantage does 120-V operation offer over 240 V ?
What are its disadvantages compared with 240 V?

19. When electricians work with potentially live wires, they of-
ten use the backs of their hands or fingers to move the
wires. Why do you suppose they employ this technique?

20. What procedure would you use to try to save a person
who is “frozen” to a live high-voltage wire without endan-
gering your own life?

21. If it is the current through the body that determines the
seriousness of a shock, why do we see warnings of high
voltage rather than high current near electrical equipment?

22. Suppose you are flying a kite when it strikes a high-
voltage wire. What factors determine how great a shock
you receive?

23. A series circuit consists of three identical lamps that are
connected to a battery as shown in Figure Q28.23. When
switch S is closed, what happens (a) to the intensities of
lamps A and B, (b) to the intensity of lamp C, (c) to the
current in the circuit, and (d) to the voltage across the
three lamps? (e) Does the power delivered to the circuit
increase, decrease, or remain the same?

24. If your car’s headlights are on when you start the igni-
tion, why do they dim while the car is starting?

25. A ski resort consists of a few chair lifts and several inter-
connected downhill runs on the side of a mountain, with
a lodge at the bottom. The lifts are analogous to batteries,
and the runs are analogous to resistors. Describe how two
runs can be in series. Describe how three runs can be in
parallel. Sketch a junction of one lift and two runs. State
Kirchhoff’s junction rule for ski resorts. One of the skiers,
who happens to be carrying an altimeter, stops to warm
up her toes each time she passes the lodge. State Kirch-
hoff’s loop rule for altitude.

Figure Q28.23

A

S

B C

ε

PROBLEMS

4. An automobile battery has an emf of 12.6 V and an in-
ternal resistance of 0.080 0 �. The headlights have a to-
tal resistance of 5.00 � (assumed constant). What is the
potential difference across the headlight bulbs (a) when
they are the only load on the battery and (b) when the
starter motor, which takes an additional 35.0 A from the
battery, is operated?

Section 28.2 Resistors in Series and in Parallel
5. The current in a loop circuit that has a resistance of R1

is 2.00 A. The current is reduced to 1.60 A when an ad-
ditional resistor is added in series with R1 .
What is the value of R1 ?

6. (a) Find the equivalent resistance between points a and
b in Figure P28.6. (b) Calculate the current in each re-
sistor if a potential difference of 34.0 V is applied be-
tween points a and b.

7. A television repairman needs a 100-� resistor to repair
a malfunctioning set. He is temporarily out of resistors

R 2 � 3.00 �

Section 28.1 Electromotive Force
1. A battery has an emf of 15.0 V. The terminal voltage of

the battery is 11.6 V when it is delivering 20.0 W of
power to an external load resistor R. (a) What is the
value of R? (b) What is the internal resistance of the
battery?

2. (a) What is the current in a 5.60-� resistor connected to
a battery that has a 0.200-� internal resistance if the ter-
minal voltage of the battery is 10.0 V ? (b) What is the
emf of the battery?

3. Two 1.50-V batteries—with their positive terminals in
the same direction—are inserted in series into the bar-
rel of a flashlight. One battery has an internal resistance
of 0.255 �, the other an internal resistance of 0.153 �.
When the switch is closed, a current of 600 mA occurs
in the lamp. (a) What is the lamp’s resistance? (b) What
percentage of the power from the batteries appears in
the batteries themselves, as represented by an increase
in temperature?

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB



896 C H A P T E R  2 8 Direct Current Circuits

WEB

16. Two resistors connected in series have an equivalent re-
sistance of 690 �. When they are connected in parallel,
their equivalent resistance is 150 �. Find the resistance
of each resistor.

17. In Figures 28.4 and 28.5, let �, let 
and let the battery have a terminal voltage of

33.0 V. (a) In the parallel circuit shown in Figure 28.5,
which resistor uses more power? (b) Verify that the sum
of the power (I 2R) used by each resistor equals the
power supplied by the battery (I �V ). (c) In the series
circuit, which resistor uses more power? (d) Verify that
the sum of the power (I 2R) used by each resistor equals

22.0 �,
R 2 �R 1 � 11.0

15. Calculate the power delivered to each resistor in the cir-
cuit shown in Figure P28.15.

10. Four copper wires of equal length are connected in se-
ries. Their cross-sectional areas are 1.00 cm2, 2.00 cm2,
3.00 cm2, and 5.00 cm2. If a voltage of 120 V is applied
to the arrangement, what is the voltage across the 
2.00-cm2 wire?

11. Three 100-� resistors are connected as shown in Figure
P28.11. The maximum power that can safely be deliv-
ered to any one resistor is 25.0 W. (a) What is the maxi-
mum voltage that can be applied to the terminals a and
b? (b) For the voltage determined in part (a), what is

of this value. All he has in his toolbox are a 500-� resis-
tor and two 250-� resistors. How can he obtain the de-
sired resistance using the resistors he has on hand?

8. A lightbulb marked “75 W [at] 120 V” is screwed into a
socket at one end of a long extension cord in which
each of the two conductors has a resistance of 0.800 �.
The other end of the extension cord is plugged into a
120-V outlet. Draw a circuit diagram, and find the actual
power delivered to the bulb in this circuit.

9. Consider the circuit shown in Figure P28.9. Find (a) the
current in the 20.0-� resistor and (b) the potential dif-
ference between points a and b.

the power delivered to each resistor? What is the total
power delivered?

12. Using only three resistors—2.00 �, 3.00 �, and 
4.00 �—find 17 resistance values that can be obtained
with various combinations of one or more resistors. Tab-
ulate the combinations in order of increasing resistance.

13. The current in a circuit is tripled by connecting a 500-�
resistor in parallel with the resistance of the circuit. De-
termine the resistance of the circuit in the absence of
the 500-� resistor.

14. The power delivered to the top part of the circuit shown
in Figure P28.14 does not depend on whether the switch
is opened or closed. If R � 1.00 �, what is R �? Neglect
the internal resistance of the voltage source.

9.00 Ω4.00 Ω

10.0 Ω

7.00 Ω

ba

2.00 Ω

18.0 V
3.00 Ω

4.00 Ω

1.00 Ω

ε

S R ′

R

R ′

a

100 Ω

100 Ω

100 Ω

b

20.0 Ω

a 10.0 Ω

10.0 Ω 25.0 V

5.00 Ω

b

5.00 Ω

Figure P28.6

Figure P28.9

Figure P28.11

Figure P28.14

Figure P28.15

Problems 897

the power supplied by the battery 
(e) Which circuit configuration uses more power?

Section 28.3 Kirchhoff’s Rules
Note: The currents are not necessarily in the direction shown
for some circuits.

18. The ammeter shown in Figure P28.18 reads 2.00 A.
Find I 1 , I 2 , and �.

(� � I �V ). 22. (a) Using Kirchhoff’s rules, find the current in each re-
sistor shown in Figure P28.22 and (b) find the potential
difference between points c and f. Which point is at the
higher potential?

WEB

25. A dead battery is charged by connecting it to the live
battery of another car with jumper cables (Fig. P28.25).
Determine the current in the starter and in the dead
battery.

24. In the circuit of Figure P28.24, determine the current
in each resistor and the voltage across the 200-� resis-
tor.

23. If and in Figure P28.23, deter-
mine the direction and magnitude of the current in the
horizontal wire between a and e.

� � 250 VR � 1.00 k�

20. In Figure P28.19, show how to add just enough amme-
ters to measure every different current that is flowing.
Show how to add just enough voltmeters to measure the
potential difference across each resistor and across each
battery.

21. The circuit considered in Problem 19 and shown in Fig-
ure P28.19 is connected for 2.00 min. (a) Find the en-
ergy supplied by each battery. (b) Find the energy deliv-
ered to each resistor. (c) Find the total amount of
energy converted from chemical energy in the battery
to internal energy in the circuit resistance.

19. Determine the current in each branch of the circuit
shown in Figure P28.19.

80 Ω200 Ω 20 Ω 70 Ω

40 V 360 V 80 V

ε

R

a

b
2R

3R4R

c d

e

+
–

+
– ε2

60.0 V70.0 V 80.0 V

R2

a f e

R3

3.00 kΩ

2.00 kΩ

4.00 kΩcb d

ε1ε ε2ε ε3ε

R1

3.00 Ω

1.00 Ω

5.00 Ω

1.00 Ω

4.00 V
+

8.00 Ω

12.0 V
+

�

�

7.00 Ω 15.0 V

5.00 Ω

2.00 Ω ε
I2

I1

A

Figure P28.18

Figure P28.19 Problems 19, 20, and 21.

Figure P28.22

Figure P28.23

Figure P28.24
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26. For the network shown in Figure P28.26, show that the
resistance R ab � 27

17 �.

Section 28.4 RC Circuits
29. Consider a series RC circuit (see Fig. 28.16) for which

and Find 
(a) the time constant of the circuit and (b) the maxi-
mum charge on the capacitor after the switch is closed.
(c) If the switch is closed at find the current in
the resistor 10.0 s later.

30. A 2.00-nF capacitor with an initial charge of 5.10 	C is
discharged through a 1.30-k� resistor. (a) Calculate the
current through the resistor 9.00 	s after the resistor is
connected across the terminals of the capacitor. 
(b) What charge remains on the capacitor after 8.00 	s?
(c) What is the maximum current in the resistor?

31. A fully charged capacitor stores energy U0 . How much
energy remains when its charge has decreased to half its
original value?

32. In the circuit of Figure P28.32, switch S has been open
for a long time. It is then suddenly closed. Determine
the time constant (a) before the switch is closed and
(b) after the switch is closed. (c) If the switch is closed
at , determine the current through it as a function
of time.

t � 0

t � 0,

� � 30.0 V.C � 5.00 	F,R � 1.00 M�,
WEB

34. A 4.00-M� resistor and a 3.00-	F capacitor are con-
nected in series with a 12.0-V power supply. (a) What is
the time constant for the circuit? (b) Express the cur-
rent in the circuit and the charge on the capacitor as
functions of time.

33. The circuit shown in Figure P28.33 has been connected
for a long time. (a) What is the voltage across the capac-
itor? (b) If the battery is disconnected, how long does it
take the capacitor to discharge to one-tenth its initial
voltage?

28. Calculate the power delivered to each of the resistors
shown in Figure P28.28.

27. For the circuit shown in Figure P28.27, calculate (a) the
current in the 2.00-� resistor and (b) the potential dif-
ference between points a and b.

10.0 V

1.00 Ω 8.00 Ω

2.00 Ω4.00 Ω

1.00 µFµ

50.0 kΩ

100 kΩ

10.0 V
S

10.0 Fµ

2.0 Ω

20 V50 V

2.0 Ω

4.0 Ω 4.0 Ω

4.00 Ω

b

a

2.00 Ω

6.00 Ω8.00 V

12.0 V

0.01 Ω

Live
battery

+

–

+

–

1.00 Ω
0.06 Ω
Starter

Dead
battery

12 V 10 V

1.0 Ω

1.0 Ω 1.0 Ω

5.0 Ω3.0 Ω

a b

Figure P28.25

Figure P28.26

Figure P28.27

Figure P28.28

Figure P28.32

Figure P28.33

Problems 899

35. Dielectric materials used in the manufacture of capaci-
tors are characterized by conductivities that are small
but not zero. Therefore, a charged capacitor slowly
loses its charge by “leaking” across the dielectric. If a
certain 3.60-	F capacitor leaks charge such that the po-
tential difference decreases to half its initial value in
4.00 s, what is the equivalent resistance of the dielectric?

36. Dielectric materials used in the manufacture of capaci-
tors are characterized by conductivities that are small
but not zero. Therefore, a charged capacitor slowly
loses its charge by “leaking” across the dielectric. If a ca-
pacitor having capacitance C leaks charge such that the
potential difference decreases to half its initial value in
a time t, what is the equivalent resistance of the dielec-
tric?

37. A capacitor in an RC circuit is charged to 60.0% of its
maximum value in 0.900 s. What is the time constant of
the circuit?

(Optional)
Section 28.5 Electrical Instruments

38. A typical galvanometer, which requires a current of 
1.50 mA for full-scale deflection and has a resistance of
75.0 �, can be used to measure currents of much
greater values. A relatively small shunt resistor is wired
in parallel with the galvanometer (refer to Fig. 28.24a)
so that an operator can measure large currents without
causing damage to the galvanometer. Most of the cur-
rent then flows through the shunt resistor. Calculate the
value of the shunt resistor that enables the galvanome-
ter to be used to measure a current of 1.00 A at full-
scale deflection. (Hint: Use Kirchhoff’s rules.)

39. The galvanometer described in the preceding problem
can be used to measure voltages. In this case a large re-
sistor is wired in series with the galvanometer in a way
similar to that shown in Figure 28.24b. This arrange-
ment, in effect, limits the current that flows through the
galvanometer when large voltages are applied. Most of
the potential drop occurs across the resistor placed in
series. Calculate the value of the resistor that enables
the galvanometer to measure an applied voltage of 
25.0 V at full-scale deflection.

40. A galvanometer with a full-scale sensitivity of 1.00 mA
requires a 900-� series resistor to make a voltmeter
reading full scale when 1.00 V is measured across the
terminals. What series resistor is required to make the
same galvanometer into a 50.0-V (full-scale) voltmeter?

41. Assume that a galvanometer has an internal resistance
of 60.0 � and requires a current of 0.500 mA to pro-
duce full-scale deflection. What resistance must be con-
nected in parallel with the galvanometer if the combina-
tion is to serve as an ammeter that has a full-scale
deflection for a current of 0.100 A?

42. A Wheatstone bridge of the type shown in Figure 28.25
is used to make a precise measurement of the resistance
of a wire connector. If and the bridge is
balanced by adjusting R1 such that what is
Rx ?

43. Consider the case in which the Wheatstone bridge
shown in Figure 28.25 is unbalanced. Calculate the cur-
rent through the galvanometer when 

and Assume that the
voltage across the bridge is 70.0 V, and neglect the gal-
vanometer’s resistance.

44. Review Problem. A Wheatstone bridge can be used to
measure the strain of a wire (see Section 12.4),
where Li is the length before stretching, L is the length
after stretching, and Let 
Show that the resistance is for
any length, where Assume that the resistiv-
ity and volume of the wire stay constant.

45. Consider the potentiometer circuit shown in Figure
28.27. If a standard battery with an emf of 1.018 6 V is
used in the circuit and the resistance between a and d is
36.0 �, the galvanometer reads zero. If the standard
battery is replaced by an unknown emf, the galvanome-
ter reads zero when the resistance is adjusted to 48.0 �.
What is the value of the emf ?

46. Meter loading. Work this problem to five-digit precision.
Refer to Figure P28.46. (a) When a 180.00-� resistor is
put across a battery with an emf of 6.000 0 V and an in-
ternal resistance of 20.000 �, what current flows in the
resistor? What will be the potential difference across 
it? (b) Suppose now that an ammeter with a resistance
of 0.500 00 � and a voltmeter with a resistance of 

R i � �Li/Ai .
R � R i(1 � 2� � �2)

� � �L/Li .�L � L � Li .

(�L/Li)

R 1 � 14.0 �.R 2 � 21.0 �,7.00 �,
R x � R 3 �

R 1 � 2.50R 2 ,
R 3 � 1.00 k�

(a)

180.00 Ω

20.000 Ω
6.000 0 V

(b)

AV

(c)

AV

Figure P28.46
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20 000 � are added to the circuit, as shown in Figure
P28.46b. Find the reading of each. (c) One terminal of
one wire is moved, as shown in Figure P28.46c. Find the
new meter readings.

(Optional)
Section 28.6 Household Wiring and Electrical Safety

47. An electric heater is rated at 1 500 W, a toaster at 
750 W, and an electric grill at 1 000 W. The three appli-
ances are connected to a common 120-V circuit. 
(a) How much current does each draw? (b) Is a 25.0-A
circuit breaker sufficient in this situation? Explain your
answer.

48. An 8.00-ft extension cord has two 18-gauge copper
wires, each with a diameter of 1.024 mm. What is the
I 2R loss in this cord when it carries a current of 
(a) 1.00 A? (b) 10.0 A?

49. Sometimes aluminum wiring has been used instead of
copper for economic reasons. According to the Na-
tional Electrical Code, the maximum allowable current
for 12-gauge copper wire with rubber insulation is 20 A.
What should be the maximum allowable current in a
12-gauge aluminum wire if it is to have the same I 2R
loss per unit length as the copper wire?

50. Turn on your desk lamp. Pick up the cord with your
thumb and index finger spanning its width. (a) Com-
pute an order-of-magnitude estimate for the current
that flows through your hand. You may assume that at a
typical instant the conductor inside the lamp cord next
to your thumb is at potential and that the con-
ductor next to your index finger is at ground potential
(0 V). The resistance of your hand depends strongly on
the thickness and moisture content of the outer layers
of your skin. Assume that the resistance of your hand
between fingertip and thumb tip is  . You may
model the cord as having rubber insulation. State the
other quantities you measure or estimate and their val-
ues. Explain your reasoning. (b) Suppose that your
body is isolated from any other charges or currents. In
order-of-magnitude terms, describe the potential of
your thumb where it contacts the cord and the potential
of your finger where it touches the cord.

ADDITIONAL PROBLEMS

51. Four 1.50-V AA batteries in series are used to power a
transistor radio. If the batteries can provide a total
charge of 240 C, how long will they last if the radio has
a resistance of 200 �?

52. A battery has an emf of 9.20 V and an internal resis-
tance of 1.20 �. (a) What resistance across the battery
will extract from it a power of 12.8 W? (b) a power of
21.2 W ?

53. Calculate the potential difference between points a and
b in Figure P28.53, and identify which point is at the
higher potential.

�104 �

�102 V

54. A 10.0-	F capacitor is charged by a 10.0-V battery
through a resistance R . The capacitor reaches a poten-
tial difference of 4.00 V at a time 3.00 s after charging
begins. Find R .

55. When two unknown resistors are connected in series
with a battery, 225 W is delivered to the combination
with a total current of 5.00 A. For the same total cur-
rent, 50.0 W is delivered when the resistors are con-
nected in parallel. Determine the values of the two resis-
tors.

56. When two unknown resistors are connected in series
with a battery, a total power is delivered to the com-
bination with a total current of I. For the same total cur-
rent, a total power is delivered when the resistors are
connected in parallel. Determine the values of the two
resistors.

57. A battery has an emf � and internal resistance r. A vari-
able resistor R is connected across the terminals of the
battery. Determine the value of R such that (a) the po-
tential difference across the terminals is a maximum,
(b) the current in the circuit is a maximum, (c) the
power delivered to the resistor is a maximum.

58. A power supply has an open-circuit voltage of 40.0 V
and an internal resistance of 2.00 �. It is used to charge
two storage batteries connected in series, each having
an emf of 6.00 V and internal resistance of 0.300 �. If
the charging current is to be 4.00 A, (a) what additional
resistance should be added in series? (b) Find the
power delivered to the internal resistance of the supply,
the I 2R loss in the batteries, and the power delivered to
the added series resistance. (c) At what rate is the chem-
ical energy in the batteries increasing?

59. The value of a resistor R is to be determined using the
ammeter-voltmeter setup shown in Figure P28.59. The
ammeter has a resistance of 0.500 �, and the voltmeter
has a resistance of 20 000 �. Within what range of ac-
tual values of R will the measured values be correct, to
within 5.00%, if the measurement is made using (a) the
circuit shown in Figure P28.59a? (b) the circuit shown
in Figure P28.59b?

�p

�s

2.00 Ω

4.00 Ω

10.0 Ω

4.00 V

12.0 V

a

b

WEB

Figure P28.53

Problems 901

64. Design a multirange voltmeter capable of full-scale de-
flection for 20.0 V, 50.0 V, and 100 V. Assume that the
meter movement is a galvanometer that has a resistance
of 60.0 � and gives a full-scale deflection for a current
of 1.00 mA.

65. Design a multirange ammeter capable of full-scale de-
flection for 25.0 mA, 50.0 mA, and 100 mA. Assume
that the meter movement is a galvanometer that has a
resistance of 25.0 � and gives a full-scale deflection for
1.00 mA.

66. A particular galvanometer serves as a 2.00-V full-scale
voltmeter when a 2 500-� resistor is connected in series
with it. It serves as a 0.500-A full-scale ammeter when a
0.220-� resistor is connected in parallel with it. Deter-
mine the internal resistance of the galvanometer and
the current required to produce full-scale deflection.

67. In Figure P28.67, suppose that the switch has been
closed for a length of time sufficiently long for the ca-
pacitor to become fully charged. (a) Find the steady-
state current in each resistor. (b) Find the charge Q on
the capacitor. (c) The switch is opened at Write
an equation for the current in R2 as a function of
time, and (d) find the time that it takes for the charge
on the capacitor to fall to one-fifth its initial value.

IR 2

t � 0.

63. Three 60.0-W, 120-V lightbulbs are connected across a
120-V power source, as shown in Figure P28.63. Find 
(a) the total power delivered to the three bulbs and 
(b) the voltage across each. Assume that the resistance
of each bulb conforms to Ohm’s law (even though in
reality the resistance increases markedly with current).

60. A battery is used to charge a capacitor through a resis-
tor, as shown in Figure 28.16. Show that half the energy
supplied by the battery appears as internal energy in the
resistor and that half is stored in the capacitor.

61. The values of the components in a simple series RC cir-
cuit containing a switch (Fig. 28.16) are 

and At the instant 10.0 s
after the switch is closed, calculate (a) the charge on
the capacitor, (b) the current in the resistor, (c) the
rate at which energy is being stored in the capacitor,
and (d) the rate at which energy is being delivered by
the battery.

62. The switch in Figure P28.62a closes when 
and opens when The voltmeter reads a
voltage as plotted in Figure P28.62b. What is the period
T of the waveform in terms of RA , RB , and C ?

�Vc � �V/3.
�Vc 
 2�V/3

� � 10.0 V.R � 2.00 � 106 �,
C � 1.00 	F,

3.00 kΩ

S

R2 =15.0 kΩ

12.0 kΩ

10.0 µF

9.00 V
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3
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Figure P28.62
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72. The circuit in Figure P28.72 contains two resistors,
and and two capacitors,
and connected to a battery

with emf If no charges exist on the capaci-
tors before switch S is closed, determine the charges q1
and q2 on capacitors C1 and C2 , respectively, after the
switch is closed. (Hint: First reconstruct the circuit so
that it becomes a simple RC circuit containing a single
resistor and single capacitor in series, connected to the
battery, and then determine the total charge q stored in
the equivalent circuit.)

� � 120 V.
C2 � 3.00 	F,C1 � 2.00 	F
R 2 � 3.00 k�,R 1 � 2.00 k�

71. Three 2.00-� resistors are connected as shown in Figure
P28.71. Each can withstand a maximum power of 
32.0 W without becoming excessively hot. Determine
the maximum power that can be delivered to the com-
bination of resistors.

70. The student engineer of a campus radio station wishes
to verify the effectiveness of the lightning rod on the an-

69. (a) Using symmetry arguments, show that the current
through any resistor in the configuration of Figure
P28.69 is either I/3 or I/6. All resistors have the same
resistance r. (b) Show that the equivalent resistance be-
tween points a and b is (5/6)r.

68. The circuit shown in Figure P28.68 is set up in the labo-
ratory to measure an unknown capacitance C with the
use of a voltmeter of resistance and a bat-
tery whose emf is 6.19 V. The data given in the table be-
low are the measured voltages across the capacitor as a
function of time, where represents the time at
which the switch is opened. (a) Construct a graph of
ln(�/�V ) versus t , and perform a linear least-squares
fit to the data. (b) From the slope of your graph, obtain
a value for the time constant of the circuit and a value
for the capacitance.

t � 0

R � 10.0 M�

tenna mast (Fig. P28.70). The unknown resistance R x is
between points C and E . Point E is a true ground but is
inaccessible for direct measurement since this stratum is
several meters below the Earth’s surface. Two identical
rods are driven into the ground at A and B, introducing
an unknown resistance Ry . The procedure is as follows.
Measure resistance R1 between points A and B, then
connect A and B with a heavy conducting wire and mea-
sure resistance R2 between points A and C . (a) Derive a
formula for Rx in terms of the observable resistances R1
and R2 . (b) A satisfactory ground resistance would be

Is the grounding of the station adequate if
measurements give and R 2 � 6.00 �?R 1 � 13.0 �
R x � 2.00 �.

2.00 Ω

2.00 Ω

2.00 Ω

Ry Rx

A BC

Ry

E

b I

aI

S

C

R

Voltmeter

ε

Figure P28.68

Figure P28.69

Figure P28.70

Figure P28.71

�V (V) t (s) ln(�/�V )

6.19 0
5.55 4.87
4.93 11.1
4.34 19.4
3.72 30.8
3.09 46.6
2.47 67.3
1.83 102.2
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ANSWERS TO QUICK QUIZZES

If the second resistor were connected in parallel, the
total resistance of the circuit would decrease, and an in-
crease in current through the battery would result. The
potential difference across the terminals would decrease
because the increased current results in a greater volt-
age decrease across the internal resistance.

28.3 They must be in parallel because if one burns out, the
other continues to operate. If they were in series, one
failed headlamp would interrupt the current through-
out the entire circuit, including the other headlamp.

28.4 Because the circuit breaker trips and opens the circuit
when the current in that circuit exceeds a certain preset
value, it must be in series to sense the appropriate cur-
rent (see Fig. 28.28).

28.1 Bulb R1 becomes brighter. Connecting b to c “shorts
out” bulb R2 and changes the total resistance of the cir-
cuit from to just R1 . Because the resistance has
decreased (and the potential difference supplied by the
battery does not change), the current through the bat-
tery increases. This means that the current through bulb
R1 increases, and bulb R1 glows more brightly. Bulb R2
goes out because the new piece of wire provides an al-
most resistance-free path for the current; hence, essen-
tially zero current exists in bulb R2 .

28.2 Adding another series resistor increases the total resis-
tance of the circuit and thus reduces the current in the
battery. The potential difference across the battery ter-
minals would increase because the reduced current re-
sults in a smaller voltage decrease across the internal re-
sistance. 

R 1 � R 2

73. Assume that you have a battery of emf � and three
identical lightbulbs, each having constant resistance R .
What is the total power from the battery if the bulbs are
connected (a) in series? (b) in parallel? (c) For which
connection do the bulbs shine the brightest?

ε
+    –

R2

R1 C1

C2

a

b c

f

S

d e

Figure P28.72
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Aurora Borealis, the Northern Lights,
photographed near Fairbanks, Alaska.
Such beautiful auroral displays are a
common sight in far northern or southern
latitudes, but they are quite rare in the
middle latitudes. What causes these
shimmering curtains of light, and why are
they usually visible only near the Earth’s
North and South poles? (George

Lepp/Tony Stone Images)
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any historians of science believe that the compass, which uses a magnetic
needle, was used in China as early as the 13th century B.C., its invention be-
ing of Arabic or Indian origin. The early Greeks knew about magnetism as

early as 800 B.C. They discovered that the stone magnetite (Fe3O4) attracts pieces
of iron. Legend ascribes the name magnetite to the shepherd Magnes, the nails of
whose shoes and the tip of whose staff stuck fast to chunks of magnetite while he
pastured his flocks.

In 1269 a Frenchman named Pierre de Maricourt mapped out the directions
taken by a needle placed at various points on the surface of a spherical natural
magnet. He found that the directions formed lines that encircled the sphere and
passed through two points diametrically opposite each other, which he called the
poles of the magnet. Subsequent experiments showed that every magnet, regardless
of its shape, has two poles, called north and south poles, that exert forces on other
magnetic poles just as electric charges exert forces on one another. That is, like
poles repel each other, and unlike poles attract each other.

The poles received their names because of the way a magnet behaves in the
presence of the Earth’s magnetic field. If a bar magnet is suspended from its mid-
point and can swing freely in a horizontal plane, it will rotate until its north pole
points to the Earth’s geographic North Pole and its south pole points to the
Earth’s geographic South Pole.1 (The same idea is used in the construction of a
simple compass.)

In 1600 William Gilbert (1540–1603) extended de Maricourt’s experiments to
a variety of materials. Using the fact that a compass needle orients in preferred di-
rections, he suggested that the Earth itself is a large permanent magnet. In 1750
experimenters used a torsion balance to show that magnetic poles exert attractive
or repulsive forces on each other and that these forces vary as the inverse square
of the distance between interacting poles. Although the force between two mag-
netic poles is similar to the force between two electric charges, there is an impor-
tant difference. Electric charges can be isolated (witness the electron and proton),
whereas a single magnetic pole has never been isolated. That is, magnetic
poles are always found in pairs. All attempts thus far to detect an isolated mag-
netic pole have been unsuccessful. No matter how many times a permanent mag-
net is cut in two, each piece always has a north and a south pole. (There is some
theoretical basis for speculating that magnetic monopoles—isolated north or south
poles—may exist in nature, and attempts to detect them currently make up an ac-
tive experimental field of investigation.)

The relationship between magnetism and electricity was discovered in 1819
when, during a lecture demonstration, the Danish scientist Hans Christian Oer-
sted found that an electric current in a wire deflected a nearby compass needle.2

Shortly thereafter, André Ampère (1775–1836) formulated quantitative laws for
calculating the magnetic force exerted by one current-carrying electrical conduc-
tor on another. He also suggested that on the atomic level, electric current loops
are responsible for all magnetic phenomena.

In the 1820s, further connections between electricity and magnetism were
demonstrated by Faraday and independently by Joseph Henry (1797–1878). They

M

1 Note that the Earth’s geographic North Pole is magnetically a south pole, whereas its geographic
South Pole is magnetically a north pole. Because opposite magnetic poles attract each other, the pole on
a magnet that is attracted to the Earth’s geographic North Pole is the magnet’s north pole and the pole
attracted to the Earth’s geographic South Pole is the magnet’s south pole.
2 The same discovery was reported in 1802 by an Italian jurist, Gian Dominico Romognosi, but was
overlooked, probably because it was published in the newspaper Gazetta de Trentino rather than in a
scholarly journal.

Hans Christian Oersted
Danish physicist (1777– 1851)
(North Wind Picture Archives)

An electromagnet is used to move
tons of scrap metal.
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12.2

QuickLab
If iron or steel is left in a weak mag-
netic field (such as that due to the
Earth) long enough, it can become
magnetized. Use a compass to see if
you can detect a magnetic field near
a steel file cabinet, cast iron radiator,
or some other piece of ferrous metal
that has been in one position for sev-
eral years.

showed that an electric current can be produced in a circuit either by moving a
magnet near the circuit or by changing the current in a nearby circuit. These ob-
servations demonstrate that a changing magnetic field creates an electric field.
Years later, theoretical work by Maxwell showed that the reverse is also true: A
changing electric field creates a magnetic field.

A similarity between electric and magnetic effects has provided methods of
making permanent magnets. In Chapter 23 we learned that when rubber and wool
are rubbed together, both become charged—one positively and the other nega-
tively. In an analogous fashion, one can magnetize an unmagnetized piece of iron
by stroking it with a magnet. Magnetism can also be induced in iron (and other
materials) by other means. For example, if a piece of unmagnetized iron is placed
near (but not touching) a strong magnet, the unmagnetized piece eventually be-
comes magnetized.

This chapter examines the forces that act on moving charges and on current-
carrying wires in the presence of a magnetic field. The source of the magnetic
field itself is described in Chapter 30.

THE MAGNETIC FIELD
In our study of electricity, we described the interactions between charged objects
in terms of electric fields. Recall that an electric field surrounds any stationary or
moving electric charge. In addition to an electric field, the region of space sur-
rounding any moving electric charge also contains a magnetic field, as we shall see
in Chapter 30. A magnetic field also surrounds any magnetic substance.

Historically, the symbol B has been used to represent a magnetic field, and
this is the notation we use in this text. The direction of the magnetic field B at any
location is the direction in which a compass needle points at that location. Figure
29.1 shows how the magnetic field of a bar magnet can be traced with the aid of a
compass. Note that the magnetic field lines outside the magnet point away from
north poles and toward south poles. One can display magnetic field patterns of a
bar magnet using small iron filings, as shown in Figure 29.2.

We can define a magnetic field B at some point in space in terms of the mag-
netic force FB that the field exerts on a test object, for which we use a charged par-
ticle moving with a velocity v. For the time being, let us assume that no electric or
gravitational fields are present at the location of the test object. Experiments on
various charged particles moving in a magnetic field give the following results:

• The magnitude FB of the magnetic force exerted on the particle is proportional
to the charge q and to the speed v of the particle.

29.1

N S

Figure 29.1 Compass needles can be used to
trace the magnetic field lines of a bar magnet.

These refrigerator magnets are sim-
ilar to a series of very short bar
magnets placed end to end. If you
slide the back of one refrigerator
magnet in a circular path across
the back of another one, you can
feel a vibration as the two series of
north and south poles move across
each other.

29.1 The Magnetic Field 907

• The magnitude and direction of FB depend on the velocity of the particle and
on the magnitude and direction of the magnetic field B.

• When a charged particle moves parallel to the magnetic field vector, the mag-
netic force acting on the particle is zero.

• When the particle’s velocity vector makes any angle with the magnetic
field, the magnetic force acts in a direction perpendicular to both v and B; that
is, FB is perpendicular to the plane formed by v and B (Fig. 29.3a).

� � 0

Properties of the magnetic force
on a charge moving in a magnetic
field B

Figure 29.2 (a) Magnetic field pattern surrounding a bar magnet as displayed with iron filings.
(b) Magnetic field pattern between unlike poles of two bar magnets. (c) Magnetic field pattern
between like poles of two bar magnets.

(a) (b) (c)

(a)

B

+ q

v

θ

(b)

B
–

v

v

+

FB

FB

FB

Figure 29.3 The direction of the magnetic force FB acting on a charged particle moving with a
velocity v in the presence of a magnetic field B. (a) The magnetic force is perpendicular to both
v and B. (b) Oppositely directed magnetic forces FB are exerted on two oppositely charged parti-
cles moving at the same velocity in a magnetic field.
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• The magnetic force exerted on a positive charge is in the direction opposite the
direction of the magnetic force exerted on a negative charge moving in the
same direction (Fig. 29.3b).

• The magnitude of the magnetic force exerted on the moving particle is propor-
tional to sin �, where � is the angle the particle’s velocity vector makes with the
direction of B.

We can summarize these observations by writing the magnetic force in the
form

(29.1)

where the direction of FB is in the direction of if q is positive, which by defi-
nition of the cross product (see Section 11.2) is perpendicular to both v and B.
We can regard this equation as an operational definition of the magnetic field at
some point in space. That is, the magnetic field is defined in terms of the force
acting on a moving charged particle.

Figure 29.4 reviews the right-hand rule for determining the direction of the
cross product You point the four fingers of your right hand along the direc-
tion of v with the palm facing B and curl them toward B. The extended thumb,
which is at a right angle to the fingers, points in the direction of Becausev � B.

v � B.

v � B

FB � qv � B

(b)

–

B

FB

v

(a)

+

FB

B

v

θ θ

Figure 29.4 The right-hand rule
for determining the direction of the
magnetic force acting
on a particle with charge q moving
with a velocity v in a magnetic field B.
The direction of is the direc-
tion in which the thumb points. (a) If
q is positive, FB is upward. (b) If q is
negative, FB is downward, antiparallel
to the direction in which the thumb
points.

v � B

FB � qv � B

The blue-white arc in this photograph indi-
cates the circular path followed by an elec-
tron beam moving in a magnetic field. The
vessel contains gas at very low pressure, and
the beam is made visible as the electrons
collide with the gas atoms, which then emit
visible light. The magnetic field is pro-
duced by two coils (not shown). The appa-
ratus can be used to measure the ratio e/me
for the electron.

29.1 The Magnetic Field 909

is in the direction of if q is positive (Fig. 29.4a) and opposite
the direction of if q is negative (Fig. 29.4b). (If you need more help under-
standing the cross product, you should review pages 333 to 334, including Fig. 11.8.)

The magnitude of the magnetic force is

(29.2)

where � is the smaller angle between v and B. From this expression, we see that F
is zero when v is parallel or antiparallel to B or 180°) and maximum

when v is perpendicular to B

What is the maximum work that a constant magnetic field B can perform on a charge q
moving through the field with velocity v?

There are several important differences between electric and magnetic forces:

• The electric force acts in the direction of the electric field, whereas the mag-
netic force acts perpendicular to the magnetic field.

• The electric force acts on a charged particle regardless of whether the particle is
moving, whereas the magnetic force acts on a charged particle only when the
particle is in motion.

• The electric force does work in displacing a charged particle, whereas the mag-
netic force associated with a steady magnetic field does no work when a particle
is displaced.

From the last statement and on the basis of the work–kinetic energy theorem,
we conclude that the kinetic energy of a charged particle moving through a mag-
netic field cannot be altered by the magnetic field alone. In other words,

Quick Quiz 29.1

(� � 90�).(FB, max � � q �vB)
(� � 0

FB � � q �vB sin �

v � B
v � BFB � qv � B, FB

when a charged particle moves with a velocity v through a magnetic field, the
field can alter the direction of the velocity vector but cannot change the speed
or kinetic energy of the particle.

From Equation 29.2, we see that the SI unit of magnetic field is the newton
per coulomb-meter per second, which is called the tesla (T):

Because a coulomb per second is defined to be an ampere, we see that

A non-SI magnetic-field unit in common use, called the gauss (G), is related to
the tesla through the conversion Table 29.1 shows some typical values
of magnetic fields.

The north-pole end of a bar magnet is held near a positively charged piece of plastic. Is the
plastic attracted, repelled, or unaffected by the magnet?

Quick Quiz 29.2

1 T � 104 G.

1 T � 1 
N

A�m

1 T �
N

C�m/s

Magnitude of the magnetic force
on a charged particle moving in a
magnetic field

Differences between electric and
magnetic forces

A magnetic field cannot change
the speed of a particle
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MAGNETIC FORCE ACTING ON A
CURRENT-CARRYING CONDUCTOR

If a magnetic force is exerted on a single charged particle when the particle moves
through a magnetic field, it should not surprise you that a current-carrying wire
also experiences a force when placed in a magnetic field. This follows from the
fact that the current is a collection of many charged particles in motion; hence,
the resultant force exerted by the field on the wire is the vector sum of the individ-
ual forces exerted on all the charged particles making up the current. The force
exerted on the particles is transmitted to the wire when the particles collide with
the atoms making up the wire.

Before we continue our discussion, some explanation of the notation used in
this book is in order. To indicate the direction of B in illustrations, we sometimes
present perspective views, such as those in Figures 29.5, 29.6a, and 29.7. In flat il-

29.2

12.3

TABLE 29.1 Some Approximate Magnetic Field Magnitudes

Source of Field Field Magnitude (T)

Strong superconducting laboratory magnet 30
Strong conventional laboratory magnet 2
Medical MRI unit 1.5
Bar magnet 10�2

Surface of the Sun 10�2

Surface of the Earth 0.5 � 10�4

Inside human brain (due to nerve impulses) 10�13

An Electron Moving in a Magnetic FieldEXAMPLE 29.1

in the negative z direction.

3.1 � 1016 m/s2a �
FB

me
�

2.8 � 10�14 N
9.11 � 10�31 kg

�
An electron in a television picture tube moves toward the
front of the tube with a speed of 8.0 � 106 m/s along the x
axis (Fig. 29.5). Surrounding the neck of the tube are coils of
wire that create a magnetic field of magnitude 0.025 T, di-
rected at an angle of 60° to the x axis and lying in the xy
plane. Calculate the magnetic force on and acceleration of
the electron.

Solution Using Equation 29.2, we can find the magnitude
of the magnetic force:

Because is in the positive z direction (from the right-
hand rule) and the charge is negative, FB is in the negative z
direction.

The mass of the electron is 9.11 � 10�31 kg, and so its ac-
celeration is

v � B

2.8 � 10�14 N  �

 � (1.6 � 10�19 C)(8.0 � 106 m/s)(0.025 T )(sin 60�)

FB � � q �vB sin � 

z

B

v

y

x

FB

60°

–e

Figure 29.5 The magnetic force FB acting on the electron is in
the negative z direction when v and B lie in the xy plane.

29.2 Magnetic Force Acting on a Current-Carrying Conductor 911

lustrations, such as in Figure 29.6b to d, we depict a magnetic field directed into
the page with blue crosses, which represent the tails of arrows shot perpendicularly
and away from you. In this case, we call the field Bin , where the subscript “in” indi-
cates “into the page.” If B is perpendicular and directed out of the page, we use a
series of blue dots, which represent the tips of arrows coming toward you (see Fig.
P29.56). In this case, we call the field Bout . If B lies in the plane of the page, we
use a series of blue field lines with arrowheads, as shown in Figure 29.8.

One can demonstrate the magnetic force acting on a current-carrying conduc-
tor by hanging a wire between the poles of a magnet, as shown in Figure 29.6a. For
ease in visualization, part of the horseshoe magnet in part (a) is removed to show
the end face of the south pole in parts (b), (c), and (d) of Figure 29.6. The mag-
netic field is directed into the page and covers the region within the shaded cir-
cles. When the current in the wire is zero, the wire remains vertical, as shown in
Figure 29.6b. However, when a current directed upward flows in the wire, as shown
in Figure 29.6c, the wire deflects to the left. If we reverse the current, as shown in
Figure 29.6d, the wire deflects to the right.

Let us quantify this discussion by considering a straight segment of wire of
length L and cross-sectional area A, carrying a current I in a uniform magnetic
field B, as shown in Figure 29.7. The magnetic force exerted on a charge q moving
with a drift velocity vd is To find the total force acting on the wire, we
multiply the force exerted on one charge by the number of charges in
the segment. Because the volume of the segment is AL , the number of charges in
the segment is nAL , where n is the number of charges per unit volume. Hence,
the total magnetic force on the wire of length L is

We can write this expression in a more convenient form by noting that, from Equa-
tion 27.4, the current in the wire is Therefore,

(29.3)FB � I L � B

I � nqvdA.

FB � (q vd � B)nAL

q vd � B
q vd � B.

(b)

Bin

×
×
×
×
×
×

×
×
×
×
×
×

×
×
×
×

×
×
×
×
×
×

×
×
×
×

I = 0
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×
×
×
×
×
×

×
×
×
×
×
×

×
×
×
×

×
×
×
×
×
×

×
×
×
×

I
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×
×
×
×
×
×

×
×
×
×
×
×

×
×
×
×

×
×
×
×
×
×

×
×
×
×

I

(c) (d)(a)

Figure 29.6 (a) A wire suspended vertically between the poles of a magnet. (b) The setup
shown in part (a) as seen looking at the south pole of the magnet, so that the magnetic field
(blue crosses) is directed into the page. When there is no current in the wire, it remains vertical.
(c) When the current is upward, the wire deflects to the left. (d) When the current is downward,
the wire deflects to the right.

L

q
vd

A

B

+

FB

Figure 29.7 A segment of a cur-
rent-carrying wire located in a mag-
netic field B. The magnetic force
exerted on each charge making up
the current is and the net
force on the segment of length L is
I L � B.

qvd � B,

Force on a segment of a wire in a
uniform magnetic field
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where L is a vector that points in the direction of the current I and has a magni-
tude equal to the length L of the segment. Note that this expression applies only
to a straight segment of wire in a uniform magnetic field.

Now let us consider an arbitrarily shaped wire segment of uniform cross-
section in a magnetic field, as shown in Figure 29.8. It follows from Equation 29.3
that the magnetic force exerted on a small segment of vector length ds in the pres-
ence of a field B is

(29.4)

where d FB is directed out of the page for the directions assumed in Figure 29.8.
We can consider Equation 29.4 as an alternative definition of B. That is, we can de-
fine the magnetic field B in terms of a measurable force exerted on a current ele-
ment, where the force is a maximum when B is perpendicular to the element and
zero when B is parallel to the element.

To calculate the total force FB acting on the wire shown in Figure 29.8, we in-
tegrate Equation 29.4 over the length of the wire:

(29.5)

where a and b represent the end points of the wire. When this integration is car-
ried out, the magnitude of the magnetic field and the direction the field makes
with the vector ds (in other words, with the orientation of the element) may differ
at different points.

Now let us consider two special cases involving Equation 29.5. In both cases,
the magnetic field is taken to be constant in magnitude and direction.

Case 1 A curved wire carries a current I and is located in a uniform magnetic
field B, as shown in Figure 29.9a. Because the field is uniform, we can take B out-
side the integral in Equation 29.5, and we obtain

(29.6)FB � I ��b

a
 ds� � B

FB � I �b

a
 ds � B

dFB � I ds � B

B
ds

I

Figure 29.8 A wire segment of
arbitrary shape carrying a current I
in a magnetic field B experiences a
magnetic force. The force on any
segment ds is I ds � B and is di-
rected out of the page. You should
use the right-hand rule to confirm
this force direction.

(b)

d s

B

I

I

b

a

d s

L′

B

(a)

Figure 29.9 (a) A curved wire carrying a current I in a uniform magnetic field. The total mag-
netic force acting on the wire is equivalent to the force on a straight wire of length L	 running be-
tween the ends of the curved wire. (b) A current-carrying loop of arbitrary shape in a uniform
magnetic field. The net magnetic force on the loop is zero.

29.2 Magnetic Force Acting on a Current-Carrying Conductor 913

But the quantity represents the vector sum of all the length elements from a to
b. From the law of vector addition, the sum equals the vector L	, directed from a to
b. Therefore, Equation 29.6 reduces to

(29.7)

Case 2 An arbitrarily shaped closed loop carrying a current I is placed in a uni-
form magnetic field, as shown in Figure 29.9b. We can again express the force act-
ing on the loop in the form of Equation 29.6, but this time we must take the vector
sum of the length elements ds over the entire loop:

Because the set of length elements forms a closed polygon, the vector sum must be
zero. This follows from the graphical procedure for adding vectors by the polygon
method. Because we conclude that FB � 0:� ds � 0,

FB � I �� ds� � B

FB � I L	 � B

�b
a ds

The net magnetic force acting on any closed current loop in a uniform mag-
netic field is zero.

Force on a Semicircular ConductorEXAMPLE 29.2
curved wire must also be into the page. Integrating our ex-
pression for dF2 over the limits to (that is, the
entire semicircle) gives

Because , with a magnitude of , is directed into the
page and because , with a magnitude of , is directed
out of the page, the net force on the closed loop is zero. This
result is consistent with Case 2 described earlier.

2IRBF1

2IRBF2

 � �IRB(cos 
 � cos 0) � �IRB(�1 � 1) � 2IRB

F2 � IRB �


0
 sin � d� � IRB ��cos ��




0
 

� � 
� � 0
A wire bent into a semicircle of radius R forms a closed cir-
cuit and carries a current I. The wire lies in the xy plane, and
a uniform magnetic field is directed along the positive y axis,
as shown in Figure 29.10. Find the magnitude and direction
of the magnetic force acting on the straight portion of the
wire and on the curved portion.

Solution The force F1 acting on the straight portion has a
magnitude because and the wire is
oriented perpendicular to B. The direction of F1 is out of the
page because is along the positive z axis. (That is, L is
to the right, in the direction of the current; thus, according
to the rule of cross products, is out of the page in Fig.
29.10.)

To find the force F2 acting on the curved part, we first
write an expression for the force dF2 on the length element
ds shown in Figure 29.10. If � is the angle between B and ds,
then the magnitude of dF2 is

To integrate this expression, we must express ds in terms of �.
Because we have and we can make this
substitution for dF2 :

To obtain the total force F2 acting on the curved portion,
we can integrate this expression to account for contributions
from all elements ds. Note that the direction of the force on
every element is the same: into the page (because is
into the page). Therefore, the resultant force F2 on the

ds � B

dF2 � IRB sin � d�

ds � R d�,s � R�,

dF2 � I � ds � B � � IB sin � ds

L � B

L � B

L � 2RF1 � ILB � 2IRB

R

I

θ
d

ds

θ

B

θ

Figure 29.10 The net force acting on a closed current loop in a
uniform magnetic field is zero. In the setup shown here, the force on
the straight portion of the loop is 2IRB and directed out of the page,
and the force on the curved portion is 2IRB directed into the page.



914 C H A P T E R  2 9 Magnetic Fields

The four wires shown in Figure 29.11 all carry the same current from point A to point B
through the same magnetic field. Rank the wires according to the magnitude of the mag-
netic force exerted on them, from greatest to least.

Quick Quiz 29.3

A

B

0 4m3m2m1m
(a)

A

B

0 4m3m2m1m
(b)

A B

0 4m3m2m1m
(c)

A

B

0 4m3m2m1m
(d)

Figure 29.11 Which wire experiences the greatest magnetic force?

(a)

b

a

I

B

(b)

B

F2

O

F4

b
2

�

�

� �

� �×

Figure 29. 12 (a) Overhead view
of a rectangular current loop in a
uniform magnetic field. No forces
are acting on sides � and � be-
cause these sides are parallel to B.
Forces are acting on sides � and
�, however. (b) Edge view of the
loop sighting down sides � and �
shows that the forces F2 and F4 ex-
erted on these sides create a torque
that tends to twist the loop clock-
wise. The purple dot in the left cir-
cle represents current in wire �
coming toward you; the purple
cross in the right circle represents
current in wire � moving away
from you.

TORQUE ON A CURRENT LOOP IN A
UNIFORM MAGNETIC FIELD

In the previous section, we showed how a force is exerted on a current-carrying
conductor placed in a magnetic field. With this as a starting point, we now show
that a torque is exerted on any current loop placed in a magnetic field. The results
of this analysis will be of great value when we discuss motors in Chapter 31.

Consider a rectangular loop carrying a current I in the presence of a uniform
magnetic field directed parallel to the plane of the loop, as shown in Figure
29.12a. No magnetic forces act on sides � and � because these wires are parallel
to the field; hence, for these sides. However, magnetic forces do act on
sides � and � because these sides are oriented perpendicular to the field. The
magnitude of these forces is, from Equation 29.3,

The direction of F2 , the force exerted on wire � is out of the page in the view
shown in Figure 29.12a, and that of F4 , the force exerted on wire �, is into the
page in the same view. If we view the loop from side � and sight along sides �
and �, we see the view shown in Figure 29.12b, and the two forces F2 and F4 are
directed as shown. Note that the two forces point in opposite directions but are
not directed along the same line of action. If the loop is pivoted so that it can ro-
tate about point O, these two forces produce about O a torque that rotates the
loop clockwise. The magnitude of this torque �max is

where the moment arm about O is b/2 for each force. Because the area enclosed
by the loop is A � ab, we can express the maximum torque as

(29.8)

Remember that this maximum-torque result is valid only when the magnetic field
is parallel to the plane of the loop. The sense of the rotation is clockwise when
viewed from side �, as indicated in Figure 29.12b. If the current direction were re-

�max � IAB

�max � F2 
b
2

� F4 
b
2

� (IaB) 
b
2

� (IaB) 
b
2

� IabB

F2 � F4 � IaB

L � B � 0

29.3
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versed, the force directions would also reverse, and the rotational tendency would
be counterclockwise.

Now let us suppose that the uniform magnetic field makes an angle � 
 90°
with a line perpendicular to the plane of the loop, as shown in Figure 29.13a. For
convenience, we assume that B is perpendicular to sides � and �. In this case, the
magnetic forces F2 and F4 exerted on sides � and � cancel each other and pro-
duce no torque because they pass through a common origin. However, the forces
acting on sides � and �, F1 and F3 , form a couple and hence produce a torque
about any point. Referring to the end view shown in Figure 29.13b, we note that
the moment arm of F1 about the point O is equal to (a/2) sin �. Likewise, the mo-
ment arm of F3 about O is also (a/2) sin �. Because the net torque
about O has the magnitude

where is the area of the loop. This result shows that the torque has its maxi-
mum value IAB when the field is perpendicular to the normal to the plane of the
loop as we saw when discussing Figure 29.12, and that it is zero when
the field is parallel to the normal to the plane of the loop As we see in
Figure 29.13, the loop tends to rotate in the direction of decreasing values of �
(that is, such that the area vector A rotates toward the direction of the magnetic
field).

(� � 0).
(� � 90�),

A � ab

 � IAB sin � 

 � IbB� a
2

 sin �� � IbB� a
2

 sin �� � IabB sin �

� � F1 
a
2

 sin � � F3 
a
2

 sin � 

F1 � F3 � IbB,
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Figure 29.13 (a) A rectangular current loop in a uniform magnetic field. The area vector A
perpendicular to the plane of the loop makes an angle � with the field. The magnetic forces ex-
erted on sides � and � cancel, but the forces exerted on sides � and � create a torque on the
loop. (b) Edge view of the loop sighting down sides � and �.
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Describe the forces on the rectangular current loop shown in Figure 29.13 if the magnetic
field is directed as shown but increases in magnitude going from left to right.

A convenient expression for the torque exerted on a loop placed in a uniform
magnetic field B is

(29.9)

where A, the vector shown in Figure 29.13, is perpendicular to the plane of the
loop and has a magnitude equal to the area of the loop. We determine the direc-
tion of A using the right-hand rule described in Figure 29.14. When you curl the
fingers of your right hand in the direction of the current in the loop, your thumb
points in the direction of A. The product I A is defined to be the magnetic dipole
moment � (often simply called the “magnetic moment”) of the loop:

(29.10)

The SI unit of magnetic dipole moment is ampere–meter2 (A � m2). Using this de-
finition, we can express the torque exerted on a current-carrying loop in a mag-
netic field B as

(29.11)

Note that this result is analogous to Equation 26.18, for the torque ex-
erted on an electric dipole in the presence of an electric field E, where p is the
electric dipole moment.

Although we obtained the torque for a particular orientation of B with respect
to the loop, the equation is valid for any orientation. Furthermore, al-
though we derived the torque expression for a rectangular loop, the result is valid
for a loop of any shape.

If a coil consists of N turns of wire, each carrying the same current and enclos-
ing the same area, the total magnetic dipole moment of the coil is N times the
magnetic dipole moment for one turn. The torque on an N-turn coil is N times
that on a one-turn coil. Thus, we write � � N�loop � B � �coil � B.

In Section 26.6, we found that the potential energy of an electric dipole in an
electric field is given by This energy depends on the orientation of
the dipole in the electric field. Likewise, the potential energy of a magnetic dipole
in a magnetic field depends on the orientation of the dipole in the magnetic field
and is given by

(29.12)

From this expression, we see that a magnetic dipole has its lowest energy
when � points in the same direction as B. The dipole has its highest

energy when � points in the direction opposite B.

Rank the magnitude of the torques acting on the rectangular loops shown in Figure 29.15,
from highest to lowest. All loops are identical and carry the same current.

Quick Quiz 29.5

Umax � ��B
Umin � ��B

U � �� � B

U � � p � E.

� � � � B

� � p � E,

� � � � B

� � IA

� � IA � B

Quick Quiz 29.4

A

I

µ

Figure 29.14 Right-hand rule for
determining the direction of the
vector A. The direction of the mag-
netic moment � is the same as the
direction of A.

Torque on a current loop

Magnetic dipole moment of a
current loop
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(a) (b) (c)

×
×

××

Figure 29.15 Which current loop (seen edge-on) experiences the greatest torque?

The Magnetic Dipole Moment of a CoilEXAMPLE 29.3
Solution Because B is perpendicular to �coil , Equation
29.11 gives

Exercise Show that the units A � m2 � T reduce to the torque
units N � m.

Exercise Calculate the magnitude of the torque on the coil
when the field makes an angle of (a) 60° and (b) 0° with �.

Answer (a) 5.21 � 10�4 N � m; (b) zero.

6.02 � 10�4 N�m�

� � � coilB � (1.72 � 10�3 A�m2)(0.350 T)

A rectangular coil of dimensions 5.40 cm � 8.50 cm consists
of 25 turns of wire and carries a current of 15.0 mA. A 0.350-T
magnetic field is applied parallel to the plane of the loop. 
(a) Calculate the magnitude of its magnetic dipole moment.

Solution Because the coil has 25 turns, we modify Equa-
tion 29.10 to obtain

(b) What is the magnitude of the torque acting on the
loop?

1.72 � 10�3 A�m2 �

�coil � NIA � (25)(15.0 � 10�3 A)(0.054 0 m)(0.085 0 m)

Satellite Attitude ControlEXAMPLE 29.4
dipole moment of the torquer is perpendicular to the Earth’s
magnetic field:

Exercise If the torquer requires 1.3 W of power at a poten-
tial difference of 28 V, how much current does it draw when
it operates?

Answer 46 mA.

7.5 � 10�3 N�m�

�max � �B � (250 A �m2)(3.0 � 10�5 T)

Many satellites use coils called torquers to adjust their orienta-
tion. These devices interact with the Earth’s magnetic field to
create a torque on the spacecraft in the x, y, or z direction.
The major advantage of this type of attitude-control system is
that it uses solar-generated electricity and so does not con-
sume any thruster fuel.

If a typical device has a magnetic dipole moment of 
250 A � m2, what is the maximum torque applied to a satellite
when its torquer is turned on at an altitude where the magni-
tude of the Earth’s magnetic field is 3.0 � 10�5 T?

Solution We once again apply Equation 29.11, recogniz-
ing that the maximum torque is obtained when the magnetic

web
For more information on torquers, visit the
Web site of a company that supplies these
devices to NASA:
http://www.smad.com



918 C H A P T E R  2 9 Magnetic Fields

MOTION OF A CHARGED PARTICLE IN A
UNIFORM MAGNETIC FIELD

In Section 29.1 we found that the magnetic force acting on a charged particle
moving in a magnetic field is perpendicular to the velocity of the particle and that
consequently the work done on the particle by the magnetic force is zero. Let us
now consider the special case of a positively charged particle moving in a uniform
magnetic field with the initial velocity vector of the particle perpendicular to the
field. Let us assume that the direction of the magnetic field is into the page. Fig-
ure 29.17 shows that the particle moves in a circle in a plane perpendicular to the
magnetic field.

The particle moves in this way because the magnetic force FB is at right angles
to v and B and has a constant magnitude qvB. As the force deflects the particle,
the directions of v and FB change continuously, as Figure 29.17 shows. Because FB
always points toward the center of the circle, it changes only the direction of v
and not its magnitude. As Figure 29.17 illustrates, the rotation is counterclock-
wise for a positive charge. If q were negative, the rotation would be clockwise. We
can use Equation 6.1 to equate this magnetic force to the radial force required to

29.4

The D’Arsonval GalvanometerEXAMPLE 29.5
We can substitute this expression for � in Equation (1) to ob-
tain

Thus, the angle of deflection of the pointer is directly pro-
portional to the current in the loop. The factor NAB/� tells
us that deflection also depends on the design of the meter.

NAB
�

 I � �

(NIA)B � �� � 0 

An end view of a D’Arsonval galvanometer (see Section 28.5)
is shown in Figure 29.16. When the turns of wire making up
the coil carry a current, the magnetic field created by the
magnet exerts on the coil a torque that turns it (along with its
attached pointer) against the spring. Let us show that the an-
gle of deflection of the pointer is directly proportional to the
current in the coil.

Solution We can use Equation 29.11 to find the torque �m
the magnetic field exerts on the coil. If we assume that the
magnetic field through the coil is perpendicular to the nor-
mal to the plane of the coil, Equation 29.11 becomes

(This is a reasonable assumption because the circular cross
section of the magnet ensures radial magnetic field lines.)
This magnetic torque is opposed by the torque due to the
spring, which is given by the rotational version of Hooke’s
law, where � is the torsional spring constant and �
is the angle through which the spring turns. Because the coil
does not have an angular acceleration when the pointer is at
rest, the sum of these torques must be zero:

(1)

Equation 29.10 allows us to relate the magnetic moment of
the N turns of wire to the current through them:

� � NIA

�m � �s � �B � �� � 0

�s � ���,

�m � �B

12.3
QuickLab
Move a bar magnet across the screen
of a black-and-white television and
watch what happens to the picture.
The electrons are deflected by the
magnetic field as they approach 
the screen, causing distortion.
(WARNING: Do not attempt to do
this with a color television or com-
puter monitor. These devices typically
contain a metallic plate that can be-
come magnetized by the bar magnet.
If this happens, a repair shop will
need to “degauss” the screen.)

S

Coil

N

Figure 29.16 End view of a moving-coil galvanometer.
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keep the charge moving in a circle:

(29.13)

That is, the radius of the path is proportional to the linear momentum mv of the
particle and inversely proportional to the magnitude of the charge on the particle
and to the magnitude of the magnetic field. The angular speed of the particle
(from Eq. 10.10) is

(29.14)

The period of the motion (the time that the particle takes to complete one revolu-
tion) is equal to the circumference of the circle divided by the linear speed of the
particle:

(29.15)

These results show that the angular speed of the particle and the period of the cir-
cular motion do not depend on the linear speed of the particle or on the radius of
the orbit. The angular speed � is often referred to as the cyclotron frequency be-
cause charged particles circulate at this angular speed in the type of accelerator
called a cyclotron, which is discussed in Section 29.5.

If a charged particle moves in a uniform magnetic field with its velocity at
some arbitrary angle with respect to B, its path is a helix. For example, if the field
is directed in the x direction, as shown in Figure 29.18, there is no component of
force in the x direction. As a result, and the x component of velocity re-
mains constant. However, the magnetic force causes the components vy
and vz to change in time, and the resulting motion is a helix whose axis is parallel
to the magnetic field. The projection of the path onto the yz plane (viewed along
the x axis) is a circle. (The projections of the path onto the xy and xz planes are si-
nusoids!) Equations 29.13 to 29.15 still apply provided that v is replaced by 
v! � "vy 

2 � vz 

2.
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2
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Figure 29.17 When the velocity
of a charged particle is perpendicu-
lar to a uniform magnetic field, the
particle moves in a circular path in
a plane perpendicular to B. The
magnetic force FB acting on the
charge is always directed toward
the center of the circle.

Figure 29.18 A charged particle
having a velocity vector that has a
component parallel to a uniform
magnetic field moves in a helical
path.

Helical
path

B

x
+qz

y

+

A Proton Moving Perpendicular to a Uniform Magnetic FieldEXAMPLE 29.6
Exercise If an electron moves in a direction perpendicular
to the same magnetic field with this same linear speed, what
is the radius of its circular orbit?

Answer 7.6 � 10�5 m.

A proton is moving in a circular orbit of radius 14 cm in a
uniform 0.35-T magnetic field perpendicular to the velocity
of the proton. Find the linear speed of the proton.

Solution From Equation 29.13, we have

4.7 � 106 m/s�

v �
qBr
mp

�
(1.60 � 10�19 C)(0.35 T )(14 � 10�2 m)

1.67 � 10�27 kg
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When charged particles move in a nonuniform magnetic field, the motion is
complex. For example, in a magnetic field that is strong at the ends and weak in
the middle, such as that shown in Figure 29.20, the particles can oscillate back and
forth between the end points. A charged particle starting at one end spirals along
the field lines until it reaches the other end, where it reverses its path and spirals
back. This configuration is known as a magnetic bottle because charged particles can
be trapped within it. The magnetic bottle has been used to confine a plasma, a gas
consisting of ions and electrons. Such a plasma-confinement scheme could fulfill a
crucial role in the control of nuclear fusion, a process that could supply us with an
almost endless source of energy. Unfortunately, the magnetic bottle has its prob-
lems. If a large number of particles are trapped, collisions between them cause the
particles to eventually leak from the system.

The Van Allen radiation belts consist of charged particles (mostly electrons
and protons) surrounding the Earth in doughnut-shaped regions (Fig. 29.21).
The particles, trapped by the Earth’s nonuniform magnetic field, spiral around
the field lines from pole to pole, covering the distance in just a few seconds. These
particles originate mainly from the Sun, but some come from stars and other heav-
enly objects. For this reason, the particles are called cosmic rays. Most cosmic rays
are deflected by the Earth’s magnetic field and never reach the atmosphere. How-
ever, some of the particles become trapped; it is these particles that make up the
Van Allen belts. When the particles are located over the poles, they sometimes col-
lide with atoms in the atmosphere, causing the atoms to emit visible light. Such
collisions are the origin of the beautiful Aurora Borealis, or Northern Lights, in
the northern hemisphere and the Aurora Australis in the southern hemisphere.

Bending an Electron BeamEXAMPLE 29.7
(b) What is the angular speed of the electrons?

Solution Using Equation 29.14, we find that

Exercise What is the period of revolution of the electrons?

Answer 43 ns.

1.5 � 108 rad/s� �
v
r

�
1.11 � 107 m/s

0.075 m
�

In an experiment designed to measure the magnitude of a
uniform magnetic field, electrons are accelerated from rest
through a potential difference of 350 V. The electrons travel
along a curved path because of the magnetic force exerted
on them, and the radius of the path is measured to be 
7.5 cm. (Fig. 29.19 shows such a curved beam of electrons.) If
the magnetic field is perpendicular to the beam, (a) what is
the magnitude of the field?

Solution First we must calculate the speed of the elec-
trons. We can use the fact that the increase in their kinetic
energy must equal the decrease in their potential energy

(because of conservation of energy). Then we can use
Equation 29.13 to find the magnitude of the magnetic field.
Because and we have

8.4 � 10�4 T�

B �
mev
� e �r

�
(9.11 � 10�31 kg)(1.11 � 107 m/s)

(1.60 � 10�19 C)(0.075 m)

 � 1.11 � 107 m/s 

 v �" 2� e ��V
me

�" 2(1.60 � 10�19 C)(350 V)
9.11 � 10�31 kg

1
2mev2 � � e ��V 

K f � mev2/2,K i � 0

� e ��V

Figure 29.19 The bending of an electron beam in a magnetic
field.

Path of
particle

+

Figure 29.20 A charged particle
moving in a nonuniform magnetic
field (a magnetic bottle) spirals
about the field (red path) and os-
cillates between the end points.
The magnetic force exerted on the
particle near either end of the bot-
tle has a component that causes the
particle to spiral back toward the
center.
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12.1 
&

12.11

Figure 29.21 The Van Allen belts are made up of charged particles trapped by the Earth’s
nonuniform magnetic field. The magnetic field lines are in blue and the particle paths in red.

This color-enhanced photograph, taken at CERN, the particle physics laboratory outside Geneva,
Switzerland, shows a collection of tracks left by subatomic particles in a bubble chamber. A bubble
chamber is a container filled with liquid hydrogen that is superheated, that is, momentarily raised
above its normal boiling point by a sudden drop in pressure in the container. Any charged particle
passing through the liquid in this state leaves behind a trail of tiny bubbles as the liquid boils in its
wake. These bubbles are seen as fine tracks, showing the characteristic paths of different types of
particles. The paths are curved because there is an intense applied magnetic field. The tightly
wound spiral tracks are due to electrons and positrons.

S

N

Auroras are usually confined to the polar regions because it is here that the Van
Allen belts are nearest the Earth’s surface. Occasionally, though, solar activity
causes larger numbers of charged particles to enter the belts and significantly dis-
tort the normal magnetic field lines associated with the Earth. In these situations
an aurora can sometimes be seen at lower latitudes.
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Optional Section

APPLICATIONS INVOLVING CHARGED PARTICLES
MOVING IN A MAGNETIC FIELD

A charge moving with a velocity v in the presence of both an electric field E and a
magnetic field B experiences both an electric force qE and a magnetic force

The total force (called the Lorentz force) acting on the charge is

(29.16)

Velocity Selector

In many experiments involving moving charged particles, it is important that the
particles all move with essentially the same velocity. This can be achieved by apply-
ing a combination of an electric field and a magnetic field oriented as shown in
Figure 29.22. A uniform electric field is directed vertically downward (in the plane
of the page in Fig. 29.22a), and a uniform magnetic field is applied in the direc-
tion perpendicular to the electric field (into the page in Fig. 29.22a). For q posi-
tive, the magnetic force is upward and the electric force qE is downward.
When the magnitudes of the two fields are chosen so that the particle
moves in a straight horizontal line through the region of the fields. From the ex-
pression we find that

(29.17)

Only those particles having speed v pass undeflected through the mutually perpen-
dicular electric and magnetic fields. The magnetic force exerted on particles moving
at speeds greater than this is stronger than the electric force, and the particles are
deflected upward. Those moving at speeds less than this are deflected downward.

The Mass Spectrometer

A mass spectrometer separates ions according to their mass-to-charge ratio. In
one version of this device, known as the Bainbridge mass spectrometer, a beam of ions
first passes through a velocity selector and then enters a second uniform magnetic
field B0 that has the same direction as the magnetic field in the selector (Fig.
29.23). Upon entering the second magnetic field, the ions move in a semicircle of

v �
E
B

qE � qvB,

qE � qvB,
qv � B

� F � qE � qv � B

qv � B.

29.5

Lorentz force

Bin

+

E

Source

Slit
–

(a)

++++++

––––––

v

(b)

+ q

qv ×× B

qE

× × × × × × ×

× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×

Figure 29.22 (a) A velocity selector. When a positively charged particle is in the presence of a
magnetic field directed into the page and an electric field directed downward, it experiences a
downward electric force qE and an upward magnetic force (b) When these forces bal-
ance, the particle moves in a horizontal line through the fields.

qv � B.
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radius r before striking a photographic plate at P. If the ions are positively
charged, the beam deflects upward, as Figure 29.23 shows. If the ions are nega-
tively charged, the beam would deflect downward. From Equation 29.13, we can
express the ratio m/q as

Using Equation 29.17, we find that

(29.18)

Therefore, we can determine m/q by measuring the radius of curvature and know-
ing the field magnitudes B, B0 , and E. In practice, one usually measures the
masses of various isotopes of a given ion, with the ions all carrying the same charge
q. In this way, the mass ratios can be determined even if q is unknown.

A variation of this technique was used by J. J. Thomson (1856–1940) in 1897
to measure the ratio e/me for electrons. Figure 29.24a shows the basic apparatus he
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Figure 29.23 A mass spectrom-
eter. Positively charged particles
are sent first through a velocity
selector and then into a region
where the magnetic field B0
causes the particles to move in a
semicircular path and strike a
photographic film at P.

Fluorescent
coating

–

SlitsCathode

–

+

+
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Deflection
plates

Magnetic field coil

Deflected electron beam

Undeflected
electron
beam

Figure 29.24 (a) Thomson’s apparatus for measuring e/me . Electrons are accelerated from the
cathode, pass through two slits, and are deflected by both an electric field and a magnetic field
(directed perpendicular to the electric field). The beam of electrons then strikes a fluorescent
screen. (b) J. J. Thomson (left) in the Cavendish Laboratory, University of Cambridge. It is inter-
esting to note that the man on the right, Frank Baldwin Jewett, is a distant relative of John W.
Jewett, Jr., contributing author of this text.

(a) (b)
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used. Electrons are accelerated from the cathode and pass through two slits. They
then drift into a region of perpendicular electric and magnetic fields. The magni-
tudes of the two fields are first adjusted to produce an undeflected beam. When
the magnetic field is turned off, the electric field produces a measurable beam de-
flection that is recorded on the fluorescent screen. From the size of the deflection
and the measured values of E and B, the charge-to-mass ratio can be determined.
The results of this crucial experiment represent the discovery of the electron as a
fundamental particle of nature.

When a photographic plate from a mass spectrometer like the one shown in Figure 29.23 is
developed, the three patterns shown in Figure 29.25 are observed. Rank the particles that
caused the patterns by speed and m /q ratio.

Quick Quiz 29.6

cba

Gap for particles
from velocity

selector

Figure 29.25

The Cyclotron

A cyclotron can accelerate charged particles to very high speeds. Both electric and
magnetic forces have a key role. The energetic particles produced are used to
bombard atomic nuclei and thereby produce nuclear reactions of interest to re-
searchers. A number of hospitals use cyclotron facilities to produce radioactive
substances for diagnosis and treatment.

A schematic drawing of a cyclotron is shown in Figure 29.26. The charges
move inside two semicircular containers D1 and D2 , referred to as dees. A high-
frequency alternating potential difference is applied to the dees, and a uniform
magnetic field is directed perpendicular to them. A positive ion released at P near
the center of the magnet in one dee moves in a semicircular path (indicated by
the dashed red line in the drawing) and arrives back at the gap in a time T/2,
where T is the time needed to make one complete trip around the two dees, given
by Equation 29.15. The frequency of the applied potential difference is adjusted so
that the polarity of the dees is reversed in the same time it takes the ion to travel
around one dee. If the applied potential difference is adjusted such that D2 is at a
lower electric potential than D1 by an amount �V, the ion accelerates across the
gap to D2 and its kinetic energy increases by an amount q�V. It then moves
around D2 in a semicircular path of greater radius (because its speed has in-
creased). After a time T/2, it again arrives at the gap between the dees. By this
time, the polarity across the dees is again reversed, and the ion is given another
“kick” across the gap. The motion continues so that for each half-circle trip
around one dee, the ion gains additional kinetic energy equal to q �V. When the
radius of its path is nearly that of the dees, the energetic ion leaves the system
through the exit slit. It is important to note that the operation of the cyclotron is
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based on the fact that T is independent of the speed of the ion and of the radius
of the circular path.

We can obtain an expression for the kinetic energy of the ion when it exits the
cyclotron in terms of the radius R of the dees. From Equation 29.13 we know that

Hence, the kinetic energy is

(29.19)

When the energy of the ions in a cyclotron exceeds about 20 MeV, relativistic
effects come into play. (Such effects are discussed in Chapter 39.) We observe that
T increases and that the moving ions do not remain in phase with the applied po-
tential difference. Some accelerators overcome this problem by modifying the pe-
riod of the applied potential difference so that it remains in phase with the mov-
ing ions.

Optional Section

THE HALL EFFECT
When a current-carrying conductor is placed in a magnetic field, a potential differ-
ence is generated in a direction perpendicular to both the current and the mag-
netic field. This phenomenon, first observed by Edwin Hall (1855–1938) in 1879,
is known as the Hall effect. It arises from the deflection of charge carriers to one
side of the conductor as a result of the magnetic force they experience. The Hall
effect gives information regarding the sign of the charge carriers and their density;
it can also be used to measure the magnitude of magnetic fields.

The arrangement for observing the Hall effect consists of a flat conductor car-
rying a current I in the x direction, as shown in Figure 29.27. A uniform magnetic
field B is applied in the y direction. If the charge carriers are electrons moving in
the negative x direction with a drift velocity vd , they experience an upward mag-

29.6

K � 1
2mv2 �

q2B 2R2

2m

v � qBR/m.

web
More information on these accelerators is
available at
http://www.fnal.gov or
http://www.CERN.ch
The CERN site also discusses the creation
of the World Wide Web there by physicists in
the mid-1990s.

B

P

D1

D2

(a)

North pole of magnet

Particle exits here

Alternating ∆V

Figure 29.26 (a) A cyclotron consists of an ion source at P, two dees D1 and D2 across which
an alternating potential difference is applied, and a uniform magnetic field. (The south pole of
the magnet is not shown.) The red dashed curved lines represent the path of the particles. 
(b) The first cyclotron, invented by E.O. Lawrence and M.S. Livingston in 1934.

(b)
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netic force are deflected upward, and accumulate at the upper
edge of the flat conductor, leaving an excess of positive charge at the lower edge
(Fig. 29.28a). This accumulation of charge at the edges increases until the electric
force resulting from the charge separation balances the magnetic force acting on
the carriers. When this equilibrium condition is reached, the electrons are no
longer deflected upward. A sensitive voltmeter or potentiometer connected across
the sample, as shown in Figure 29.28, can measure the potential difference—
known as the Hall voltage �VH —generated across the conductor.

If the charge carriers are positive and hence move in the positive x direction,
as shown in Figures 29.27 and 29.28b, they also experience an upward magnetic
force This produces a buildup of positive charge on the upper edge and
leaves an excess of negative charge on the lower edge. Hence, the sign of the Hall
voltage generated in the sample is opposite the sign of the Hall voltage resulting
from the deflection of electrons. The sign of the charge carriers can therefore be
determined from a measurement of the polarity of the Hall voltage.

In deriving an expression for the Hall voltage, we first note that the magnetic
force exerted on the carriers has magnitude qvdB. In equilibrium, this force is bal-
anced by the electric force qEH , where EH is the magnitude of the electric field
due to the charge separation (sometimes referred to as the Hall field). Therefore,

 EH � vdB

qvdB � qEH

q vd � B.

FB � q vd � B,

vd

y

vd

x

z

a

I

t

d

c

+

–

I

B

B

F

F
Figure 29.27 To observe the Hall ef-
fect, a magnetic field is applied to a cur-
rent-carrying conductor. When I is in the
x direction and B in the y direction, both
positive and negative charge carriers are
deflected upward in the magnetic field.
The Hall voltage is measured between
points a and c.

0

× × × × × × × × ×

× × × × × × × × ×

× × × × × × × ×

× × × × × × × × ×

× × × × × × × × ×

I
I

+ + + + + + + + +

– – – – – – – – –

(a)

c

qvd × B
–

qEH

B

vd

a

∆VH

0

× × × × × × × × ×

× × × × × × × × ×

× × × × × × × ×

× × × × × × × × ×

× × × × × × × × ×

I
I

– – – – – – – – –

+ + + + + + + + +

(b)

c

qvd × B

qEH

B

vd

a

+ ∆VH

Figure 29.28 (a) When the charge carriers in a Hall effect apparatus are negative, the upper
edge of the conductor becomes negatively charged, and c is at a lower electric potential than a.
(b) When the charge carriers are positive, the upper edge becomes positively charged, and c is at
a higher potential than a. In either case, the charge carriers are no longer deflected when the
edges become fully charged, that is, when there is a balance between the electrostatic force qEH
and the magnetic deflection force qvB.
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If d is the width of the conductor, the Hall voltage is

(29.20)

Thus, the measured Hall voltage gives a value for the drift speed of the charge car-
riers if d and B are known.

We can obtain the charge carrier density n by measuring the current in the
sample. From Equation 27.4, we can express the drift speed as

(29.21)

where A is the cross-sectional area of the conductor. Substituting Equation 29.21
into Equation 29.20, we obtain

(29.22)

Because where t is the thickness of the conductor, we can also express
Equation 29.22 as

(29.23)

where is the Hall coefficient. This relationship shows that a properly
calibrated conductor can be used to measure the magnitude of an unknown mag-
netic field.

Because all quantities in Equation 29.23 other than nq can be measured, a
value for the Hall coefficient is readily obtainable. The sign and magnitude of R H
give the sign of the charge carriers and their number density. In most metals, the
charge carriers are electrons, and the charge carrier density determined from
Hall-effect measurements is in good agreement with calculated values for such
metals as lithium (Li), sodium (Na), copper (Cu), and silver (Ag), whose atoms
each give up one electron to act as a current carrier. In this case, n is approxi-
mately equal to the number of conducting electrons per unit volume. However,
this classical model is not valid for metals such as iron (Fe), bismuth (Bi), and cad-
mium (Cd) or for semiconductors. These discrepancies can be explained only by
using a model based on the quantum nature of solids.

R H � 1/nq

�VH �
IB
nqt

�
R HIB

t

A � td,

�VH �
IBd
nqA

vd �
I

nqA

�VH � EHd � vdBd

The Hall Effect for CopperEXAMPLE 29.8

Such an extremely small Hall voltage is expected in good
conductors. (Note that the width of the conductor is not
needed in this calculation.)

In semiconductors, n is much smaller than it is in metals
that contribute one electron per atom to the current; hence,
the Hall voltage is usually greater because it varies as the in-
verse of n. Currents of the order of 0.1 mA are generally used
for such materials. Consider a piece of silicon that has the
same dimensions as the copper strip in this example and
whose value for Taking

and we find that A
potential difference of this magnitude is readily measured.

�VH � 7.5 mV.I � 0.10 mA,B � 1.2 T
n � 1.0 � 1020 electrons/m3.

0.44 �V�VH �
A rectangular copper strip 1.5 cm wide and 0.10 cm thick 
carries a current of 5.0 A. Find the Hall voltage for a 1.2-T
magnetic field applied in a direction perpendicular to the
strip.

Solution If we assume that one electron per atom is avail-
able for conduction, we can take the charge carrier density to
be electrons/m3 (see Example 27.1). Substi-
tuting this value and the given data into Equation 29.23 gives

�
(5.0 A)(1.2 T )

(8.49 � 1028 m�3)(1.6 � 10�19 C)(0.001 0 m)

�VH �
IB
nqt

n � 8.49 � 1028

The Hall voltage

web
In 1980, Klaus von Klitzing discovered that
the Hall voltage is quantized. He won the
Nobel Prize for this discovery in 1985. For a
discussion of the quantum Hall effect and
some of its consequences, visit our Web
site at
http://www.saunderscollege.com/physics/
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SUMMARY

The magnetic force that acts on a charge q moving with a velocity v in a magnetic
field B is

(29.1)

The direction of this magnetic force is perpendicular both to the velocity of the
particle and to the magnetic field. The magnitude of this force is

(29.2)

where � is the smaller angle between v and B. The SI unit of B is the tesla (T),
where 1 T � 1 N/A � m.

When a charged particle moves in a magnetic field, the work done by the mag-
netic force on the particle is zero because the displacement is always perpendicu-
lar to the direction of the force. The magnetic field can alter the direction of the
particle’s velocity vector, but it cannot change its speed.

If a straight conductor of length L carries a current I, the force exerted on
that conductor when it is placed in a uniform magnetic field B is

(29.3)

where the direction of L is in the direction of the current and 
If an arbitrarily shaped wire carrying a current I is placed in a magnetic field,

the magnetic force exerted on a very small segment ds is

(29.4)

To determine the total magnetic force on the wire, one must integrate Equation
29.4, keeping in mind that both B and ds may vary at each point. Integration gives
for the force exerted on a current-carrying conductor of arbitrary shape in a uni-
form magnetic field

(29.7)

where L	 is a vector directed from one end of the conductor to the opposite end.
Because integration of Equation 29.4 for a closed loop yields a zero result, the net
magnetic force on any closed loop carrying a current in a uniform magnetic field
is zero.

The magnetic dipole moment � of a loop carrying a current I is

(29.10)

where the area vector A is perpendicular to the plane of the loop and is equal
to the area of the loop. The SI unit of � is A � m2.

The torque � on a current loop placed in a uniform magnetic field B is

(29.11)

and the potential energy of a magnetic dipole in a magnetic field is

(29.12)

If a charged particle moves in a uniform magnetic field so that its initial veloc-
ity is perpendicular to the field, the particle moves in a circle, the plane of which is
perpendicular to the magnetic field. The radius of the circular path is

(29.13)r �
mv
qB

U � �� � B

� � � � B

� A �

� � IA

FB � I L	 � B

dFB � I ds � B

� L � � L .

FB � I L � B

FB � � q �vB sin �

FB � qv � B
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QUESTIONS

17. The bubble chamber is a device used for observing tracks of
particles that pass through the chamber, which is immersed
in a magnetic field. If some of the tracks are spirals and oth-
ers are straight lines, what can you say about the particles?

18. Can a constant magnetic field set into motion an electron
initially at rest? Explain your answer.

19. You are designing a magnetic probe that uses the Hall ef-
fect to measure magnetic fields. Assume that you are re-
stricted to using a given material and that you have al-
ready made the probe as thin as possible. What, if
anything, can be done to increase the Hall voltage pro-
duced for a given magnetic field?

20. The electron beam shown in Figure Q29.20 is projected
to the right. The beam deflects downward in the presence
of a magnetic field produced by a pair of current-carrying
coils. (a) What is the direction of the magnetic field? 
(b) What would happen to the beam if the current in the
coils were reversed?

1. At a given instant, a proton moves in the positive x direc-
tion in a region where a magnetic field is directed in the
negative z direction. What is the direction of the mag-
netic force? Does the proton continue to move in the pos-
itive x direction? Explain.

2. Two charged particles are projected into a region where a
magnetic field is directed perpendicular to their veloci-
ties. If the charges are deflected in opposite directions,
what can be said about them?

3. If a charged particle moves in a straight line through
some region of space, can one say that the magnetic field
in that region is zero?

4. Suppose an electron is chasing a proton up this page
when suddenly a magnetic field directed perpendicular
into the page is turned on. What happens to the particles?

5. How can the motion of a moving charged particle be used
to distinguish between a magnetic field and an electric
field? Give a specific example to justify your argument.

6. List several similarities and differences between electric
and magnetic forces.

7. Justify the following statement: “It is impossible for a con-
stant (in other words, a time-independent) magnetic field
to alter the speed of a charged particle.”

8. In view of the preceding statement, what is the role of a
magnetic field in a cyclotron?

9. A current-carrying conductor experiences no magnetic
force when placed in a certain manner in a uniform mag-
netic field. Explain.

10. Is it possible to orient a current loop in a uniform magnetic
field such that the loop does not tend to rotate? Explain.

11. How can a current loop be used to determine the pres-
ence of a magnetic field in a given region of space?

12. What is the net force acting on a compass needle in a uni-
form magnetic field?

13. What type of magnetic field is required to exert a resul-
tant force on a magnetic dipole? What is the direction of
the resultant force?

14. A proton moving horizontally enters a region where a
uniform magnetic field is directed perpendicular to the
proton’s velocity, as shown in Figure Q29.14. Describe the
subsequent motion of the proton. How would an electron
behave under the same circumstances?

15. In a magnetic bottle, what causes the direction of the ve-
locity of the confined charged particles to reverse? (Hint:
Find the direction of the magnetic force acting on the
particles in a region where the field lines converge.)

16. In the cyclotron, why do particles of different velocities
take the same amount of time to complete one half-circle
trip around one dee?

where m is the mass of the particle and q is its charge. The angular speed of the
charged particle is

(29.14)� �
qB
m

v
+

× × ×

× × ×

× × ×

× × ×

× ××

Figure Q29.14

Figure Q29.20
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PROBLEMS

6.00 � 106 m/s directed to the east in this environ-
ment.

8. A 30.0-g metal ball having net charge is
thrown out of a window horizontally at a speed

The window is at a height 
above the ground. A uniform horizontal magnetic field
of magnitude is perpendicular to the
plane of the ball’s trajectory. Find the magnetic force
acting on the ball just before it hits the ground.

9. A proton moving at 4.00 � 106 m/s through a magnetic
field of 1.70 T experiences a magnetic force of magni-
tude 8.20 � 10�13 N. What is the angle between the
proton’s velocity and the field?

10. An electron has a velocity of 1.20 km/s (in the positive
x direction) and an acceleration of 2.00 � 1012 m/s2

(in the positive z direction) in uniform electric and
magnetic fields. If the electric field has a magnitude of
20.0 N/C (in the positive z direction), what can you de-
termine about the magnetic field in the region? What
can you not determine?

11. A proton moves with a velocity of m/s
in a region in which the magnetic field is 

What is the magnitude of the magnetic force this
charge experiences?

12. An electron is projected into a uniform magnetic field
T. Find the vector expression 

for the force on the electron when its velocity is 

Section 29.2 Magnetic Force Acting on a 
Current-Carrying Conductor

13. A wire having a mass per unit length of 0.500 g/cm car-
ries a 2.00-A current horizontally to the south. What are
the direction and magnitude of the minimum magnetic
field needed to lift this wire vertically upward?

14. A wire carries a steady current of 2.40 A. A straight sec-
tion of the wire is 0.750 m long and lies along the x axis
within a uniform magnetic field of magnitude

in the positive z direction. If the current is in
the � x direction, what is the magnetic force on the sec-
tion of wire?

15. A wire 2.80 m in length carries a current of 5.00 A in a
region where a uniform magnetic field has a magnitude
of 0.390 T. Calculate the magnitude of the magnetic
force on the wire if the angle between the magnetic
field and the current is (a) 60.0°, (b) 90.0°, (c) 120°.

16. A conductor suspended by two flexible wires as shown in
Figure P29.16 has a mass per unit length of 0.040 0 kg/m.
What current must exist in the conductor for the tension
in the supporting wires to be zero when the magnetic

B � 1.60 T

3.70 � 105 j m/s.
v �

B � (1.40 i � 2.10 j)

3k) T.
B � ( i � 2 j �

v � (2 i � 4 j � k)

B � 0.010 0 T

h � 20.0 mv � 20.0 m/s.

Q � 5.00 �C

Section 29.1 The Magnetic Field
1. Determine the initial direction of the deflection of

charged particles as they enter the magnetic fields, as
shown in Figure P29.1.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB

WEB

2. Consider an electron near the Earth’s equator. In which
direction does it tend to deflect if its velocity is directed
(a) downward, (b) northward, (c) westward, or 
(d) southeastward?

3. An electron moving along the positive x axis perpendic-
ular to a magnetic field experiences a magnetic deflec-
tion in the negative y direction. What is the direction of
the magnetic field?

4. A proton travels with a speed of 3.00 � 106 m/s at an
angle of 37.0° with the direction of a magnetic field of
0.300 T in the � y direction. What are (a) the magni-
tude of the magnetic force on the proton and (b) its ac-
celeration?

5. A proton moves in a direction perpendicular to a uni-
form magnetic field B at 1.00 � 107 m/s and experi-
ences an acceleration of 2.00 � 1013 m/s2 in the � x di-
rection when its velocity is in the � z direction.
Determine the magnitude and direction of the field.

6. An electron is accelerated through 2 400 V from rest
and then enters a region where there is a uniform 
1.70-T magnetic field. What are (a) the maximum and 
(b) the minimum values of the magnetic force this
charge can experience?

7. At the equator, near the surface of the Earth, the mag-
netic field is approximately 50.0 �T northward, and the
electric field is about 100 N/C downward in fair
weather. Find the gravitational, electric, and magnetic
forces on an electron with an instantaneous velocity of

(a)

+

+

–

+

(c)

(b)

(d)

××××
××××
××××
××××

45°

Bin

Bright

Bup

Bat 45°

Figure P29.1
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field is 3.60 T into the page? What is the required direc-
tion for the current?

17. Imagine a very long, uniform wire with a linear mass
density of 1.00 g/m that encircles the Earth at its mag-
netic equator. Suppose that the planet’s magnetic field
is 50.0 �T horizontally north throughout this region.
What are the magnitude and direction of the current in
the wire that keep it levitated just above the ground?

18. In Figure P29.18, the cube is 40.0 cm on each edge.
Four straight segments of wire—ab, bc, cd, and da—
form a closed loop that carries a current in
the direction shown. A uniform magnetic field of mag-
nitude is in the positive y direction. De-
termine the magnitude and direction of the magnetic
force on each segment.

B � 0.020 0 T

I � 5.00 A,

21. A nonuniform magnetic field exerts a net force on a magnetic
dipole. A strong magnet is placed under a horizontal
conducting ring of radius r that carries current I, as
shown in Figure P29.21. If the magnetic field B makes
an angle � with the vertical at the ring’s location, what
are the magnitude and direction of the resultant force
on the ring?

WEB

22. Assume that in Atlanta, Georgia, the Earth’s magnetic
field is 52.0 �T northward at 60.0° below the horizontal.
A tube in a neon sign carries a current of 35.0 mA be-
tween two diagonally opposite corners of a shop win-
dow, which lies in a north–south vertical plane. The
current enters the tube at the bottom south corner of
the window. It exits at the opposite corner, which is 
1.40 m farther north and 0.850 m higher up. Between
these two points, the glowing tube spells out DONUTS.
Use the theorem proved as “Case 1” in the text to deter-
mine the total vector magnetic force on the tube.

Section 29.3 Torque on a Current Loop in a 
Uniform Magnetic Field

23. A current of 17.0 mA is maintained in a single circular
loop with a circumference of 2.00 m. A magnetic field

19. Review Problem. A rod with a mass of 0.720 kg and a
radius of 6.00 cm rests on two parallel rails (Fig.
P29.19) that are apart and 
long. The rod carries a current of (in the di-
rection shown) and rolls along the rails without slip-
ping. If it starts from rest, what is the speed of the rod as
it leaves the rails if a uniform magnetic field of magni-
tude 0.240 T is directed perpendicular to the rod and
the rails?

20. Review Problem. A rod of mass m and radius R rests
on two parallel rails (Fig. P29.19) that are a distance d
apart and have a length L . The rod carries a current I
(in the direction shown) and rolls along the rails with-
out slipping. If it starts from rest, what is the speed of
the rod as it leaves the rails if a uniform magnetic field
B is directed perpendicular to the rod and the rails?

I � 48.0 A
L � 45.0 cmd � 12.0 cm

d

L

I B

I

N

r

B

θ θ

y

x

I

a

B

b

cz

d
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×

×

×

×

×

×

×

×

×

×

×

×

×

Figure P29.16

Figure P29.18

Figure P29.19 Problems 19 and 20.

Figure P29.21
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of 0.800 T is directed parallel to the plane of the loop.
(a) Calculate the magnetic moment of the loop. 
(b) What is the magnitude of the torque exerted on the
loop by the magnetic field?

24. A small bar magnet is suspended in a uniform 0.250-T
magnetic field. The maximum torque experienced by
the bar magnet is 4.60 � 10�3 N � m. Calculate the mag-
netic moment of the bar magnet.

25. A rectangular loop consists of closely wrapped
turns and has dimensions and

The loop is hinged along the y axis, and its
plane makes an angle � � 30.0° with the x axis (Fig.
P29.25). What is the magnitude of the torque exerted
on the loop by a uniform magnetic field di-
rected along the x axis when the current is in
the direction shown? What is the expected direction of
rotation of the loop?

I � 1.20 A
B � 0.800 T

b � 0.300 m.
a � 0.400 m

N � 100

needle has minimum potential energy and maximum
potential energy. (b) How much work must be done on
the needle for it to move from the former to the latter
orientation?

30. A wire is formed into a circle having a diameter of 
10.0 cm and is placed in a uniform magnetic field of
3.00 mT. A current of 5.00 A passes through the wire.
Find (a) the maximum torque on the wire and (b) the
range of potential energy of the wire in the field for dif-
ferent orientations of the circle.

Section 29.4 Motion of a Charged Particle 
in a Uniform Magnetic Field

31. The magnetic field of the Earth at a certain location is
directed vertically downward and has a magnitude of
50.0 �T. A proton is moving horizontally toward the
west in this field with a speed of 6.20 � 106 m/s. 
(a) What are the direction and magnitude of the mag-
netic force that the field exerts on this charge? 
(b) What is the radius of the circular arc followed by
this proton?

32. A singly charged positive ion has a mass of 3.20 �
10�26 kg. After being accelerated from rest through a
potential difference of 833 V, the ion enters a magnetic
field of 0.920 T along a direction perpendicular to the
direction of the field. Calculate the radius of the path of
the ion in the field.

33. Review Problem. One electron collides elastically with
a second electron initially at rest. After the collision, the
radii of their trajectories are 1.00 cm and 2.40 cm. The
trajectories are perpendicular to a uniform magnetic
field of magnitude 0.044 0 T. Determine the energy (in
keV) of the incident electron.

34. A proton moving in a circular path perpendicular to a
constant magnetic field takes 1.00 �s to complete one
revolution. Determine the magnitude of the magnetic
field.

35. A proton (charge �e, mass mp), a deuteron (charge �e,
mass 2mp), and an alpha particle (charge � 2e, mass
4mp) are accelerated through a common potential dif-
ference �V. The particles enter a uniform magnetic
field B with a velocity in a direction perpendicular to B.
The proton moves in a circular path of radius rp . Deter-
mine the values of the radii of the circular orbits for the
deuteron rd and the alpha particle r � in terms of rp .

36. Review Problem. An electron moves in a circular path
perpendicular to a constant magnetic field with a
magnitude of 1.00 mT. If the angular momentum 
of the electron about the center of the circle is 4.00 �
10�25 J� s, determine (a) the radius of the circular path
and (b) the speed of the electron.

37. Calculate the cyclotron frequency of a proton in a mag-
netic field with a magnitude of 5.20 T.

38. A singly charged ion of mass m is accelerated from rest
by a potential difference �V. It is then deflected by a
uniform magnetic field (perpendicular to the ion’s ve-
locity) into a semicircle of radius R . Now a doubly

WEB

26. A long piece of wire of mass 0.100 kg and total length 
of 4.00 m is used to make a square coil with a side of
0.100 m. The coil is hinged along a horizontal side, car-
ries a 3.40-A current, and is placed in a vertical mag-
netic field with a magnitude of 0.010 0 T. (a) Determine
the angle that the plane of the coil makes with the verti-
cal when the coil is in equilibrium. (b) Find the torque
acting on the coil due to the magnetic force at equilib-
rium.

27. A 40.0-cm length of wire carries a current of 20.0 A. It is
bent into a loop and placed with its normal perpendicu-
lar to a magnetic field with a strength of 0.520 T. What
is the torque on the loop if it is bent into (a) an equilat-
eral triangle, (b) a square, (c) a circle? (d) Which
torque is greatest?

28. A current loop with dipole moment � is placed in a uni-
form magnetic field B. Prove that its potential energy is

You may imitate the discussion of the po-
tential energy of an electric dipole in an electric field
given in Chapter 26.

29. The needle of a magnetic compass has a magnetic mo-
ment of 9.70 mA � m2. At its location, the Earth’s mag-
netic field is 55.0 �T north at 48.0° below the horizon-
tal. (a) Identify the orientations at which the compass

U � �� � B.

y

x
z

0.300 m

30.0°

I = 1.20 A

0.400 m

Figure P29.25
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charged ion of mass m	 is accelerated through the same
potential difference and deflected by the same mag-
netic field into a semicircle of radius What is
the ratio of the ions’ masses?

39. A cosmic-ray proton in interstellar space has an energy
of 10.0 MeV and executes a circular orbit having a ra-
dius equal to that of Mercury’s orbit around the Sun
(5.80 � 1010 m). What is the magnetic field in that re-
gion of space?

40. A singly charged positive ion moving at 4.60 � 105 m/s
leaves a circular track of radius 7.94 mm along a direc-
tion perpendicular to the 1.80-T magnetic field of a
bubble chamber. Compute the mass (in atomic mass
units) of this ion, and identify it from that value.

(Optional)
Section 29.5 Applications Involving Charged 
Particles Moving in a Magnetic Field

41. A velocity selector consists of magnetic and electric
fields described by the expressions and 
If find the value of E such that a 750-eV
electron moving along the positive x axis is undeflected.

42. (a) Singly charged uranium-238 ions are accelerated
through a potential difference of 2.00 kV and enter a
uniform magnetic field of 1.20 T directed perpendicu-
lar to their velocities. Determine the radius of their cir-
cular path. (b) Repeat for uranium-235 ions. How does
the ratio of these path radii depend on the accelerating
voltage and the magnetic field strength?

43. Consider the mass spectrometer shown schematically in
Figure 29.23. The electric field between the plates of
the velocity selector is 2 500 V/m, and the magnetic
field in both the velocity selector and the deflection
chamber has a magnitude of 0.035 0 T. Calculate the ra-
dius of the path for a singly charged ion having a mass

44. What is the required radius of a cyclotron designed to
accelerate protons to energies of 34.0 MeV using a mag-
netic field of 5.20 T?

45. A cyclotron designed to accelerate protons has a mag-
netic field with a magnitude of 0.450 T over a region of
radius 1.20 m. What are (a) the cyclotron frequency
and (b) the maximum speed acquired by the protons?

46. At the Fermilab accelerator in Batavia, Illinois, protons
having momentum 4.80 � 10�16 kg � m/s are held in a
circular orbit of radius 1.00 km by an upward magnetic
field. What is the magnitude of this field?

47. The picture tube in a television uses magnetic deflec-
tion coils rather than electric deflection plates. Suppose
an electron beam is accelerated through a 50.0-kV po-
tential difference and then travels through a region of
uniform magnetic field 1.00 cm wide. The screen is lo-
cated 10.0 cm from the center of the coils and is 
50.0 cm wide. When the field is turned off, the electron
beam hits the center of the screen. What field magni-
tude is necessary to deflect the beam to the side of the
screen? Ignore relativistic corrections.

m � 2.18 � 10�26 kg.

B � 0.015 0 T,
B � B j.E � Ek

R 	 � 2R .

49. A section of conductor 0.400 cm thick is used in a Hall-
effect measurement. A Hall voltage of 35.0 �V is 
measured for a current of 21.0 A in a magnetic field of
1.80 T. Calculate the Hall coefficient for the conductor.

50. A flat copper ribbon 0.330 mm thick carries a steady
current of 50.0 A and is located in a uniform 1.30-T
magnetic field directed perpendicular to the plane of
the ribbon. If a Hall voltage of 9.60 �V is measured
across the ribbon, what is the charge density of the free
electrons? What effective number of free electrons per
atom does this result indicate?

51. In an experiment designed to measure the Earth’s mag-
netic field using the Hall effect, a copper bar 0.500 cm
thick is positioned along an east–west direction. If a
current of 8.00 A in the conductor results in a Hall volt-
age of 5.10 pV, what is the magnitude of the Earth’s
magnetic field? (Assume that elec-
trons/m3 and that the plane of the bar is rotated to be
perpendicular to the direction of B.)

52. A Hall-effect probe operates with a 120-mA current.
When the probe is placed in a uniform magnetic field
with a magnitude of 0.080 0 T, it produces a Hall volt-
age of 0.700 �V. (a) When it is measuring an unknown
magnetic field, the Hall voltage is 0.330 �V. What is the
unknown magnitude of the field? (b) If the thickness of
the probe in the direction of B is 2.00 mm, find the
charge-carrier density (each of charge e).

ADDITIONAL PROBLEMS

53. An electron enters a region of magnetic field of magni-
tude 0.100 T, traveling perpendicular to the linear
boundary of the region. The direction of the field is
perpendicular to the velocity of the electron. (a) Deter-
mine the time it takes for the electron to leave the
“field-filled” region, noting that its path is a semicircle.
(b) Find the kinetic energy of the electron if the maxi-
mum depth of penetration in the field is 2.00 cm.

n � 8.48 � 1028

Ag

B

I

t

d

WEB

Figure P29.48

(Optional)
Section 29.6 The Hall Effect

48. A flat ribbon of silver having a thickness 
is used in a Hall-effect measurement of a uniform
magnetic field perpendicular to the ribbon, as shown 
in Figure P29.48. The Hall coefficient for silver is

(a) What is the density of
charge carriers in silver? (b) If a current pro-
duces a Hall voltage what is the magni-
tude of the applied magnetic field?

�VH � 15.0 �V,
I � 20.0 A

R H � 0.840 � 10�10 m3/C.

t � 0.200 mm
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54. A 0.200-kg metal rod carrying a current of 10.0 A glides
on two horizontal rails 0.500 m apart. What vertical
magnetic field is required to keep the rod moving at a
constant speed if the coefficient of kinetic friction be-
tween the rod and rails is 0.100?

55. Sodium melts at 99°C. Liquid sodium, an excellent ther-
mal conductor, is used in some nuclear reactors to cool
the reactor core. The liquid sodium is moved through
pipes by pumps that exploit the force on a moving
charge in a magnetic field. The principle is as follows:
Assume that the liquid metal is in an electrically insulat-
ing pipe having a rectangular cross-section of width w
and height h. A uniform magnetic field perpendicular
to the pipe affects a section of length L (Fig. P29.55).
An electric current directed perpendicular to the pipe
and to the magnetic field produces a current density J
in the liquid sodium. (a) Explain why this arrangement
produces on the liquid a force that is directed along the
length of the pipe. (b) Show that the section of liquid
in the magnetic field experiences a pressure increase
JLB.

(c) What would be the force on an electron
in the same field moving with velocity 

58. Review Problem. A wire having a linear mass density
of 1.00 g/cm is placed on a horizontal surface that has a
coefficient of friction of 0.200. The wire carries a cur-
rent of 1.50 A toward the east and slides horizontally to
the north. What are the magnitude and direction of the
smallest magnetic field that enables the wire to move in
this fashion?

59. A positive charge moves with a
velocity through a region
where both a uniform magnetic field and a uniform
electric field exist. (a) What is the total force on the
moving charge (in unit–vector notation) if 

and 
(b) What angle does the force vector make with the
positive x axis?

60. A cosmic-ray proton traveling at half the speed of light
is heading directly toward the center of the Earth in the
plane of the Earth’s equator. Will it hit the Earth? As-
sume that the Earth’s magnetic field is uniform over the
planet’s equatorial plane with a magnitude of 50.0 �T,
extending out 1.30 � 107 m from the surface of the
Earth. Assume that the field is zero at greater distances.
Calculate the radius of curvature of the proton’s path in
the magnetic field. Ignore relativistic effects.

61. The circuit in Figure P29.61 consists of wires at the top
and bottom and identical metal springs as the left and
right sides. The wire at the bottom has a mass of 10.0 g
and is 5.00 cm long. The springs stretch 0.500 cm un-
der the weight of the wire, and the circuit has a total re-
sistance of 12.0 �. When a magnetic field is turned on,
directed out of the page, the springs stretch an addi-
tional 0.300 cm. What is the magnitude of the magnetic
field? (The upper portion of the circuit is fixed.)

E � (4 i � 1 j � 2k) V/m?(2 i � 4 j � 1k) T
B �

v � (2 i � 3 j � 1k) m/s
q � 3.20 � 10�19 C

v � vi i?
v � �vi i?

62. A hand-held electric mixer contains an electric motor.
Model the motor as a single flat compact circular coil
carrying electric current in a region where a magnetic
field is produced by an external permanent magnet.
You need consider only one instant in the operation of
the motor. (We will consider motors again in Chapter
31.) The coil moves because the magnetic field exerts
torque on the coil, as described in Section 29.3. Make

56. Protons having a kinetic energy of 5.00 MeV are moving
in the positive x direction and enter a magnetic field

directed out of the plane of the page
and extending from to as shown in
Figure P29.56. (a) Calculate the y component of the
protons’ momentum as they leave the magnetic field.
(b) Find the angle � between the initial velocity vector
of the proton beam and the velocity vector after the
beam emerges from the field. (Hint: Neglect relativistic
effects and note that 1 eV � 1.60 � 10�19 J.)

x � 1.00 m,x � 0
B � (0.050 0 k) T

24.0 V

5.00 cm

J

B

L

w

h

Figure P29.55

Figure P29.56

Figure P29.61

57. (a) A proton moving in the � x direction with velocity
experiences a magnetic force Explain

what you can and cannot infer about B from this infor-
mation. (b) In terms of Fi , what would be the force on a
proton in the same field moving with velocity

F � Fi j.v � vi i

Problems 935

70. Table P29.70 shows measurements of a Hall voltage and
corresponding magnetic field for a probe used to mea-
sure magnetic fields. (a) Plot these data, and deduce a
relationship between the two variables. (b) If the mea-

65. A cyclotron is sometimes used for carbon dating, which
we consider in Section 44.6. Carbon-14 and carbon-12
ions are obtained from a sample of the material to be
dated and accelerated in the cyclotron. If the cyclotron
has a magnetic field of magnitude 2.40 T, what is the
difference in cyclotron frequencies for the two ions?

66. A uniform magnetic field of magnitude 0.150 T is di-
rected along the positive x axis. A positron moving at
5.00 � 106 m/s enters the field along a direction that
makes an angle of 85.0° with the x axis (Fig. P29.66).

order-of-magnitude estimates of the magnetic field, the
torque on the coil, the current in it, its area, and the
number of turns in the coil, so that they are related ac-
cording to Equation 29.11. Note that the input power to
the motor is electric, given by and the useful
output power is mechanical, given by 

63. A metal rod having a mass per unit length of 
0.010 0 kg/m carries a current of The rod
hangs from two wires in a uniform vertical magnetic
field, as shown in Figure P29.63. If the wires make an
angle with the vertical when in equilibrium,
determine the magnitude of the magnetic field.

64. A metal rod having a mass per unit length � carries a
current I . The rod hangs from two wires in a uniform
vertical magnetic field, as shown in Figure P29.63. If the
wires make an angle � with the vertical when in equilib-
rium, determine the magnitude of the magnetic field.

� � 45.0�

I � 5.00 A.

� � ��.
� � I �V,

The motion of the particle is expected to be a helix, as
described in Section 29.4. Calculate (a) the pitch p and
(b) the radius r of the trajectory.

67. Consider an electron orbiting a proton and maintained
in a fixed circular path of radius by
the Coulomb force. Treating the orbiting charge as a
current loop, calculate the resulting torque when the
system is in a magnetic field of 0.400 T directed perpen-
dicular to the magnetic moment of the electron.

68. A singly charged ion completes five revolutions in a uni-
form magnetic field of magnitude 5.00 � 10�2 T in 
1.50 ms. Calculate the mass of the ion in kilograms.

69. A proton moving in the plane of the page has a kinetic
energy of 6.00 MeV. It enters a magnetic field of magni-
tude directed into the page, moving at an an-
gle of � � 45.0° with the straight linear boundary of the
field, as shown in Figure P29.69. (a) Find the distance x
from the point of entry to where the proton leaves the
field. (b) Determine the angle �	 between the boundary
and the proton’s velocity vector as it leaves the field.

B � 1.00 T

R � 5.29 � 10�11 m

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

v

r

x

y

z

85°

B

p

θ

B

I

g
θ

Figure P29.63 Problems 63 and 64.

Figure P29.66

Figure P29.69

TABLE P29.70

�VH(�V) B(T)

0 0.00
11 0.10
19 0.20
28 0.30
42 0.40
50 0.50
61 0.60
68 0.70
79 0.80
90 0.90

102 1.00
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ANSWERS TO QUICK QUIZZES

rected out of the page, but this force is canceled by an
oppositely directed force acting on the current as it
moves from 4 m to 2 m.

29.4 Because it is in the region of the stronger magnetic
field, side � experiences a greater force than side �:

Therefore, in addition to the torque resulting
from the two forces, a net force is exerted downward on
the loop.

29.5 (c), (b), (a). Because all loops enclose the same area
and carry the same current, the magnitude of � is the
same for all. For (c), � points upward and is perpendic-
ular to the magnetic field and This is the maxi-
mum torque possible. The next largest cross product of
� and B is for (b), in which � points toward the upper
right (as illustrated in Fig. 29.13b). Finally, � for the
loop in (a) points along the direction of B; thus, the
torque is zero.

29.6 The velocity selector ensures that all three types of parti-
cles have the same speed. We cannot determine individ-
ual masses or charges, but we can rank the particles by
m/q ratio. Equation 29.18 indicates that those particles
traveling through the circle of greatest radius have the
greatest m/q ratio. Thus, the m/q ranking, from greatest
to least value, is c, b, a.

� � �B.

F3 � F1 .

29.1 Zero. Because the magnetic force exerted by the field
on the charge is always perpendicular to the velocity of
the charge, the field can never do any work on the
charge: Work requires a
component of force along the direction of motion. 

29.2 Unaffected. The magnetic force exerted by a magnetic
field on a charge is proportional to the charge’s velocity
relative to the field. If the charge is stationary, as in this
situation, there is no magnetic force.

29.3 (c), (b), (a), (d). As Example 29.2 shows, we need to be
concerned only with the “effective length” of wire per-
pendicular to the magnetic field or, stated another way,
the length of the “magnetic field shadow” cast by the
wire. For (c), 4 m of wire is perpendicular to the field.
The short vertical pieces experience no magnetic force
because their currents are parallel to the field. When
the wire in (b) is broken into many short vertical and
horizontal segments alternately parallel and perpendicu-
lar to the field, we find a total of 3.5 m of horizontal seg-
ments perpendicular to the field and therefore experi-
encing a force. Next comes (a), with 3 m of wire
effectively perpendicular to the field. Only 2 m of the
wire in (d) experiences a force. The portion carrying
current from 2 m to 4 m does experience a force di-

W � FB � ds � (FB � v)dt � 0.

A+

To potentiometer

Blood
flow

Electrodes B–

S

Artery

N
h

+

v

B

Figure P29.71 Figure P29.72

that electrode A is positive, as shown. Does the sign of
the emf depend on whether the mobile ions in the
blood are predominantly positively or negatively
charged? Explain.

72. As illustrated in Figure P29.72, a particle of mass m hav-
ing positive charge q is initially traveling upward with
velocity v j. At the origin of coordinates it enters a re-
gion between and containing a uniform
magnetic field Bk directed perpendicular out of the
page. (a) What is the critical value of v such that the
particle just reaches Describe the path of the
particle under this condition, and predict its final veloc-
ity. (b) Specify the path of the particle and its final ve-
locity if v is less than the critical value. (c) Specify the
path of the particle and its final velocity if v is greater
than the critical value.

y � h ?

y � hy � 0

surements were taken with a current of 0.200 A and the
sample is made from a material having a charge-carrier
density of 1.00 � 1026/m3, what is the thickness of the
sample?

71. A heart surgeon monitors the flow rate of blood
through an artery using an electromagnetic flowmeter
(Fig. P29.71). Electrodes A and B make contact with
the outer surface of the blood vessel, which has interior
diameter 3.00 mm. (a) For a magnetic field magnitude
of 0.040 0 T, an emf of 160 �V appears between the
electrodes. Calculate the speed of the blood. (b) Verify
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All three of these commonplace items
use magnetism to store information. The
cassette can store more than an hour of
music, the floppy disk can hold the equiv-
alent of hundreds of pages of informa-
tion, and many hours of television pro-
gramming can be recorded on the
videotape. How do these devices work?
(George Semple)
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30.1 The Biot–Savart Law

30.2 The Magnetic Force Between
Two Parallel Conductors

30.3 Ampère’s Law
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30.5 Magnetic Flux

30.6 Gauss’s Law in Magnetism

30.7 Displacement Current and the
General Form of Ampère’s Law

30.8 (Optional) Magnetism in Matter

30.9 (Optional) The Magnetic Field of
the Earth
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n the preceding chapter, we discussed the magnetic force exerted on a charged
particle moving in a magnetic field. To complete the description of the mag-
netic interaction, this chapter deals with the origin of the magnetic field—mov-

ing charges. We begin by showing how to use the law of Biot and Savart to calcu-
late the magnetic field produced at some point in space by a small current
element. Using this formalism and the principle of superposition, we then calcu-
late the total magnetic field due to various current distributions. Next, we show
how to determine the force between two current-carrying conductors, which leads
to the definition of the ampere. We also introduce Ampère’s law, which is useful in
calculating the magnetic field of a highly symmetric configuration carrying a
steady current.

This chapter is also concerned with the complex processes that occur in mag-
netic materials. All magnetic effects in matter can be explained on the basis of
atomic magnetic moments, which arise both from the orbital motion of the elec-
trons and from an intrinsic property of the electrons known as spin.

THE BIOT – SAVART LAW
Shortly after Oersted’s discovery in 1819 that a compass needle is deflected by a
current-carrying conductor, Jean-Baptiste Biot (1774–1862) and Félix Savart
(1791–1841) performed quantitative experiments on the force exerted by an elec-
tric current on a nearby magnet. From their experimental results, Biot and Savart
arrived at a mathematical expression that gives the magnetic field at some point in
space in terms of the current that produces the field. That expression is based on
the following experimental observations for the magnetic field dB at a point P as-
sociated with a length element ds of a wire carrying a steady current I (Fig. 30.1):

• The vector dB is perpendicular both to ds (which points in the direction of the
current) and to the unit vector directed from ds to P.

• The magnitude of dB is inversely proportional to r 2, where r is the distance
from ds to P.

• The magnitude of dB is proportional to the current and to the magnitude ds of
the length element ds.

• The magnitude of dB is proportional to sin �, where � is the angle between the
vectors ds and .r̂

r̂

30.1

I

Properties of the magnetic field
created by an electric current

(a)

PdBout

r

θ

ds
P ′

dBin

I

×

r̂

(b)

P

ds

r̂

(c)

ds

P ′r̂

Figure 30.1 (a) The magnetic field dB at point P due to the current I through a length ele-
ment ds is given by the Biot–Savart law. The direction of the field is out of the page at P and into
the page at P�. (b) The cross product points out of the page when points toward P. 
(c) The cross product points into the page when points toward P�.r̂d s � r̂

r̂d s � r̂
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These observations are summarized in the mathematical formula known today as
the Biot–Savart law:

(30.1)

where �0 is a constant called the permeability of free space:

(30.2)

It is important to note that the field d B in Equation 30.1 is the field created by
the current in only a small length element ds of the conductor. To find the total
magnetic field B created at some point by a current of finite size, we must sum up
contributions from all current elements Ids that make up the current. That is, we
must evaluate B by integrating Equation 30.1:

(30.3)

where the integral is taken over the entire current distribution. This expression
must be handled with special care because the integrand is a cross product and
therefore a vector quantity. We shall see one case of such an integration in Exam-
ple 30.1.

Although we developed the Biot–Savart law for a current-carrying wire, it is
also valid for a current consisting of charges flowing through space, such as the
electron beam in a television set. In that case, ds represents the length of a small
segment of space in which the charges flow.

Interesting similarities exist between the Biot–Savart law for magnetism 
and Coulomb’s law for electrostatics. The current element produces a magnetic
field, whereas a point charge produces an electric field. Furthermore, the magni-
tude of the magnetic field varies as the inverse square of the distance from the 
current element, as does the electric field due to a point charge. However, the 
directions of the two fields are quite different. The electric field created by a 
point charge is radial, but the magnetic field created by a current element is per-
pendicular to both the length element ds and the unit vector , as described by
the cross product in Equation 30.1. Hence, if the conductor lies in the plane of
the page, as shown in Figure 30.1, dB points out of the page at P and into the page
at P �.

Another difference between electric and magnetic fields is related to the
source of the field. An electric field is established by an isolated electric charge.
The Biot–Savart law gives the magnetic field of an isolated current element at
some point, but such an isolated current element cannot exist the way an isolated
electric charge can. A current element must be part of an extended current distrib-
ution because we must have a complete circuit in order for charges to flow. Thus,
the Biot–Savart law is only the first step in a calculation of a magnetic field; it must
be followed by an integration over the current distribution.

In the examples that follow, it is important to recognize that the magnetic
field determined in these calculations is the field created by a current-carry-
ing conductor. This field is not to be confused with any additional fields that may
be present outside the conductor due to other sources, such as a bar magnet
placed nearby.

r̂

B �
�0I
4�

 � ds � r̂
r 2

�0 � 4� � 10�7 T�m/A

d B �
�0

4�
 
I ds � r̂

r 2 Biot–Savart law

Permeability of free space
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Magnetic Field Surrounding a Thin, Straight ConductorEXAMPLE 30.1
an expression in which the only variable is �. We can now ob-
tain the magnitude of the magnetic field at point P by inte-
grating Equation (4) over all elements, subtending angles
ranging from �1 to �2 as defined in Figure 30.2b:

(30.4)

We can use this result to find the magnetic field of any
straight current-carrying wire if we know the geometry and
hence the angles �1 and �2 . Consider the special case of an
infinitely long, straight wire. If we let the wire in Figure 30.2b
become infinitely long, we see that �1 � 0 and �2 � � for
length elements ranging between positions x � � 	 and x �

 	. Because (cos �1 � cos �2) � (cos 0 � cos �) � 2, Equa-
tion 30.4 becomes

(30.5)

Equations 30.4 and 30.5 both show that the magnitude of

B �
�0I
2�a

B �
�0I
4�a

 ��2

�1

 sin � d� �
�0I
4�a

 (cos �1 � cos �2)

Consider a thin, straight wire carrying a constant current I
and placed along the x axis as shown in Figure 30.2. Deter-
mine the magnitude and direction of the magnetic field at
point P due to this current.

Solution From the Biot–Savart law, we expect that the
magnitude of the field is proportional to the current in the
wire and decreases as the distance a from the wire to point P
increases. We start by considering a length element ds lo-
cated a distance r from P. The direction of the magnetic field
at point P due to the current in this element is out of the
page because ds � is out of the page. In fact, since all of
the current elements I ds lie in the plane of the page, they all
produce a magnetic field directed out of the page at point P.
Thus, we have the direction of the magnetic field at point P,
and we need only find the magnitude.

Taking the origin at O and letting point P be along the
positive y axis, with k being a unit vector pointing out of the
page, we see that

where, from Chapter 3, represents the magnitude of
ds � Because is a unit vector, the unit of the cross prod-
uct is simply the unit of ds, which is length. Substitution into
Equation 30.1 gives

Because all current elements produce a magnetic field in the
k direction, let us restrict our attention to the magnitude of
the field due to one current element, which is

(1)

To integrate this expression, we must relate the variables �, x,
and r. One approach is to express x and r in terms of �. From
the geometry in Figure 30.2a, we have

(2)

Because tan from the right triangle in Figure
30.2a (the negative sign is necessary because ds is located at a
negative value of x), we have

Taking the derivative of this expression gives 

(3)

Substitution of Equations (2) and (3) into Equation (1) gives

(4) dB �
�0I
4�

 
a csc2 � sin � d�

a2 csc2 �
�

�0I
4�a

 sin � d�

dx � a csc2 � d�

x � �a cot �

� � a/(�x)

r �
a

sin �
� a csc �

dB �
�0I
4�

 
dx sin �

r 2

dB � (dB)k �
�0 I
4�

 
dx sin �

r 2  k

r̂r̂.
�ds � r̂ �

ds � r̂ � k � ds � r̂ � � k(dx sin �)

r̂

(a)

O
x

ds

I

θ
r̂

r a

Pds  = dx

x

(b)

θ1

P

θ2θ
θ

y

Figure 30.2 (a) A thin, straight wire carrying a current I. The
magnetic field at point P due to the current in each element ds of
the wire is out of the page, so the net field at point P is also out of
the page. (b) The angles �1 and �2 , used for determining the net
field. When the wire is infinitely long, �1 � 0 and �2 � 180°.
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The result of Example 30.1 is important because a current in the form of a
long, straight wire occurs often. Figure 30.3 is a three-dimensional view of the
magnetic field surrounding a long, straight current-carrying wire. Because of the
symmetry of the wire, the magnetic field lines are circles concentric with the wire
and lie in planes perpendicular to the wire. The magnitude of B is constant on any
circle of radius a and is given by Equation 30.5. A convenient rule for determining
the direction of B is to grasp the wire with the right hand, positioning the thumb
along the direction of the current. The four fingers wrap in the direction of the
magnetic field.

the magnetic field is proportional to the current and de-
creases with increasing distance from the wire, as we ex-
pected. Notice that Equation 30.5 has the same mathematical
form as the expression for the magnitude of the electric field
due to a long charged wire (see Eq. 24.7).

Exercise Calculate the magnitude of the magnetic field 
4.0 cm from an infinitely long, straight wire carrying a cur-
rent of 5.0 A.

Answer 2.5 � 10�5 T.

a

I

Figure 30.3 The right-hand rule for determining the di-
rection of the magnetic field surrounding a long, straight
wire carrying a current. Note that the magnetic field lines
form circles around the wire.

Magnetic Field Due to a Curved Wire SegmentEXAMPLE 30.2
Calculate the magnetic field at point O for the current-carry-
ing wire segment shown in Figure 30.4. The wire consists of
two straight portions and a circular arc of radius R , which
subtends an angle �. The arrowheads on the wire indicate the
direction of the current.

Solution The magnetic field at O due to the current in
the straight segments AA� and CC� is zero because ds is paral-
lel to along these paths; this means that ds � Each
length element ds along path AC is at the same distance R
from O, and the current in each contributes a field element
dB directed into the page at O. Furthermore, at every point
on AC , ds is perpendicular to hence, Using
this information and Equation 30.1, we can find the magni-
tude of the field at O due to the current in an element of
length ds:

dB �
�0 I
4�

 
ds
R2

� ds � r̂ � � ds.r̂;

r̂ � 0.r̂
ds

θO

A

r̂

C

I
C ′

A ′

R

R

Figure 30.4 The magnetic field at O due to the current in the
curved segment AC is into the page. The contribution to the field at
O due to the current in the two straight segments is zero.
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Magnetic Field on the Axis of a Circular Current LoopEXAMPLE 30.3

(at x � 0) (30.8)

which is consistent with the result of the exercise in Example
30.2.

It is also interesting to determine the behavior of the mag-
netic field far from the loop—that is, when x is much greater
than R . In this case, we can neglect the term R 2 in the de-
nominator of Equation 30.7 and obtain

(for (30.9)

Because the magnitude of the magnetic moment � of the
loop is defined as the product of current and loop area (see
Eq. 29.10)—� � I(�R 2) for our circular loop—we can ex-
press Equation 30.9 as

(30.10)

This result is similar in form to the expression for the electric
field due to an electric dipole, (see ExampleE � ke(2qa/y3)

B �
�0

2�
 

�

x3

x W R)B �
�0IR2

2x3

B �
�0I
2R

Consider a circular wire loop of radius R located in the yz
plane and carrying a steady current I, as shown in Figure
30.5. Calculate the magnetic field at an axial point P a dis-
tance x from the center of the loop.

Solution In this situation, note that every length element
ds is perpendicular to the vector at the location of the ele-
ment. Thus, for any element, sin 90° � ds.
Furthermore, all length elements around the loop are at the
same distance r from P, where Hence, the mag-
nitude of dB due to the current in any length element ds is

The direction of dB is perpendicular to the plane formed by
and ds, as shown in Figure 30.5. We can resolve this vector

into a component dBx along the x axis and a component dBy
perpendicular to the x axis. When the components dBy are
summed over all elements around the loop, the resultant
component is zero. That is, by symmetry the current in any
element on one side of the loop sets up a perpendicular com-
ponent of dB that cancels the perpendicular component set
up by the current through the element diametrically opposite
it. Therefore, the resultant field at P must be along the x axis and
we can find it by integrating the components 
That is, where

and we must take the integral over the entire loop. Because �,
x, and R are constants for all elements of the loop and be-
cause cos we obtain

(30.7)

where we have used the fact that (the circumfer-
ence of the loop).

To find the magnetic field at the center of the loop, we set
x � 0 in Equation 30.7. At this special point, therefore,

ds � 2�R�

�0IR2

2(x2 
 R2)3/2Bx �
�0IR

4�(x2 
 R2)3/2  �ds �

� � R /(x2 
 R2)1/2,

Bx � � dB cos � �
�0I
4�

 � 
ds cos �
x2 
 R2

B � Bx i,
dBx � dB cos �.

r̂

dB �
�0I
4�

 
� ds � r̂ �

r 2 �
�0I
4�

 
ds

(x2 
 R2)

r 2 � x2 
 R2.

ds � r̂ � (ds)(1)
r̂

Because I and R are constants, we can easily integrate this ex-
pression over the curved path AC :

(30.6)

where we have used the fact that with � measured ins � R�

�0I
4�R

 �B �
�0I

4�R2  � ds �
�0I

4�R2  s �

radians. The direction of B is into the page at O because
is into the page for every length element.

Exercise A circular wire loop of radius R carries a current I.
What is the magnitude of the magnetic field at its center?

Answer �0I/2R .

ds � r̂

O

R

θ

ds

y

z

I

I

r̂

r

x
θ

P
xdBx

dBy
dB

Figure 30.5 Geometry for calculating the magnetic field at a
point P lying on the axis of a current loop. By symmetry, the total
field B is along this axis.
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(a) (b) (c)

S

N

I
S

N

Figure 30.6 (a) Magnetic field lines surrounding a current loop. (b) Magnetic field lines surrounding a current loop, displayed with iron
filings (Education Development Center, Newton, MA). (c) Magnetic field lines surrounding a bar magnet. Note the similarity between this line
pattern and that of a current loop.

23.6), where is the electric dipole moment as de-
fined in Equation 26.16.

The pattern of the magnetic field lines for a circular cur-
rent loop is shown in Figure 30.6a. For clarity, the lines are

2qa � p drawn for only one plane—one that contains the axis of the
loop. Note that the field-line pattern is axially symmetric and
looks like the pattern around a bar magnet, shown in Figure
30.6c.

2

1

B2

�

a

I1

I2

F1

a

THE MAGNETIC FORCE BETWEEN TWO
PARALLEL CONDUCTORS

In Chapter 29 we described the magnetic force that acts on a current-carrying con-
ductor placed in an external magnetic field. Because a current in a conductor sets
up its own magnetic field, it is easy to understand that two current-carrying con-
ductors exert magnetic forces on each other. As we shall see, such forces can be
used as the basis for defining the ampere and the coulomb.

Consider two long, straight, parallel wires separated by a distance a and carry-
ing currents I1 and I2 in the same direction, as illustrated in Figure 30.7. We can
determine the force exerted on one wire due to the magnetic field set up by the
other wire. Wire 2, which carries a current I2 , creates a magnetic field B2 at the lo-
cation of wire 1. The direction of B2 is perpendicular to wire 1, as shown in Figure
30.7. According to Equation 29.3, the magnetic force on a length � of wire 1 is

� Because � is perpendicular to B2 in this situation, the magnitude
of F1 is Because the magnitude of B2 is given by Equation 30.5, we see
that

(30.11)

The direction of F1 is toward wire 2 because � � B2 is in that direction. If the field
set up at wire 2 by wire 1 is calculated, the force F2 acting on wire 2 is found to be
equal in magnitude and opposite in direction to F1 . This is what we expect be-

F1 � I1�B2 � I1�� �0I2

2�a � �
�0I1I2

2�a
 �

F1 � I1�B 2 .
� B2.F1 � I1

30.2

Figure 30.7 Two parallel wires
that each carry a steady current ex-
ert a force on each other. The field
B2 due to the current in wire 2 ex-
erts a force of magnitude

on wire 1. The force is
attractive if the currents are paral-
lel (as shown) and repulsive if the
currents are antiparallel.

F 1 � I 1 �B2 

In deriving Equations 30.11 and 30.12, we assumed that both wires are long
compared with their separation distance. In fact, only one wire needs to be long.
The equations accurately describe the forces exerted on each other by a long wire
and a straight parallel wire of limited length .

For and in Figure 30.7, which is true: (a) (b) or 
(c) 

A loose spiral spring is hung from the ceiling, and a large current is sent through it. Do the
coils move closer together or farther apart?

Quick Quiz 30.2

F1 � F2 ?
F1 � F2/3,F1 � 3F2 ,I2 � 6 AI1 � 2 A

Quick Quiz 30.1

�
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cause Newton’s third law must be obeyed.1 When the currents are in opposite di-
rections (that is, when one of the currents is reversed in Fig. 30.7), the forces are
reversed and the wires repel each other. Hence, we find that parallel conductors
carrying currents in the same direction attract each other, and parallel con-
ductors carrying currents in opposite directions repel each other.

Because the magnitudes of the forces are the same on both wires, we denote
the magnitude of the magnetic force between the wires as simply FB . We can
rewrite this magnitude in terms of the force per unit length:

(30.12)

The force between two parallel wires is used to define the ampere as follows:

FB

�
�

�0I1I2

2�a

When the magnitude of the force per unit length between two long, parallel
wires that carry identical currents and are separated by 1 m is 2 � 10�7 N/m,
the current in each wire is defined to be 1 A.

The value 2 � 10�7 N/m is obtained from Equation 30.12 with and
m. Because this definition is based on a force, a mechanical measurement

can be used to standardize the ampere. For instance, the National Institute of
Standards and Technology uses an instrument called a current balance for primary
current measurements. The results are then used to standardize other, more con-
ventional instruments, such as ammeters.

The SI unit of charge, the coulomb, is defined in terms of the ampere:

a � 1
I1 � I2 � 1 A

When a conductor carries a steady current of 1 A, the quantity of charge that
flows through a cross-section of the conductor in 1 s is 1 C.

1 Although the total force exerted on wire 1 is equal in magnitude and opposite in direction to the to-
tal force exerted on wire 2, Newton’s third law does not apply when one considers two small elements
of the wires that are not exactly opposite each other. This apparent violation of Newton’s third law and
of the law of conservation of momentum is described in more advanced treatments on electricity and
magnetism.

Definition of the ampere

Definition of the coulomb

web
Visit http://physics.nist.gov/cuu/Units/
ampere.html for more information.
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12.4

AMPÈRE’S LAW
Oersted’s 1819 discovery about deflected compass needles demonstrates that a
current-carrying conductor produces a magnetic field. Figure 30.8a shows how this
effect can be demonstrated in the classroom. Several compass needles are placed
in a horizontal plane near a long vertical wire. When no current is present in the
wire, all the needles point in the same direction (that of the Earth’s magnetic
field), as expected. When the wire carries a strong, steady current, the needles all
deflect in a direction tangent to the circle, as shown in Figure 30.8b. These obser-
vations demonstrate that the direction of the magnetic field produced by the cur-
rent in the wire is consistent with the right-hand rule described in Figure 30.3.
When the current is reversed, the needles in Figure 30.8b also reverse.

Because the compass needles point in the direction of B, we conclude that the
lines of B form circles around the wire, as discussed in the preceding section. By
symmetry, the magnitude of B is the same everywhere on a circular path centered
on the wire and lying in a plane perpendicular to the wire. By varying the current
and distance a from the wire, we find that B is proportional to the current and in-
versely proportional to the distance from the wire, as Equation 30.5 describes.

Now let us evaluate the product B � ds for a small length element ds on the cir-
cular path defined by the compass needles, and sum the products for all elements
over the closed circular path. Along this path, the vectors ds and B are parallel at
each point (see Fig. 30.8b), so B � ds � B ds. Furthermore, the magnitude of B is
constant on this circle and is given by Equation 30.5. Therefore, the sum of the
products B ds over the closed path, which is equivalent to the line integral of
B � ds, is

where is the circumference of the circular path. Although this result
was calculated for the special case of a circular path surrounding a wire, it holds

�ds � 2�r

�B � ds � B �ds �
�0I
2�r

 (2�r) � �0I

30.3

Andre-Marie Ampère
(1775– 1836) Ampère, a Frenchman,
is credited with the discovery of elec-
tromagnetism — the relationship be-
tween electric currents and magnetic
fields. Ampère’s genius, particularly in
mathematics, became evident by the
time he was 12 years old; his personal
life, however, was filled with tragedy.
His father, a wealthy city official, was
guillotined during the French Revolu-
tion, and his wife died young, in 1803.
Ampère died at the age of 61 of pneu-
monia. His judgment of his life is clear
from the epitaph he chose for his
gravestone: Tandem Felix (Happy at
Last). (AIP Emilio Segre Visual Archive)

(a) (b)

I  =  0

I

ds

B

Figure 30.8 (a) When no current is present in the wire, all compass needles point in the same
direction (toward the Earth’s north pole). (b) When the wire carries a strong current, the com-
pass needles deflect in a direction tangent to the circle, which is the direction of the magnetic
field created by the current. (c) Circular magnetic field lines surrounding a current-carrying con-
ductor, displayed with iron filings.

(c)
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for a closed path of any shape surrounding a current that exists in an unbroken cir-
cuit. The general case, known as Ampère’s law, can be stated as follows:

The line integral of B �ds around any closed path equals �0I, where I is the total
continuous current passing through any surface bounded by the closed path.

(30.13)�B � ds � �0IAmpère’s law

Ampère’s law describes the creation of magnetic fields by all continuous cur-
rent configurations, but at our mathematical level it is useful only for calculating
the magnetic field of current configurations having a high degree of symmetry. Its
use is similar to that of Gauss’s law in calculating electric fields for highly symmet-
ric charge distributions.

Rank the magnitudes of for the closed paths in Figure 30.9, from least to greatest.�B � ds

Quick Quiz 30.3

Rank the magnitudes of for the closed paths in Figure 30.10, from least to greatest.�B � ds

Quick Quiz 30.4

×

1 A
5 A

b

a

d

c

2 A

a

b

c

d

Figure 30.9 Four closed paths around three current-
carrying wires.

Figure 30.10 Several closed paths near a single 
current-carrying wire.
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The Magnetic Field Created by a Long Current-Carrying WireEXAMPLE 30.4
by circle 2 must equal the ratio of the area �r 2 enclosed by
circle 2 to the cross-sectional area �R 2 of the wire:2

Following the same procedure as for circle 1, we apply Am-
père’s law to circle 2:

(for r � R) (30.15)

This result is similar in form to the expression for the electric
field inside a uniformly charged sphere (see Example 24.5).
The magnitude of the magnetic field versus r for this configu-
ration is plotted in Figure 30.12. Note that inside the wire, 
B : 0 as r : 0. Note also that Equations 30.14 and 30.15 give
the same value of the magnetic field at r � R , demonstrating
that the magnetic field is continuous at the surface of the
wire.

B � � �0 I0

2�R 2 �r

�B � ds � B(2�r) � �0 I � �0� r 2

R 2  I0�

 I �
r 2

R 2  I0

I
I0

�
�r 2

�R 2

A long, straight wire of radius R carries a steady current I0
that is uniformly distributed through the cross-section of the
wire (Fig. 30.11). Calculate the magnetic field a distance r
from the center of the wire in the regions and 

Solution For the case, we should get the same result
we obtained in Example 30.1, in which we applied the
Biot–Savart law to the same situation. Let us choose for our
path of integration circle 1 in Figure 30.11. From symmetry,
B must be constant in magnitude and parallel to ds at every
point on this circle. Because the total current passing
through the plane of the circle is I0, Ampère’s law gives

(for r � R) (30.14)

which is identical in form to Equation 30.5. Note how much
easier it is to use Ampère’s law than to use the Biot–Savart
law. This is often the case in highly symmetric situations.

Now consider the interior of the wire, where r � R. Here
the current I passing through the plane of circle 2 is less than
the total current I0 . Because the current is uniform over the
cross-section of the wire, the fraction of the current enclosed

B �
�0 I0

2�r

�B � ds � B�ds � B(2�r) � �0 I0

r � R

r � R.r � R

2 Another way to look at this problem is to see that the current enclosed by circle 2 must equal the
product of the current density and the area �r 2 of this circle.J � I0/�R 2

2
R

r

1 I0

ds R
r

B ∝ 1/r

B ∝ r

B

Figure 30.11 A long, straight wire of radius R carrying a steady
current I0 uniformly distributed across the cross-section of the wire.
The magnetic field at any point can be calculated from Ampère’s law
using a circular path of radius r, concentric with the wire.

Figure 30.12 Magnitude of the magnetic field versus r for the
wire shown in Figure 30.11. The field is proportional to r inside the
wire and varies as 1/r outside the wire.

The Magnetic Field Created by a ToroidEXAMPLE 30.5
ing N closely spaced turns of wire, calculate the magnetic
field in the region occupied by the torus, a distance r from
the center.

A device called a toroid (Fig. 30.13) is often used to create an
almost uniform magnetic field in some enclosed area. The
device consists of a conducting wire wrapped around a ring
(a torus) made of a nonconducting material. For a toroid hav-
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Magnetic Field Created by an Infinite Current SheetEXAMPLE 30.6
the electric field due to an infinite sheet of charge does not
depend on distance from the sheet. Thus, we might expect a
similar result here for the magnetic field.

To evaluate the line integral in Ampère’s law, let us take a
rectangular path through the sheet, as shown in Figure 30.14.
The rectangle has dimensions � and w , with the sides of
length � parallel to the sheet surface. The net current passing
through the plane of the rectangle is Js�. We apply Ampère’s
law over the rectangle and note that the two sides of length w
do not contribute to the line integral because the component
of B along the direction of these paths is zero. By symmetry,
we can argue that the magnetic field is constant over the
sides of length � because every point on the infinitely large
sheet is equivalent, and hence the field should not vary from
point to point. The only choices of field direction that are
reasonable for the symmetry are perpendicular or parallel to
the sheet, and a perpendicular field would pass through the
current, which is inconsistent with the Biot–Savart law. As-
suming a field that is constant in magnitude and parallel to
the plane of the sheet, we obtain

This result shows that the magnetic field is independent of distance
from the current sheet, as we suspected.

B � �0 
Js

2

 2B� � �0 Js � 

�B � ds � �0 I � �0 Js �

So far we have imagined currents through wires of small
cross-section. Let us now consider an example in which a cur-
rent exists in an extended object. A thin, infinitely large sheet
lying in the yz plane carries a current of linear current density
Js . The current is in the y direction, and Js represents the cur-
rent per unit length measured along the z axis. Find the mag-
netic field near the sheet.

Solution This situation brings to mind similar calculations
involving Gauss’s law (see Example 24.8). You may recall that

Solution To calculate this field, we must evaluate 
over the circle of radius r in Figure 30.13. By symmetry, we
see that the magnitude of the field is constant on this circle
and tangent to it, so Furthermore, note thatB � ds � B ds.

�B � ds the circular closed path surrounds N loops of wire, each of
which carries a current I. Therefore, the right side of Equa-
tion 30.13 is �0NI in this case.

Ampère’s law applied to the circle gives

(30.16)

This result shows that B varies as 1/r and hence is nonuni-
form in the region occupied by the torus. However, if r is very
large compared with the cross-sectional radius of the torus,
then the field is approximately uniform inside the torus.

For an ideal toroid, in which the turns are closely spaced,
the external magnetic field is zero. This can be seen by not-
ing that the net current passing through any circular path ly-
ing outside the toroid (including the region of the “hole in
the doughnut”) is zero. Therefore, from Ampère’s law we
find that in the regions exterior to the torus.B � 0

B �
�0NI
2�r

�B � ds � B �ds � B(2�r) � �0NI

�

w

x

z

Js(out of page)

B

B

B

r

a

ds

I

I

Figure 30.13 A toroid consisting of many turns of wire. If the
turns are closely spaced, the magnetic field in the interior of the
torus (the gold-shaded region) is tangent to the dashed circle and
varies as 1/r. The field outside the toroid is zero. The dimension a is
the cross-sectional radius of the torus.

Figure 30.14 End view of an infinite current sheet lying in the yz
plane, where the current is in the y direction (out of the page). This
view shows the direction of B on both sides of the sheet.
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Is a net force acting on the current loop in Example 30.7? A net torque?

THE MAGNETIC FIELD OF A SOLENOID
A solenoid is a long wire wound in the form of a helix. With this configuration, a
reasonably uniform magnetic field can be produced in the space surrounded by
the turns of wire—which we shall call the interior of the solenoid—when the sole-
noid carries a current. When the turns are closely spaced, each can be approxi-
mated as a circular loop, and the net magnetic field is the vector sum of the fields
resulting from all the turns.

Figure 30.16 shows the magnetic field lines surrounding a loosely wound sole-
noid. Note that the field lines in the interior are nearly parallel to one another, are
uniformly distributed, and are close together, indicating that the field in this space
is uniform and strong. The field lines between current elements on two adjacent
turns tend to cancel each other because the field vectors from the two elements
are in opposite directions. The field at exterior points such as P is weak because
the field due to current elements on the right-hand portion of a turn tends to can-
cel the field due to current elements on the left-hand portion.

30.4

Quick Quiz 30.5

The Magnetic Force on a Current SegmentEXAMPLE 30.7
consider the force exerted by wire 1 on a small segment ds of
wire 2 by using Equation 29.4. This force is given by

where and B is the magnetic field cre-
ated by the current in wire 1 at the position of ds. From Am-
père’s law, the field at a distance x from wire 1 (see Eq.
30.14) is

where the unit vector � k is used to indicate that the field 
at ds points into the page. Because wire 2 is along the x axis,
ds � dx i, and we find that

Integrating over the limits x � a to x � a 
 b gives

The force points in the positive y direction, as indicated by
the unit vector j and as shown in Figure 30.15.

Exercise What are the magnitude and direction of the
force exerted on the bottom wire of length b?

Answer The force has the same magnitude as the force on
wire 2 but is directed downward.

�0 I1I2

2�
 ln�1 


b
a � jFB �

�0 I1I2

2�
 ln x�

a

a
b
 j �

dFB �
�0 I1I2

2�x
 [ i � (� k)]dx �

�0 I1I2

2�
 
dx
x

 j

B �
�0 I1

2�x
 (� k)

I � I2dFB � I ds � B,

Wire 1 in Figure 30.15 is oriented along the y axis and carries
a steady current I1 . A rectangular loop located to the right of
the wire and in the xy plane carries a current I2 . Find the
magnetic force exerted by wire 1 on the top wire of length b
in the loop, labeled “Wire 2” in the figure.

Solution You may be tempted to use Equation 30.12 to
obtain the force exerted on a small segment of length dx of
wire 2. However, this equation applies only to two parallel
wires and cannot be used here. The correct approach is to

Wire 1 Wire 2

×

y

×

×

×

×

×

×

×

×

×

×

×
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×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

I1 x

I2

ds

ba

FB

Figure 30.15

P

Exterior

Interior

Figure 30.16 The magnetic field
lines for a loosely wound solenoid.
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If the turns are closely spaced and the solenoid is of finite length, the mag-
netic field lines are as shown in Figure 30.17a. This field line distribution is similar
to that surrounding a bar magnet (see Fig. 30.17b). Hence, one end of the sole-
noid behaves like the north pole of a magnet, and the opposite end behaves like
the south pole. As the length of the solenoid increases, the interior field becomes
more uniform and the exterior field becomes weaker. An ideal solenoid is ap-
proached when the turns are closely spaced and the length is much greater than
the radius of the turns. In this case, the external field is zero, and the interior field
is uniform over a great volume.

S

N

Figure 30.17 (a) Magnetic field lines for a tightly wound solenoid of finite length, carrying a
steady current. The field in the interior space is nearly uniform and strong. Note that the field
lines resemble those of a bar magnet, meaning that the solenoid effectively has north and south
poles. (b) The magnetic field pattern of a bar magnet, displayed with small iron filings on a sheet
of paper.

3

2

4

1 �

w

B

×
×
×
×
×
×
×
×
×
×
×

Figure 30.18 Cross-sectional view of an ideal solenoid,
where the interior magnetic field is uniform and the ex-
terior field is zero. Ampère’s law applied to the red
dashed path can be used to calculate the magnitude of
the interior field.

A technician studies the scan of a
patient’s head. The scan was ob-
tained using a medical diagnostic
technique known as magnetic reso-
nance imaging (MRI). This instru-
ment makes use of strong magnetic
fields produced by superconduct-
ing solenoids.

(a) (b)
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We can use Ampère’s law to obtain an expression for the interior magnetic
field in an ideal solenoid. Figure 30.18 shows a longitudinal cross-section of part of
such a solenoid carrying a current I. Because the solenoid is ideal, B in the inte-
rior space is uniform and parallel to the axis, and B in the exterior space is zero.
Consider the rectangular path of length � and width w shown in Figure 30.18. We
can apply Ampère’s law to this path by evaluating the integral of over each
side of the rectangle. The contribution along side 3 is zero because in this
region. The contributions from sides 2 and 4 are both zero because B is perpen-
dicular to ds along these paths. Side 1 gives a contribution B� to the integral be-
cause along this path B is uniform and parallel to ds. The integral over the closed
rectangular path is therefore

The right side of Ampère’s law involves the total current passing through the
area bounded by the path of integration. In this case, the total current through
the rectangular path equals the current through each turn multiplied by the num-
ber of turns. If N is the number of turns in the length �, the total current through
the rectangle is NI. Therefore, Ampère’s law applied to this path gives

(30.17)

where is the number of turns per unit length.
We also could obtain this result by reconsidering the magnetic field of a toroid

(see Example 30.5). If the radius r of the torus in Figure 30.13 containing N turns
is much greater than the toroid’s cross-sectional radius a, a short section of the
toroid approximates a solenoid for which In this limit, Equation 30.16
agrees with Equation 30.17.

Equation 30.17 is valid only for points near the center (that is, far from the
ends) of a very long solenoid. As you might expect, the field near each end is
smaller than the value given by Equation 30.17. At the very end of a long solenoid,
the magnitude of the field is one-half the magnitude at the center.

MAGNETIC FLUX
The flux associated with a magnetic field is defined in a manner similar to that
used to define electric flux (see Eq. 24.3). Consider an element of area dA on an
arbitrarily shaped surface, as shown in Figure 30.19. If the magnetic field at this el-
ement is B, the magnetic flux through the element is where dA is a vector
that is perpendicular to the surface and has a magnitude equal to the area dA.
Hence, the total magnetic flux 
B through the surface is

(30.18)
B � �B � dA

B � dA,
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n � N/2�r.

n � N/�

B � �0 
N
�

 I � �0nI

�B � ds � B� � �0NI

�B � ds � �
path 1

B � ds � B �
path 1

ds � B�

B � 0
B � ds

Magnetic field inside a solenoid

Definition of magnetic flux

web
For a more detailed discussion of the
magnetic field along the axis of a solenoid,
visit www.saunderscollege.com/physics/

12.5

QuickLab
Wrap a few turns of wire around a
compass, essentially putting the com-
pass inside a solenoid. Hold the ends
of the wire to the two terminals of a
flashlight battery. What happens to
the compass? Is the effect as strong
when the compass is outside the turns
of wire?
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Consider the special case of a plane of area A in a uniform field B that makes
an angle � with dA. The magnetic flux through the plane in this case is

(30.19)

If the magnetic field is parallel to the plane, as in Figure 30.20a, then � � 90° and
the flux is zero. If the field is perpendicular to the plane, as in Figure 30.20b, then
� � 0 and the flux is BA (the maximum value).

The unit of flux is the which is defined as a weber (Wb); 1 
1 T �m2.

Wb �T�m2,


B � BA cos �

Magnetic Flux Through a Rectangular LoopEXAMPLE 30.8

The factor 1/r indicates that the field varies over the loop,
and Figure 30.21 shows that the field is directed into the
page. Because B is parallel to dA at any point within the loop,
the magnetic flux through an area element dA is

(Because B is not uniform but depends on r, it cannot be re-
moved from the integral.)

To integrate, we first express the area element (the tan re-
gion in Fig. 30.21) as Because r is now the only
variable in the integral, we have

Exercise Apply the series expansion formula for ln(1 
 x)
(see Appendix B.5) to this equation to show that it gives a
reasonable result when the loop is far from the wire relative
to the loop dimensions (in other words, when 

Answer 
B : 0.

c W a).

�0 Ib
2�

 ln�1 

a
c � �

�0 Ib
2�

 ln� a 
 c
c � �


B �
�0 Ib
2�

 �a
c

c
 
dr
r

�
�0 Ib
2�

 ln r �
c

a
c

dA � b dr.


B � �B dA � � �0 I
2�r

 dA

B �
�0 I
2�r

A rectangular loop of width a and length b is located near a
long wire carrying a current I (Fig. 30.21). The distance be-
tween the wire and the closest side of the loop is c . The wire
is parallel to the long side of the loop. Find the total mag-
netic flux through the loop due to the current in the wire.

Solution From Equation 30.14, we know that the magni-
tude of the magnetic field created by the wire at a distance r
from the wire is

Figure 30.19 The magnetic flux
through an area element dA is

cos �, where dA is a
vector perpendicular to the sur-
face.

B � d A � BdA

B

d A θ

(a) (b)

B

dA

B

dA

Figure 30.20 Magnetic flux through a plane lying in a magnetic field. (a) The flux through
the plane is zero when the magnetic field is parallel to the plane surface. (b) The flux through
the plane is a maximum when the magnetic field is perpendicular to the plane.

b
rI
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Figure 30.21 The magnetic field due to the wire carrying a cur-
rent I is not uniform over the rectangular loop.
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This statement is based on the experimental fact, mentioned in the opening of
Chapter 29, that isolated magnetic poles (monopoles) have never been de-
tected and perhaps do not exist. Nonetheless, scientists continue the search be-

GAUSS’S LAW IN MAGNETISM
In Chapter 24 we found that the electric flux through a closed surface surround-
ing a net charge is proportional to that charge (Gauss’s law). In other words, the
number of electric field lines leaving the surface depends only on the net charge
within it. This property is based on the fact that electric field lines originate and
terminate on electric charges.

The situation is quite different for magnetic fields, which are continuous and
form closed loops. In other words, magnetic field lines do not begin or end at any
point—as illustrated by the magnetic field lines of the bar magnet in Figure 30.22.
Note that for any closed surface, such as the one outlined by the dashed red line
in Figure 30.22, the number of lines entering the surface equals the number leav-
ing the surface; thus, the net magnetic flux is zero. In contrast, for a closed surface
surrounding one charge of an electric dipole (Fig. 30.23), the net electric flux is
not zero.

Gauss’s law in magnetism states that

30.6

the net magnetic flux through any closed surface is always zero:

(30.20)�B � dA � 0 Gauss’s law for magnetism

12.5

N
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+

Figure 30.22 The magnetic field
lines of a bar magnet form closed
loops. Note that the net magnetic
flux through the closed surface
(dashed red line) surrounding one
of the poles (or any other closed
surface) is zero.

Figure 30.23 The electric field
lines surrounding an electric di-
pole begin on the positive charge
and terminate on the negative
charge. The electric flux through a
closed surface surrounding one of
the charges is not zero.
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cause certain theories that are otherwise successful in explaining fundamental
physical behavior suggest the possible existence of monopoles.

DISPLACEMENT CURRENT AND THE GENERAL
FORM OF AMPÈRE’S LAW

We have seen that charges in motion produce magnetic fields. When a current-
carrying conductor has high symmetry, we can use Ampère’s law to calculate the mag-
netic field it creates. In Equation 30.13, the line integral is over any
closed path through which the conduction current passes, and the conduction cur-
rent is defined by the expression (In this section we use the term conduc-
tion current to refer to the current carried by the wire, to distinguish it from a new type
of current that we shall introduce shortly.) We now show that Ampère’s law in this
form is valid only if any electric fields present are constant in time. Maxwell
recognized this limitation and modified Ampère’s law to include time-varying electric
fields.

We can understand the problem by considering a capacitor that is being
charged as illustrated in Figure 30.24. When a conduction current is present, the
charge on the positive plate changes but no conduction current passes across the gap be-
tween the plates. Now consider the two surfaces S1 and S2 in Figure 30.24, bounded
by the same path P. Ampère’s law states that around this path must equal
�0I, where I is the total current through any surface bounded by the path P.

When the path P is considered as bounding S1 , is �0I because the con-
duction current passes through S1 . When the path is considered as bounding S2 ,
however, because no conduction current passes through S2 . Thus, we ar-
rive at a contradictory situation that arises from the discontinuity of the current! Max-
well solved this problem by postulating an additional term on the right side of Equa-
tion 30.13, which includes a factor called the displacement current Id , defined as3

(30.21)

where �0 is the permittivity of free space (see Section 23.3) and is the
electric flux (see Eq. 24.3).

As the capacitor is being charged (or discharged), the changing electric field
between the plates may be considered equivalent to a current that acts as a contin-
uation of the conduction current in the wire. When the expression for the dis-
placement current given by Equation 30.21 is added to the conduction current on
the right side of Ampère’s law, the difficulty represented in Figure 30.24 is re-
solved. No matter which surface bounded by the path P is chosen, either conduc-
tion current or displacement current passes through it. With this new term Id , 
we can express the general form of Ampère’s law (sometimes called the
Ampère–Maxwell law) as4

(30.22)�B � d s � �0(I 
 Id) � �0I 
 �0�0 
d
E

dt


E � �E � dA

Id � �0 
d
E

dt

�B � ds � 0

�B � ds

�B � ds

I � dq/dt.

�B � ds � �0I,
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Ampère–Maxwell law

3 Displacement in this context does not have the meaning it does in Chapter 2. Despite the inaccurate
implications, the word is historically entrenched in the language of physics, so we continue to use it.
4 Strictly speaking, this expression is valid only in a vacuum. If a magnetic material is present, one must
change �0 and �0 on the right-hand side of Equation 30.22 to the permeability �m and permittivity �
characteristic of the material. Alternatively, one may include a magnetizing current Im on the righthand
side of Equation 30.22 to make Ampère’s law fully general. On a microscopic scale, Im is as real as I.

Displacement current

12.9

Path P

A

–Q

S1

S2

Q

I

Figure 30.24 Two surfaces S1
and S2 near the plate of a capacitor
are bounded by the same path P.
The conduction current in the 
wire passes only through S1 . 
This leads to a contradiction in
Ampère’s law that is resolved 
only if one postulates a displace-
ment current through S2 .
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We can understand the meaning of this expression by referring to Figure 30.25.
The electric flux through surface S2 is where A is the area of
the capacitor plates and E is the magnitude of the uniform electric field between
the plates. If Q is the charge on the plates at any instant, then (see
Section 26.2). Therefore, the electric flux through S2 is simply

Hence, the displacement current through S2 is

(30.23)

That is, the displacement current through S2 is precisely equal to the conduction
current I through S1 !

By considering surface S2 , we can identify the displacement current as the
source of the magnetic field on the surface boundary. The displacement current
has its physical origin in the time-varying electric field. The central point of this
formalism, then, is that

Id � �0 
d
E

dt
�

dQ
dt


E � EA �
Q
�0

E � Q /�0A


E � �E � dA � EA,

magnetic fields are produced both by conduction currents and by time-varying
electric fields.

Displacement Current in a CapacitorEXAMPLE 30.9
the capacitor is to find the displacement current:

The displacement current varies sinusoidally with time and
has a maximum value of 4.52 A.

(4.52 A) cos(1.88 � 104t) �

 � (8.00 � 10�6  F) 
d
dt

 [(30.0 V) sin(1.88 � 104t)]

Id �
dQ
dt

�
d
dt

 (C �V ) � C 
d
dt

 (�V ) 

Q � C �VA sinusoidally varying voltage is applied across an 8.00-�F ca-
pacitor. The frequency of the voltage is 3.00 kHz, and the
voltage amplitude is 30.0 V. Find the displacement current
between the plates of the capacitor.

Solution The angular frequency of the source, from Equa-
tion 13.6, is � � 2�f � 2�(3.00 � 103 Hz) � 1.88 � 104 s�1.
Hence, the voltage across the capacitor in terms of t is

We can use Equation 30.23 and the fact that the charge on

�V � �Vmax sin �t � (30.0 V) sin(1.88 � 104t)

This result was a remarkable example of theoretical work by Maxwell, and it con-
tributed to major advances in the understanding of electromagnetism.

What is the displacement current for a fully charged 3-�F capacitor?

Quick Quiz 30.6

E–Q

S2
S1

Q

II

Figure 30.25 Because it exists only in the
wires attached to the capacitor plates, the
conduction current passes
through S1 but not through S2 . Only the dis-
placement current passes
through S2 . The two currents must be equal
for continuity.

I d � �0 d 
E /dt

I � dQ /dt
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Optional Section

MAGNETISM IN MATTER
The magnetic field produced by a current in a coil of wire gives us a hint as to
what causes certain materials to exhibit strong magnetic properties. Earlier we
found that a coil like the one shown in Figure 30.17 has a north pole and a south
pole. In general, any current loop has a magnetic field and thus has a magnetic di-
pole moment, including the atomic-level current loops described in some models
of the atom. Thus, the magnetic moments in a magnetized substance may be de-
scribed as arising from these atomic-level current loops. For the Bohr model of the
atom, these current loops are associated with the movement of electrons around
the nucleus in circular orbits. In addition, a magnetic moment is intrinsic to elec-
trons, protons, neutrons, and other particles; it arises from a property called spin.

The Magnetic Moments of Atoms

It is instructive to begin our discussion with a classical model of the atom in which
electrons move in circular orbits around the much more massive nucleus. In this
model, an orbiting electron constitutes a tiny current loop (because it is a moving
charge), and the magnetic moment of the electron is associated with this orbital mo-
tion. Although this model has many deficiencies, its predictions are in good agree-
ment with the correct theory, which is expressed in terms of quantum physics.

Consider an electron moving with constant speed v in a circular orbit of radius
r about the nucleus, as shown in Figure 30.26. Because the electron travels a dis-
tance of 2�r (the circumference of the circle) in a time T, its orbital speed is

The current I associated with this orbiting electron is its charge e di-
vided by T. Using and we have

The magnetic moment associated with this current loop is where 
is the area enclosed by the orbit. Therefore,

(30.24)

Because the magnitude of the orbital angular momentum of the electron is
(Eq. 11.16 with � � 90°), the magnetic moment can be written as

(30.25)

This result demonstrates that the magnetic moment of the electron is propor-
tional to its orbital angular momentum. Note that because the electron is nega-
tively charged, the vectors � and L point in opposite directions. Both vectors are
perpendicular to the plane of the orbit, as indicated in Figure 30.26.

A fundamental outcome of quantum physics is that orbital angular momen-
tum is quantized and is equal to multiples of where
h is Planck’s constant. The smallest nonzero value of the electron’s magnetic mo-
ment resulting from its orbital motion is

(30.26)

We shall see in Chapter 42 how expressions such as Equation 30.26 arise.

� � !2 
e

2me
 �

� � h/2� � 1.05 � 10�34 J �s,
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� � IA � � ev
2�r ��r 2 � 1

2evr

A � �r 2� � IA,

I �
e
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�
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�
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2�r

� � v/r,T � 2�/�
v � 2�r /T.
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Orbital magnetic moment

Angular momentum is quantized

r

µ

L

Figure 30.26 An electron mov-
ing in a circular orbit of radius r
has an angular momentum L in
one direction and a magnetic mo-
ment � in the opposite direction.
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Because all substances contain electrons, you may wonder why not all sub-
stances are magnetic. The main reason is that in most substances, the magnetic
moment of one electron in an atom is canceled by that of another electron orbit-
ing in the opposite direction. The net result is that, for most materials, the mag-
netic effect produced by the orbital motion of the electrons is either zero or
very small.

In addition to its orbital magnetic moment, an electron has an intrinsic prop-
erty called spin that also contributes to its magnetic moment. In this regard, the
electron can be viewed as spinning about its axis while it orbits the nucleus, as
shown in Figure 30.27. (Warning: This classical description should not be taken lit-
erally because spin arises from relativistic dynamics that must be incorporated into
a quantum-mechanical analysis.) The magnitude of the angular momentum S as-
sociated with spin is of the same order of magnitude as the angular momentum L
due to the orbital motion. The magnitude of the spin angular momentum pre-
dicted by quantum theory is

The magnetic moment characteristically associated with the spin of an electron has
the value

(30.27)

This combination of constants is called the Bohr magneton:

(30.28)

Thus, atomic magnetic moments can be expressed as multiples of the Bohr mag-
neton. (Note that 1 J/T � 1 A � m2.)

In atoms containing many electrons, the electrons usually pair up with their
spins opposite each other; thus, the spin magnetic moments cancel. However,
atoms containing an odd number of electrons must have at least one unpaired
electron and therefore some spin magnetic moment. The total magnetic moment
of an atom is the vector sum of the orbital and spin magnetic moments, and a few
examples are given in Table 30.1. Note that helium and neon have zero moments
because their individual spin and orbital moments cancel.

The nucleus of an atom also has a magnetic moment associated with its con-
stituent protons and neutrons. However, the magnetic moment of a proton or
neutron is much smaller than that of an electron and can usually be neglected. We
can understand this by inspecting Equation 30.28 and replacing the mass of the
electron with the mass of a proton or a neutron. Because the masses of the proton
and neutron are much greater than that of the electron, their magnetic moments
are on the order of 103 times smaller than that of the electron.

Magnetization Vector and Magnetic Field Strength

The magnetic state of a substance is described by a quantity called the magnetiza-
tion vector M. The magnitude of this vector is defined as the magnetic mo-
ment per unit volume of the substance. As you might expect, the total magnetic
field B at a point within a substance depends on both the applied (external) field
B0 and the magnetization of the substance. 

To understand the problems involved in measuring the total magnetic field B
in such situations, consider this: Scientists use small probes that utilize the Hall ef-

�B �
e�

2me
� 9.27 � 10�24 J/T

� spin �
e�

2me

S �
!3
2

 �
Spin angular momentum

Bohr magneton

TABLE 30.1
Magnetic Moments of Some
Atoms and Ions

Atom Magnetic Moment
or Ion (10�24 J/T)

H 9.27
He 0
Ne 0
Ce3
 19.8
Yb3
 37.1

spinµµ

Figure 30.27 Classical model of
a spinning electron. This model
gives an incorrect magnitude for
the magnetic moment, incorrect
quantum numbers, and too many
degrees of freedom.

Magnetization vector M
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fect (see Section 29.6) to measure magnetic fields. What would such a probe read
if it were positioned inside the solenoid mentioned in the QuickLab on page 951
when you inserted the compass? Because the compass is a magnetic material, the
probe would measure a total magnetic field B that is the sum of the solenoid (ex-
ternal) field B0 and the (magnetization) field Bm due to the compass. This tells us
that we need a way to distinguish between magnetic fields originating from cur-
rents and those originating from magnetic materials. Consider a region in which a
magnetic field B0 is produced by a current-carrying conductor. If we now fill that
region with a magnetic substance, the total magnetic field B in the region is

where Bm is the field produced by the magnetic substance. We can
express this contribution in terms of the magnetization vector of the substance as

hence, the total magnetic field in the region becomes

(30.29)

When analyzing magnetic fields that arise from magnetization, it is convenient
to introduce a field quantity, called the magnetic field strength H within the
substance. The magnetic field strength represents the effect of the conduction
currents in wires on a substance. To emphasize the distinction between the field
strength H and the field B, the latter is often called the magnetic flux density or the
magnetic induction. The magnetic field strength is a vector defined by the relation-
ship Thus, Equation 30.29 can be written

(30.30)

The quantities H and M have the same units. In SI units, because M is magnetic
moment per unit volume, the units are (ampere)(meter)2/(meter)3, or amperes
per meter.

To better understand these expressions, consider the torus region of a toroid
that carries a current I. If this region is a vacuum, M � 0 (because no magnetic
material is present), the total magnetic field is that arising from the current alone,
and Because in the torus region, where n is the num-
ber of turns per unit length of the toroid, or

(30.31)

In this case, the magnetic field B in the torus region is due only to the current in
the windings of the toroid.

If the torus is now made of some substance and the current I is kept constant, H
in the torus region remains unchanged (because it depends on the current only)
and has magnitude nI. The total field B, however, is different from that when the
torus region was a vacuum. From Equation 30.30, we see that part of B arises from
the term �0H associated with the current in the toroid, and part arises from the
term �0M due to the magnetization of the substance of which the torus is made.

Classification of Magnetic Substances

Substances can be classified as belonging to one of three categories, depending on
their magnetic properties. Paramagnetic and ferromagnetic materials are those
made of atoms that have permanent magnetic moments. Diamagnetic materials
are those made of atoms that do not have permanent magnetic moments.

For paramagnetic and diamagnetic substances, the magnetization vector M is
proportional to the magnetic field strength H. For these substances placed in an
external magnetic field, we can write

(30.32)M � �H

H � nI

H � B0/�0 � �0nI/�0 ,
B0 � �0nIB � B0 � �0H.

B � �0(H 
 M)

H � B0/�0 � (B/�0) � M.

B � B0 
 �0M

Bm � �0M;

B � B0 
 Bm ,

Oxygen, a paramagnetic substance,
is attracted to a magnetic field. The
liquid oxygen in this photograph is
suspended between the poles of
the magnet.

Magnetic field strength H
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where � (Greek letter chi) is a dimensionless factor called the magnetic suscepti-
bility. For paramagnetic substances, � is positive and M is in the same direction 
as H. For diamagnetic substances, � is negative and M is opposite H. (It is im-
portant to note that this linear relationship between M and H does not apply to
ferromagnetic substances.) The susceptibilities of some substances are given in
Table 30.2.

Substituting Equation 30.32 for M into Equation 30.30 gives

or

(30.33)

where the constant �m is called the magnetic permeability of the substance and
is related to the susceptibility by

(30.34)

Substances may be classified in terms of how their magnetic permeability �m
compares with �0 (the permeability of free space), as follows:

Because � is very small for paramagnetic and diamagnetic substances (see Table
30.2), �m is nearly equal to �0 for these substances. For ferromagnetic substances,
however, �m is typically several thousand times greater than �0 (meaning that � is
very great for ferromagnetic substances). 

Although Equation 30.33 provides a simple relationship between B and H, we
must interpret it with care when dealing with ferromagnetic substances. As men-
tioned earlier, M is not a linear function of H for ferromagnetic substances. This is
because the value of �m is not only a characteristic of the ferromagnetic substance
but also depends on the previous state of the substance and on the process it un-
derwent as it moved from its previous state to its present one. We shall investigate
this more deeply after the following example.

 Diamagnetic  �m � �0

Paramagnetic  �m � �0

�m � �0(1 
 �)

B � �mH

B � �0(H 
 M) � �0(H 
 �H) � �0(1 
 �)H

TABLE 30.2 Magnetic Susceptibilities of Some Paramagnetic and
Diamagnetic Substances at 300 K

Paramagnetic Diamagnetic
Substance � Substance �

Aluminum 2.3 � 10�5 Bismuth � 1.66 � 10�5

Calcium 1.9 � 10�5 Copper � 9.8 � 10�6

Chromium 2.7 � 10�4 Diamond � 2.2 � 10�5

Lithium 2.1 � 10�5 Gold � 3.6 � 10�5

Magnesium 1.2 � 10�5 Lead � 1.7 � 10�5

Niobium 2.6 � 10�4 Mercury � 2.9 � 10�5

Oxygen 2.1 � 10�6 Nitrogen � 5.0 � 10�9

Platinum 2.9 � 10�4 Silver � 2.6 � 10�5

Tungsten 6.8 � 10�5 Silicon � 4.2 � 10�6

Magnetic susceptibility �

Magnetic permeability �m
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A current in a solenoid having air in the interior creates a magnetic field De-
scribe qualitatively what happens to the magnitude of B as (a) aluminum, (b) copper, and
(c) iron are placed in the interior.

Ferromagnetism

A small number of crystalline substances in which the atoms have permanent mag-
netic moments exhibit strong magnetic effects called ferromagnetism. Some ex-
amples of ferromagnetic substances are iron, cobalt, nickel, gadolinium, and dys-
prosium. These substances contain atomic magnetic moments that tend to align
parallel to each other even in a weak external magnetic field. Once the moments
are aligned, the substance remains magnetized after the external field is removed.
This permanent alignment is due to a strong coupling between neighboring mo-
ments, a coupling that can be understood only in quantum-mechanical terms.

All ferromagnetic materials are made up of microscopic regions called do-
mains, regions within which all magnetic moments are aligned. These domains
have volumes of about 10�12 to 10�8 m3 and contain 1017 to 1021 atoms. The
boundaries between the various domains having different orientations are called
domain walls. In an unmagnetized sample, the domains are randomly oriented
so that the net magnetic moment is zero, as shown in Figure 30.28a. When the
sample is placed in an external magnetic field, the magnetic moments of the
atoms tend to align with the field, which results in a magnetized sample, as in Fig-
ure 30.28b. Observations show that domains initially oriented along the external
field grow larger at the expense of the less favorably oriented domains. When the
external field is removed, the sample may retain a net magnetization in the direc-
tion of the original field. At ordinary temperatures, thermal agitation is not suffi-
cient to disrupt this preferred orientation of magnetic moments.

A typical experimental arrangement that is used to measure the magnetic
properties of a ferromagnetic material consists of a torus made of the material
wound with N turns of wire, as shown in Figure 30.29, where the windings are rep-
resented in black and are referred to as the primary coil . This apparatus is some-
times referred to as a Rowland ring. A secondary coil (the red wires in Fig. 30.29)
connected to a galvanometer is used to measure the total magnetic flux through
the torus. The magnetic field B in the torus is measured by increasing the current
in the toroid from zero to I . As the current changes, the magnetic flux through

B � �0H.

Quick Quiz 30.7

An Iron-Filled ToroidEXAMPLE 30.10

This value of B is 5 000 times the value in the absence of iron!

Exercise Determine the magnitude of the magnetization
vector inside the iron torus.

Answer .M � 1.5 � 106 A/m

1.88 T � 5 000�4� � 10�7 
T �m

A ��300 
A � turns

m � �

B � �m H � 5 000�0H A toroid wound with 60.0 turns/m of wire carries a current of
5.00 A. The torus is iron, which has a magnetic permeability
of �m � 5 000�0 under the given conditions. Find H and B
inside the iron.

Solution Using Equations 30.31 and 30.33, we obtain

300 
A � turns

m
H � nI � �60.0 

turns
m �(5.00 A) �

(b)
B0

(a)

Figure 30.28 (a) Random orien-
tation of atomic magnetic moments
in an unmagnetized substance. 
(b) When an external field B0 is
applied, the atomic magnetic mo-
ments tend to align with the field,
giving the sample a net magnetiza-
tion vector M.
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the secondary coil changes by an amount BA, where A is the cross-sectional area of
the toroid. As we shall find in Chapter 31, because of this changing flux, an emf
that is proportional to the rate of change in magnetic flux is induced in the sec-
ondary coil. If the galvanometer is properly calibrated, a value for B correspond-
ing to any value of the current in the primary coil can be obtained. The magnetic
field B is measured first in the absence of the torus and then with the torus in
place. The magnetic properties of the torus material are then obtained from a
comparison of the two measurements.

Now consider a torus made of unmagnetized iron. If the current in the pri-
mary coil is increased from zero to some value I, the magnitude of the magnetic
field strength H increases linearly with I according to the expression Fur-
thermore, the magnitude of the total field B also increases with increasing current,
as shown by the curve from point O to point a in Figure 30.30. At point O, the do-
mains in the iron are randomly oriented, corresponding to As the increas-
ing current in the primary coil causes the external field B0 to increase, the do-
mains become more aligned until all of them are nearly aligned at point a. At this
point the iron core is approaching saturation, which is the condition in which all
domains in the iron are aligned.

Next, suppose that the current is reduced to zero, and the external field is
consequently eliminated. The B versus H curve, called a magnetization curve,
now follows the path ab in Figure 30.30. Note that at point b, B is not zero even
though the external field is The reason is that the iron is now magnetized
due to the alignment of a large number of its domains (that is, B � Bm). At this
point, the iron is said to have a remanent magnetization.

If the current in the primary coil is reversed so that the direction of the exter-
nal magnetic field is reversed, the domains reorient until the sample is again un-
magnetized at point c, where B � 0. An increase in the reverse current causes the
iron to be magnetized in the opposite direction, approaching saturation at point d
in Figure 30.30. A similar sequence of events occurs as the current is reduced to
zero and then increased in the original (positive) direction. In this case the mag-
netization curve follows the path def. If the current is increased sufficiently, the
magnetization curve returns to point a, where the sample again has its maximum
magnetization.

The effect just described, called magnetic hysteresis, shows that the magneti-
zation of a ferromagnetic substance depends on the history of the substance as
well as on the magnitude of the applied field. (The word hysteresis means “lagging
behind.”) It is often said that a ferromagnetic substance has a “memory” because it
remains magnetized after the external field is removed. The closed loop in Figure
30.30 is referred to as a hysteresis loop. Its shape and size depend on the proper-

B0 � 0.

Bm � 0.

H � nI.

QuickLab
You’ve probably done this experi-
ment before. Magnetize a nail by re-
peatedly dragging it across a bar mag-
net. Test the strength of the nail’s
magnetic field by picking up some pa-
per clips. Now hit the nail several
times with a hammer, and again test
the strength of its magnetism. Ex-
plain what happens in terms of do-
mains in the steel of the nail.

R

G

Sε

B

H

a

b

c

d

e

fO

Figure 30.29 A toroidal winding
arrangement used to measure the
magnetic properties of a material.
The torus is made of the material
under study, and the circuit con-
taining the galvanometer measures
the magnetic flux.

Figure 30.30 Magnetization curve for a ferromagnetic
material.

962 C H A P T E R  3 0 Sources of the Magnetic Field

ties of the ferromagnetic substance and on the strength of the maximum applied
field. The hysteresis loop for “hard” ferromagnetic materials is characteristically
wide like the one shown in Figure 30.31a, corresponding to a large remanent mag-
netization. Such materials cannot be easily demagnetized by an external field.
“Soft” ferromagnetic materials, such as iron, have a very narrow hysteresis loop
and a small remanent magnetization (Fig. 30.31b.) Such materials are easily mag-
netized and demagnetized. An ideal soft ferromagnet would exhibit no hysteresis
and hence would have no remanent magnetization. A ferromagnetic substance
can be demagnetized by being carried through successive hysteresis loops, due to a
decreasing applied magnetic field, as shown in Figure 30.32.

Which material would make a better permanent magnet, one whose hysteresis loop looks
like Figure 30.31a or one whose loop looks like Figure 30.31b?

The magnetization curve is useful for another reason: The area enclosed by
the magnetization curve represents the work required to take the material
through the hysteresis cycle. The energy acquired by the material in the magne-
tization process originates from the source of the external field—that is, the emf
in the circuit of the toroidal coil. When the magnetization cycle is repeated, dissi-
pative processes within the material due to realignment of the domains result in a
transformation of magnetic energy into internal energy, which is evidenced by an
increase in the temperature of the substance. For this reason, devices subjected to
alternating fields (such as ac adapters for cell phones, power tools, and so on) use
cores made of soft ferromagnetic substances, which have narrow hysteresis loops
and correspondingly little energy loss per cycle.

Magnetic computer disks store information by alternating the direction of B
for portions of a thin layer of ferromagnetic material. Floppy disks have the layer
on a circular sheet of plastic. Hard disks have several rigid platters with magnetic
coatings on each side. Audio tapes and videotapes work the same way as floppy
disks except that the ferromagnetic material is on a very long strip of plastic. Tiny
coils of wire in a recording head are placed close to the magnetic material (which
is moving rapidly past the head). Varying the current through the coils creates a
magnetic field that magnetizes the recording material. To retrieve the informa-
tion, the magnetized material is moved past a playback coil. The changing magnet-
ism of the material induces a current in the coil, as we shall discuss in Chapter 31.
This current is then amplified by audio or video equipment, or it is processed by
computer circuitry.

Quick Quiz 30.8

B

H

(a)

B

H

(b)

B

H

Figure 30.31 Hysteresis loops for (a) a hard ferromagnetic material and (b) a soft ferromag-
netic material.

Figure 30.32 Demagnetizing a
ferromagnetic material by carrying
it through successive hysteresis
loops.
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Paramagnetism

Paramagnetic substances have a small but positive magnetic susceptibility
resulting from the presence of atoms (or ions) that have permanent

magnetic moments. These moments interact only weakly with each other and are
randomly oriented in the absence of an external magnetic field. When a paramag-
netic substance is placed in an external magnetic field, its atomic moments tend to
line up with the field. However, this alignment process must compete with thermal
motion, which tends to randomize the magnetic moment orientations.

Pierre Curie (1859–1906) and others since him have found experimentally
that, under a wide range of conditions, the magnetization of a paramagnetic sub-
stance is proportional to the applied magnetic field and inversely proportional to
the absolute temperature:

(30.35)

This relationship is known as Curie’s law after its discoverer, and the constant C
is called Curie’s constant. The law shows that when B0 � 0, the magnetization is
zero, corresponding to a random orientation of magnetic moments. As the ratio of
magnetic field to temperature becomes great, the magnetization approaches its
saturation value, corresponding to a complete alignment of its moments, and
Equation 30.35 is no longer valid.

When the temperature of a ferromagnetic substance reaches or exceeds a 
critical temperature called the Curie temperature, the substance loses its resid-
ual magnetization and becomes paramagnetic (Fig. 30.33). Below the Curie tem-
perature, the magnetic moments are aligned and the substance is ferromag-
netic. Above the Curie temperature, the thermal agitation is great enough to 
cause a random orientation of the moments, and the substance becomes para-
magnetic. Curie temperatures for several ferromagnetic substances are given in
Table 30.3.

Diamagnetism

When an external magnetic field is applied to a diamagnetic substance, a weak
magnetic moment is induced in the direction opposite the applied field. This
causes diamagnetic substances to be weakly repelled by a magnet. Although dia-
magnetism is present in all matter, its effects are much smaller than those of para-
magnetism or ferromagnetism, and are evident only when those other effects do
not exist.

We can attain some understanding of diamagnetism by considering a classical
model of two atomic electrons orbiting the nucleus in opposite directions but with
the same speed. The electrons remain in their circular orbits because of the attrac-
tive electrostatic force exerted by the positively charged nucleus. Because the mag-
netic moments of the two electrons are equal in magnitude and opposite in direc-
tion, they cancel each other, and the magnetic moment of the atom is zero. When
an external magnetic field is applied, the electrons experience an additional force

This added force combines with the electrostatic force to increase the or-
bital speed of the electron whose magnetic moment is antiparallel to the field and
to decrease the speed of the electron whose magnetic moment is parallel to the
field. As a result, the two magnetic moments of the electrons no longer cancel,
and the substance acquires a net magnetic moment that is opposite the applied
field.

qv � B.

M � C 
B0

T

(0 � � V 1)

web
Visit www.exploratorium.edu/snacks/
diamagnetism_www/index.html for an
experiment showing that grapes are
repelled by magnets!

TABLE 30.3
Curie Temperatures for
Several Ferromagnetic
Substances

Substance TCurie (K)

Iron 1 043
Cobalt 1 394
Nickel 631
Gadolinium 317
Fe2O3 893

Paramagnetic

Ferromagnetic

M

T
TCurie

Ms

0

Figure 30.33 Magnetization ver-
sus absolute temperature for a fer-
romagnetic substance. The mag-
netic moments are aligned below
the Curie temperature TCurie ,
where the substance is ferromag-
netic. The substance becomes para-
magnetic (magnetic moments un-
aligned) above TCurie .
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As you recall from Chapter 27, a superconductor is a substance in which the
electrical resistance is zero below some critical temperature. Certain types of su-
perconductors also exhibit perfect diamagnetism in the superconducting state. As
a result, an applied magnetic field is expelled by the superconductor so that the
field is zero in its interior. This phenomenon of flux expulsion is known as the
Meissner effect. If a permanent magnet is brought near a superconductor, 
the two objects repel each other. This is illustrated in Figure 30.34, which shows a
small permanent magnet levitated above a superconductor maintained at 77 K.

Saturation MagnetizationEXAMPLE 30.11
each atom contributes one Bohr magneton (due to one un-
paired spin) to the magnetic moment, we obtain

This is about one-half the experimentally determined satura-
tion magnetization for iron, which indicates that actually two
unpaired electron spins are present per atom.

8.0 � 105 A/m�

Ms � �8.6 � 1028 
atoms

m3 ��9.27 � 10�24 
A�m2

atom �

Estimate the saturation magnetization in a long cylinder of
iron, assuming one unpaired electron spin per atom.

Solution The saturation magnetization is obtained when
all the magnetic moments in the sample are aligned. If the
sample contains n atoms per unit volume, then the saturation
magnetization Ms has the value

where � is the magnetic moment per atom. Because the mo-
lar mass of iron is 55 g/mol and its density is 7.9 g/cm3, the
value of n for iron is 8.6 � 1028 atoms/m3. Assuming that

Ms � n�

Optional Section

THE MAGNETIC FIELD OF THE EARTH
When we speak of a compass magnet having a north pole and a south pole, we
should say more properly that it has a “north-seeking” pole and a “south-seeking”
pole. By this we mean that one pole of the magnet seeks, or points to, the north
geographic pole of the Earth. Because the north pole of a magnet is attracted to-
ward the north geographic pole of the Earth, we conclude that the Earth’s south
magnetic pole is located near the north geographic pole, and the Earth’s
north magnetic pole is located near the south geographic pole. In fact, the
configuration of the Earth’s magnetic field, pictured in Figure 30.35, is very much
like the one that would be achieved by burying a gigantic bar magnet deep in the
interior of the Earth.

30.9

web
For a more detailed description of the
unusual properties of superconductors,
visit www.saunderscollege.com/physics/

Figure 30.34 A small permanent mag-
net levitated above a disk of the supercon-
ductor YBa2Cu3O7 cooled to liquid nitro-
gen temperature (77 K).
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If a compass needle is suspended in bearings that allow it to rotate in the verti-
cal plane as well as in the horizontal plane, the needle is horizontal with respect to
the Earth’s surface only near the equator. As the compass is moved northward, the
needle rotates so that it points more and more toward the surface of the Earth. Fi-
nally, at a point near Hudson Bay in Canada, the north pole of the needle points
directly downward. This site, first found in 1832, is considered to be the location
of the south magnetic pole of the Earth. It is approximately 1 300 mi from the
Earth’s geographic North Pole, and its exact position varies slowly with time. Simi-
larly, the north magnetic pole of the Earth is about 1 200 mi away from the Earth’s
geographic South Pole.

Because of this distance between the north geographic and south magnetic
poles, it is only approximately correct to say that a compass needle points north.
The difference between true north, defined as the geographic North Pole, and
north indicated by a compass varies from point to point on the Earth, and the dif-
ference is referred to as magnetic declination. For example, along a line through
Florida and the Great Lakes, a compass indicates true north, whereas in Washing-
ton state, it aligns 25° east of true north.

QuickLab
A gold ring is very weakly repelled by
a magnet. To see this, suspend a 14-
or 18-karat gold ring on a long loop
of thread, as shown in (a). Gently tap
the ring and estimate its period of os-
cillation. Now bring the ring to rest,
letting it hang for a few moments so
that you can verify that it is not mov-
ing. Quickly bring a very strong mag-
net to within a few millimeters of the
ring, taking care not to bump it, as
shown in (b). Now pull the magnet
away. Repeat this action many times,
matching the oscillation period you
estimated earlier. This is just like
pushing a child on a swing. A small
force applied at the resonant fre-
quency results in a large-amplitude
oscillation. If you have a platinum
ring, you will be able to see a similar
effect except that platinum is weakly
attracted to a magnet because it is
paramagnetic.

(a) (b)

North
geographic

pole

South
magnetic

pole

Geographic
equator

South
geographic

pole

North
magnetic

pole

N

S

Magnetic equator

Figure 30.35 The Earth’s magnetic field lines. Note that a south magnetic pole is near the
north geographic pole, and a north magnetic pole is near the south geographic pole.

The north end of a compass needle points
to the south magnetic pole of the Earth.
The “north” compass direction varies from
true geographic north depending on the
magnetic declination at that point on the
Earth’s surface.
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If we wanted to cancel the Earth’s magnetic field by running an enormous current loop
around the equator, which way would the current have to flow: east to west or west to east?

Although the magnetic field pattern of the Earth is similar to the one that
would be set up by a bar magnet deep within the Earth, it is easy to understand
why the source of the Earth’s magnetic field cannot be large masses of perma-
nently magnetized material. The Earth does have large deposits of iron ore deep
beneath its surface, but the high temperatures in the Earth’s core prevent the iron
from retaining any permanent magnetization. Scientists consider it more likely
that the true source of the Earth’s magnetic field is charge-carrying convection
currents in the Earth’s core. Charged ions or electrons circulating in the liquid in-
terior could produce a magnetic field just as a current loop does. There is also
strong evidence that the magnitude of a planet’s magnetic field is related to the
planet’s rate of rotation. For example, Jupiter rotates faster than the Earth, and
space probes indicate that Jupiter’s magnetic field is stronger than ours. Venus, on
the other hand, rotates more slowly than the Earth, and its magnetic field is found
to be weaker. Investigation into the cause of the Earth’s magnetism is ongoing.

There is an interesting sidelight concerning the Earth’s magnetic field. It has
been found that the direction of the field has been reversed several times during
the last million years. Evidence for this is provided by basalt, a type of rock that
contains iron and that forms from material spewed forth by volcanic activity on the
ocean floor. As the lava cools, it solidifies and retains a picture of the Earth’s mag-
netic field direction. The rocks are dated by other means to provide a timeline for
these periodic reversals of the magnetic field.

SUMMARY

The Biot–Savart law says that the magnetic field dB at a point P due to a length
element ds that carries a steady current I is

(30.1)

where is the permeability of free space, r is the dis-
tance from the element to the point P , and r̂ is a unit vector pointing from ds to
point P. We find the total field at P by integrating this expression over the entire
current distribution.

The magnetic field at a distance a from a long, straight wire carrying an elec-
tric current I is

(30.5)

The field lines are circles concentric with the wire.
The magnetic force per unit length between two parallel wires separated by a

distance a and carrying currents I1 and I2 has a magnitude

(30.12)

The force is attractive if the currents are in the same direction and repulsive if
they are in opposite directions.

FB

�
�

�0I1I2

2�a

B �
�0I
2�a

�0 � 4� � 10�7 T �m/A

dB �
�0

4�
 
I ds � r̂

r 2

Quick Quiz 30.9
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Ampère’s law says that the line integral of around any closed path
equals �0I, where I is the total steady current passing through any surface
bounded by the closed path:

(30.13)

Using Ampère’s law, one finds that the fields inside a toroid and solenoid are

(30.16)

(30.17)

where N is the total number of turns.
The magnetic flux �B through a surface is defined by the surface integral

(30.18)

Gauss’s law of magnetism states that the net magnetic flux through any
closed surface is zero.

The general form of Ampère’s law, which is also called the Ampère-Maxwell
law, is

(30.22)

This law describes the fact that magnetic fields are produced both by conduction
currents and by changing electric fields.

�B � ds � �0I 
 �0�0 
d
E

dt


B � �B � dA

B � �0 
N
�

 I � �0nI  (solenoid)

B �
�0NI
2�r

  (toroid) 

�B � ds � �0I

B � ds

QUESTIONS

8. Is the magnetic field inside a toroid uniform? Explain.
9. Describe the similarities between Ampère’s law in mag-

netism and Gauss’s law in electrostatics.
10. A hollow copper tube carries a current along its length.

Why does B = 0 inside the tube? Is B nonzero outside the
tube?

11. Why is B nonzero outside a solenoid? Why does B � 0
outside a toroid? (Remember that the lines of B must
form closed paths.)

12. Describe the change in the magnetic field in the interior
of a solenoid carrying a steady current I (a) if the length
of the solenoid is doubled but the number of turns re-
mains the same and (b) if the number of turns is doubled
but the length remains the same.

13. A flat conducting loop is positioned in a uniform mag-
netic field directed along the x axis. For what orientation
of the loop is the flux through it a maximum? A mini-
mum?

14. What new concept does Maxwell’s general form of Am-
père’s law include?

15. Many loops of wire are wrapped around a nail and then
connected to a battery. Identify the source of M, of H,
and of B.

1. Is the magnetic field created by a current loop uniform?
Explain.

2. A current in a conductor produces a magnetic field that
can be calculated using the Biot–Savart law. Because cur-
rent is defined as the rate of flow of charge, what can you
conclude about the magnetic field produced by stationary
charges? What about that produced by moving charges?

3. Two parallel wires carry currents in opposite directions.
Describe the nature of the magnetic field created by the
two wires at points (a) between the wires and (b) outside
the wires, in a plane containing them.

4. Explain why two parallel wires carrying currents in oppo-
site directions repel each other.

5. When an electric circuit is being assembled, a common
practice is to twist together two wires carrying equal cur-
rents in opposite directions. Why does this technique re-
duce stray magnetic fields?

6. Is Ampère’s law valid for all closed paths surrounding a
conductor? Why is it not useful for calculating B for all
such paths?

7. Compare Ampère’s law with the Biot–Savart law. Which 
is more generally useful for calculating B for a current-
carrying conductor?
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16. A magnet attracts a piece of iron. The iron can then at-
tract another piece of iron. On the basis of domain align-
ment, explain what happens in each piece of iron.

17. You are stranded on a planet that does not have a mag-
netic field, with no test equipment. You have two bars of
iron in your possession; one is magnetized, and one is
not. How can you determine which is which?

18. Why does hitting a magnet with a hammer cause the mag-
netism to be reduced?

19. Is a nail attracted to either pole of a magnet? Explain
what is happening inside the nail when it is placed near
the magnet.

20. A Hindu ruler once suggested that he be entombed in a
magnetic coffin with the polarity arranged so that he
would be forever suspended between heaven and Earth.
Is such magnetic levitation possible? Discuss.

21. Why does M � 0 in a vacuum? What is the relationship
between B and H in a vacuum?

22. Explain why some atoms have permanent magnetic mo-
ments and others do not.

23. What factors contribute to the total magnetic moment of
an atom?

24. Why is the magnetic susceptibility of a diamagnetic sub-
stance negative?

25. Why can the effect of diamagnetism be neglected in a
paramagnetic substance?

26. Explain the significance of the Curie temperature for a
ferromagnetic substance.

27. Discuss the differences among ferromagnetic, paramag-
netic, and diamagnetic substances.

28. What is the difference between hard and soft ferromag-
netic materials?

29. Should the surface of a computer disk be made from a
hard or a soft ferromagnetic substance?

30. Explain why it is desirable to use hard ferromagnetic ma-
terials to make permanent magnets.

31. Would you expect the tape from a tape recorder to be at-
tracted to a magnet? (Try it, but not with a recording you
wish to save.)

32. Given only a strong magnet and a screwdriver, how would
you first magnetize and then demagnetize the screwdriver?

33. Figure Q30.33 shows two permanent magnets, each hav-
ing a hole through its center. Note that the upper magnet
is levitated above the lower one. (a) How does this occur?
(b) What purpose does the pencil serve? (c) What can
you say about the poles of the magnets on the basis of this
observation? (d) What do you suppose would happen if
the upper magnet were inverted?

Figure Q30.33 Magnetic levitation using two ceramic mag-
nets.

PROBLEMS

field at the center of the square. (b) If this conductor is
formed into a single circular turn and carries the same
current, what is the value of the magnetic field at the
center?

Section 30.1 The Biot – Savart Law
1. In Niels Bohr’s 1913 model of the hydrogen atom, 

an electron circles the proton at a distance of 
5.29 � 10�11 m with a speed of 2.19 � 106 m/s. Com-
pute the magnitude of the magnetic field that this mo-
tion produces at the location of the proton.

2. A current path shaped as shown in Figure P30.2 pro-
duces a magnetic field at P, the center of the arc. If the
arc subtends an angle of 30.0° and the radius of the arc
is 0.600 m, what are the magnitude and direction of the
field produced at P if the current is 3.00 A?

3. (a) A conductor in the shape of a square of edge length
� � 0.400 m carries a current I � 10.0 A (Fig. P30.3).
Calculate the magnitude and direction of the magnetic

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

I

P
30.0°

Figure P30.2
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4. Calculate the magnitude of the magnetic field at a point
100 cm from a long, thin conductor carrying a current
of 1.00 A.

5. Determine the magnetic field at a point P located a dis-
tance x from the corner of an infinitely long wire bent
at a right angle, as shown in Figure P30.5. The wire car-
ries a steady current I.

10. Consider a flat, circular current loop of radius R carry-
ing current I. Choose the x axis to be along the axis 
of the loop, with the origin at the center of the loop.
Graph the ratio of the magnitude of the magnetic 
field at coordinate x to that at the origin, for x � 0 to 
x � 5R . It may be helpful to use a programmable calcu-
lator or a computer to solve this problem.

11. Consider the current-carrying loop shown in Figure
P30.11, formed of radial lines and segments of circles
whose centers are at point P. Find the magnitude and
direction of B at P.

WEB

I

�

Figure P30.3

x

P

I

I

6. A wire carrying a current of 5.00 A is to be formed into
a circular loop of one turn. If the required value of the
magnetic field at the center of the loop is 10.0 �T, what
is the required radius?

7. A conductor consists of a circular loop of radius R �
0.100 m and two straight, long sections, as shown in Fig-
ure P30.7. The wire lies in the plane of the paper and
carries a current of I � 7.00 A. Determine the magni-
tude and direction of the magnetic field at the center of
the loop.

8. A conductor consists of a circular loop of radius R and
two straight, long sections, as shown in Figure P30.7.
The wire lies in the plane of the paper and carries a cur-
rent I. Determine the magnitude and direction of the
magnetic field at the center of the loop.

9. The segment of wire in Figure P30.9 carries a current of
I � 5.00 A, where the radius of the circular arc is R �
3.00 cm. Determine the magnitude and direction of the
magnetic field at the origin.

12. Determine the magnetic field (in terms of I, a, and d)
at the origin due to the current loop shown in Figure
P30.12.

13. The loop in Figure P30.13 carries a current I. Determine
the magnetic field at point A in terms of I, R, and L .

14. Three long, parallel conductors carry currents of I �
2.00 A. Figure P30.14 is an end view of the conductors,
with each current coming out of the page. If a �
1.00 cm, determine the magnitude and direction of the
magnetic field at points A, B, and C .

15. Two long, parallel conductors carry currents I1 �
3.00 A and I2 � 3.00 A, both directed into the page in

Figure P30.5

Figure P30.7 Problems 7 and 8.

Figure P30.9

Figure P30.11

I = 7.00 A

I

R

60°

b

a
P

I
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Figure P30.15. Determine the magnitude and direction
of the resultant magnetic field at P.

Section 30.2 The Magnetic Force Between 
Two Parallel Conductors

16. Two long, parallel conductors separated by 10.0 cm
carry currents in the same direction. The first wire car-
ries current I1 � 5.00 A, and the second carries I2 �
8.00 A. (a) What is the magnitude of the magnetic field
created by I1 and acting on I2 ? (b) What is the force per
unit length exerted on I2 by I1 ? (c) What is the magni-
tude of the magnetic field created by I2 at the location
of I1 ? (d) What is the force per unit length exerted by
I2 on I1 ?

17. In Figure P30.17, the current in the long, straight wire
is I1 � 5.00 A, and the wire lies in the plane of the rec-
tangular loop, which carries 10.0 A. The dimensions are
c � 0.100 m, a � 0.150 m, and � � 0.450 m. Find the
magnitude and direction of the net force exerted on
the loop by the magnetic field created by the wire.

18. The unit of magnetic flux is named for Wilhelm Weber.
The practical-size unit of magnetic field is named for
Johann Karl Friedrich Gauss. Both were scientists at
Göttingen, Germany. In addition to their individual ac-
complishments, they built a telegraph together in 1833.
It consisted of a battery and switch that were positioned
at one end of a transmission line 3 km long and oper-
ated an electromagnet at the other end. (Andre 
Ampère suggested electrical signaling in 1821; Samuel
Morse built a telegraph line between Baltimore and
Washington in 1844.) Suppose that Weber and Gauss’s
transmission line was as diagrammed in Figure P30.18.
Two long, parallel wires, each having a mass per unit
length of 40.0 g/m, are supported in a horizontal plane
by strings 6.00 cm long. When both wires carry the same
current I, the wires repel each other so that the angle �

Figure P30.12
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between the supporting strings is 16.0°. (a) Are the cur-
rents in the same direction or in opposite directions?
(b) Find the magnitude of the current.

2.00-A currents in opposite directions. The two wires
are 3.00 mm apart. Find the magnetic field 40.0 cm
away from the middle of the straight cord, in the plane
of the two wires. (c) At what distance is it one-tenth as
large? (d) The center wire in a coaxial cable carries cur-
rent 2.00 A in one direction, and the sheath around it
carries current 2.00 A in the opposite direction. What
magnetic field does the cable create at points outside?

23. The magnetic coils of a tokamak fusion reactor are 
in the shape of a toroid having an inner radius of 
0.700 m and an outer radius of 1.30 m. If the toroid has
900 turns of large-diameter wire, each of which carries a
current of 14.0 kA, find the magnitude of the magnetic
field inside the toroid (a) along the inner radius and
(b) along the outer radius.

24. A cylindrical conductor of radius carries a
current of along its length; this current is
uniformly distributed throughout the cross-section of
the conductor. (a) Calculate the magnetic field midway
along the radius of the wire (that is, at 
(b) Find the distance beyond the surface of the conduc-
tor at which the magnitude of the magnetic field has
the same value as the magnitude of the field at 

25. A packed bundle of 100 long, straight, insulated wires
forms a cylinder of radius R � 0.500 cm. (a) If each
wire carries 2.00 A, what are the magnitude and direc-
tion of the magnetic force per unit length acting on a
wire located 0.200 cm from the center of the bundle?
(b) Would a wire on the outer edge of the bundle expe-
rience a force greater or less than the value calculated
in part (a)?

26. Niobium metal becomes a superconductor when cooled
below 9 K. If superconductivity is destroyed when the
surface magnetic field exceeds 0.100 T, determine the
maximum current a 2.00-mm-diameter niobium wire
can carry and remain superconducting, in the absence
of any external magnetic field.

27. A long, cylindrical conductor of radius R carries a cur-
rent I, as shown in Figure P30.27. The current density J,
however, is not uniform over the cross-section of the

r � R/2.

r � R/2).

I � 2.50 A
R � 2.50 cm

WEB

WEB

20. A long, straight wire lies on a horizontal table and car-
ries a current of 1.20 �A. In a vacuum, a proton moves
parallel to the wire (opposite the current) with a con-
stant velocity of 2.30 � 104 m/s at a distance d above
the wire. Determine the value of d. You may ignore the
magnetic field due to the Earth.

21. Figure P30.21 is a cross-sectional view of a coaxial cable.
The center conductor is surrounded by a rubber layer,
which is surrounded by an outer conductor, which is
surrounded by another rubber layer. In a particular ap-
plication, the current in the inner conductor is 1.00 A
out of the page, and the current in the outer conductor
is 3.00 A into the page. Determine the magnitude and
direction of the magnetic field at points a and b.

22. The magnetic field 40.0 cm away from a long, straight
wire carrying current 2.00 A is 1.00 �T. (a) At what dis-
tance is it 0.100 �T? (b) At one instant, the two con-
ductors in a long household extension cord carry equal

Section 30.3 Ampère’s Law

19. Four long, parallel conductors carry equal currents of 
I � 5.00 A. Figure P30.19 is an end view of the conduc-
tors. The direction of the current is into the page at
points A and B (indicated by the crosses) and out of the
page at C and D (indicated by the dots). Calculate the
magnitude and direction of the magnetic field at point
P, located at the center of the square with an edge
length of 0.200 m.

ba
1.00 A

1 mm 1 mm 1 mm

3.00 A

. .
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×

×

×
×

×

×
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Figure P30.19

Figure P30.21
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conductor but is a function of the radius according to
where b is a constant. Find an expression for the

magnetic field B (a) at a distance and (b) at a
distance measured from the axis.

28. In Figure P30.28, both currents are in the negative x di-
rection. (a) Sketch the magnetic field pattern in the yz
plane. (b) At what distance d along the z axis is the
magnetic field a maximum?

r2 � R ,
r1 � R

J � br,

Section 30.5 Magnetic Flux
33. A cube of edge length � � 2.50 cm is positioned as

shown in Figure P30.33. A uniform magnetic field given
by exists throughout
the region. (a) Calculate the flux through the shaded
face. (b) What is the total flux through the six faces?

B � (5.00 i 
 4.00 j 
 3.00k) T

34. A solenoid 2.50 cm in diameter and 30.0 cm long has
300 turns and carries 12.0 A. (a) Calculate the flux
through the surface of a disk of radius 5.00 cm that is
positioned perpendicular to and centered on the axis of
the solenoid, as in Figure P30.34a. (b) Figure P30.34b
shows an enlarged end view of the same solenoid. Cal-
culate the flux through the blue area, which is defined
by an annulus that has an inner radius of 0.400 cm and
outer radius of 0.800 cm.

Section 30.4 The Magnetic Field of a Solenoid
29. What current is required in the windings of a long sole-

noid that has 1 000 turns uniformly distributed over a
length of 0.400 m, to produce at the center of the sole-
noid a magnetic field of magnitude 1.00 � 10�4 T?

30. A superconducting solenoid is meant to generate a
magnetic field of 10.0 T. (a) If the solenoid winding has
2 000 turns/m, what current is required? (b) What
force per unit length is exerted on the windings by this
magnetic field?

31. A solenoid of radius is made of a long
piece of wire of radius r � 2.00 mm, length � � 10.0 m

and resistivity � � 1.70 � 10�8 � � m. Find the
magnetic field at the center of the solenoid if the wire is
connected to a battery having an emf 

32. A single-turn square loop of wire with an edge length of
2.00 cm carries a clockwise current of 0.200 A. The loop
is inside a solenoid, with the plane of the loop perpen-
dicular to the magnetic field of the solenoid. The sole-
noid has 30 turns/cm and carries a clockwise current of
15.0 A. Find the force on each side of the loop and the
torque acting on the loop.

� � 20.0 V.

(� W R)

R � 5.00 cm

R
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35. Consider the hemispherical closed surface in Figure
P30.35. If the hemisphere is in a uniform magnetic field
that makes an angle � with the vertical, calculate the
magnetic flux (a) through the flat surface S1 and 
(b) through the hemispherical surface S2 .

quired if there are 470 turns of wire in the winding?
The thickness of the iron ring is small compared to 
10 cm, so the field in the material is nearly uniform.

41. A coil of 500 turns is wound on an iron ring (�m �
750�0) with a 20.0-cm mean radius and an 8.00-cm2

cross-sectional area. Calculate the magnetic flux 
B
in this Rowland ring when the current in the coil is
0.500 A.

42. A uniform ring with a radius of 2.00 cm and a total
charge of 6.00 �C rotates with a constant angular speed
of 4.00 rad/s around an axis perpendicular to the plane
of the ring and passing through its center. What is the
magnetic moment of the rotating ring?

43. Calculate the magnetic field strength H of a magnetized
substance in which the magnetization is 880 kA/m and
the magnetic field has a magnitude of 4.40 T.

44. At saturation, the alignment of spins in iron can con-
tribute as much as 2.00 T to the total magnetic field B .
If each electron contributes a magnetic moment of 
9.27 � 10�24 A � m2 (one Bohr magneton), how many
electrons per atom contribute to the saturated field of
iron? (Hint: Iron contains 8.50 � 1028 atoms/m3.)

45. (a) Show that Curie’s law can be stated in the following
way: The magnetic susceptibility of a paramagnetic sub-
stance is inversely proportional to the absolute tempera-
ture, according to � � C�0/T, where C is Curie’s con-
stant. (b) Evaluate Curie’s constant for chromium. 

(Optional)
Section 30.9 The Magnetic Field of the Earth

46. A circular coil of 5 turns and a diameter of 30.0 cm is
oriented in a vertical plane with its axis perpendicular
to the horizontal component of the Earth’s magnetic
field. A horizontal compass placed at the center of the
coil is made to deflect 45.0° from magnetic north by a
current of 0.600 A in the coil. (a) What is the horizontal
component of the Earth’s magnetic field? (b) The cur-
rent in the coil is switched off. A “dip needle” is a mag-
netic compass mounted so that it can rotate in a vert-
ical north-south plane. At this location a dip needle
makes an angle of 13.0° from the vertical. What is the
total magnitude of the Earth’s magnetic field at this 
location?

47. The magnetic moment of the Earth is approximately
8.00 � 1022 A � m2. (a) If this were caused by the com-
plete magnetization of a huge iron deposit, how many
unpaired electrons would this correspond to? (b) At
two unpaired electrons per iron atom, how many kilo-
grams of iron would this correspond to? (Iron has a
density of 7 900 kg/m3 and approximately 8.50 � 1028

atoms/m3.)

ADDITIONAL PROBLEMS

48. A lightning bolt may carry a current of 1.00 � 104 A for
a short period of time. What is the resultant magnetic

Section 30.6 Gauss’s Law in Magnetism
Section 30.7 Displacement Current and the 
General Form of Ampère’s Law

36. A 0.200-A current is charging a capacitor that has circu-
lar plates 10.0 cm in radius. If the plate separation is
4.00 mm, (a) what is the time rate of increase of electric
field between the plates? (b) What is the magnetic field
between the plates 5.00 cm from the center?

37. A 0.100-A current is charging a capacitor that has
square plates 5.00 cm on each side. If the plate separa-
tion is 4.00 mm, find (a) the time rate of change of
electric flux between the plates and (b) the displace-
ment current between the plates.

(Optional)
Section 30.8 Magnetism in Matter

38. In Bohr’s 1913 model of the hydrogen atom, the elec-
tron is in a circular orbit of radius 5.29 � 10�11 m, and
its speed is 2.19 � 106 m/s. (a) What is the magnitude
of the magnetic moment due to the electron’s motion?
(b) If the electron orbits counterclockwise in a horizon-
tal circle, what is the direction of this magnetic moment
vector?

39. A toroid with a mean radius of 20.0 cm and 630 turns
(see Fig. 30.29) is filled with powdered steel whose mag-
netic susceptibility � is 100. If the current in the wind-
ings is 3.00 A, find B (assumed uniform) inside the
toroid.

40. A magnetic field of 1.30 T is to be set up in an iron-core
toroid. The toroid has a mean radius of 10.0 cm and
magnetic permeability of 5 000�0 . What current is re-

Figure P30.35
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field 100 m from the bolt? Suppose that the bolt ex-
tends far above and below the point of observation.

49. The magnitude of the Earth’s magnetic field at either
pole is approximately 7.00 � 10�5 T. Suppose that the
field fades away, before its next reversal. Scouts, sailors,
and wire merchants around the world join together in a
program to replace the field. One plan is to use a cur-
rent loop around the equator, without relying on mag-
netization of any materials inside the Earth. Determine
the current that would generate such a field if this plan
were carried out. (Take the radius of the Earth as

50. Two parallel conductors carry current in opposite direc-
tions, as shown in Figure P30.50. One conductor carries a
current of 10.0 A. Point A is at the midpoint between the
wires, and point C is a distance d/2 to the right of the
10.0-A current. If cm and I is adjusted so that
the magnetic field at C is zero, find (a) the value of the
current I and (b) the value of the magnetic field at A.

d � 18.0

R E � 6.37 � 106 m.)

in the plane of the strip at a distance b away from the
strip.

54. For a research project, a student needs a solenoid that
produces an interior magnetic field of 0.030 0 T. She
decides to use a current of 1.00 A and a wire 0.500 mm
in diameter. She winds the solenoid in layers on an insu-
lating form 1.00 cm in diameter and 10.0 cm long. De-
termine the number of layers of wire she needs and the
total length of the wire.

55. A nonconducting ring with a radius of 10.0 cm is
uniformly charged with a total positive charge of 
10.0 �C. The ring rotates at a constant angular speed of
20.0 rad/s about an axis through its center, perpendicu-
lar to the plane of the ring. What is the magnitude of
the magnetic field on the axis of the ring, 5.00 cm from
its center?

56. A nonconducting ring of radius R is uniformly charged
with a total positive charge q. The ring rotates at a con-
stant angular speed � about an axis through its center,
perpendicular to the plane of the ring. What is the mag-
nitude of the magnetic field on the axis of the ring a
distance R/2 from its center?

57. Two circular coils of radius R are each perpendicular to
a common axis. The coil centers are a distance R apart,
and a steady current I flows in the same direction
around each coil, as shown in Figure P30.57. (a) Show
that the magnetic field on the axis at a distance x from
the center of one coil is

(b) Show that dB/dx and d 2B/dx2 are both zero at a
point midway between the coils. This means that the
magnetic field in the region midway between the coils is
uniform. Coils in this configuration are called
Helmholtz coils.

58. Two identical, flat, circular coils of wire each have 100
turns and a radius of 0.500 m. The coils are arranged as

B �
�0 IR2

2
 	 1

(R2 
 x2)3/2 

1

(2R2 
 x2 � 2Rx)3/2 �

51. Suppose you install a compass on the center of the
dashboard of a car. Compute an order-of-magnitude es-
timate for the magnetic field that is produced at this lo-
cation by the current when you switch on the head-
lights. How does your estimate compare with the Earth’s
magnetic field? You may suppose the dashboard is made
mostly of plastic.

52. Imagine a long, cylindrical wire of radius R that has a
current density for r � R and 
J(r) � 0 for r � R, where r is the distance from the axis
of the wire. (a) Find the resulting magnetic field inside 
(r � R) and outside (r � R) the wire. (b) Plot the mag-
nitude of the magnetic field as a function of r. (c) Find
the location where the magnitude of the magnetic field
is a maximum, and the value of that maximum field.

53. A very long, thin strip of metal of width w carries a cur-
rent I along its length, as shown in Figure P30.53. Find
the magnetic field at point P in the diagram. Point P is

J(r) � J0(1 � r 2/R2)

P
y

w

I

x

z
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b

I 10.0 A
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d

Figure P30.50
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a set of Helmholtz coils (see Fig. P30.57), parallel and
with a separation of 0.500 m. If each coil carries a cur-
rent of 10.0 A, determine the magnitude of the mag-
netic field at a point on the common axis of the coils
and halfway between them.

59. Two circular loops are parallel, coaxial, and almost in
contact, 1.00 mm apart (Fig. P30.59). Each loop is 
10.0 cm in radius. The top loop carries a clockwise cur-
rent of 140 A. The bottom loop carries a counterclock-
wise current of 140 A. (a) Calculate the magnetic force
that the bottom loop exerts on the top loop. (b) The
upper loop has a mass of 0.021 0 kg. Calculate its accel-
eration, assuming that the only forces acting on it are the
force in part (a) and its weight. (Hint: Think about how
one loop looks to a bug perched on the other loop.)

to the side of a proton moving at 2.00 � 107 m/s. 
(c) Find the magnetic force on a second proton at this
point, moving with the same speed in the opposite 
direction. (d) Find the electric force on the second 
proton.

61. Rail guns have been suggested for launching projectiles
into space without chemical rockets, and for ground-to-
air antimissile weapons of war. A tabletop model rail
gun (Fig. P30.61) consists of two long parallel horizon-
tal rails 3.50 cm apart, bridged by a bar BD of mass 
3.00 g. The bar is originally at rest at the midpoint of
the rails and is free to slide without friction. When the
switch is closed, electric current is very quickly estab-
lished in the circuit ABCDEA. The rails and bar have low
electrical resistance, and the current is limited to a con-
stant 24.0 A by the power supply. (a) Find the magni-
tude of the magnetic field 1.75 cm from a single very
long, straight wire carrying current 24.0 A. (b) Find the
vector magnetic field at point C in the diagram, the
midpoint of the bar, immediately after the switch is
closed. (Hint: Consider what conclusions you can draw
from the Biot–Savart law.) (c) At other points along the
bar BD, the field is in the same direction as at point C ,
but greater in magnitude. Assume that the average ef-
fective magnetic field along BD is five times larger than
the field at C . With this assumption, find the vector
force on the bar. (d) Find the vector acceleration with
which the bar starts to move. (e) Does the bar move
with constant acceleration? (f) Find the velocity of the
bar after it has traveled 130 cm to the end of the rails.

62. Two long, parallel conductors carry currents in the
same direction, as shown in Figure P30.62. Conductor A
carries a current of 150 A and is held firmly in position.
Conductor B carries a current IB and is allowed to slide
freely up and down (parallel to A) between a set of non-
conducting guides. If the mass per unit length of con-
ductor B is 0.100 g/cm, what value of current IB will re-
sult in equilibrium when the distance between the two
conductors is 2.50 cm?

63. Charge is sprayed onto a large nonconducting belt
above the left-hand roller in Figure P30.63. The belt
carries the charge, with a uniform surface charge den-
sity �, as it moves with a speed v between the rollers as
shown. The charge is removed by a wiper at the right-
hand roller. Consider a point just above the surface of
the moving belt. (a) Find an expression for the magni-

60. What objects experience a force in an electric field?
Chapter 23 gives the answer: any electric charge, sta-
tionary or moving, other than the charge that created
the field. What creates an electric field? Any electric
charge, stationary or moving, also as discussed in Chap-
ter 23. What objects experience a force in a magnetic
field? An electric current or a moving electric charge
other than the current or charge that created the field,
as discovered in Chapter 29. What creates a magnetic
field? An electric current, as you found in Section 30.11,
or a moving electric charge, as in this problem. (a) To
display how a moving charge creates a magnetic field,
consider a charge q moving with velocity v. Define the
unit vector to point from the charge to some lo-
cation. Show that the magnetic field at that location is

(b) Find the magnitude of the magnetic field 1.00 mm

B �
�0
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qv � r̂

r 2
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Figure P30.57 Problems 57 and 58.
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tude of the magnetic field B at this point. (b) If the belt
is positively charged, what is the direction of B? (Note
that the belt may be considered as an infinite sheet.)

64. A particular paramagnetic substance achieves 10.0% of
its saturation magnetization when placed in a magnetic
field of 5.00 T at a temperature of 4.00 K. The density of
magnetic atoms in the sample is 8.00 � 1027 atoms/m3,
and the magnetic moment per atom is 5.00 Bohr magne-
tons. Calculate the Curie constant for this substance.

65. A bar magnet (mass � 39.4 g, magnetic moment �
7.65 J/T, length � 10.0 cm) is connected to the ceiling
by a string. A uniform external magnetic field is applied
horizontally, as shown in Figure P30.65. The magnet is
in equilibrium, making an angle � with the horizontal.
If � � 5.00°, determine the magnitude of the applied
magnetic field.

68. Measurements of the magnetic field of a large tornado
were made at the Geophysical Observatory in Tulsa, 
Oklahoma, in 1962. If the tornado’s field was B �
15.0 nT pointing north when the tornado was 9.00 km
east of the observatory, what current was carried up or
down the funnel of the tornado, modeled as a long
straight wire?

67. A wire is bent into the shape shown in Figure P30.67a,
and the magnetic field is measured at P1 when the cur-
rent in the wire is I. The same wire is then formed into
the shape shown in Figure P30.67b, and the magnetic
field is measured at point P2 when the current is again I.
If the total length of wire is the same in each case, what
is the ratio of B1/B2 ?

66. An infinitely long, straight wire carrying a current I1 is
partially surrounded by a loop, as shown in Figure
P30.66. The loop has a length L and a radius R and car-
ries a current I2 . The axis of the loop coincides with the
wire. Calculate the force exerted on the loop.
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74. Review Problem. A sphere of radius R has a constant
volume charge density �. Determine the magnetic di-

73. Review Problem. A sphere of radius R has a constant
volume charge density �. Determine the magnetic field
at the center of the sphere when it rotates as a rigid
body with angular velocity � about an axis through its
center (Fig. P30.73).

Thus, in this case tan � � 1, and � � �/4.
Therefore, the angle between ds and is � � � �
3�/4. Also,

72. Table P30.72 contains data taken for a ferromagnetic
material. (a) Construct a magnetization curve from the
data. Remember that (b) Determine
the ratio B/B0 for each pair of values of B and B0 , and
construct a graph of B/B0 versus B0 . (The fraction
B/B0 is called the relative permeability and is a measure
of the induced magnetic field.)

B � B0 
 �0M.

ds �
dr

sin �/4
� !2 dr

r̂
r � e�,

70. The force on a magnetic dipole � aligned with a
nonuniform magnetic field in the x direction is given
by Suppose that two flat loops of wire
each have radius R and carry current I. (a) If the loops
are arranged coaxially and separated by variable dis-
tance x, which is great compared to R , show that the
magnetic force between them varies as 1/x4. (b) Evalu-
ate the magnitude of this force if 

and x � 5.00 cm.
71. A wire carrying a current I is bent into the shape of an

exponential spiral from � � 0 to � � 2�, as in
Figure P30.71. To complete a loop, the ends of the spi-
ral are connected by a straight wire along the x axis.
Find the magnitude and direction of B at the origin.
Hints: Use the Biot–Savart law. The angle � between a
radial line and its tangent line at any point on the curve

is related to the function in the following way:

tan � �
r

dr/d�

r � f (�)

r � e�

R � 0.500 cm,
I � 10.0 A,

Fx � � � � dB/dx.

69. A wire is formed into a square of edge length L (Fig.
P30.69). Show that when the current in the loop is I,
the magnetic field at point P, a distance x from the cen-
ter of the square along its axis, is

B �
�0 IL2

2�(x2 
 L2/4)!x2 
 L2/2

R

�

r = eθ

y

x

r
dr

d s

θ

r̂

   =   /4πβ

x

PI

L

L

Figure P30.69

Figure P30.71

Figure P30.73 Problems 73 and 74.

TABLE P30.72

B(T) B0 (T)

0.2 4.8 � 10�5

0.4 7.0 � 10�5

0.6 8.8 � 10�5

0.8 1.2 � 10�4

1.0 1.8 � 10�4

1.2 3.1 � 10�4

1.4 8.7 � 10�4

1.6 3.4 � 10�3

1.8 1.2 � 10�1
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ANSWERS TO QUICK QUIZZES

forces on all four sides of the loop lie in the plane of the
loop, there is no net torque.

30.6 Zero; no charges flow into a fully charged capacitor, so
no change occurs in the amount of charge on the plates,
and the electric field between the plates is constant. It is
only when the electric field is changing that a displace-
ment current exists.

30.7 (a) Increases slightly; (b) decreases slightly; (c) in-
creases greatly. Equations 30.33 and 30.34 indicate 
that, when each metal is in place, the total field is

Table 30.2 indicates that 
is slightly greater than �0H for aluminum and slightly
less for copper. For iron, the field can be made thou-
sands of times stronger, as we saw in Example 30.10.

30.8 One whose loop looks like Figure 30.31a because the re-
manent magnetization at the point corresponding to
point b in Figure 30.30 is greater.

30.9 West to east. The lines of the Earth’s magnetic field en-
ter the planet in Hudson Bay and emerge from Antarc-
tica; thus, the field lines resulting from the current
would have to go in the opposite direction. Compare
Figure 30.6a with Figure 30.35.

�0(1 
 �)HB � �0(1 
 �)H.

30.1 (c) F1 � F2 because of Newton’s third law. Another way
to arrive at this answer is to realize that Equation 30.11
gives the same result whether the multiplication of cur-
rents is (2 A)(6 A) or (6 A)(2 A).

30.2 Closer together; the coils act like wires carrying parallel
currents and hence attract one another.

30.3 b, d, a, c. Equation 30.13 indicates that the value of the
line integral depends only on the net current through
each closed path. Path b encloses 1 A, path d encloses 
3 A, path a encloses 4 A, and path c encloses 6 A.

30.4 b, then Paths a, c, and d all give the same
nonzero value �0I because the size and shape of the
paths do not matter. Path b does not enclose the cur-
rent, and hence its line integral is zero.

30.5 Net force, yes; net torque, no. The forces on the top and
bottom of the loop cancel because they are equal in
magnitude but opposite in direction. The current in the
left side of the loop is parallel to I1 , and hence the force
FL exerted by I1 on this side is attractive. The current in
the right side of the loop is antiparallel to I1 , and hence
the force FR exerted by I1 on this side of the loop is re-
pulsive. Because the left side is closer to wire 1, 
and a net force is directed toward wire 1. Because the

FL � FR

a � c � d.

pole moment of the sphere when it rotates as a rigid
body with angular velocity � about an axis through its
center (see Fig. P30.73).

75. A long, cylindrical conductor of radius a has two cylin-
drical cavities of diameter a through its entire length, as
shown in cross-section in Figure P30.75. A current I is
directed out of the page and is uniform through a cross
section of the conductor. Find the magnitude and direc-
tion of the magnetic field in terms of �0 , I, r, and a
(a) at point P1 and (b) at point P2 .

P1

P2

r

r

a

a

Figure P30.75
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he focus of our studies in electricity and magnetism so far has been the elec-
tric fields produced by stationary charges and the magnetic fields produced by
moving charges. This chapter deals with electric fields produced by changing

magnetic fields.
Experiments conducted by Michael Faraday in England in 1831 and indepen-

dently by Joseph Henry in the United States that same year showed that an emf
can be induced in a circuit by a changing magnetic field. As we shall see, an emf
(and therefore a current as well) can be induced in many ways—for instance, by
moving a closed loop of wire into a region where a magnetic field exists. The re-
sults of these experiments led to a very basic and important law of electromagnet-
ism known as Faraday’s law of induction. This law states that the magnitude of the
emf induced in a circuit equals the time rate of change of the magnetic flux
through the circuit.

With the treatment of Faraday’s law, we complete our introduction to the fun-
damental laws of electromagnetism. These laws can be summarized in a set of four
equations called Maxwell’s equations. Together with the Lorentz force law, which we
discuss briefly, they represent a complete theory for describing the interaction of
charged objects. Maxwell’s equations relate electric and magnetic fields to each
other and to their ultimate source, namely, electric charges.

FARADAY’S LAW OF INDUCTION
To see how an emf can be induced by a changing magnetic field, let us consider a
loop of wire connected to a galvanometer, as illustrated in Figure 31.1. When a
magnet is moved toward the loop, the galvanometer needle deflects in one direc-
tion, arbitrarily shown to the right in Figure 31.1a. When the magnet is moved
away from the loop, the needle deflects in the opposite direction, as shown in Fig-
ure 31.1c. When the magnet is held stationary relative to the loop (Fig. 31.1b), no
deflection is observed. Finally, if the magnet is held stationary and the loop is
moved either toward or away from it, the needle deflects. From these observations,
we conclude that the loop “knows” that the magnet is moving relative to it because
it experiences a change in magnetic field. Thus, it seems that a relationship exists
between current and changing magnetic field.

These results are quite remarkable in view of the fact that a current is set up
even though no batteries are present in the circuit! We call such a current an
induced current and say that it is produced by an induced emf.

Now let us describe an experiment conducted by Faraday1 and illustrated in
Figure 31.2. A primary coil is connected to a switch and a battery. The coil is
wrapped around a ring, and a current in the coil produces a magnetic field when
the switch is closed. A secondary coil also is wrapped around the ring and is con-
nected to a galvanometer. No battery is present in the secondary circuit, and the
secondary coil is not connected to the primary coil. Any current detected in the
secondary circuit must be induced by some external agent.

Initially, you might guess that no current is ever detected in the secondary cir-
cuit. However, something quite amazing happens when the switch in the primary

31.1

T

1 A physicist named J. D. Colladon was the first to perform the moving-magnet experiment. To mini-
mize the effect of the changing magnetic field on his galvanometer, he placed the meter in an adjacent
room. Thus, as he moved the magnet in the loop, he could not see the meter needle deflecting. By the
time he returned next door to read the galvanometer, the needle was back to zero because he had
stopped moving the magnet. Unfortunately for Colladon, there must be relative motion between the
loop and the magnet for an induced emf and a corresponding induced current to be observed. Thus,
physics students learn Faraday’s law of induction rather than “Colladon’s law of induction.”

12.6
&

12.7

A demonstration of electromag-
netic induction. A changing poten-
tial difference is applied to the
lower coil. An emf is induced in the
upper coil as indicated by the illu-
minated lamp. What happens to
the lamp’s intensity as the upper
coil is moved over the vertical tube?
(Courtesy of Central Scientific Company)
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circuit is either suddenly closed or suddenly opened. At the instant the switch is
closed, the galvanometer needle deflects in one direction and then returns to
zero. At the instant the switch is opened, the needle deflects in the opposite direc-
tion and again returns to zero. Finally, the galvanometer reads zero when there is
either a steady current or no current in the primary circuit. The key to under-

0

Galvanometer

(b)

0

Galvanometer

(a)

N S

0

Galvanometer

(c)

N S

N S

Galvanometer

0

Secondary
coil

Primary
coil

Switch

+ –

Battery

Figure 31.1 (a) When a magnet is moved toward a loop of wire connected to a galvanometer,
the galvanometer deflects as shown, indicating that a current is induced in the loop. (b) When
the magnet is held stationary, there is no induced current in the loop, even when the magnet is
inside the loop. (c) When the magnet is moved away from the loop, the galvanometer deflects in
the opposite direction, indicating that the induced current is opposite that shown in part (a).
Changing the direction of the magnet’s motion changes the direction of the current induced by
that motion.

Figure 31.2 Faraday’s experiment. When the switch in the primary circuit is closed, the gal-
vanometer in the secondary circuit deflects momentarily. The emf induced in the secondary cir-
cuit is caused by the changing magnetic field through the secondary coil.

Michael Faraday (1791 – 1867)
Faraday, a British physicist and
chemist, is often regarded as the
greatest experimental scientist of the
1800s. His many contributions to the
study of electricity include the inven-
tion of the electric motor, electric
generator, and transformer, as well as
the discovery of electromagnetic in-
duction and the laws of electrolysis.
Greatly influenced by religion, he re-
fused to work on the development of
poison gas for the British military.
(By kind permission of the President and
Council of the Royal Society)
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standing what happens in this experiment is to first note that when the switch is
closed, the current in the primary circuit produces a magnetic field in the region
of the circuit, and it is this magnetic field that penetrates the secondary circuit.
Furthermore, when the switch is closed, the magnetic field produced by the cur-
rent in the primary circuit changes from zero to some value over some finite time,
and it is this changing field that induces a current in the secondary circuit.

As a result of these observations, Faraday concluded that an electric current
can be induced in a circuit (the secondary circuit in our setup) by a chang-
ing magnetic field. The induced current exists for only a short time while the
magnetic field through the secondary coil is changing. Once the magnetic field
reaches a steady value, the current in the secondary coil disappears. In effect, the
secondary circuit behaves as though a source of emf were connected to it for a
short time. It is customary to say that an induced emf is produced in the sec-
ondary circuit by the changing magnetic field.

The experiments shown in Figures 31.1 and 31.2 have one thing in common:
In each case, an emf is induced in the circuit when the magnetic flux through the
circuit changes with time. In general,

the emf induced in a circuit is directly proportional to the time rate of change
of the magnetic flux through the circuit.

This statement, known as Faraday’s law of induction, can be written

(31.1)

where is the magnetic flux through the circuit (see Section 30.5).
If the circuit is a coil consisting of N loops all of the same area and if �B is the

flux through one loop, an emf is induced in every loop; thus, the total induced
emf in the coil is given by the expression

(31.2)

The negative sign in Equations 31.1 and 31.2 is of important physical significance,
which we shall discuss in Section 31.3.

Suppose that a loop enclosing an area A lies in a uniform magnetic field B, as
shown in Figure 31.3. The magnetic flux through the loop is equal to BA cos �;

� � �N 
d �B

dt

�B � �B � dA

� � �
d �B

dt
Faraday’s law

B

A  θ

Figure 31.3 A conducting loop that encloses an area
A in the presence of a uniform magnetic field B. The
angle between B and the normal to the loop is �.



31.1 Faraday’s Law of Induction 983

hence, the induced emf can be expressed as

(31.3)

From this expression, we see that an emf can be induced in the circuit in several
ways:

• The magnitude of B can change with time.
• The area enclosed by the loop can change with time.
• The angle � between B and the normal to the loop can change with time.
• Any combination of the above can occur.

Equation 31.3 can be used to calculate the emf induced when the north pole of a magnet is
moved toward a loop of wire, along the axis perpendicular to the plane of the loop passing
through its center. What changes are necessary in the equation when the south pole is
moved toward the loop?

Some Applications of Faraday’s Law

The ground fault interrupter (GFI) is an interesting safety device that protects
users of electrical appliances against electric shock. Its operation makes use of
Faraday’s law. In the GFI shown in Figure 31.4, wire 1 leads from the wall outlet to
the appliance to be protected, and wire 2 leads from the appliance back to the wall
outlet. An iron ring surrounds the two wires, and a sensing coil is wrapped around
part of the ring. Because the currents in the wires are in opposite directions, the
net magnetic flux through the sensing coil due to the currents is zero. However, if
the return current in wire 2 changes, the net magnetic flux through the sensing
coil is no longer zero. (This can happen, for example, if the appliance gets wet,
enabling current to leak to ground.) Because household current is alternating
(meaning that its direction keeps reversing), the magnetic flux through the sens-
ing coil changes with time, inducing an emf in the coil. This induced emf is used
to trigger a circuit breaker, which stops the current before it is able to reach a
harmful level.

Another interesting application of Faraday’s law is the production of sound in
an electric guitar (Fig. 31.5). The coil in this case, called the pickup coil , is placed
near the vibrating guitar string, which is made of a metal that can be magnetized.
A permanent magnet inside the coil magnetizes the portion of the string nearest

Quick Quiz 31.1

� � �
d
dt

 (BA cos �)

This electric range cooks food on
the basis of the principle of induc-
tion. An oscillating current is
passed through a coil placed below
the cooking surface, which is made
of a special glass. The current pro-
duces an oscillating magnetic field,
which induces a current in the
cooking utensil. Because the cook-
ing utensil has some electrical resis-
tance, the electrical energy associ-
ated with the induced current is
transformed to internal energy,
causing the utensil and its contents
to become hot. (Courtesy of Corning,
Inc.)

Circuit
breaker

Sensing
coil

Alternating
current

Iron
ring

1

2 Figure 31.4 Essential components of a
ground fault interrupter.

QuickLab
A cassette tape is made up of tiny par-
ticles of metal oxide attached to a
long plastic strip. A current in a small
conducting loop magnetizes the par-
ticles in a pattern related to the music
being recorded. During playback, the
tape is moved past a second small
loop (inside the playback head) and
induces a current that is then ampli-
fied. Pull a strip of tape out of a cas-
sette (one that you don’t mind
recording over) and see if it is at-
tracted or repelled by a refrigerator
magnet. If you don’t have a cassette,
try this with an old floppy disk you
are ready to trash.
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the coil. When the string vibrates at some frequency, its magnetized segment pro-
duces a changing magnetic flux through the coil. The changing flux induces an
emf in the coil that is fed to an amplifier. The output of the amplifier is sent to the
loudspeakers, which produce the sound waves we hear.

One Way to Induce an emf in a CoilEXAMPLE 31.1
is, from Equation 31.2,

You should be able to show that 1 T � m2/s � 1 V.

Exercise What is the magnitude of the induced current in
the coil while the field is changing?

Answer 2.0 A.

4.1 V�� 4.1 T�m2/s

�� � �
N ��B

�t
�

200(0.016 2 T �m2 � 0 T�m2)
0.80 s

A coil consists of 200 turns of wire having a total resistance of
2.0 �. Each turn is a square of side 18 cm, and a uniform
magnetic field directed perpendicular to the plane of the coil
is turned on. If the field changes linearly from 0 to 0.50 T in
0.80 s, what is the magnitude of the induced emf in the coil
while the field is changing?

Solution The area of one turn of the coil is (0.18 m)2 �
0.032 4 m2. The magnetic flux through the coil at t � 0 is
zero because B � 0 at that time. At t � 0.80 s, the magnetic
flux through one turn is �B � BA � (0.50 T)(0.032 4 m2) �
0.016 2 T � m2. Therefore, the magnitude of the induced emf

An Exponentially Decaying B FieldEXAMPLE 31.2
tially (Fig. 31.6). Find the induced emf in the loop as a func-
tion of time.

Solution Because B is perpendicular to the plane of the
loop, the magnetic flux through the loop at time t 	 0 is

A loop of wire enclosing an area A is placed in a region where
the magnetic field is perpendicular to the plane of the loop.
The magnitude of B varies in time according to the expres-
sion B � Bmaxe�at, where a is some constant. That is, at t � 0
the field is Bmax , and for t 	 0, the field decreases exponen-

Pickup
coil Magnet

Magnetized
portion of

string

Guitar string

To amplifier

N S
N S

(a)

Figure 31.5 (a) In an electric guitar, a vibrating string induces an emf in a pickup coil. 
(b) The circles beneath the metallic strings of this electric guitar detect the notes being played
and send this information through an amplifier and into speakers. (A switch on the guitar allows
the musician to select which set of six is used.) How does a guitar “pickup” sense what music is
being played? (b, Charles D. Winters)

(b)
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MOTIONAL EMF
In Examples 31.1 and 31.2, we considered cases in which an emf is induced in a
stationary circuit placed in a magnetic field when the field changes with time. In
this section we describe what is called motional emf, which is the emf induced in
a conductor moving through a constant magnetic field.

The straight conductor of length � shown in Figure 31.8 is moving through a
uniform magnetic field directed into the page. For simplicity, we assume that the
conductor is moving in a direction perpendicular to the field with constant veloc-

31.2

What Is Connected to What?CONCEPTUAL EXAMPLE 31.3
now the only resistance in the loop. As a result, the current in
bulb 1 is greater than when bulb 2 was also in the loop.

Once the switch is closed, bulb 2 is in the loop consisting
of the wires attached to it and those connected to the switch.
There is no changing magnetic flux through this loop and
hence no induced emf.

Exercise What would happen if the switch were in a wire lo-
cated to the left of bulb 1?

Answer Bulb 1 would go out, and bulb 2 would glow
brighter.

Two bulbs are connected to opposite sides of a loop of wire,
as shown in Figure 31.7. A decreasing magnetic field (con-
fined to the circular area shown in the figure) induces an
emf in the loop that causes the two bulbs to light. What hap-
pens to the brightness of the bulbs when the switch is closed?

Solution Bulb 1 glows brighter, and bulb 2 goes out. Once
the switch is closed, bulb 1 is in the large loop consisting of
the wire to which it is attached and the wire connected to the
switch. Because the changing magnetic flux is completely en-
closed within this loop, a current exists in bulb 1. Bulb 1 now
glows brighter than before the switch was closed because it is

t

B

Bmax
Because ABmax and a are constants, the induced emf calcu-
lated from Equation 31.1 is

This expression indicates that the induced emf decays expo-
nentially in time. Note that the maximum emf occurs at t �
0, where The plot of versus t is similar to
the B-versus-t curve shown in Figure 31.6.

��max � aABmax .

aABmaxe�at� � �
d�B

dt
� �ABmax 

d
dt

 e�at �

�B � BA cos 0 � ABmaxe�at

Figure 31.6 Exponential decrease in the magnitude of the mag-
netic field with time. The induced emf and induced current vary with
time in the same way.

× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×

×
×
×
×
×

×
×

×
×
×
×
× Switch

Bulb 2

Bulb 1

Figure 31.7
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ity under the influence of some external agent. The electrons in the conductor ex-
perience a force that is directed along the length �, perpendicular to
both v and B (Eq. 29.1). Under the influence of this force, the electrons move to
the lower end of the conductor and accumulate there, leaving a net positive
charge at the upper end. As a result of this charge separation, an electric field is
produced inside the conductor. The charges accumulate at both ends until the
downward magnetic force qvB is balanced by the upward electric force q E. At this
point, electrons stop moving. The condition for equilibrium requires that

The electric field produced in the conductor (once the electrons stop moving and
E is constant) is related to the potential difference across the ends of the conduc-
tor according to the relationship (Eq. 25.6). Thus,

(31.4)

where the upper end is at a higher electric potential than the lower end. Thus, a
potential difference is maintained between the ends of the conductor as
long as the conductor continues to move through the uniform magnetic
field. If the direction of the motion is reversed, the polarity of the potential differ-
ence also is reversed.

A more interesting situation occurs when the moving conductor is part of a
closed conducting path. This situation is particularly useful for illustrating how a
changing magnetic flux causes an induced current in a closed circuit. Consider a
circuit consisting of a conducting bar of length � sliding along two fixed parallel
conducting rails, as shown in Figure 31.9a.

For simplicity, we assume that the bar has zero resistance and that the station-
ary part of the circuit has a resistance R . A uniform and constant magnetic field B
is applied perpendicular to the plane of the circuit. As the bar is pulled to the
right with a velocity v, under the influence of an applied force Fapp , free charges
in the bar experience a magnetic force directed along the length of the bar. This
force sets up an induced current because the charges are free to move in the
closed conducting path. In this case, the rate of change of magnetic flux through
the loop and the corresponding induced motional emf across the moving bar are
proportional to the change in area of the loop. As we shall see, if the bar is pulled
to the right with a constant velocity, the work done by the applied force appears as
internal energy in the resistor R (see Section 27.6).

Because the area enclosed by the circuit at any instant is �x , where x is the
width of the circuit at any instant, the magnetic flux through that area is

Using Faraday’s law, and noting that x changes with time at a rate we
find that the induced motional emf is

(31.5)

Because the resistance of the circuit is R , the magnitude of the induced current is

(31.6)

The equivalent circuit diagram for this example is shown in Figure 31.9b.

I �
�� �
R

�
B�v
R

� � �B�v

� � �
d �B

dt
� �

d
dt

 (B�x) � �B� 
dx
dt

dx/dt � v,

�B � B�x

�V � E� � B�v

�V � E�

q E � q vB  or  E � vB

FB � q v � B

Motional emf

v

Bin
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

�

+
+

−
−

–
×

×

×

×

FB

Figure 31.8 A straight electrical
conductor of length � moving with
a velocity v through a uniform
magnetic field B directed perpen-
dicular to v. A potential difference
�V � B�v is maintained between
the ends of the conductor.
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Let us examine the system using energy considerations. Because no battery is
in the circuit, we might wonder about the origin of the induced current and the
electrical energy in the system. We can understand the source of this current and
energy by noting that the applied force does work on the conducting bar, thereby
moving charges through a magnetic field. Their movement through the field
causes the charges to move along the bar with some average drift velocity, and
hence a current is established. Because energy must be conserved, the work done
by the applied force on the bar during some time interval must equal the electrical
energy supplied by the induced emf during that same interval. Furthermore, if the
bar moves with constant speed, the work done on it must equal the energy deliv-
ered to the resistor during this time interval.

As it moves through the uniform magnetic field B, the bar experiences a mag-
netic force FB of magnitude I �B (see Section 29.2). The direction of this force is
opposite the motion of the bar, to the left in Figure 31.9a. Because the bar moves
with constant velocity, the applied force must be equal in magnitude and opposite
in direction to the magnetic force, or to the right in Figure 31.9a. (If FB acted in
the direction of motion, it would cause the bar to accelerate. Such a situation
would violate the principle of conservation of energy.) Using Equation 31.6 and
the fact that we find that the power delivered by the applied force is

(31.7)

From Equation 27.23, we see that this power is equal to the rate at which energy is
delivered to the resistor I 2R, as we would expect. It is also equal to the power 
supplied by the motional emf. This example is a clear demonstration of the con-
version of mechanical energy first to electrical energy and finally to internal en-
ergy in the resistor.

As an airplane flies from Los Angeles to Seattle, it passes through the Earth’s magnetic
field. As a result, a motional emf is developed between the wingtips. Which wingtip is posi-
tively charged?

Quick Quiz 31.2

I�

� � Fappv � (I�B)v �
B 2�2v2

R
�

�2

R

Fapp � I�B,

Motional emf Induced in a Rotating BarEXAMPLE 31.4
A conducting bar of length � rotates with a constant angular
speed 
 about a pivot at one end. A uniform magnetic field B
is directed perpendicular to the plane of rotation, as shown
in Figure 31.10. Find the motional emf induced between the
ends of the bar.

Solution Consider a segment of the bar of length dr hav-
ing a velocity v. According to Equation 31.5, the magnitude
of the emf induced in this segment is

Because every segment of the bar is moving perpendicular 
to B, an emf of the same form is generated across 
each. Summing the emfs induced across all segments, which
are in series, gives the total emf between the ends of 

d�

d� � Bv dr

  

(b)

R

�B vε =

I

R FB

(a)

x

Fapp

v

Bin

�

× × ×

× × ×

× × ×

× × ×

× × ×

×
I

×

×

×

×

×

×

Figure 31.9 (a) A conducting
bar sliding with a velocity v along
two conducting rails under the ac-
tion of an applied force Fapp . The
magnetic force FB opposes the mo-
tion, and a counterclockwise cur-
rent I is induced in the loop. 
(b) The equivalent circuit diagram
for the setup shown in part (a).
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Figure 31.10 A conducting bar rotating around a pivot at one
end in a uniform magnetic field that is perpendicular to the plane of
rotation. A motional emf is induced across the ends of the bar.
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LENZ’S LAW
Faraday’s law (Eq. 31.1) indicates that the induced emf and the change in flux
have opposite algebraic signs. This has a very real physical interpretation that has
come to be known as Lenz’s law2:

31.3

the bar:

To integrate this expression, we must note that the linear
speed of an element is related to the angular speed 


� � �Bv dr

through the relationship Therefore, because B and 

are constants, we find that

1
2B
�2� � B �v dr � B
 ��

0
r dr �

v � r
.

Magnetic Force Acting on a Sliding BarEXAMPLE 31.5
that the velocity can be expressed in the exponential form

This expression indicates that the velocity of the bar de-
creases exponentially with time under the action of the mag-
netic retarding force.

Exercise Find expressions for the induced current and the
magnitude of the induced emf as functions of time for the
bar in this example.

Answer (They both de-

crease exponentially with time.)

� � B�vi e�t /�.I �
B�vi

R
 e�t /� ;

v � vie�t /�

The conducting bar illustrated in Figure 31.11, of mass m and
length �, moves on two frictionless parallel rails in the pres-
ence of a uniform magnetic field directed into the page. The
bar is given an initial velocity vi to the right and is released at
t � 0. Find the velocity of the bar as a function of time.

Solution The induced current is counterclockwise, and
the magnetic force is where the negative sign de-
notes that the force is to the left and retards the motion. This
is the only horizontal force acting on the bar, and hence New-
ton’s second law applied to motion in the horizontal direc-
tion gives

From Equation 31.6, we know that and so we can
write this expression as

Integrating this equation using the initial condition that
at t � 0, we find that

where the constant From this result, we see� � mR/B2�2.

 ln� v
vi
� � �� B2�2

mR � t � �
t
�

�v

vi

dv
v

�
�B2�2

mR
 �t

0
dt 

v � vi
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Figure 31.11 A conducting bar of length � sliding on two fixed
conducting rails is given an initial velocity vi to the right.

2 Developed by the German physicist Heinrich Lenz (1804–1865).
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31.3 Lenz’s Law 989

That is, the induced current tends to keep the original magnetic flux through the
circuit from changing. As we shall see, this law is a consequence of the law of con-
servation of energy.

To understand Lenz’s law, let us return to the example of a bar moving to the
right on two parallel rails in the presence of a uniform magnetic field that we shall
refer to as the external magnetic field (Fig. 31.12a). As the bar moves to the right,
the magnetic flux through the area enclosed by the circuit increases with time be-
cause the area increases. Lenz’s law states that the induced current must be di-
rected so that the magnetic flux it produces opposes the change in the external
magnetic flux. Because the external magnetic flux is increasing into the page, the
induced current, if it is to oppose this change, must produce a flux directed out of
the page. Hence, the induced current must be directed counterclockwise when
the bar moves to the right. (Use the right-hand rule to verify this direction.) If the
bar is moving to the left, as shown in Figure 31.12b, the external magnetic flux
through the area enclosed by the loop decreases with time. Because the flux is di-
rected into the page, the direction of the induced current must be clockwise if it is
to produce a flux that also is directed into the page. In either case, the induced
current tends to maintain the original flux through the area enclosed by the cur-
rent loop.

Let us examine this situation from the viewpoint of energy considerations.
Suppose that the bar is given a slight push to the right. In the preceding analysis,
we found that this motion sets up a counterclockwise current in the loop. Let us
see what happens if we assume that the current is clockwise, such that the direc-
tion of the magnetic force exerted on the bar is to the right. This force would ac-
celerate the rod and increase its velocity. This, in turn, would cause the area en-
closed by the loop to increase more rapidly; this would result in an increase in the
induced current, which would cause an increase in the force, which would pro-
duce an increase in the current, and so on. In effect, the system would acquire en-
ergy with no additional input of energy. This is clearly inconsistent with all experi-
ence and with the law of conservation of energy. Thus, we are forced to conclude
that the current must be counterclockwise.

Let us consider another situation, one in which a bar magnet moves toward a
stationary metal loop, as shown in Figure 31.13a. As the magnet moves to the right
toward the loop, the external magnetic flux through the loop increases with time.
To counteract this increase in flux to the right, the induced current produces a
flux to the left, as illustrated in Figure 31.13b; hence, the induced current is in the
direction shown. Note that the magnetic field lines associated with the induced
current oppose the motion of the magnet. Knowing that like magnetic poles repel
each other, we conclude that the left face of the current loop is in essence a north
pole and that the right face is a south pole.

If the magnet moves to the left, as shown in Figure 31.13c, its flux through the
area enclosed by the loop, which is directed to the right, decreases in time. Now
the induced current in the loop is in the direction shown in Figure 31.13d because
this current direction produces a magnetic flux in the same direction as the exter-
nal flux. In this case, the left face of the loop is a south pole and the right face is a
north pole.

The polarity of the induced emf is such that it tends to produce a current that
creates a magnetic flux to oppose the change in magnetic flux through the area
enclosed by the current loop.
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Figure 31.12 (a) As the conduct-
ing bar slides on the two fixed con-
ducting rails, the magnetic flux
through the area enclosed by the
loop increases in time. By Lenz’s law,
the induced current must be coun-
terclockwise so as to produce a coun-
teracting magnetic flux directed out
of the page. (b) When the bar
moves to the left, the induced cur-
rent must be clockwise. Why?

QuickLab
This experiment takes steady hands, a
dime, and a strong magnet. After ver-
ifying that a dime is not attracted to
the magnet, carefully balance the
coin on its edge. (This won’t work
with other coins because they require
too much force to topple them.)
Hold one pole of the magnet within a
millimeter of the face of the dime,
but don’t bump it. Now very rapidly
pull the magnet straight back away
from the coin. Which way does the
dime tip? Does the coin fall the same
way most of the time? Explain what is
going on in terms of Lenz’s law. You
may want to refer to Figure 31.13.

990 C H A P T E R  3 1 Faraday’s Law

Figure 31.14 shows a magnet being moved in the vicinity of a solenoid connected to a gal-
vanometer. The south pole of the magnet is the pole nearest the solenoid, and the gal-

Quick Quiz 31.3

Figure 31.13 (a) When the magnet is moved toward the stationary conducting loop, a current
is induced in the direction shown. (b) This induced current produces its own magnetic flux that
is directed to the left and so counteracts the increasing external flux to the right. (c) When the
magnet is moved away from the stationary conducting loop, a current is induced in the direction
shown. (d) This induced current produces a magnetic flux that is directed to the right and so
counteracts the decreasing external flux to the right.
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Figure 31.14 When a magnet is moved
toward or away from a solenoid attached to
a galvanometer, an electric current is in-
duced, indicated by the momentary deflec-
tion of the galvanometer needle. (Richard
Megna/Fundamental Photographs)


