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A Pulse Moving to the RightEXAMPLE 16.1

We now use these expressions to plot the wave function ver-
sus x at these times. For example, let us evaluate at

cm:

Likewise, at cm, cm, and at 
cm, cm. Continuing this procedure for

other values of x yields the wave function shown in Figure
16.7a. In a similar manner, we obtain the graphs of y(x, 1.0)
and y(x, 2.0), shown in Figure 16.7b and c, respectively.
These snapshots show that the wave pulse moves to the right
without changing its shape and that it has a constant speed of
3.0 cm/s.

y(2.0, 0) � 0.402.0
x �y(1.0, 0) � 1.0x � 1.0

y(0.50, 0) �
2

(0.50)2 � 1
� 1.6 cm

x � 0.50
y(x, 0)

y(x, 2.0) �
2

(x � 6.0)2 � 1
  at t � 2.0 s

y(x, 1.0) �
2

(x � 3.0)2 � 1
  at t � 1.0 s

A wave pulse moving to the right along the x axis is repre-
sented by the wave function

where x and y are measured in centimeters and t is measured
in seconds. Plot the wave function at and

s.

Solution First, note that this function is of the form
By inspection, we see that the wave speed is

cm/s. Furthermore, the wave amplitude (the maxi-
mum value of y) is given by cm. (We find the maxi-
mum value of the function representing y by letting

The wave function expressions are

 y(x, 0) �
2

x2 � 1
  at t � 0 

x � 3.0t � 0.)

A � 2.0
v � 3.0
y � f(x � vt).

t � 2.0
t � 1.0 s,t � 0,

y(x, t) �
2

(x � 3.0t)2 � 1

time dt later, the crest is at Therefore, in a time dt, the crest has
moved a distance Hence, the wave speed is

(16.3)v �
dx
dt

dx � (x0 � v dt) � x0 � v dt.
x � x0 � v dt.
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y(x, t) � 2/[(x � 3.0t)2 � 1]
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SUPERPOSITION AND INTERFERENCE
Many interesting wave phenomena in nature cannot be described by a single mov-
ing pulse. Instead, one must analyze complex waves in terms of a combination of
many traveling waves. To analyze such wave combinations, one can make use of
the superposition principle:

16.4

If two or more traveling waves are moving through a medium, the resultant
wave function at any point is the algebraic sum of the wave functions of the in-
dividual waves.

Waves that obey this principle are called linear waves and are generally character-
ized by small amplitudes. Waves that violate the superposition principle are called
nonlinear waves and are often characterized by large amplitudes. In this book, we
deal only with linear waves.

One consequence of the superposition principle is that two traveling waves
can pass through each other without being destroyed or even altered. For in-
stance, when two pebbles are thrown into a pond and hit the surface at different
places, the expanding circular surface waves do not destroy each other but rather
pass through each other. The complex pattern that is observed can be viewed as
two independent sets of expanding circles. Likewise, when sound waves from two
sources move through air, they pass through each other. The resulting sound that
one hears at a given point is the resultant of the two disturbances.

Figure 16.8 is a pictorial representation of superposition. The wave function
for the pulse moving to the right is y1, and the wave function for the pulse moving

Linear waves obey the
superposition principle

(c)

(d)

(b)

(a)

y2 y 1

y 1+ y2

y 1+ y2

y2y 1

Figure 16.8 (a–d) Two wave pulses traveling on a stretched string in opposite directions pass
through each other. When the pulses overlap, as shown in (b) and (c), the net displacement of
the string equals the sum of the displacements produced by each pulse. Because each pulse dis-
places the string in the positive direction, we refer to the superposition of the two pulses as con-
structive interference. (e) Photograph of superposition of two equal, symmetric pulses traveling in
opposite directions on a stretched spring.

(e)
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to the left is y2 . The pulses have the same speed but different shapes. Each pulse is
assumed to be symmetric, and the displacement of the medium is in the positive y
direction for both pulses. (Note, however, that the superposition principle applies
even when the two pulses are not symmetric.) When the waves begin to overlap
(Fig. 16.8b), the wave function for the resulting complex wave is given by y1 � y2 .

Figure 16.9 (a–e) Two wave pulses traveling in opposite directions and having displacements
that are inverted relative to each other. When the two overlap in (c), their displacements partially
cancel each other. (f) Photograph of superposition of two symmetric pulses traveling in opposite 
directions, where one pulse is inverted relative to the other.

Interference of water waves produced
in a ripple tank. The sources of the
waves are two objects that oscillate per-
pendicular to the surface of the tank.

(a)

(b)

(d)

(e)

y 1

y 2

y 1

y 2

y 2

y 1

y 2

y 1

(c)
y 1+ y 2

(f)
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When the crests of the pulses coincide (Fig. 16.8c), the resulting wave given by
is symmetric. The two pulses finally separate and continue moving in their

original directions (Fig. 16.8d). Note that the pulse shapes remain unchanged, as
if the two pulses had never met!

The combination of separate waves in the same region of space to produce a
resultant wave is called interference. For the two pulses shown in Figure 16.8, the
displacement of the medium is in the positive y direction for both pulses, and the
resultant wave (created when the pulses overlap) exhibits a displacement greater
than that of either individual pulse. Because the displacements caused by the two
pulses are in the same direction, we refer to their superposition as constructive
interference.

Now consider two pulses traveling in opposite directions on a taut string
where one pulse is inverted relative to the other, as illustrated in Figure 16.9. In
this case, when the pulses begin to overlap, the resultant wave is given by 
but the values of the function y2 are negative. Again, the two pulses pass through
each other; however, because the displacements caused by the two pulses are in
opposite directions, we refer to their superposition as destructive interference.

Two pulses are traveling toward each other at 10 cm/s on a long string, as shown in Figure
16.10. Sketch the shape of the string at s.t � 0.6

Quick Quiz 16.2

y1 � y2 ,

y1 � y2

1 cm

Figure 16.10 The pulses on this string are traveling at 10 cm/s.

THE SPEED OF WAVES ON STRINGS
In this section, we focus on determining the speed of a transverse pulse traveling
on a taut string. Let us first conceptually argue the parameters that determine the
speed. If a string under tension is pulled sideways and then released, the tension is
responsible for accelerating a particular segment of the string back toward its equi-
librium position. According to Newton’s second law, the acceleration of the seg-
ment increases with increasing tension. If the segment returns to equilibrium
more rapidly due to this increased acceleration, we would intuitively argue that the
wave speed is greater. Thus, we expect the wave speed to increase with increasing
tension.

Likewise, we can argue that the wave speed decreases if the mass per unit
length of the string increases. This is because it is more difficult to accelerate a
massive segment of the string than a light segment. If the tension in the string is T
(not to be confused with the same symbol used for the period) and its mass per

16.5
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unit length is � (Greek letter mu), then, as we shall show, the wave speed is

(16.4)

First, let us verify that this expression is dimensionally correct. The dimensions
of T are ML/T2, and the dimensions of � are M/L. Therefore, the dimensions of
T/� are L2/T2; hence, the dimensions of are L/T—indeed, the dimensions
of speed. No other combination of T and � is dimensionally correct if we assume
that they are the only variables relevant to the situation.

Now let us use a mechanical analysis to derive Equation 16.4. On our string
under tension, consider a pulse moving to the right with a uniform speed v mea-
sured relative to a stationary frame of reference. Instead of staying in this refer-
ence frame, it is more convenient to choose as our reference frame one that
moves along with the pulse with the same speed as the pulse, so that the pulse is at
rest within the frame. This change of reference frame is permitted because New-
ton’s laws are valid in either a stationary frame or one that moves with constant ve-
locity. In our new reference frame, a given segment of the string initially to the
right of the pulse moves to the left, rises up and follows the shape of the pulse, and
then continues to move to the left. Figure 16.11a shows such a segment at the in-
stant it is located at the top of the pulse.

The small segment of the string of length �s shown in Figure 16.11a, and mag-
nified in Figure 16.11b, forms an approximate arc of a circle of radius R. In our
moving frame of reference (which is moving to the right at a speed v along with
the pulse), the shaded segment is moving to the left with a speed v. This segment
has a centripetal acceleration equal to v2/R, which is supplied by components of
the tension T in the string. The force T acts on either side of the segment and tan-
gent to the arc, as shown in Figure 16.11b. The horizontal components of T can-
cel, and each vertical component T sin � acts radially toward the center of the arc.
Hence, the total radial force is 2T sin �. Because the segment is small, � is small,
and we can use the small-angle approximation sin � � �. Therefore, the total ra-
dial force is

The segment has a mass Because the segment forms part of a circle
and subtends an angle 2� at the center, �s � R(2�), and hence

m � ��s � 2�R�

m � ��s.

	Fr � 2T sin � � 2T�

√T/�

v � √ T
�

Speed of a wave on a stretched
string

The strings of this piano vary in both tension and mass per
unit length. These differences in tension and density, in
combination with the different lengths of the strings, allow
the instrument to produce a wide range of sounds.

∆s ar =
v2

R

R

O

(a)

(b)

O

v

θ
∆s

θ

R
Fr

θ

TT

Figure 16.11 (a) To obtain the
speed v of a wave on a stretched
string, it is convenient to describe
the motion of a small segment of
the string in a moving frame of ref-
erence. (b) In the moving frame of
reference, the small segment of
length �s moves to the left with
speed v. The net force on the seg-
ment is in the radial direction be-
cause the horizontal components
of the tension force cancel.
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If we apply Newton’s second law to this segment, the radial component of motion
gives

Solving for v gives Equation 16.4.
Notice that this derivation is based on the assumption that the pulse height is

small relative to the length of the string. Using this assumption, we were able to
use the approximation sin � � �. Furthermore, the model assumes that the ten-
sion T is not affected by the presence of the pulse; thus, T is the same at all points
on the string. Finally, this proof does not assume any particular shape for the pulse.
Therefore, we conclude that a pulse of any shape travels along the string with speed

without any change in pulse shape.v � √T/�

2T� �
2�R�v2

R

	Fr � ma �
mv2

R

The Speed of a Pulse on a CordEXAMPLE 16.2

(This calculation of the tension neglects the small mass of
the cord. Strictly speaking, the cord can never be exactly hor-
izontal, and therefore the tension is not uniform.) The mass
per unit length � of the cord is

Therefore, the wave speed is

Exercise Find the time it takes the pulse to travel from the
wall to the pulley.

Answer 0.253 s.

19.8 m/sv � √ T
�

� √ 19.6 N
0.050 0 kg/m

�

� �
m
�

�
0.300 kg
6.00 m

� 0.050 0 kg/m

T � mg � (2.00 kg)(9.80 m/s2) � 19.6 NA uniform cord has a mass of 0.300 kg and a length of 6.00 m
(Fig. 16.12). The cord passes over a pulley and supports a 2.00-
kg object. Find the speed of a pulse traveling along this cord.

Solution The tension T in the cord is equal to the weight
of the suspended 2.00-kg mass:

5.00 m

2.00 kg

1.00 m

Figure 16.12 The tension T in the cord is maintained by the sus-
pended object. The speed of any wave traveling along the cord is
given by v � √T/�.

Suppose you create a pulse by moving the free end of a taut string up and down once with
your hand. The string is attached at its other end to a distant wall. The pulse reaches the
wall in a time t. Which of the following actions, taken by itself, decreases the time it takes
the pulse to reach the wall? More than one choice may be correct.
(a) Moving your hand more quickly, but still only up and down once by the same amount.
(b) Moving your hand more slowly, but still only up and down once by the same amount.
(c) Moving your hand a greater distance up and down in the same amount of time.
(d) Moving your hand a lesser distance up and down in the same amount of time.
(e) Using a heavier string of the same length and under the same tension.
(f) Using a lighter string of the same length and under the same tension.
(g) Using a string of the same linear mass density but under decreased tension.
(h) Using a string of the same linear mass density but under increased tension.

Quick Quiz 16.3
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REFLECTION AND TRANSMISSION
We have discussed traveling waves moving through a uniform medium. We now
consider how a traveling wave is affected when it encounters a change in the
medium. For example, consider a pulse traveling on a string that is rigidly at-
tached to a support at one end (Fig. 16.13). When the pulse reaches the support,
a severe change in the medium occurs—the string ends. The result of this change
is that the wave undergoes reflection—that is, the pulse moves back along the
string in the opposite direction.

Note that the reflected pulse is inverted. This inversion can be explained as
follows: When the pulse reaches the fixed end of the string, the string produces an
upward force on the support. By Newton’s third law, the support must exert an
equal and opposite (downward) reaction force on the string. This downward force
causes the pulse to invert upon reflection.

Now consider another case: this time, the pulse arrives at the end of a string that
is free to move vertically, as shown in Figure 16.14. The tension at the free end is
maintained because the string is tied to a ring of negligible mass that is free to slide
vertically on a smooth post. Again, the pulse is reflected, but this time it is not in-
verted. When it reaches the post, the pulse exerts a force on the free end of the
string, causing the ring to accelerate upward. The ring overshoots the height of the
incoming pulse, and then the downward component of the tension force pulls 
the ring back down. This movement of the ring produces a reflected pulse that is
not inverted and that has the same amplitude as the incoming pulse.

Finally, we may have a situation in which the boundary is intermediate be-
tween these two extremes. In this case, part of the incident pulse is reflected and
part undergoes transmission—that is, some of the pulse passes through the
boundary. For instance, suppose a light string is attached to a heavier string, as
shown in Figure 16.15. When a pulse traveling on the light string reaches the
boundary between the two, part of the pulse is reflected and inverted and part is
transmitted to the heavier string. The reflected pulse is inverted for the same rea-
sons described earlier in the case of the string rigidly attached to a support.

Note that the reflected pulse has a smaller amplitude than the incident pulse.
In Section 16.8, we shall learn that the energy carried by a wave is related to its am-
plitude. Thus, according to the principle of the conservation of energy, when the
pulse breaks up into a reflected pulse and a transmitted pulse at the boundary, the
sum of the energies of these two pulses must equal the energy of the incident
pulse. Because the reflected pulse contains only part of the energy of the incident
pulse, its amplitude must be smaller.

16.6

(a)

(b)

(c)

(d)

(e) Reflected
pulse

Incident
pulse

Incident
pulse

(a)

(b)

(c)

Reflected
pulse

(d)

Incident
pulse

Transmitted
pulse

Reflected
pulse

(a)

(b)

Figure 16.13 The reflection of a
traveling wave pulse at the fixed
end of a stretched string. The re-
flected pulse is inverted, but its
shape is unchanged.

Figure 16.14 The reflection of a
traveling wave pulse at the free end
of a stretched string. The reflected
pulse is not inverted.

Figure 16.15 (a) A pulse traveling
to the right on a light string attached
to a heavier string. (b) Part of the inci-
dent pulse is reflected (and inverted),
and part is transmitted to the heavier
string.
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When a pulse traveling on a heavy string strikes the boundary between the
heavy string and a lighter one, as shown in Figure 16.16, again part is reflected and
part is transmitted. In this case, the reflected pulse is not inverted.

In either case, the relative heights of the reflected and transmitted pulses de-
pend on the relative densities of the two strings. If the strings are identical, there is
no discontinuity at the boundary and no reflection takes place.

According to Equation 16.4, the speed of a wave on a string increases as the
mass per unit length of the string decreases. In other words, a pulse travels more
slowly on a heavy string than on a light string if both are under the same tension.
The following general rules apply to reflected waves: When a wave pulse travels
from medium A to medium B and vA vB (that is, when B is denser than A),
the pulse is inverted upon reflection. When a wave pulse travels from
medium A to medium B and vA vB (that is, when A is denser than B), the
pulse is not inverted upon reflection.

SINUSOIDAL WAVES
In this section, we introduce an important wave function whose shape is shown in
Figure 16.17. The wave represented by this curve is called a sinusoidal wave be-
cause the curve is the same as that of the function sin � plotted against �. The si-
nusoidal wave is the simplest example of a periodic continuous wave and can be
used to build more complex waves, as we shall see in Section 18.8. The red curve
represents a snapshot of a traveling sinusoidal wave at and the blue curve
represents a snapshot of the wave at some later time t. At the function de-
scribing the positions of the particles of the medium through which the sinusoidal
wave is traveling can be written

(16.5)

where the constant A represents the wave amplitude and the constant � is the
wavelength. Thus, we see that the position of a particle of the medium is the same
whenever x is increased by an integral multiple of �. If the wave moves to the right
with a speed v, then the wave function at some later time t is

(16.6)

That is, the traveling sinusoidal wave moves to the right a distance vt in the time t,
as shown in Figure 16.17. Note that the wave function has the form andf(x � vt)

y � A sin� 2


�
 (x � vt)�

y � A sin� 2


�
 x�

t � 0,
t � 0,

16.7

P

Q

Figure 16.16 (a) A pulse traveling
to the right on a heavy string attached
to a lighter string. (b) The incident
pulse is partially reflected and partially
transmitted, and the reflected pulse is
not inverted.

Incident
pulse

Reflected
pulse

Transmitted
pulse

(a)

(b)

t = 0 t

y

x

v
vt

Figure 16.17 A one-dimensional
sinusoidal wave traveling to the
right with a speed v. The red curve
represents a snapshot of the wave at

and the blue curve represents
a snapshot at some later time t.
t � 0,
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so represents a wave traveling to the right. If the wave were traveling to the left, the
quantity would be replaced by as we learned when we developed
Equations 16.1 and 16.2.

By definition, the wave travels a distance of one wavelength in one per-
iod T. Therefore, the wave speed, wavelength, and period are related by the ex-
pression

(16.7)

Substituting this expression for v into Equation 16.6, we find that

(16.8)

This form of the wave function clearly shows the periodic nature of y. At any given
time t (a snapshot of the wave), y has the same value at the positions x, x � �, 
x � 2�, and so on. Furthermore, at any given position x, the value of y is the same
at times t, t � T, t � 2T, and so on.

We can express the wave function in a convenient form by defining two other
quantities, the angular wave number k and the angular frequency �:

(16.9)

(16.10)

Using these definitions, we see that Equation 16.8 can be written in the more com-
pact form

(16.11)

The frequency of a sinusoidal wave is related to the period by the expression

(16.12)

The most common unit for frequency, as we learned in Chapter 13, is second�1, or
hertz (Hz). The corresponding unit for T is seconds.

Using Equations 16.9, 16.10, and 16.12, we can express the wave speed v origi-
nally given in Equation 16.7 in the alternative forms

(16.13)

(16.14)

The wave function given by Equation 16.11 assumes that the vertical displace-
ment y is zero at and This need not be the case. If it is not, we gener-
ally express the wave function in the form

(16.15)y � A sin(kx � �t � �)

t � 0.x � 0

v � �f

v �
�

k

f �
1
T

y � A sin(kx � �t)

� �
2


T

k �
2


�

y � A sin �2
 � x
�

�
t
T ��

v �
�

T

x � vt,x � vt

Angular wave number

Angular frequency

Wave function for a sinusoidal
wave

Frequency

Speed of a sinusoidal wave

General expression for a
sinusoidal wave
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where � is the phase constant, just as we learned in our study of periodic motion
in Chapter 13. This constant can be determined from the initial conditions.

3 In this arrangement, we are assuming that a string segment always oscillates in a vertical line. The ten-
sion in the string would vary if a segment were allowed to move sideways. Such motion would make the
analysis very complex.

A Traveling Sinusoidal WaveEXAMPLE 16.3

(b) Determine the phase constant �, and write a general
expression for the wave function.

Solution Because cm and because cm
at and substitution into Equation 16.15 gives

or

We may take the principal value rad (or 90°).
Hence, the wave function is of the form

By inspection, we can see that the wave function must have
this form, noting that the cosine function has the same shape
as the sine function displaced by 90°. Substituting the values
for A, k, and � into this expression, we obtain

y � (15.0 cm) cos(0.157x � 50.3t)

y � A sin�kx � �t �



2 � � A cos(kx � �t)

� � 
/2

sin � � 115.0 � (15.0) sin �

t � 0,x � 0
y � 15.0A � 15.0

320 cm/sv � �f � (40.0 cm)(8.00 s�1) �

0.125 s T �
1
f

�
1

8.00 s�1 �

50.3 rad/s � � 2
f � 2
(8.00 s�1) �
A sinusoidal wave traveling in the positive x direction has an
amplitude of 15.0 cm, a wavelength of 40.0 cm, and a fre-
quency of 8.00 Hz. The vertical displacement of the medium
at and is also 15.0 cm, as shown in Figure 16.18.
(a) Find the angular wave number k, period T, angular fre-
quency �, and speed v of the wave.

Solution (a) Using Equations 16.9, 16.10, 16.12, and
16.14, we find the following:

0.157 rad/cm k �
2


�
�

2
 rad
40.0 cm

�

x � 0t � 0

y(cm)

40.0 cm

15.0 cm
x(cm)

Figure 16.18 A sinusoidal wave of wavelength � � 40.0 cm and
amplitude A � 15.0 cm. The wave function can be written in the
form y � A cos(kx � �t).

Sinusoidal Waves on Strings

In Figure 16.2, we demonstrated how to create a pulse by jerking a taut string up
and down once. To create a train of such pulses, normally referred to as a wave train,
or just plain wave, we can replace the hand with an oscillating blade. If the wave con-
sists of a train of identical cycles, whatever their shape, the relationships f � 1/T and
v � f� among speed, frequency, period, and wavelength hold true. We can make
more definite statements about the wave function if the source of the waves vibrates
in simple harmonic motion. Figure 16.19 represents snapshots of the wave created
in this way at intervals of T/4. Note that because the end of the blade oscillates in
simple harmonic motion, each particle of the string, such as that at P, also os-
cillates vertically with simple harmonic motion. This must be the case because
each particle follows the simple harmonic motion of the blade. Therefore, every seg-
ment of the string can be treated as a simple harmonic oscillator vibrating with a fre-
quency equal to the frequency of oscillation of the blade.3 Note that although each
segment oscillates in the y direction, the wave travels in the x direction with a speed
v. Of course, this is the definition of a transverse wave.
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If the wave at is as described in Figure 16.19b, then the wave function
can be written as

We can use this expression to describe the motion of any point on the string. The
point P (or any other point on the string) moves only vertically, and so its x coordi-
nate remains constant. Therefore, the transverse speed vy (not to be confused
with the wave speed v) and the transverse acceleration ay are

(16.16)

(16.17)

In these expressions, we must use partial derivatives (see Section 8.6) because y de-
pends on both x and t. In the operation for example, we take a derivative
with respect to t while holding x constant. The maximum values of the transverse
speed and transverse acceleration are simply the absolute values of the coefficients
of the cosine and sine functions:

(16.18)

(16.19)

The transverse speed and transverse acceleration do not reach their maximum val-
ues simultaneously. The transverse speed reaches its maximum value (�A) when

whereas the transverse acceleration reaches its maximum value (�2A) when
Finally, Equations 16.18 and 16.19 are identical in mathematical form to

the corresponding equations for simple harmonic motion, Equations 13.10 and
13.11.

y � 
A.
y � 0,

ay, max � �2A

vy, max � �A 

�y/�t,

ay �
dvy

dt �
x  � constant

�
�vy

�t
� ��2A sin(kx � �t)

 vy �
dy
dt �x   � constant

�
�y
�t

� ��A cos(kx � �t) 

y � A sin(kx � �t)

t � 0

P

(a)

A

y

Vibrating
blade

(c)

P

P

P

(b)

(d)

λ

Figure 16.19 One method for producing a train of sinusoidal wave pulses on a string. The left
end of the string is connected to a blade that is set into oscillation. Every segment of the string,
such as the point P, oscillates with simple harmonic motion in the vertical direction.
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A sinusoidal wave is moving on a string. If you increase the frequency f of the wave, how do
the transverse speed, wave speed, and wavelength change?

Quick Quiz 16.4

A Sinusoidally Driven StringEXAMPLE 16.4
Because cm � 0.120 m, we have

Exercise Calculate the maximum values for the transverse
speed and transverse acceleration of any point on the string.

Answer 3.77 m/s; 118 m/s2.

y � A sin(kx � �t) � (0.120 m) sin(1.57x � 31.4t)

A � 12.0The string shown in Figure 16.19 is driven at a frequency of
5.00 Hz. The amplitude of the motion is 12.0 cm, and the
wave speed is 20.0 m/s. Determine the angular frequency �
and angular wave number k for this wave, and write an ex-
pression for the wave function.

Solution Using Equations 16.10, 16.12, and 16.13, we find
that

1.57 rad/mk �
�

v
�

31.4 rad/s
20.0 m/s

�

31.4 rad/s� �
2


T
� 2
f � 2
(5.00 Hz) �

RATE OF ENERGY TRANSFER BY SINUSOIDAL
WAVES ON STRINGS

As waves propagate through a medium, they transport energy. We can easily
demonstrate this by hanging an object on a stretched string and then sending a
pulse down the string, as shown in Figure 16.20. When the pulse meets the sus-
pended object, the object is momentarily displaced, as illustrated in Figure 16.20b.
In the process, energy is transferred to the object because work must be done for
it to move upward. This section examines the rate at which energy is transported
along a string. We shall assume a one-dimensional sinusoidal wave in the calcula-
tion of the energy transferred.

Consider a sinusoidal wave traveling on a string (Fig. 16.21). The source of the
energy being transported by the wave is some external agent at the left end of the
string; this agent does work in producing the oscillations. As the external agent
performs work on the string, moving it up and down, energy enters the system of
the string and propagates along its length. Let us focus our attention on a segment
of the string of length �x and mass �m. Each such segment moves vertically with
simple harmonic motion. Furthermore, all segments have the same angular fre-
quency � and the same amplitude A. As we found in Chapter 13, the elastic poten-
tial energy U associated with a particle in simple harmonic motion is 
where the simple harmonic motion is in the y direction. Using the relationship 
�2 � k/m developed in Equations 13.16 and 13.17, we can write this as

U � 1
2ky2,

16.8

m

m

(a)

(b)

Figure 16.20 (a) A pulse travel-
ing to the right on a stretched
string on which an object has been
suspended. (b) Energy is transmit-
ted to the suspended object when
the pulse arrives.

Figure 16.21 A sinusoidal wave
traveling along the x axis on a
stretched string. Every segment
moves vertically, and every segment
has the same total energy.

∆m
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If we apply this equation to the segment of mass �m, we see that the
potential energy of this segment is

Because the mass per unit length of the string is we can express the
potential energy of the segment as

As the length of the segment shrinks to zero, �x : dx, and this expression be-
comes a differential relationship:

We replace the general displacement y of the segment with the wave function for a
sinusoidal wave:

If we take a snapshot of the wave at time then the potential energy in a given
segment is

To obtain the total potential energy in one wavelength, we integrate this expres-
sion over all the string segments in one wavelength:

Because it is in motion, each segment of the string also has kinetic energy.
When we use this procedure to analyze the total kinetic energy in one wavelength
of the string, we obtain the same result:

The total energy in one wavelength of the wave is the sum of the potential and ki-
netic energies:

(16.20)

As the wave moves along the string, this amount of energy passes by a given point
on the string during one period of the oscillation. Thus, the power, or rate of en-
ergy transfer, associated with the wave is

(16.21)

This shows that the rate of energy transfer by a sinusoidal wave on a string is pro-
portional to (a) the wave speed, (b) the square of the frequency, and (c) the
square of the amplitude. In fact: the rate of energy transfer in any sinusoidal
wave is proportional to the square of the angular frequency and to the
square of the amplitude.

� � 1
2��2 A2v

� �
E�

�t
�

1
2��2A2�

T
� 1

2��2A2� �

T �

E� � U� � K � � 1
2��2A2�

K � � �dK � 1
4��2A2�

 � 1
2��2A2�1

2x � 1
4k sin 2 kx��

0
� 1

2��2A2(1
2�) � 1

4��2A2�

U� � �dU � ��

0

1
2��2A2 sin2 kx dx � 1

2��2A2 ��

0
sin2 kx dx 

dU � 1
2��2A2 sin2 kx dx

t � 0,

dU � 1
2��2[A sin(kx � �t)]2 dx � 1

2��2A2 sin2(kx � �t) dx

dU � 1
2(�dx)�2y2

�U � 1
2(��x)�2y2

� � �m/�x,

�U � 1
2(�m)�2y2

U � 1
2m�2y2.

Power of a wave
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Optional Section

THE LINEAR WAVE EQUATION
In Section 16.3 we introduced the concept of the wave function to represent waves
traveling on a string. All wave functions y(x, t) represent solutions of an equation
called the linear wave equation. This equation gives a complete description of the
wave motion, and from it one can derive an expression for the wave speed. Fur-
thermore, the linear wave equation is basic to many forms of wave motion. In this
section, we derive this equation as applied to waves on strings.

Suppose a traveling wave is propagating along a string that is under a tension
T. Let us consider one small string segment of length �x (Fig. 16.22). The ends of
the segment make small angles �A and �B with the x axis. The net force acting on
the segment in the vertical direction is

Because the angles are small, we can use the small-angle approximation sin � �
tan � to express the net force as

However, the tangents of the angles at A and B are defined as the slopes of the string
segment at these points. Because the slope of a curve is given by we have

(16.22)

We now apply Newton’s second law to the segment, with the mass of the seg-
ment given by 

(16.23)

Combining Equation 16.22 with Equation 16.23, we obtain

(16.24) 
�

T
 

�2y
�t2 �

(�y/�x)B � (�y/�x)A

�x
 

��x � �2y
�t2 � � T �� �y

�x �B
� � �y

�x �A
�

	Fy � may � ��x� �2y
�t2 �

m � ��x :

	Fy � T  �� �y
�x �B

� � �y
�x �A

�
�y/�x,

	Fy � T(tan �B � tan �A)

	Fy � T sin �B � T sin �A � T(sin �B � sin �A)

16.9

Power Supplied to a Vibrating StringEXAMPLE 16.5
oidal waves on the string has the value

Using these values in Equation 16.21 for the power, with
we obtain

512 W  �

 � � (6.00 � 10�2 m)2(40.0 m/s)

 � 1
2(5.00 � 10�2 kg/m)(377 s�1)2

� � 1
2��2A2v 

A � 6.00 � 10�2 m,

� � 2
f � 2
(60.0 Hz) � 377 s�1

A taut string for which is under a ten-
sion of 80.0 N. How much power must be supplied to the
string to generate sinusoidal waves at a frequency of 60.0 Hz
and an amplitude of 6.00 cm?

Solution The wave speed on the string is, from Equation
16.4,

Because Hz, the angular frequency � of the sinus-f � 60.0

v � √ T
�

� √ 80.0 N
5.00 � 10�2 kg/m

� 40.0 m/s

� � 5.00 � 10�2 kg/m

Figure 16.22 A segment of a
string under tension T. The slopes
at points A and B are given by 
tan �A and tan �B , respectively.

θB

θA

∆x

A

B

T

T

θ

θ
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The right side of this equation can be expressed in a different form if we note that
the partial derivative of any function is defined as

If we associate with and f(x) with we see that, in the
limit �x : 0, Equation 16.24 becomes

(16.25)

This is the linear wave equation as it applies to waves on a string.
We now show that the sinusoidal wave function (Eq. 16.11) represents a solu-

tion of the linear wave equation. If we take the sinusoidal wave function to be of
the form sin then the appropriate derivatives are

Substituting these expressions into Equation 16.25, we obtain

This equation must be true for all values of the variables x and t in order for the 
sinusoidal wave function to be a solution of the wave equation. Both sides of the
equation depend on x and t through the same function sin(kx � �t). Because this
function divides out, we do indeed have an identity, provided that

Using the relationship (Eq. 16.13) in this expression, we see that

which is Equation 16.4. This derivation represents another proof of the expression
for the wave speed on a taut string.

The linear wave equation (Eq. 16.25) is often written in the form

(16.26)

This expression applies in general to various types of traveling waves. For waves on
strings, y represents the vertical displacement of the string. For sound waves, y cor-
responds to displacement of air molecules from equilibrium or variations in either
the pressure or the density of the gas through which the sound waves are propa-
gating. In the case of electromagnetic waves, y corresponds to electric or magnetic
field components.

We have shown that the sinusoidal wave function (Eq. 16.11) is one solution of
the linear wave equation (Eq. 16.26). Although we do not prove it here, the linear

�2y
�x2 �

1
v2  

�2y
�t2

 v � √ T
�

 

v2 �
�2

k2 �
T
�

v � �/k

k2 �
��2

T

�
��2

T
 sin(kx � �t ) � �k2 sin(kx � �t )

�2y
�x2 � �k2A sin(kx � �t)

�2y
�t2 � ��2A sin(kx � �t)

(kx � �t),y(x, t) � A

�

T
 

�2y
�t2 �

�2y
�x2

(�y/�x)A ,(�y/�x)Bf(x � �x)

�f
�x

� lim
�x:0

 
f(x � �x) � f(x)

�x

Linear wave equation in general

Linear wave equation
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wave equation is satisfied by any wave function having the form Fur-
thermore, we have seen that the linear wave equation is a direct consequence of
Newton’s second law applied to any segment of the string.

SUMMARY

A transverse wave is one in which the particles of the medium move in a direc-
tion perpendicular to the direction of the wave velocity. An example is a wave on a
taut string. A longitudinal wave is one in which the particles of the medium move
in a direction parallel to the direction of the wave velocity. Sound waves in fluids
are longitudinal. You should be able to identify examples of both types of waves.

Any one-dimensional wave traveling with a speed v in the x direction can be
represented by a wave function of the form

(16.1, 16.2)

where the positive sign applies to a wave traveling in the negative x direction and the
negative sign applies to a wave traveling in the positive x direction. The shape of the
wave at any instant in time (a snapshot of the wave) is obtained by holding t constant.

The superposition principle specifies that when two or more waves move
through a medium, the resultant wave function equals the algebraic sum of the 
individual wave functions. When two waves combine in space, they interfere to
produce a resultant wave. The interference may be constructive (when the indi-
vidual displacements are in the same direction) or destructive (when the dis-
placements are in opposite directions).

The speed of a wave traveling on a taut string of mass per unit length � and
tension T is

(16.4)

A wave is totally or partially reflected when it reaches the end of the medium in
which it propagates or when it reaches a boundary where its speed changes discon-
tinuously. If a wave pulse traveling on a string meets a fixed end, the pulse is re-
flected and inverted. If the pulse reaches a free end, it is reflected but not inverted.

The wave function for a one-dimensional sinusoidal wave traveling to the
right can be expressed as

(16.6, 16.11)

where A is the amplitude, � is the wavelength, k is the angular wave number,
and � is the angular frequency. If T is the period and f the frequency, v, k and �
can be written

(16.7, 16.14)

(16.9)

(16.10, 16.12)

You should know how to find the equation describing the motion of particles in a
wave from a given set of physical parameters.

The power transmitted by a sinusoidal wave on a stretched string is

(16.21)� � 1
2��2A2v

� �
2


T
� 2
f

k �
2


�
 

v �
�

T
� �f 

y � A sin� 2


�
 (x � vt)� � A sin(kx � �t)

v � √ T
�

y � f(x 
 vt)

y � f(x 
 vt).
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QUESTIONS

11. What happens to the wavelength of a wave on a string
when the frequency is doubled? Assume that the tension
in the string remains the same.

12. What happens to the speed of a wave on a taut string
when the frequency is doubled? Assume that the tension
in the string remains the same.

13. How do transverse waves differ from longitudinal waves?
14. When all the strings on a guitar are stretched to the same

tension, will the speed of a wave along the more massive
bass strings be faster or slower than the speed of a wave
on the lighter strings?

15. If you stretch a rubber hose and pluck it, you can observe
a pulse traveling up and down the hose. What happens to
the speed of the pulse if you stretch the hose more
tightly? What happens to the speed if you fill the hose
with water?

16. In a longitudinal wave in a spring, the coils move back
and forth in the direction of wave motion. Does the
speed of the wave depend on the maximum speed of
each coil?

17. When two waves interfere, can the amplitude of the resul-
tant wave be greater than either of the two original waves?
Under what conditions?

18. A solid can transport both longitudinal waves and trans-
verse waves, but a fluid can transport only longitudinal
waves. Why?

1. Why is a wave pulse traveling on a string considered a
transverse wave?

2. How would you set up a longitudinal wave in a stretched
spring? Would it be possible to set up a transverse wave in
a spring?

3. By what factor would you have to increase the tension in a
taut string to double the wave speed?

4. When traveling on a taut string, does a wave pulse always
invert upon reflection? Explain.

5. Can two pulses traveling in opposite directions on the
same string reflect from each other? Explain.

6. Does the vertical speed of a segment of a horizontal, taut
string, through which a wave is traveling, depend on the
wave speed?

7. If you were to shake one end of a taut rope periodically
three times each second, what would be the period of the
sinusoidal waves set up in the rope?

8. A vibrating source generates a sinusoidal wave on a string
under constant tension. If the power delivered to the string
is doubled, by what factor does the amplitude change?
Does the wave speed change under these circumstances?

9. Consider a wave traveling on a taut rope. What is the dif-
ference, if any, between the speed of the wave and the
speed of a small segment of the rope?

10. If a long rope is hung from a ceiling and waves are sent
up the rope from its lower end, they do not ascend with
constant speed. Explain.

PROBLEMS

3. A wave moving along the x axis is described by

where x is in meters and t is in seconds. Determine 
(a) the direction of the wave motion and (b) the speed
of the wave.

y(x, t) � 5.00e�(x�5.00t )2

Section 16.1 Basic Variables of Wave Motion

Section 16.2 Direction of Particle Displacement

Section 16.3 One-Dimensional Traveling Waves

1. At a transverse wave pulse in a wire is described
by the function

where x and y are in meters. Write the function y(x, t)
that describes this wave if it is traveling in the positive x
direction with a speed of 4.50 m/s.

2. Two wave pulses A and B are moving in opposite direc-
tions along a taut string with a speed of 2.00 cm/s. The
amplitude of A is twice the amplitude of B. The pulses
are shown in Figure P16.2 at Sketch the shape of
the string at 1.5, 2, 2.5, and 3 s.t � 1,

t � 0.

y �
6

x2 � 3

t � 0,

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

4

y(cm)

2.00 cm/s

–2.00 cm/s

x(cm)

2

2 4 6 8 10 12 14 16 18 20

A
B

Figure P16.2
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WEB

4. Ocean waves with a crest-to-crest distance of 10.0 m can
be described by the equation

where m/s. (a) Sketch y(x, t) at 
(b) Sketch y(x, t) at s. Note how the entire
wave form has shifted 2.40 m in the positive x direction
in this time interval.

5. Two points, A and B, on the surface of the Earth are at
the same longitude and 60.0° apart in latitude. Suppose
that an earthquake at point A sends two waves toward
point B. A transverse wave travels along the surface of
the Earth at 4.50 km/s, and a longitudinal wave travels
straight through the body of the Earth at 7.80 km/s. 
(a) Which wave arrives at point B first? (b) What is the
time difference between the arrivals of the two waves at
point B ? Take the radius of the Earth to be 6 370 km.

6. A seismographic station receives S and P waves from an
earthquake, 17.3 s apart. Suppose that the waves have
traveled over the same path at speeds of 4.50 km/s and
7.80 km/s, respectively. Find the distance from the seis-
mometer to the epicenter of the quake.

Section 16.4 Superposition and Interference
7. Two sinusoidal waves in a string are defined by the func-

tions

and

where y and x are in centimeters and t is in seconds. 
(a) What is the phase difference between these two
waves at the point cm at s? (b) What is
the positive x value closest to the origin for which the
two phases differ by 
 
 at s? (This is where
the sum of the two waves is zero.)

8. Two waves in one string are described by the wave func-
tions

and

where y and x are in centimeters and t is in seconds.
Find the superposition of the waves at the
points (a) (b) 
(c) (Remember that the arguments of
the trigonometric functions are in radians.)

9. Two pulses traveling on the same string are described by
the functions

and

y2 �
�5

(3x � 4t � 6)2 � 2

y1 �
5

(3x � 4t)2 � 2

t � 0.x � 0.500,
t � 0.500;x � 1.00,t � 1.00;x � 1.00,

y1 � y2

y2 � 4.0 sin(5.0x � 2.0t)

y1 � 3.0 cos(4.0x � 1.6t)

t � 2.00

t � 2.00x � 5.00

y2 � (2.00 cm) sin(25.0x � 40.0t)

y1 � (2.00 cm) sin(20.0x � 32.0t)

t � 2.00
t � 0.v � 1.20

y(x, t) � (0.800 m) sin[0.628(x � vt)]

(a) In which direction does each pulse travel? 
(b) At what time do the two cancel? (c) At what point
do the two waves always cancel?

Section 16.5 The Speed of Waves on Strings
10. A phone cord is 4.00 m long. The cord has a mass of

0.200 kg. A transverse wave pulse is produced by pluck-
ing one end of the taut cord. The pulse makes four trips
down and back along the cord in 0.800 s. What is the
tension in the cord?

11. Transverse waves with a speed of 50.0 m/s are to be pro-
duced in a taut string. A 5.00-m length of string with a
total mass of 0.060 0 kg is used. What is the required
tension?

12. A piano string having a mass per unit length 5.00 �
10�3 kg/m is under a tension of 1 350 N. Find the
speed with which a wave travels on this string.

13. An astronaut on the Moon wishes to measure the local
value of g by timing pulses traveling down a wire that
has a large mass suspended from it. Assume that the
wire has a mass of 4.00 g and a length of 1.60 m, and
that a 3.00-kg mass is suspended from it. A pulse re-
quires 36.1 ms to traverse the length of the wire. Calcu-
late gMoon from these data. (You may neglect the mass
of the wire when calculating the tension in it.)

14. Transverse pulses travel with a speed of 200 m/s along a
taut copper wire whose diameter is 1.50 mm. What is
the tension in the wire? (The density of copper is 
8.92 g/cm3.)

15. Transverse waves travel with a speed of 20.0 m/s in a
string under a tension of 6.00 N. What tension is required
to produce a wave speed of 30.0 m/s in the same string?

16. A simple pendulum consists of a ball of mass M hanging
from a uniform string of mass m and length L, with 
m V M. If the period of oscillation for the pendulum is
T, determine the speed of a transverse wave in the
string when the pendulum hangs at rest.

17. The elastic limit of a piece of steel wire is 2.70 � 109 Pa.
What is the maximum speed at which transverse wave
pulses can propagate along this wire before this stress is
exceeded? (The density of steel is 7.86 � 103 kg/m3.)

18. Review Problem. A light string with a mass per unit
length of 8.00 g/m has its ends tied to two walls sepa-
rated by a distance equal to three-fourths the length of
the string (Fig. P16.18). An object of mass m is sus-

3L/4

L/2L/2

m

Figure P16.18
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pended from the center of the string, putting a tension
in the string. (a) Find an expression for the transverse
wave speed in the string as a function of the hanging
mass. (b) How much mass should be suspended from
the string to produce a wave speed of 60.0 m/s?

19. Review Problem. A light string with a mass of 10.0 g
and a length m has its ends tied to two walls
that are separated by the distance m. Two ob-
jects, each with a mass kg, are suspended
from the string, as shown in Figure P16.19. If a wave
pulse is sent from point A , how long does it take for it
to travel to point B?

20. Review Problem. A light string of mass m and length L
has its ends tied to two walls that are separated by the
distance D. Two objects, each of mass M, are suspended
from the string, as shown in Figure P16.19. If a wave
pulse is sent from point A, how long does it take to
travel to point B?

M � 2.00
D � 2.00

L � 3.00

the period of vibration from this plot and compare your
result with the value found in Example 16.3.

24. For a certain transverse wave, the distance between two
successive crests is 1.20 m, and eight crests pass a given
point along the direction of travel every 12.0 s. Calcu-
late the wave speed.

25. A sinusoidal wave is traveling along a rope. The oscilla-
tor that generates the wave completes 40.0 vibrations in
30.0 s. Also, a given maximum travels 425 cm along the
rope in 10.0 s. What is the wavelength?

26. Consider the sinusoidal wave of Example 16.3, with the
wave function

At a certain instant, let point A be at the origin and
point B be the first point along the x axis where the
wave is 60.0° out of phase with point A. What is the
coordinate of point B?

27. When a particular wire is vibrating with a frequency of
4.00 Hz, a transverse wave of wavelength 60.0 cm is pro-
duced. Determine the speed of wave pulses along the
wire.

28. A sinusoidal wave traveling in the � x direction (to the
left) has an amplitude of 20.0 cm, a wavelength of 
35.0 cm, and a frequency of 12.0 Hz. The displacement
of the wave at is cm; at this same
point, a particle of the medium has a positive velocity.
(a) Sketch the wave at (b) Find the angular wave
number, period, angular frequency, and wave speed of
the wave. (c) Write an expression for the wave function
y(x, t).

29. A sinusoidal wave train is described by the equation

m) sin(0.30x � 40t)

where x and y are in meters and t is in seconds. Deter-
mine for this wave the (a) amplitude, (b) angular fre-
quency, (c) angular wave number, (d) wavelength, 
(e) wave speed, and (f) direction of motion.

30. A transverse wave on a string is described by the expres-
sion

(a) Determine the transverse speed and acceleration of
the string at s for the point on the string lo-
cated at m. (b) What are the wavelength, pe-
riod, and speed of propagation of this wave?

31. (a) Write the expression for y as a function of x and t
for a sinusoidal wave traveling along a rope in the 
negative x direction with the following characteristics:

cm, � � 80.0 cm, Hz, and 
at (b) Write the expression for y as a function of
x and t for the wave in part (a), assuming that

at the point cm.
32. A transverse sinusoidal wave on a string has a period

ms and travels in the negative x direction with
a speed of 30.0 m/s. At a particle on the string att � 0,
T � 25.0

x � 10.0y(x, 0) � 0

t � 0.
y(0, t) � 0f � 3.00A � 8.00

x � 1.60
t � 0.200

y � (0.120 m) sin(
x/8 � 4
t)

y � (0.25

t � 0.

y � �3.00x � 0t � 0,

y � (15.0 cm) cos(0.157x � 50.3t)

WEB

Figure P16.19 Problems 19 and 20.
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21. A 30.0-m steel wire and a 20.0-m copper wire, both with
1.00-mm diameters, are connected end to end and are
stretched to a tension of 150 N. How long does it take a
transverse wave to travel the entire length of the two
wires?

Section 16.6 Reflection and Transmission
22. A series of pulses, each of amplitude 0.150 m, are sent

down a string that is attached to a post at one end. The
pulses are reflected at the post and travel back along
the string without loss of amplitude. What is the dis-
placement at a point on the string where two pulses are
crossing (a) if the string is rigidly attached to the post?
(b) if the end at which reflection occurs is free to slide
up and down?

Section 16.7 Sinusoidal Waves
23. (a) Plot y versus t at for a sinusoidal wave of the

form cm) cos(0.157x � 50.3t) , where x and y
are in centimeters and t is in seconds. (b) Determine

y � (15.0
x � 0

WEB
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has a displacement of 2.00 cm and travels down-
ward with a speed of 2.00 m/s. (a) What is the ampli-
tude of the wave? (b) What is the initial phase angle?
(c) What is the maximum transverse speed of the
string? (d) Write the wave function for the wave.

33. A sinusoidal wave of wavelength 2.00 m and amplitude
0.100 m travels on a string with a speed of 1.00 m/s to
the right. Initially, the left end of the string is at the ori-
gin. Find (a) the frequency and angular frequency, 
(b) the angular wave number, and (c) the wave func-
tion for this wave. Determine the equation of motion
for (d) the left end of the string and (e) the point on
the string at m to the right of the left end. 
(f) What is the maximum speed of any point on the
string?

34. A sinusoidal wave on a string is described by the equa-
tion

where rad/cm and rad/s. How far
does a wave crest move in 10.0 s? Does it move in the
positive or negative x direction?

35. A wave is described by cm) sin
where rad/m, rad/s, x is in meters,
and t is in seconds. Determine the amplitude, wave-
length, frequency, and speed of the wave.

36. A transverse traveling wave on a taut wire has an ampli-
tude of 0.200 mm and a frequency of 500 Hz. It travels
with a speed of 196 m/s. (a) Write an equation in SI
units of the form sin for this wave. 
(b) The mass per unit length of this wire is 4.10 g/m.
Find the tension in the wire.

37. A wave on a string is described by the wave function

(a) Show that a particle in the string at m exe-
cutes simple harmonic motion. (b) Determine the fre-
quency of oscillation of this particular point.

Section 16.8 Rate of Energy Transfer by Sinusoidal
Waves on Strings

38. A taut rope has a mass of 0.180 kg and a length of 
3.60 m. What power must be supplied to the rope to
generate sinusoidal waves having an amplitude of 
0.100 m and a wavelength of 0.500 m and traveling with
a speed of 30.0 m/s?

39. A two-dimensional water wave spreads in circular wave
fronts. Show that the amplitude A at a distance r from
the initial disturbance is proportional to (Hint:
Consider the energy carried by one outward-moving
ripple.)

40. Transverse waves are being generated on a rope under
constant tension. By what factor is the required power
increased or decreased if (a) the length of the rope is
doubled and the angular frequency remains constant,
(b) the amplitude is doubled and the angular fre-

1/√r.

x � 2.00

y � (0.100 m) sin(0.50x � 20t)

(kx � �t)y � A

� � 3.62k � 2.11
(kx � �t),y � (2.00

� � 9.30k � 3.10

y � (0.51 cm) sin(kx � �t)

x � 1.50

x � 0 quency is halved, (c) both the wavelength and the
amplitude are doubled, and (d) both the length of the
rope and the wavelength are halved?

41. Sinusoidal waves 5.00 cm in amplitude are to be trans-
mitted along a string that has a linear mass density of
4.00 � 10�2 kg/m. If the source can deliver a maximum
power of 300 W and the string is under a tension of 
100 N, what is the highest vibrational frequency at
which the source can operate?

42. It is found that a 6.00-m segment of a long string con-
tains four complete waves and has a mass of 180 g. The
string is vibrating sinusoidally with a frequency of 
50.0 Hz and a peak-to-valley displacement of 15.0 cm.
(The “peak-to-valley” distance is the vertical distance
from the farthest positive displacement to the farthest
negative displacement.) (a) Write the function that de-
scribes this wave traveling in the positive x direction.
(b) Determine the power being supplied to the string.

43. A sinusoidal wave on a string is described by the equa-
tion

where x and y are in meters and t is in seconds. If the
mass per unit length of this string is 12.0 g/m, deter-
mine (a) the speed of the wave, (b) the wavelength, 
(c) the frequency, and (d) the power transmitted to the
wave.

44. A horizontal string can transmit a maximum power of 
(without breaking) if a wave with amplitude A and an-
gular frequency � is traveling along it. To increase this
maximum power, a student folds the string and uses the
“double string” as a transmitter. Determine the maxi-
mum power that can be transmitted along the “double
string,” supposing that the tension is constant.

(Optional)
Section 16.9 The Linear Wave Equation

45. (a) Evaluate A in the scalar equality 
(b) Evaluate A, B, and C in the vector equality

Explain how you arrive
at your answers. (c) The functional equality or identity

is true for all values of the variables x and t, which are
measured in meters and in seconds, respectively. Evalu-
ate the constants A, B, C, D, and E. Explain how you ar-
rive at your answers.

46. Show that the wave function is a solution of
the wave equation (Eq. 16.26), where b is a constant.

47. Show that the wave function is a solu-
tion to Equation 16.26, where b is a constant.

48. (a) Show that the function is a solu-
tion to the wave equation. (b) Show that the function
above can be written as and deter-
mine the functional forms for f and g. (c) Repeat parts 
(a) and (b) for the function y(x, t) � sin(x) cos(vt).

f(x � vt) � g(x � vt),

y(x, t) � x2 � v2t2

y � ln[b(x � vt)]

y � e b(x �vt )

A � B cos(Cx � Dt � E) � (7.00 mm) cos(3x � 4t � 2)

7.00 i � 3.00k � A i � B j � Ck.

(7 � 3)4 � A.

�

y � (0.15 m) sin(0.80x � 50t)

WEB
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ADDITIONAL PROBLEMS

49. The “wave” is a particular type of wave pulse that can
sometimes be seen propagating through a large crowd
gathered at a sporting arena to watch a soccer or Ameri-
can football match (Fig. P16.49). The particles of the
medium are the spectators, with zero displacement cor-
responding to their being in the seated position and
maximum displacement corresponding to their being
in the standing position and raising their arms. When a
large fraction of the spectators participate in the wave
motion, a somewhat stable pulse shape can develop.
The wave speed depends on people’s reaction time,
which is typically on the order of 0.1 s. Estimate the or-
der of magnitude, in minutes, of the time required for
such a wave pulse to make one circuit around a large
sports stadium. State the quantities you measure or esti-
mate and their values.

(a) What are the speed and direction of travel of the
wave? (b) What is the vertical displacement of the string
at m? (c) What are the wavelength and
frequency of the wave? (d) What is the maximum mag-
nitude of the transverse speed of the string?

52. Motion picture film is projected at 24.0 frames per sec-
ond. Each frame is a photograph 19.0 mm in height. At
what constant speed does the film pass into the pro-
jector?

53. Review Problem. A block of mass M, supported by a
string, rests on an incline making an angle � with the
horizontal (Fig. P16.53). The string’s length is L, and its
mass is m V M. Derive an expression for the time it
takes a transverse wave to travel from one end of the
string to the other.

x � 0.100t � 0,

WEB

M

m, L

θ

Figure P16.49

50. A traveling wave propagates according to the expression
where x is in centimeters

and t is in seconds. Determine (a) the amplitude, 
(b) the wavelength, (c) the frequency, (d) the period,
and (e) the direction of travel of the wave.

51. The wave function for a traveling wave on a taut string is
(in SI units)

y(x, t) � (0.350 m) sin(10
t � 3
x � 
/4)

y � (4.0 cm) sin(2.0x � 3.0t),

Figure P16.53

54. (a) Determine the speed of transverse waves on a string
under a tension of 80.0 N if the string has a length of
2.00 m and a mass of 5.00 g. (b) Calculate the power re-
quired to generate these waves if they have a wavelength
of 16.0 cm and an amplitude of 4.00 cm.

55. Review Problem. A 2.00-kg block hangs from a rubber
cord. The block is supported so that the cord is not
stretched. The unstretched length of the cord is 
0.500 m, and its mass is 5.00 g. The “spring constant”
for the cord is 100 N/m. The block is released and stops
at the lowest point. (a) Determine the tension in the
cord when the block is at this lowest point. (b) What is
the length of the cord in this “stretched” position? 
(c) Find the speed of a transverse wave in the cord if
the block is held in this lowest position.

56. Review Problem. A block of mass M hangs from a rub-
ber cord. The block is supported so that the cord is not
stretched. The unstretched length of the cord is L0 ,
and its mass is m, much less than M. The “spring con-
stant” for the cord is k. The block is released and stops
at the lowest point. (a) Determine the tension in the
cord when the block is at this lowest point. (b) What is
the length of the cord in this “stretched” position? 
(c) Find the speed of a transverse wave in the cord if
the block is held in this lowest position.
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57. A sinusoidal wave in a rope is described by the wave
function

where x and y are in meters and t is in seconds. The
rope has a linear mass density of 0.250 kg/m. If the ten-
sion in the rope is provided by an arrangement like the
one illustrated in Figure 16.12, what is the value of the
suspended mass?

58. A wire of density � is tapered so that its cross-sectional
area varies with x, according to the equation

(a) If the wire is subject to a tension T, derive a relation-
ship for the speed of a wave as a function of position. 
(b) If the wire is aluminum and is subject to a tension
of 24.0 N, determine the speed at the origin and at

m.
59. A rope of total mass m and length L is suspended verti-

cally. Show that a transverse wave pulse travels the
length of the rope in a time (Hint: First find
an expression for the wave speed at any point a distance
x from the lower end by considering the tension in the
rope as resulting from the weight of the segment below
that point.)

60. If mass M is suspended from the bottom of the rope in
Problem 59, (a) show that the time for a transverse wave
to travel the length of the rope is

(b) Show that this reduces to the result of Problem 59
when (c) Show that for m V M, the expression
in part (a) reduces to

61. It is stated in Problem 59 that a wave pulse travels from
the bottom to the top of a rope of length L in a time

Use this result to answer the following ques-
tions. (It is not necessary to set up any new integra-
tions.) (a) How long does it take for a wave pulse to
travel halfway up the rope? (Give your answer as a frac-
tion of the quantity (b) A pulse starts traveling
up the rope. How far has it traveled after a time 

62. Determine the speed and direction of propagation of
each of the following sinusoidal waves, assuming that x
is measured in meters and t in seconds:
(a)
(b)
(c)
(d) y � 0.20 sin(12t � x/2 � 
)

y � 1.2 sin(15t � 2.0x)
y � 0.40 cos(3.0x � 15t � 2)
y � 0.60 cos(3.0x � 15t � 2)

√L/g ?
2√L/g.)

t � 2√L/g.

t � √ mL
Mg

M � 0.

t � 2√ L
mg

 �√(M � m) � √M�

t � 2√L/g.

x � 10.0

A � (1.0 � 10�3x � 0.010) cm2

y � (0.20 m) sin(0.75
x � 18
t)

63. Review Problem. An aluminum wire under zero ten-
sion at room temperature is clamped at each end. The
tension in the wire is increased by reducing the temper-
ature, which results in a decrease in the wire’s equilib-
rium length. What strain (�L/L) results in a transverse
wave speed of 100 m/s? Take the cross-sectional area of
the wire to be 5.00 � 10�6 m2, the density of the mater-
ial to be 2.70 � 103 kg/m3, and Young’s modulus to be
7.00 � 1010 N/m2 .

64. (a) Show that the speed of longitudinal waves along a
spring of force constant k is where L is the
unstretched length of the spring and � is the mass per
unit length. (b) A spring with a mass of 0.400 kg has an
unstretched length of 2.00 m and a force constant of
100 N/m. Using the result you obtained in (a), deter-
mine the speed of longitudinal waves along this spring.

65. A string of length L consists of two sections: The left
half has mass per unit length whereas the
right half has a mass per unit length 
Tension in the string is T0 . Notice from the data given
that this string has the same total mass as a uniform
string of length L and of mass per unit length �0 . 
(a) Find the speeds v and v� at which transverse wave
pulses travel in the two sections. Express the speeds in
terms of T0 and �0 , and also as multiples of the speed

(b) Find the time required for a pulse
to travel from one end of the string to the other. Give
your result as a multiple of 

66. A wave pulse traveling along a string of linear mass den-
sity � is described by the relationship

where the factor in brackets before the sine function is
said to be the amplitude. (a) What is the power 
carried by this wave at a point x? (b) What is the power
carried by this wave at the origin? (c) Compute the ratio

67. An earthquake on the ocean floor in the Gulf of Alaska
produces a tsunami (sometimes called a “tidal wave”)
that reaches Hilo, Hawaii, 4 450 km away, in a time of 
9 h 30 min. Tsunamis have enormous wavelengths
(100–200 km), and the propagation speed of these 
waves is , where is the average depth of the wa-
ter. From the information given, find the average wave
speed and the average ocean depth between Alaska and
Hawaii. (This method was used in 1856 to estimate the
average depth of the Pacific Ocean long before sound-
ings were made to obtain direct measurements.)

dv � √gd

�(x)/�(0).

�(x)

y � [A0e�bx] sin(kx � �t)

t0 � L/v0 .

v0 � (T0/�0)1/2.

�� � 3� � 3�0/2.
� � �0/2,

v � √kL/�,
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ANSWERS TO QUICK QUIZZES

16.3 Only answers (f) and (h) are correct. (a) and (b) affect
the transverse speed of a particle of the string, but not
the wave speed along the string. (c) and (d) change the
amplitude. (e) and (g) increase the time by decreasing
the wave speed.

16.4 The transverse speed increases because 
The wave speed does not change because it de-

pends only on the tension and mass per length of the
string, neither of which has been modified. The wave-
length must decrease because the wave speed re-
mains constant.

v � �f

2
fA.
vy, max � �A �

16.1 (a) It is longitudinal because the disturbance (the shift
of position) is parallel to the direction in which the wave
travels. (b) It is transverse because the people stand up
and sit down (vertical motion), whereas the wave moves
either to the left or to the right (motion perpendicular
to the disturbance).

16.2 1 cm
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You can estimate the distance to an ap-
proaching storm by listening carefully to
the sound of the thunder. How is this
done? Why is the sound that follows a
lightning strike sometimes a short, sharp
thunderclap and other times a long-
lasting rumble? (Richard Kaylin/Tony

Stone Images)
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ound waves are the most important example of longitudinal waves. They can
travel through any material medium with a speed that depends on the prop-
erties of the medium. As the waves travel, the particles in the medium vibrate

to produce changes in density and pressure along the direction of motion of the
wave. These changes result in a series of high-pressure and low-pressure regions. If
the source of the sound waves vibrates sinusoidally, the pressure variations are also
sinusoidal. We shall find that the mathematical description of sinusoidal sound
waves is identical to that of sinusoidal string waves, which was discussed in the pre-
vious chapter.

Sound waves are divided into three categories that cover different frequency
ranges. (1) Audible waves are waves that lie within the range of sensitivity of the hu-
man ear. They can be generated in a variety of ways, such as by musical instru-
ments, human vocal cords, and loudspeakers. (2) Infrasonic waves are waves having
frequencies below the audible range. Elephants can use infrasonic waves to com-
municate with each other, even when separated by many kilometers. (3) Ultrasonic
waves are waves having frequencies above the audible range. You may have used a
“silent” whistle to retrieve your dog. The ultrasonic sound it emits is easily heard
by dogs, although humans cannot detect it at all. Ultrasonic waves are also used in
medical imaging.

We begin this chapter by discussing the speed of sound waves and then wave
intensity, which is a function of wave amplitude. We then provide an alternative de-
scription of the intensity of sound waves that compresses the wide range of intensi-
ties to which the ear is sensitive to a smaller range. Finally, we treat effects of the
motion of sources and/or listeners.

SPEED OF SOUND WAVES
Let us describe pictorially the motion of a one-dimensional longitudinal pulse
moving through a long tube containing a compressible gas (Fig. 17.1). A piston at
the left end can be moved to the right to compress the gas and create the pulse.
Before the piston is moved, the gas is undisturbed and of uniform density, as rep-
resented by the uniformly shaded region in Figure 17.1a. When the piston is sud-
denly pushed to the right (Fig. 17.1b), the gas just in front of it is compressed (as
represented by the more heavily shaded region); the pressure and density in this
region are now higher than they were before the piston moved. When the piston
comes to rest (Fig. 17.1c), the compressed region of the gas continues to move to
the right, corresponding to a longitudinal pulse traveling through the tube with

17.1
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S

An ultrasound image of a human fetus in
the womb after 20 weeks of development,
showing the head, body, arms, and legs in
profile.

(d)

v

(c)

v

(b)

Compressed region

(a)

Undisturbed gas

Figure 17.1 Motion of a longitudi-
nal pulse through a compressible gas.
The compression (darker region) is
produced by the moving piston.
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speed v. Note that the piston speed does not equal v. Furthermore, the com-
pressed region does not “stay with” the piston as the piston moves, because the
speed of the wave may be greater than the speed of the piston.

The speed of sound waves depends on the compressibility and inertia of the
medium. If the medium has a bulk modulus B (see Section 12.4) and density �,
the speed of sound waves in that medium is

(17.1)

It is interesting to compare this expression with Equation 16.4 for the speed of 
transverse waves on a string, In both cases, the wave speed depends on
an elastic property of the medium—bulk modulus B or string tension T—and on
an inertial property of the medium—� or �. In fact, the speed of all mechanical
waves follows an expression of the general form

The speed of sound also depends on the temperature of the medium. For
sound traveling through air, the relationship between wave speed and medium
temperature is

where 331 m/s is the speed of sound in air at 0°C, and TC is the temperature in
degrees Celsius. Using this equation, one finds that at 20°C the speed of sound in
air is approximately 343 m/s.

This information provides a convenient way to estimate the distance to a thun-
derstorm, as demonstrated in the QuickLab. During a lightning flash, the temper-
ature of a long channel of air rises rapidly as the bolt passes through it. This tem-
perature increase causes the air in the channel to expand rapidly, and this
expansion creates a sound wave. The channel produces sound throughout its en-
tire length at essentially the same instant. If the orientation of the channel is such
that all of its parts are approximately the same distance from you, sounds from the
different parts reach you at the same time, and you hear a short, intense thunder-
clap. However, if the distances between your ear and different portions of the
channel vary, sounds from different portions arrive at your ears at different times.
If the channel were a straight line, the resulting sound would be a steady roar, but
the zigzag shape of the path produces variations in loudness.

The speed of sound in air is a function of (a) wavelength, (b) frequency, (c) temperature,
(d) amplitude.

As a result of a distant explosion, an observer first senses a ground tremor and then hears
the explosion later. Explain.

Quick Quiz 17.2

Quick Quiz 17.1

v � (331 m/s) !1 �
TC

273�C

v �! elastic property
inertial property

v � !T/�.

v �! B
�

QuickLab
The next time a thunderstorm ap-
proaches, count the seconds between
a flash of lightning (which reaches
you almost instantaneously) and the
following thunderclap. Divide this
time by 3 to determine the approxi-
mate number of kilometers (or by 5
to estimate the miles) to the storm.

Speed of sound

To learn more about lightning, read
E. Williams, “The Electrification of
Thunderstorms” Sci. Am.
259(5):88–89, 1988.
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PERIODIC SOUND WAVES
This section will help you better comprehend the nature of sound waves. You will
learn that pressure variations control what we hear—an important fact for under-
standing how our ears work.

One can produce a one-dimensional periodic sound wave in a long, narrow
tube containing a gas by means of an oscillating piston at one end, as shown in
Figure 17.2. The darker parts of the colored areas in this figure represent re-

17.2

Speed of Sound in a SolidEXAMPLE 17.1
This typical value for the speed of sound in solids is much
greater than the speed of sound in gases, as Table 17.1 shows.
This difference in speeds makes sense because the molecules
of a solid are bound together into a much more rigid struc-
ture than those in a gas and hence respond more rapidly to a
disturbance.

If a solid bar is struck at one end with a hammer, a longitudi-
nal pulse propagates down the bar with a speed ,
where Y is the Young’s modulus for the material (see Section
12.4). Find the speed of sound in an aluminum bar.

Solution From Table 12.1 we obtain 
for aluminum, and from Table 1.5 we obtain 

Therefore,

5.1 km/svAl �! Y
�

�! 7.0 � 1010 N/m2

2.70 � 103 kg/m3 �

2.70 � 103 kg/m3.
� �

Y � 7.0 � 1010 N/m2

v � !Y/�

Speed of Sound in a LiquidEXAMPLE 17.2
(a) Find the speed of sound in water, which has a bulk modu-
lus of 2.1 � 109 N/m2 and a density of 1.00 � 103 kg/m3.

Solution Using Equation 17.1, we find that

In general, sound waves travel more slowly in liquids than in
solids because liquids are more compressible than solids.

(b) Dolphins use sound waves to locate food. Experiments
have shown that a dolphin can detect a 7.5-cm target 110 m
away, even in murky water. For a bit of “dinner” at that dis-
tance, how much time passes between the moment the dol-
phin emits a sound pulse and the moment the dolphin hears
its reflection and thereby detects the distant target?

Solution The total distance covered by the sound wave as
it travels from dolphin to target and back is 2 � 110 m �
220 m. From Equation 2.2, we have 

0.16 s�t �
�x
vx

�
220 m

1 400 m/s
�

1.4 km/svwater �! B
�

�! 2.1 � 109 N/m2

1.00 � 103 kg/m3 �

Bottle-nosed dolphin. (Stuart  Westmoreland/Tony Stone Images)
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gions where the gas is compressed and thus the density and pressure are above
their equilibrium values. A compressed region is formed whenever the piston is
pushed into the tube. This compressed region, called a condensation, moves
through the tube as a pulse, continuously compressing the region just in front
of itself. When the piston is pulled back, the gas in front of it expands, and the
pressure and density in this region fall below their equilibrium values (repre-
sented by the lighter parts of the colored areas in Fig. 17.2). These low-pressure
regions, called rarefactions, also propagate along the tube, following the con-
densations. Both regions move with a speed equal to the speed of sound in the
medium.

As the piston oscillates sinusoidally, regions of condensation and rarefaction
are continuously set up. The distance between two successive condensations (or
two successive rarefactions) equals the wavelength �. As these regions travel
through the tube, any small volume of the medium moves with simple harmonic
motion parallel to the direction of the wave. If s(x, t) is the displacement of a small
volume element from its equilibrium position, we can express this harmonic dis-
placement function as

(17.2)

where smax is the maximum displacement of the medium from equilibrium
(in other words, the displacement amplitude of the wave), k is the angular
wavenumber, and 	 is the angular frequency of the piston. Note that the displace-
ment of the medium is along x, in the direction of motion of the sound wave,
which means we are describing a longitudinal wave.

As we shall demonstrate shortly, the variation in the gas pressure �P, mea-
sured from the equilibrium value, is also periodic and for the displacement func-
tion in Equation 17.2 is given by

(17.3)

where the pressure amplitude �Pmax —which is the maximum change in pres-

�P � �Pmax sin(kx 
 	t)

s(x, t) � s max cos(kx 
 	t)

TABLE 17.1
Speeds of Sound in Various
Media

Medium v (m/s)

Gases
Hydrogen (0°C) 1 286
Helium (0°C) 972
Air (20°C) 343
Air (0°C) 331
Oxygen (0°C) 317

Liquids at 25°C
Glycerol 1 904
Sea water 1 533
Water 1 493
Mercury 1 450
Kerosene 1 324
Methyl alcohol 1 143
Carbon tetrachloride 926

Solids
Diamond 12 000
Pyrex glass 5 640
Iron 5 130
Aluminum 5 100
Brass 4 700
Copper 3 560
Gold 3 240
Lucite 2 680
Lead 1 322
Rubber 1 600

Figure 17.2 A sinusoidal longitudinal wave propagating
through a gas-filled tube. The source of the wave is a sinu-
soidally oscillating piston at the left. The high-pressure and
low-pressure regions are colored darkly and lightly, respec-
tively.

P

λ
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sure from the equilibrium value—is given by

(17.4)

Thus, we see that a sound wave may be considered as either a displacement
wave or a pressure wave. A comparison of Equations 17.2 and 17.3 shows that the
pressure wave is 90° out of phase with the displacement wave. Graphs of
these functions are shown in Figure 17.3. Note that the pressure variation is a max-
imum when the displacement is zero, and the displacement is a maximum when
the pressure variation is zero.

If you blow across the top of an empty soft-drink bottle, a pulse of air travels down the bot-
tle. At the moment the pulse reaches the bottom of the bottle, compare the displacement
of air molecules with the pressure variation.

Derivation of Equation 17.3

From the definition of bulk modulus (see Eq. 12.8), the pressure variation in the
gas is

The volume of gas that has a thickness �x in the horizontal direction and a cross-
sectional area A is �x. The change in volume �V accompanying the pres-
sure change is equal to A �s, where �s is the difference between the value of s at

and the value of s at x. Hence, we can express �P as

As �x approaches zero, the ratio �s/�x becomes (The partial derivative in-
dicates that we are interested in the variation of s with position at a fixed time.)
Therefore,

If the displacement is the simple sinusoidal function given by Equation 17.2, we
find that

Because the bulk modulus is given by (see Eq. 17.1), the pressure varia-
tion reduces to

From Equation 16.13, we can write hence, �P can be expressed as

Because the sine function has a maximum value of 1, we see that the maximum
value of the pressure variation is (see Eq. 17.4), and we arrive at
Equation 17.3:

�P � �Pmax sin(kx 
 	t)

�Pmax � �v	smax

�P � �v	smax sin(kx 
 	t)

k � 	/v ;

�P � �v2ksmax sin(kx 
 	t)

B � �v2

�P � 
B 
�

�x
 [smax cos(kx 
 	t)] � Bksmax sin(kx 
 	t)

�P � 
B 
�s
�x

�s/�x.

�P � 
B 
�V
Vi

� 
B 
A �s
A �x

� 
B 
�s
�x

x � �x

Vi � A

�P � 
B 
�V
Vi

Quick Quiz 17.3

�Pmax � �v	s maxPressure amplitude

s

x

x

(a)

(b)

∆Pmax

∆P

smax

Figure 17.3 (a) Displacement
amplitude versus position and 
(b) pressure amplitude versus posi-
tion for a sinusoidal longitudinal
wave. The displacement wave is 90°
out of phase with the pressure
wave.
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INTENSITY OF PERIODIC SOUND WAVES
In the previous chapter, we showed that a wave traveling on a taut string transports
energy. The same concept applies to sound waves. Consider a volume of air of
mass �m and width �x in front of a piston oscillating with a frequency 	, as shown
in Figure 17.4. The piston transmits energy to this volume of air in the tube, and
the energy is propagated away from the piston by the sound wave.1 To evaluate the
rate of energy transfer for the sound wave, we shall evaluate the kinetic energy of
this volume of air, which is undergoing simple harmonic motion. We shall follow a
procedure similar to that in Section 16.8, in which we evaluated the rate of energy
transfer for a wave on a string. 

As the sound wave propagates away from the piston, the displacement of any
volume of air in front of the piston is given by Equation 17.2. To evaluate the ki-
netic energy of this volume of air, we need to know its speed. We find the speed by
taking the time derivative of Equation 17.2:

Imagine that we take a “snapshot” of the wave at The kinetic energy of a
given volume of air at this time is

where A is the cross-sectional area of the moving air and A �x is its volume. Now,
as in Section 16.8, we integrate this expression over a full wavelength to find the
total kinetic energy in one wavelength. Letting the volume of air shrink to infini-
tesimal thickness, so that �x : dx, we have

As in the case of the string wave in Section 16.8, the total potential energy for one
wavelength has the same value as the total kinetic energy; thus, the total mechani-

 � 1
2�A(	smax)2 �1

2�� � 1
4�A(	smax)2� 

K � � � 

dK � ��

0
 12�A(	smax)2 sin2 kx dx � 1

2�A(	smax)2 ��

0
 sin2 kx dx

 � 1
2�A �x(	smax)2 sin2 kx 

�K � 1
2 �mv2 � 1

2 �m(	smax sin kx)2 � 1
2�A �x(	smax sin kx)2

t � 0.

v(x, t) �
�

�t
 s(x, t) �

�

�t
 [smax cos(kx 
 	t)] � 	smax sin(kx 
 	t)

17.3

Area = A

∆m

∆x

v

Figure 17.4 An oscillating piston transfers energy to the air in the tube, initially causing the
volume of air of width �x and mass �m to oscillate with an amplitude smax .

1 Although it is not proved here, the work done by the piston equals the energy carried away by the
wave. For a detailed mathematical treatment of this concept, see Chapter 4 in Frank S. Crawford, Jr.,
Waves, Berkeley Physics Course, vol. 3, New York, McGraw-Hill Book Company, 1968.

In the present case, therefore, the intensity is

(17.5)

Thus, we see that the intensity of a periodic sound wave is proportional to the
square of the displacement amplitude and to the square of the angular frequency
(as in the case of a periodic string wave). This can also be written in terms of the
pressure amplitude �Pmax ; in this case, we use Equation 17.4 to obtain

(17.6)I �
�P 2

max

2�v

I �
�

A
� 1

2�v(	smax)2
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cal energy is

As the sound wave moves through the air, this amount of energy passes by a given
point during one period of oscillation. Hence, the rate of energy transfer is

where v is the speed of sound in air.

� �
E�

�t
�

1
2�A(	smax)2�

T
� 1

2�A(	smax)2� �

T � � 1
2�Av(	smax)2

E� � K � � U� � 1
2�A(	smax)2�

We define the intensity I of a wave, or the power per unit area, to be the rate at
which the energy being transported by the wave flows through a unit area A
perpendicular to the direction of travel of the wave.

Hearing LimitsEXAMPLE 17.3
tells us that the ear can discern pressure fluctuations as small
as 3 parts in 1010!

We can calculate the corresponding displacement ampli-
tude by using Equation 17.4, recalling that (see Eqs.
16.10 and 16.12):

This is a remarkably small number! If we compare this result
for s max with the diameter of a molecule (about 10
10 m), we
see that the ear is an extremely sensitive detector of sound
waves.

In a similar manner, one finds that the loudest sounds the
human ear can tolerate correspond to a pressure amplitude
of 28.7 N/m2 and a displacement amplitude equal to 

.1.11 � 10
5 m

1.11 � 10
11 m�

smax �
�Pmax

�v	
�

2.87 � 10
5 N/m2

(1.20 kg/m3)(343 m/s)(2� � 1 000 Hz)

	 � 2�f

The faintest sounds the human ear can detect at a frequency
of 1 000 Hz correspond to an intensity of about 1.00 �
10
12 W/m2 —the so-called threshold of hearing. The loudest
sounds the ear can tolerate at this frequency correspond to
an intensity of about 1.00 W/m2 —the threshold of pain. Deter-
mine the pressure amplitude and displacement amplitude as-
sociated with these two limits.

Solution First, consider the faintest sounds. Using Equa-
tion 17.6 and taking v � 343 m/s as the speed of sound
waves in air and � � 1.20 kg/m3 as the density of air, we
obtain

Because atmospheric pressure is about 105 N/m2, this result

2.87 � 10
5 N/m2 �

  � !2(1.20 kg/m3)(343 m/s)(1.00 � 10
12 W/m2)

�Pmax � !2�vI    

Intensity of a sound wave
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Sound Level in Decibels

The example we just worked illustrates the wide range of intensities the human ear
can detect. Because this range is so wide, it is convenient to use a logarithmic
scale, where the sound level 
 (Greek letter beta) is defined by the equation

(17.7)

The constant I0 is the reference intensity, taken to be at the threshold of hearing
W/m2), and I is the intensity, in watts per square meter, at

the sound level 
, where 
 is measured in decibels (dB).2 On this scale, the
threshold of pain W/m2) corresponds to a sound level of 
 �
10 log[(1 W/m2)/(10
12 W/m2)] � 10 log(1012) � 120 dB, and the threshold
of hearing corresponds to 
 � 10 log[(10
12 W/m2)/(10
12 W/m2)] � 0 dB.

Prolonged exposure to high sound levels may seriously damage the ear. 
Ear plugs are recommended whenever sound levels exceed 90 dB. Recent evi-
dence suggests that “noise pollution” may be a contributing factor to high blood
pressure, anxiety, and nervousness. Table 17.2 gives some typical sound-level 
values.

(I � 1.00

(I0 � 1.00 � 10
12


 � 10 log � I
I0
�

TABLE 17.2
Sound Levels

Source of Sound � (dB)

Nearby jet airplane 150
Jackhammer; 

machine gun 130
Siren; rock concert 120
Subway; power 

mower 100
Busy traffic 80
Vacuum cleaner 70
Normal conver-

sation 50
Mosquito buzzing 40
Whisper 30
Rustling leaves 10
Threshold of 

hearing 0

Sound LevelsEXAMPLE 17.4
(b) When both machines are operating, the intensity is dou-
bled to 4.0 � 10
7 W/m2; therefore, the sound level now is

From these results, we see that when the intensity is doubled,
the sound level increases by only 3 dB.

56 dB�


2 � 10 log � 4.0 � 10
7 W/m2

1.00 � 10
12 W/m2 � � 10 log(4.0 � 105)

Two identical machines are positioned the same distance
from a worker. The intensity of sound delivered by each ma-
chine at the location of the worker is 2.0 � 10
7 W/m2. Find
the sound level heard by the worker (a) when one machine is
operating and (b) when both machines are operating.

Solution (a) The sound level at the location of the worker
with one machine operating is calculated from Equation
17.7:

53 dB�


1 � 10 log � 2.0 � 10
7 W/m2

1.00 � 10
12 W/m2 � � 10 log(2.0 � 105)

A violin plays a melody line and is then joined by nine other violins, all playing at the same
intensity as the first violin, in a repeat of the same melody. (a) When all of the violins are
playing together, by how many decibels does the sound level increase? (b) If ten more vio-
lins join in, how much has the sound level increased over that for the single violin?

Quick Quiz 17.4

2 The unit bel is named after the inventor of the telephone, Alexander Graham Bell (1847–1922). The
prefix deci- is the SI prefix that stands for 10
1.
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SPHERICAL AND PLANE WAVES
If a spherical body oscillates so that its radius varies sinusoidally with time, a spher-
ical sound wave is produced (Fig. 17.5). The wave moves outward from the source
at a constant speed if the medium is uniform.

Because of this uniformity, we conclude that the energy in a spherical wave
propagates equally in all directions. That is, no one direction is preferred over any
other. If is the average power emitted by the source, then this power at any dis-
tance r from the source must be distributed over a spherical surface of area 4�r 2.
Hence, the wave intensity at a distance r from the source is

(17.8)

Because is the same for any spherical surface centered at the source, we see
that the intensities at distances r1 and r2 are

Therefore, the ratio of intensities on these two spherical surfaces is

This inverse-square law states that the intensity decreases in proportion to the
square of the distance from the source. Equation 17.5 tells us that the intensity is
proportional to Setting the right side of Equation 17.5 equal to the right sides2

max .

I1

I2
�

r2 

2

r1 

2  

I1 �
�av

4�r1 

2   and  I2 �
�av

4�r2 

2

�av

I �
�av

A
�

�av

4�r 2

�av

17.4

r2

r1

Figure 17.5 A spherical sound wave propa-
gating radially outward from an oscillating
spherical body. The intensity of the spherical
wave varies as 1/r 2.

Figure 17.6 Spherical waves emitted by a
point source. The circular arcs represent the
spherical wave fronts that are concentric with
the source. The rays are radial lines pointing
outward from the source, perpendicular to
the wave fronts.

Ray

Source

Wave front

λ
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of Equation 17.8, we conclude that the displacement amplitude smax of a spherical
wave must vary as 1/r. Therefore, we can write the wave function � (Greek letter
psi) for an outgoing spherical wave in the form

(17.9)

where s0 , the displacement amplitude at unit distance from the source, is a con-
stant parameter characterizing the whole wave.

It is useful to represent spherical waves with a series of circular arcs concentric
with the source, as shown in Figure 17.6. Each arc represents a surface over which
the phase of the wave is constant. We call such a surface of constant phase a wave
front. The distance between adjacent wave fronts equals the wavelength �. The ra-
dial lines pointing outward from the source are called rays.

Now consider a small portion of a wave front far from the source, as shown in
Figure 17.7. In this case, the rays passing through the wave front are nearly parallel
to one another, and the wave front is very close to being planar. Therefore, at dis-
tances from the source that are great compared with the wavelength, we can ap-
proximate a wave front with a plane. Any small portion of a spherical wave far
from its source can be considered a plane wave.

Figure 17.8 illustrates a plane wave propagating along the x axis, which means
that the wave fronts are parallel to the yz plane. In this case, the wave function de-
pends only on x and t and has the form

(17.10)

That is, the wave function for a plane wave is identical in form to that for a one-
dimensional traveling wave.

The intensity is the same at all points on a given wave front of a plane wave.

�(x, t) � A sin(kx 
 	t)

�(r, t) �
s0

r
 sin(kr 
 	t)

Representation of a plane wave

Rays

Wave fronts

y

x

z λ

v

Plane
wave front

Figure 17.7 Far away from a point source, the wave
fronts are nearly parallel planes, and the rays are
nearly parallel lines perpendicular to the planes.
Hence, a small segment of a spherical wave front is ap-
proximately a plane wave.

Figure 17.8 A representation of
a plane wave moving in the positive
x direction with a speed v. The
wave fronts are planes parallel to
the yz plane.

Intensity Variations of a Point SourceEXAMPLE 17.5

an intensity that is close to the threshold of pain.
(b) Find the distance at which the sound level is 40 dB.

Solution We can find the intensity at the 40-dB sound
level by using Equation 17.7 with I0 � 1.00 � 10
12 W/m2:

0.707 W/m2I �
�av

4�r 2 �
80.0 W

4�(3.00 m)2 �
A point source emits sound waves with an average power out-
put of 80.0 W. (a) Find the intensity 3.00 m from the source.

Solution A point source emits energy in the form of
spherical waves (see Fig. 17.5). At a distance r from the
source, the power is distributed over the surface area of a
sphere, 4�r 2. Therefore, the intensity at the distance r is
given by Equation 17.8:
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THE DOPPLER EFFECT
Perhaps you have noticed how the sound of a vehicle’s horn changes as the vehicle
moves past you. The frequency of the sound you hear as the vehicle approaches
you is higher than the frequency you hear as it moves away from you (see Quick-
Lab). This is one example of the Doppler effect.3

To see what causes this apparent frequency change, imagine you are in a boat
that is lying at anchor on a gentle sea where the waves have a period of s.
This means that every 3.0 s a crest hits your boat. Figure 17.9a shows this situation,
with the water waves moving toward the left. If you set your watch to just as
one crest hits, the watch reads 3.0 s when the next crest hits, 6.0 s when the third
crest hits, and so on. From these observations you conclude that the wave fre-
quency is Hz. Now suppose you start your motor and head di-
rectly into the oncoming waves, as shown in Figure 17.9b. Again you set your watch
to as a crest hits the front of your boat. Now, however, because you are mov-
ing toward the next wave crest as it moves toward you, it hits you less than 3.0 s af-
ter the first hit. In other words, the period you observe is shorter than the 3.0-s pe-
riod you observed when you were stationary. Because you observe a
higher wave frequency than when you were at rest.

If you turn around and move in the same direction as the waves (see Fig.
17.9c), you observe the opposite effect. You set your watch to as a crest hits
the back of the boat. Because you are now moving away from the next crest, more
than 3.0 s has elapsed on your watch by the time that crest catches you. Thus, you
observe a lower frequency than when you were at rest.

These effects occur because the relative speed between your boat and the
waves depends on the direction of travel and on the speed of your boat. When you
are moving toward the right in Figure 17.9b, this relative speed is higher than that
of the wave speed, which leads to the observation of an increased frequency. When
you turn around and move to the left, the relative speed is lower, as is the observed
frequency of the water waves.

Let us now examine an analogous situation with sound waves, in which the wa-
ter waves become sound waves, the water becomes the air, and the person on the
boat becomes an observer listening to the sound. In this case, an observer O is
moving and a sound source S is stationary. For simplicity, we assume that the air is
also stationary and that the observer moves directly toward the source. The ob-
server moves with a speed vO toward a stationary point source (vS � 0) (Fig.
17.10). In general, at rest means at rest with respect to the medium, air.

t � 0

f � 1/T,

t � 0

f � 1/T � (1/3.0)

t � 0

T � 3.0

17.5

QuickLab
(Before attempting to do this Quick-
Lab, you should check to see whether
it is legal to sound a horn in your
area.) Sound your car horn while dri-
ving toward and away from a friend in
a campus parking lot or on a country
road. Try this at different speeds
while driving toward and past the
friend (not at the friend). Do the fre-
quencies of the sounds your friend
hears agree with what is described in
the text?

3 Named after the Austrian physicist Christian Johann Doppler (1803–1853), who discovered the effect
for light waves.

 I � 1.00 � 10
8 W/m2

 log I � 
8 

 log I � 4 � log 10
12 

log I 
 log I0 �
40
10

� 4 

 10 log � I
I0
� � 40  dB

Using this value for I in Equation 17.8 and solving for r, we
obtain

which equals about 16 miles!

2.52 � 104 m �

r �! �av

4�I
�! 80.0 W

4� � 1.00 � 10
8 W/m2
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We take the frequency of the source to be f , the wavelength to be �, and the
speed of sound to be v. If the observer were also stationary, he or she would detect
f wave fronts per second. (That is, when and the observed fre-
quency equals the source frequency.) When the observer moves toward the source,

vS � 0,vO � 0

(a)

(b)

(c)

vwaves

vwaves

vwaves

Figure 17.9 (a) Waves moving toward a stationary boat. The waves travel to the left, and their
source is far to the right of the boat, out of the frame of the drawing. (b) The boat moving to-
ward the wave source. (c) The boat moving away from the wave source.

Figure 17.10 An observer O (the cyclist) moves with a speed vO toward a stationary point
source S, the horn of a parked car. The observer hears a frequency f � that is greater than the
source frequency.

×

O

vO

S
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the speed of the waves relative to the observer is as in the case of the
boat, but the wavelength � is unchanged. Hence, using Equation 16.14, we
can say that the frequency heard by the observer is increased and is given by

Because we can express f � as

(observer moving toward source) (17.11)

If the observer is moving away from the source, the speed of the wave relative
to the observer is The frequency heard by the observer in this case is
decreased and is given by

(observer moving away from source) (17.12)

In general, whenever an observer moves with a speed vO relative to a stationary
source, the frequency heard by the observer is

(17.13)

where the positive sign is used when the observer moves toward the source and the
negative sign is used when the observer moves away from the source.

Now consider the situation in which the source is in motion and the observer
is at rest. If the source moves directly toward observer A in Figure 17.11a, the wave
fronts heard by the observer are closer together than they would be if the source
were not moving. As a result, the wavelength �� measured by observer A is shorter
than the wavelength � of the source. During each vibration, which lasts for a time
T (the period), the source moves a distance and the wavelength isvST � vS /f

f � � �1 �
vO

v � f

f � � �1 

vO

v � f

v � � v 
 vO .

f � � �1 �
vO

v � f

� � v/f ,

f � �
v �

�
�

v � vO

�

v � �f ,
v � � v � vO ,

Frequency heard with an observer
in motion

λ′λ

(a)

S

vS

Observer B

Observer A

Figure 17.11 (a) A source S moving with a speed vS to-
ward a stationary observer A and away from a stationary
observer B. Observer A hears an increased frequency, and
observer B hears a decreased frequency. (b) The Doppler
effect in water, observed in a ripple tank. A point source is
moving to the right with speed vS .

(b)
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Although the Doppler effect is most typically experienced with sound waves, it
is a phenomenon that is common to all waves. For example, the relative motion of
source and observer produces a frequency shift in light waves. The Doppler effect
is used in police radar systems to measure the speeds of motor vehicles. Likewise,
astronomers use the effect to determine the speeds of stars, galaxies, and other ce-
lestial objects relative to the Earth.

The word toward is associated with an increase in observed frequency. The words
away from are associated with a decrease in observed frequency.

shortened by this amount. Therefore, the observed wavelength �� is

Because the frequency heard by observer A is

(17.14)

That is, the observed frequency is increased whenever the source is moving toward
the observer.

When the source moves away from a stationary observer, as is the case for ob-
server B in Figure 17.11a, the observer measures a wavelength �� that is greater than
� and hears a decreased frequency:

(17.15)

Combining Equations 17.14 and 17.15, we can express the general relationship
for the observed frequency when a source is moving and an observer is at rest as

(17.16)

Finally, if both source and observer are in motion, we find the following gen-
eral relationship for the observed frequency:

(17.17)

In this expression, the upper signs (� vO and 
 vS) refer to motion of one toward
the other, and the lower signs (
 vO and � vS) refer to motion of one away from
the other.

A convenient rule concerning signs for you to remember when working with
all Doppler-effect problems is as follows:

f � � � v � vO

v � vS
� f

f � � � 1

1 �
vS

v
� f

f � � � 1

1 �
vS

v
� f

f � � � 1

1 

vS

v
� f 

f � �
v

��
�

v

� 

vS

f

�
v

v
f



vS

f

� � v/f,

�� � � 
 �� � � 

vS

f

Frequency heard with source in
motion

Frequency heard with observer
and source in motion

“I love hearing that lonesome wail
of the train whistle as the magni-
tude of the frequency of the wave
changes due to the Doppler effect.”
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Shock Waves

Now let us consider what happens when the speed vS of a source exceeds the wave
speed v. This situation is depicted graphically in Figure 17.12a. The circles repre-
sent spherical wave fronts emitted by the source at various times during its motion.
At the source is at S0 , and at a later time t, the source is at Sn . In the time t,t � 0,

The Noisy SirenEXAMPLE 17.6

The change in frequency detected by the person in the car is
475 
 338 � 137 Hz, which is more than 30% of the true fre-
quency.

Exercise Suppose the car is parked on the side of the high-
way as the ambulance speeds by. What frequency does the
person in the car hear as the ambulance (a) approaches and
(b) recedes?

Answer (a) 443 Hz. (b) 364 Hz.

338 Hz�

f � � � v 
 vO

v � vS
� f � � 343 m/s 
 24.6 m/s

343 m/s � 33.5 m/s �(400 Hz)
As an ambulance travels east down a highway at a speed of
33.5 m/s (75 mi/h), its siren emits sound at a frequency of
400 Hz. What frequency is heard by a person in a car traveling
west at 24.6 m/s (55 mi/h) (a) as the car approaches the am-
bulance and (b) as the car moves away from the ambulance?

Solution (a) We can use Equation 17.17 in both cases, tak-
ing the speed of sound in air to be m/s. As the am-
bulance and car approach each other, the person in the car
hears the frequency

(b) As the vehicles recede from each other, the person hears
the frequency

475 Hz�

f � � � v � vO

v 
 vS
� f � � 343 m/s � 24.6 m/s

343 m/s 
 33.5 m/s �(400 Hz)

v � 343

vSt

Sn

vS

Conical
shock front

vt 2

θ

0

S1 S2
S0

1

(a)

S3

S4

Figure 17.12 (a) A representation of a shock wave produced when a source
moves from S0 to Sn with a speed vS , which is greater than the wave speed v in the
medium. The envelope of the wave fronts forms a cone whose apex half-angle is
given by sin (b) A stroboscopic photograph of a bullet moving at super-
sonic speed through the hot air above a candle. Note the shock wave in the vicinity
of the bullet.

� � v/v S .

(b)
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the wave front centered at S0 reaches a radius of vt. In this same amount of time,
the source travels a distance vSt to Sn . At the instant the source is at Sn , waves are
just beginning to be generated at this location, and hence the wave front has zero
radius at this point. The tangent line drawn from Sn to the wave front centered on
S0 is tangent to all other wave fronts generated at intermediate times. Thus, we see
that the envelope of these wave fronts is a cone whose apex half-angle � is given by

The ratio vS/v is referred to as the Mach number, and the conical wave front pro-
duced when vS � v (supersonic speeds) is known as a shock wave. An interesting
analogy to shock waves is the V-shaped wave fronts produced by a boat (the bow
wave) when the boat’s speed exceeds the speed of the surface-water waves (Fig.
17.13).

Jet airplanes traveling at supersonic speeds produce shock waves, which are re-
sponsible for the loud “sonic boom” one hears. The shock wave carries a great deal
of energy concentrated on the surface of the cone, with correspondingly great pres-
sure variations. Such shock waves are unpleasant to hear and can cause damage to
buildings when aircraft fly supersonically at low altitudes. In fact, an airplane flying
at supersonic speeds produces a double boom because two shock fronts are
formed, one from the nose of the plane and one from the tail (Fig. 17.14). People
near the path of the space shuttle as it glides toward its landing point often report
hearing what sounds like two very closely spaced cracks of thunder.

An airplane flying with a constant velocity moves from a cold air mass into a warm air mass.
Does the Mach number increase, decrease, or stay the same?

Suppose that an observer and a source of sound are both at rest and that a strong wind
blows from the source toward the observer. Describe the effect of the wind (if any) on 

Quick Quiz 17.6

Quick Quiz 17.5

sin � �
vt
vSt

�
v
vS

Atmospheric
pressure

Pressure

Figure 17.13 The V-shaped
bow wave of a boat is formed be-
cause the boat speed is greater
than the speed of the water
waves. A bow wave is analogous to
a shock wave formed by an air-
plane traveling faster than sound.

Figure 17.14 The two shock
waves produced by the nose and
tail of a jet airplane traveling at su-
personic speeds.
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(a) the observed frequency of the sound waves, (b) the observed wave speed, and (c) the
observed wavelength.

SUMMARY

Sound waves are longitudinal and travel through a compressible medium with a
speed that depends on the compressibility and inertia of that medium. The speed
of sound in a medium having a bulk modulus B and density � is

(17.1)

With this formula you can determine the speed of a sound wave in many different
materials.

For sinusoidal sound waves, the variation in the displacement is given by

(17.2)

and the variation in pressure from the equilibrium value is

(17.3)

where �Pmax is the pressure amplitude. The pressure wave is 90° out of phase
with the displacement wave. The relationship between smax and �Pmax is given by

(17.4)

The intensity of a periodic sound wave, which is the power per unit area, is

(17.5, 17.6)

The sound level of a sound wave, in decibels, is given by

(17.7)

The constant I0 is a reference intensity, usually taken to be at the threshold of
hearing (1.00 � 10
12 W/m2), and I is the intensity of the sound wave in watts per
square meter.

The intensity of a spherical wave produced by a point source is proportional to
the average power emitted and inversely proportional to the square of the distance
from the source:

(17.8)

The change in frequency heard by an observer whenever there is relative mo-
tion between a source of sound waves and the observer is called the Doppler ef-
fect. The observed frequency is

(17.17)

The upper signs (� vO and 
 vS) are used with motion of one toward the other,
and the lower signs (
 vO and � vS) are used with motion of one away from the
other. You can also use this formula when vO or vS is zero.

f � � � v � vO

v � vS
� f

I �
�av

4�r 2


 � 10 log� I
I0
�

I � 1
2�v(	smax)2 �

�P2
max

2�v

�Pmax � �v	smax

�P � �Pmax sin(kx 
 	t)

s(x, t) � smax cos(kx 
 	t)

v �! B
�
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QUESTIONS

10. A binary star system consists of two stars revolving about
their common center of mass. If we observe the light
reaching us from one of these stars as it makes one com-
plete revolution, what does the Doppler effect predict will
happen to this light?

11. How can an object move with respect to an observer so
that the sound from it is not shifted in frequency?

12. Why is it not possible to use sonar (sound waves) to deter-
mine the speed of an object traveling faster than the
speed of sound in a given medium?

13. Why is it so quiet after a snowfall?
14. Why is the intensity of an echo less than that of the origi-

nal sound?
15. If the wavelength of a sound source is reduced by a factor

of 2, what happens to its frequency? Its speed?
16. In a recent discovery, a nearby star was found to have a

large planet orbiting about it, although the planet could
not be seen. In terms of the concept of a system rotating
about its center of mass and the Doppler shift for light
(which is in many ways similar to that for sound), explain
how an astronomer could determine the presence of the
invisible planet.

17. A friend sitting in her car far down the road waves to you
and beeps her horn at the same time. How far away must
her car be for you to measure the speed of sound to two
significant figures by measuring the time it takes for the
sound to reach you?

1. Why are sound waves characterized as longitudinal?
2. If an alarm clock is placed in a good vacuum and then ac-

tivated, no sound is heard. Explain.
3. A sonic ranger is a device that determines the position of

an object by sending out an ultrasonic sound pulse and
measuring how long it takes for the sound wave to return
after it reflects from the object. Typically, these devices
cannot reliably detect an object that is less than half a me-
ter from the sensor. Why is that?

4. In Example 17.5, we found that a point source with a
power output of 80 W reduces to a sound level of 40 dB
at a distance of about 16 miles. Why do you suppose you
cannot normally hear a rock concert that is going on 16
miles away? (See Table 17.2.)

5. If the distance from a point source is tripled, by what fac-
tor does the intensity decrease?

6. Explain how the Doppler effect is used with microwaves
to determine the speed of an automobile.

7. Explain what happens to the frequency of your echo as
you move in a vehicle toward a canyon wall. What happens
to the frequency as you move away from the wall?

8. Of the following sounds, which is most likely to have a
sound level of 60 dB—a rock concert, the turning of a
page in this text, normal conversation, or a cheering
crowd at a football game?

9. Estimate the decibel level of each of the sounds in the
previous question.

PROBLEMS

You hear the sound in the water 4.50 s before it reaches
you through the air. How wide is the inlet? (Hint: See
Table 17.1. Assume that the air temperature is 20°C.)

5. Another approximation of the temperature depen-
dence of the speed of sound in air (in meters per sec-
ond) is given by the expression

where TC is the Celsius temperature. In dry air the tem-
perature decreases about 1°C for every 150-m rise in
altitude. (a) Assuming that this change is constant up to
an altitude of 9 000 m, how long will it take the sound
from an airplane flying at 9 000 m to reach the ground
on a day when the ground temperature is 30°C? 
(b) Compare this to the time it would take if the air
were at 30°C at all altitudes. Which interval is longer?

6. A bat can detect very small objects, such as an insect
whose length is approximately equal to one wavelength

v � 331.5 � 0.607TC

Section 17.1 Speed of Sound Waves
1. Suppose that you hear a clap of thunder 16.2 s after see-

ing the associated lightning stroke. The speed of sound
waves in air is 343 m/s, and the speed of light in air is
3.00 � 108 m/s. How far are you from the lightning
stroke?

2. Find the speed of sound in mercury, which has a bulk
modulus of approximately 2.80 � 1010 N/m2 and a den-
sity of 13 600 kg/m3.

3. A flower pot is knocked off a balcony 20.0 m above the
sidewalk and falls toward an unsuspecting 1.75-m-tall
man who is standing below. How close to the sidewalk
can the flower pot fall before it is too late for a shouted
warning from the balcony to reach the man in time?
Assume that the man below requires 0.300 s to respond
to the warning.

4. You are watching a pier being constructed on the far
shore of a saltwater inlet when some blasting occurs.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems
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WEB

WEB

of the sound the bat makes. If bats emit a chirp at a fre-
quency of 60.0 kHz, and if the speed of sound in air is
340 m/s, what is the smallest insect a bat can detect?

7. An airplane flies horizontally at a constant speed,
piloted by rescuers who are searching for a disabled
boat. When the plane is directly above the boat, the
boat’s crew blows a loud horn. By the time the plane’s
sound detector receives the horn’s sound, the plane has
traveled a distance equal to one-half its altitude above
the ocean. If it takes the sound 2.00 s to reach the
plane, determine (a) the speed of the plane and 
(b) its altitude. Take the speed of sound to be 343 m/s.

Section 17.2 Periodic Sound Waves
Note: In this section, use the following values as needed, un-
less otherwise specified. The equilibrium density of air is � �
1.20 kg/m3; the speed of sound in air is v � 343 m/s. Pres-
sure variations �P are measured relative to atmospheric pres-
sure, 1.013 � 105 Pa.

8. A sound wave in air has a pressure amplitude equal to
4.00 � 10
3 Pa. Calculate the displacement amplitude
of the wave at a frequency of 10.0 kHz.

9. A sinusoidal sound wave is described by the displace-
ment

(a) Find the amplitude, wavelength, and speed of this
wave. (b) Determine the instantaneous displacement 
of the molecules at the position x � 0.050 0 m at 

ms. (c) Determine the maximum speed of a
molecule’s oscillatory motion.

10. As a sound wave travels through the air, it produces
pressure variations (above and below atmospheric pres-
sure) that are given by sin(�x 
 340�t) in SI
units. Find (a) the amplitude of the pressure variations,
(b) the frequency of the sound wave, (c) its wavelength
in air, and (d) its speed.

11. Write an expression that describes the pressure varia-
tion as a function of position and time for a sinusoidal
sound wave in air, if � � 0.100 m and �Pmax �
0.200 Pa.

12. Write the function that describes the displacement wave
corresponding to the pressure wave in Problem 11.

13. The tensile stress in a thick copper bar is 99.5% of its
elastic breaking point of 13.0 � 1010 N/m2. A 500-Hz
sound wave is transmitted through the material. 
(a) What displacement amplitude will cause the bar to
break? (b) What is the maximum speed of the particles
at this moment?

14. Calculate the pressure amplitude of a 2.00-kHz sound
wave in air if the displacement amplitude is equal to
2.00 � 10
8 m.

15. An experimenter wishes to generate in air a sound wave
that has a displacement amplitude of 5.50 � 10
6 m. The
pressure amplitude is to be limited to 8.40 � 10
1 Pa. What
is the minimum wavelength the sound wave can have?

�P � 1.27

t � 3.00

s(x, t) � (2.00 �m) cos[(15.7 m
1)x 
 (858 s
1)t ]

16. A sound wave in air has a pressure amplitude of 4.00 Pa
and a frequency of 5.00 kHz. Take �P � 0 at the point
x � 0 when . (a) What is �P at x � 0 when t �
2.00 � 10
4 s? (b) What is �P at x � 0.020 0 m when

?

Section 17.3 Intensity of Periodic Sound Waves
17. Calculate the sound level, in decibels, of a sound wave

that has an intensity of 4.00 �W/m2.
18. A vacuum cleaner has a measured sound level of 

70.0 dB. (a) What is the intensity of this sound in watts
per square meter? (b) What is the pressure amplitude
of the sound?

19. The intensity of a sound wave at a fixed distance from a
speaker vibrating at 1.00 kHz is 0.600 W/m2. (a) Deter-
mine the intensity if the frequency is increased to 
2.50 kHz while a constant displacement amplitude is
maintained. (b) Calculate the intensity if the frequency
is reduced to 0.500 kHz and the displacement ampli-
tude is doubled.

20. The intensity of a sound wave at a fixed distance from a
speaker vibrating at a frequency f is I. (a) Determine
the intensity if the frequency is increased to f � while a
constant displacement amplitude is maintained. 
(b) Calculate the intensity if the frequency is reduced
to f/2 and the displacement amplitude is doubled.

21. A family ice show is held in an enclosed arena. The
skaters perform to music with a sound level of 80.0 dB.
This is too loud for your baby, who consequently yells at
a level of 75.0 dB. (a) What total sound intensity engulfs
you? (b) What is the combined sound level?

Section 17.4 Spherical and Plane Waves
22. For sound radiating from a point source, show that the

difference in sound levels, 
1 and 
2 , at two receivers is
related to the ratio of the distances r1 and r2 from the
source to the receivers by the expression

23. A fireworks charge is detonated many meters above the
ground. At a distance of 400 m from the explosion, the
acoustic pressure reaches a maximum of 10.0 N/m2. As-
sume that the speed of sound is constant at 343 m/s
throughout the atmosphere over the region considered,
that the ground absorbs all the sound falling on it, and
that the air absorbs sound energy as described by the
rate 7.00 dB/km. What is the sound level (in decibels)
at 4.00 km from the explosion?

24. A loudspeaker is placed between two observers who are
110 m apart, along the line connecting them. If one ob-
server records a sound level of 60.0 dB and the other
records a sound level of 80.0 dB, how far is the speaker
from each observer?


2 
 
1 � 20 log� r1

r2
�

t � 0

t � 0
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25. Two small speakers emit spherical sound waves of differ-
ent frequencies. Speaker A has an output of 1.00 mW,
and speaker B has an output of 1.50 mW. Determine
the sound level (in decibels) at point C (Fig. P17.25) if 
(a) only speaker A emits sound, (b) only speaker B
emits sound, (c) both speakers emit sound.

radiates uniformly in all horizontal and upward direc-
tions. Find the sound level 1.00 km away.

32. A spherical wave is radiating from a point source and is
described by the wave function

where �P is in pascals, r in meters, and t in seconds. 
(a) What is the pressure amplitude 4.00 m from the
source? (b) Determine the speed of the wave and hence
the material the wave might be traveling through. 
(c) Find the sound level of the wave, in decibels, 
4.00 m from the source. (d) Find the instantaneous
pressure 5.00 m from the source at 0.080 0 s.

Section 17.5 The Doppler Effect
33. A commuter train passes a passenger platform at a con-

stant speed of 40.0 m/s. The train horn is sounded at its
characteristic frequency of 320 Hz. (a) What change in
frequency is detected by a person on the platform as the
train passes? (b) What wavelength is detected by a per-
son on the platform as the train approaches?

34. A driver travels northbound on a highway at a speed of
25.0 m/s. A police car, traveling southbound at a speed
of 40.0 m/s, approaches with its siren sounding at a fre-
quency of 2 500 Hz. (a) What frequency does the driver
observe as the police car approaches? (b) What fre-
quency does the driver detect after the police car passes
him? (c) Repeat parts (a) and (b) for the case in which
the police car is northbound.

35. Standing at a crosswalk, you hear a frequency of 560 Hz
from the siren of an approaching police car. After the
police car passes, the observed frequency of the siren is
480 Hz. Determine the car’s speed from these observa-
tions.

36. Expectant parents are thrilled to hear their unborn
baby’s heartbeat, revealed by an ultrasonic motion
detector. Suppose the fetus’s ventricular wall moves in
simple harmonic motion with an amplitude of 1.80 mm
and a frequency of 115 per minute. (a) Find the maxi-
mum linear speed of the heart wall. Suppose the mo-
tion detector in contact with the mother’s abdomen
produces sound at 2 000 000.0 Hz, which travels
through tissue at 1.50 km/s. (b) Find the maximum
frequency at which sound arrives at the wall of the
baby’s heart. (c) Find the maximum frequency at which
reflected sound is received by the motion detector. (By
electronically “listening” for echoes at a frequency dif-
ferent from the broadcast frequency, the motion detec-
tor can produce beeps of audible sound in synchroniza-
tion with the fetal heartbeat.)

37. A tuning fork vibrating at 512 Hz falls from rest and ac-
celerates at 9.80 m/s2. How far below the point of re-
lease is the tuning fork when waves with a frequency of
485 Hz reach the release point? Take the speed of
sound in air to be 340 m/s.

�P(r, t) � � 25.0
r � sin(1.25r 
 1 870t)

C

3.00 m

2.00 m

4.00 m

A

B

Figure P17.25

26. An experiment requires a sound intensity of 1.20 W/m2

at a distance of 4.00 m from a speaker. What power out-
put is required? Assume that the speaker radiates sound
equally in all directions.

27. A source of sound (1 000 Hz) emits uniformly in all di-
rections. An observer 3.00 m from the source measures
a sound level of 40.0 dB. Calculate the average power
output of the source.

28. A jackhammer, operated continuously at a construction
site, behaves as a point source of spherical sound waves.
A construction supervisor stands 50.0 m due north of
this sound source and begins to walk due west. How far
does she have to walk in order for the amplitude of the
wave function to drop by a factor of 2.00?

29. The sound level at a distance of 3.00 m from a source is
120 dB. At what distances is the sound level (a) 100 dB
and (b) 10.0 dB?

30. A fireworks rocket explodes 100 m above the ground. An
observer directly under the explosion experiences an av-
erage sound intensity of 7.00 � 10
2 W/m2 for 0.200 s.
(a) What is the total sound energy of the explosion? (b)
What sound level, in decibels, is heard by the observer?

31. As the people in a church sing on a summer morning,
the sound level everywhere inside the church is 101 dB.
The massive walls are opaque to sound, but all the win-
dows and doors are open. Their total area is 22.0 m2.
(a) How much sound energy is radiated in 20.0 min?
(b) Suppose the ground is a good reflector and sound

WEB
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38. A block with a speaker bolted to it is connected to a
spring having spring constant N/m, as shown
in Figure P17.38. The total mass of the block and
speaker is 5.00 kg, and the amplitude of this unit’s mo-
tion is 0.500 m. (a) If the speaker emits sound waves of
frequency 440 Hz, determine the highest and lowest fre-
quencies heard by the person to the right of the speaker.
(b) If the maximum sound level heard by the person is
60.0 dB when he is closest to the speaker, 1.00 m away,
what is the minimum sound level heard by the observer?
Assume that the speed of sound is 343 m/s.

k � 20.0
high-speed electrons moving through the water. In a
particular case, the Cerenkov radiation produces a wave
front with an apex half-angle of 53.0°. Calculate the
speed of the electrons in the water. (The speed of light
in water is 2.25 � 108 m/s.)

43. A supersonic jet traveling at Mach 3.00 at an altitude of
20 000 m is directly over a person at time as in
Figure P17.43. (a) How long will it be before the person
encounters the shock wave? (b) Where will the plane be
when it is finally heard? (Assume that the speed of
sound in air is 335 m/s.)

t � 0,
WEB

39. A train is moving parallel to a highway with a constant
speed of 20.0 m/s. A car is traveling in the same direc-
tion as the train with a speed of 40.0 m/s. The car horn
sounds at a frequency of 510 Hz, and the train whistle
sounds at a frequency of 320 Hz. (a) When the car is be-
hind the train, what frequency does an occupant of the
car observe for the train whistle? (b) When the car is in
front of the train, what frequency does a train passenger
observe for the car horn just after the car passes?

40. At the Winter Olympics, an athlete rides her luge down
the track while a bell just above the wall of the chute
rings continuously. When her sled passes the bell, she
hears the frequency of the bell fall by the musical inter-
val called a minor third. That is, the frequency she
hears drops to five sixths of its original value. (a) Find
the speed of sound in air at the ambient temperature

 10.0°C. (b) Find the speed of the athlete.

41. A jet fighter plane travels in horizontal flight at Mach
1.20 (that is, 1.20 times the speed of sound in air). At
the instant an observer on the ground hears the shock
wave, what is the angle her line of sight makes with the
horizontal as she looks at the plane?

42. When high-energy charged particles move through a
transparent medium with a speed greater than the
speed of light in that medium, a shock wave, or bow
wave, of light is produced. This phenomenon is called
the Cerenkov effect and can be observed in the vicinity of
the core of a swimming-pool nuclear reactor due to

44. The tip of a circus ringmaster’s whip travels at Mach
1.38 (that is, What angle does the shock
front make with the direction of the whip’s motion?

ADDITIONAL PROBLEMS

45. A stone is dropped into a deep canyon and is heard to
strike the bottom 10.2 s after release. The speed of
sound waves in air is 343 m/s. How deep is the canyon?
What would be the percentage error in the calculated
depth if the time required for the sound to reach the
canyon rim were ignored?

46. Unoccupied by spectators, a large set of football bleach-
ers has solid seats and risers. You stand on the field in
front of it and fire a starter’s pistol or sharply clap two
wooden boards together once. The sound pulse you
produce has no frequency and no wavelength. You hear
back from the bleachers a sound with definite pitch,
which may remind you of a short toot on a trumpet, or
of a buzzer or a kazoo. Account for this sound. Com-
pute order-of-magnitude estimates for its frequency,
wavelength, and duration on the basis of data that you
specify.

47. Many artists sing very high notes in ornaments and ca-
denzas. The highest note written for a singer in a pub-
lished score was F-sharp above high C, 1.480 kHz, sung

vS/v � 1.38).

x

mk

Figure P17.38

Figure P17.43

(a) (b)
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the ‘boom’

h

θ
x

θ

h
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by Zerbinetta in the original version of Richard Strauss’s
opera Ariadne auf Naxos. (a) Find the wavelength of this
sound in air. (b) Suppose that the people in the fourth
row of seats hear this note with a level of 81.0 dB. Find
the displacement amplitude of the sound. (c) In re-
sponse to complaints, Strauss later transposed the note
down to F above high C, 1.397 kHz. By what increment
did the wavelength change?

48. A sound wave in a cylinder is described by Equations 
17.2 through 17.4. Show that 

49. On a Saturday morning, pickup trucks carrying garbage
to the town dump form a nearly steady procession on a
country road, all traveling at 19.7 m/s. From this direc-
tion, two trucks arrive at the dump every three minutes.
A bicyclist also is traveling toward the dump at 
4.47 m/s. (a) With what frequency do the trucks pass
him? (b) A hill does not slow the trucks but makes the
out-of-shape cyclist’s speed drop to 1.56 m/s. How often
do the noisy trucks whiz past him now?

50. The ocean floor is underlain by a layer of basalt that
constitutes the crust, or uppermost layer, of the Earth in
that region. Below the crust is found denser peridotite
rock, which forms the Earth’s mantle. The boundary be-
tween these two layers is called the Mohorovicic discon-
tinuity (“Moho” for short). If an explosive charge is set
off at the surface of the basalt, it generates a seismic
wave that is reflected back out at the Moho. If the speed
of the wave in basalt is 6.50 km/s and the two-way travel
time is 1.85 s, what is the thickness of this oceanic crust?

51. A worker strikes a steel pipeline with a hammer, gener-
ating both longitudinal and transverse waves. Reflected
waves return 2.40 s apart. How far away is the reflection
point? (For steel, vlong � 6.20 km/s and vtrans �
3.20 km/s.)

52. For a certain type of steel, stress is proportional to strain
with Young’s modulus as given in Table 12.1. The steel
has the density listed for iron in Table 15.1. It bends per-
manently if subjected to compressive stress greater than
its elastic limit, � � 400 MPa, also called its yield strength.
A rod 80.0 cm long, made of this steel, is projected at
12.0 m/s straight at a hard wall. (a) Find the speed of
compressional waves moving along the rod. (b) After the
front end of the rod hits the wall and stops, the back end
of the rod keeps moving, as described by Newton’s first
law, until it is stopped by the excess pressure in a sound
wave moving back through the rod. How much time
elapses before the back end of the rod gets the message?
(c) How far has the back end of the rod moved in this
time? (d) Find the strain in the rod and (e) the stress.
(f) If it is not to fail, show that the maximum impact
speed a rod can have is given by the expression 

53. To determine her own speed, a sky diver carries a
buzzer that emits a steady tone at 1 800 Hz. A friend at
the landing site on the ground directly below the sky
diver listens to the amplified sound he receives from the
buzzer. Assume that the air is calm and that the speed

�/!�Y .

�P � � �v	!s2
max 
 s2.

of sound is 343 m/s, independent of altitude. While the
sky diver is falling at terminal speed, her friend on the
ground receives waves with a frequency of 2 150 Hz. 
(a) What is the sky diver’s speed of descent? (b) Sup-
pose the sky diver is also carrying sound-receiving equip-
ment that is sensitive enough to detect waves reflected
from the ground. What frequency does she receive?

54. A train whistle Hz) sounds higher or lower in
pitch depending on whether it is approaching or reced-
ing. (a) Prove that the difference in frequency between
the approaching and receding train whistle is

where u is the speed of the train and v is the speed of
sound. (b) Calculate this difference for a train moving
at a speed of 130 km/h. Take the speed of sound in air
to be 340 m/s.

55. A bat, moving at 5.00 m/s, is chasing a flying insect. If
the bat emits a 40.0-kHz chirp and receives back an
echo at 40.4 kHz, at what relative speed is the bat mov-
ing toward or away from the insect? (Take the speed of
sound in air to be m/s.)v � 340

�f �
2(u/v)

1 
 (u2/v2)
 f

( f � 400

56. A supersonic aircraft is flying parallel to the ground.
When the aircraft is directly overhead, an observer on
the ground sees a rocket fired from the aircraft. Ten
seconds later the observer hears the sonic boom, which
is followed 2.80 s later by the sound of the rocket en-
gine. What is the Mach number of the aircraft?

57. A police car is traveling east at 40.0 m/s along a straight
road, overtaking a car that is moving east at 30.0 m/s.
The police car has a malfunctioning siren that is stuck
at 1 000 Hz. (a) Sketch the appearance of the wave
fronts of the sound produced by the siren. Show the

Figure P17.55
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wave fronts both to the east and to the west of the
police car. (b) What would be the wavelength in air of
the siren sound if the police car were at rest? (c) What
is the wavelength in front of the car? (d) What is the
wavelength behind the police car? (e) What frequency
is heard by the driver being chased?

58. A copper bar is given a sharp compressional blow at one
end. The sound of the blow, traveling through air at
0°C, reaches the opposite end of the bar 6.40 ms later
than the sound transmitted through the metal of the
bar. What is the length of the bar? (Refer to Table
17.1.)

59. The power output of a certain public address speaker is
6.00 W. Suppose it broadcasts equally in all directions.
(a) Within what distance from the speaker would the
sound be painful to the ear? (b) At what distance from
the speaker would the sound be barely audible?

60. A jet flies toward higher altitude at a constant speed of
1 963 m/s in a direction that makes an angle � with the
horizontal (Fig. P17.60). An observer on the ground
hears the jet for the first time when it is directly over-
head. Determine the value of � if the speed of sound in
air is 340 m/s.

63. A meteoroid the size of a truck enters the Earth’s atmos-
phere at a speed of 20.0 km/s and is not significantly
slowed before entering the ocean. (a) What is the Mach
angle of the shock wave from the meteoroid in the
atmosphere? (Use 331 m/s as the sound speed.) 
(b) Assuming that the meteoroid survives the impact
with the ocean surface, what is the (initial) Mach angle
of the shock wave that the meteoroid produces in the
water? (Use the wave speed for sea water given in 
Table 17.1.)

64. Consider a longitudinal (compressional) wave of wave-
length � traveling with speed v along the x direction
through a medium of density �. The displacement of the
molecules of the medium from their equilibrium posi-
tion is

Show that the pressure variation in the medium is given
by

65. By proper excitation, it is possible to produce both lon-
gitudinal and transverse waves in a long metal rod. A
particular metal rod is 150 cm long and has a radius of
0.200 cm and a mass of 50.9 g. Young’s modulus for the
material is 6.80 � 1010 N/m2. What must the tension in
the rod be if the ratio of the speed of longitudinal waves
to the speed of transverse waves is 8.00?

66. An interstate highway has been built through a neigh-
borhood in a city. In the afternoon, the sound level in a
rented room is 80.0 dB as 100 cars per minute pass out-
side the window. Late at night, the traffic flow on the
freeway is only five cars per minute. What is the average
late-night sound level in the room?

67. A siren creates a sound level of 60.0 dB at a location 
500 m from the speaker. The siren is powered by a bat-
tery that delivers a total energy of 1.00 kJ. Assuming
that the efficiency of the siren is 30.0% (that is, 30.0%
of the supplied energy is transformed into sound en-
ergy), determine the total time the siren can sound.

68. A siren creates a sound level 
 at a distance d from the
speaker. The siren is powered by a battery that delivers a
total energy E. Assuming that the efficiency of the siren
is e (that is, e is equal to the output sound energy di-
vided by the supplied energy), determine the total time
the siren can sound.

69. The Doppler equation presented in the text is valid
when the motion between the observer and the source
occurs on a straight line, so that the source and ob-
server are moving either directly toward or directly away
from each other. If this restriction is relaxed, one must
use the more general Doppler equation

f � � � v � vO cos �O

v 
 vS cos �S
� f

�P � 
� 2��v2

�
 smax�

 
cos(kx 
 	t)

s � smax sin(kx 
 	t)

WEB

61. Two ships are moving along a line due east. The trailing
vessel has a speed of 64.0 km/h relative to a land-based
observation point, and the leading ship has a speed of
45.0 km/h relative to that point. The two ships are in a
region of the ocean where the current is moving uni-
formly due west at 10.0 km/h. The trailing ship trans-
mits a sonar signal at a frequency of 1 200.0 Hz. What
frequency is monitored by the leading ship? (Use 
1 520 m/s as the speed of sound in ocean water.)

62. A microwave oven generates a sound with intensity level
40.0 dB everywhere just outside it, when consuming
1.00 kW of power. Find the fraction of this power that 
is converted into the energy of sound waves. Assume 
the dimensions of the oven are 40.0 cm � 40.0 cm �
50.0 cm.

θ

Figure P17.60
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where �O and �S are defined in Figure P17.69a. 
(a) Show that if the observer and source are moving
away from each other, the preceding equation reduces
to Equation 17.17 with lower signs. (b) Use the preced-
ing equation to solve the following problem. A train
moves at a constant speed of 25.0 m/s toward the inter-
section shown in Figure P17.69b. A car is stopped near
the intersection, 30.0 m from the tracks. If the train’s
horn emits a frequency of 500 Hz, what frequency is
heard by the passengers in the car when the train is 
40.0 m from the intersection? Take the speed of sound
to be 343 m/s.

70. Figure 17.5 illustrates that at distance r from a point
source with power , the wave intensity is 

/4�r2. Study Figure 17.11a and prove that at dis-
tance r straight in front of a point source with power

moving with constant speed vS , the wave intensity is

71. Three metal rods are located relative to each other as
shown in Figure P17.71, where The den-L1 � L2 � L3 .

I �
�av

4�r 2  � v 
 vS

v �
�av ,

�av

I ��av 

sity values and Young’s moduli for the three materials
are kg/m3, N/m2;

kg/m3, N/m2;
kg/m3, N/m2. 

(a) If m, what must the ratio L1/L 2 be if a
sound wave is to travel the combined length of rods 
1 and 2 in the same time it takes to travel the length of
rod 3? (b) If the frequency of the source is 4.00 kHz,
determine the phase difference between the wave trav-
eling along rods 1 and 2 and the one traveling along
rod 3.

L3 � 1.50
Y3 � 11.0 � 1010�3 � 8.80 � 103
Y2 � 1.60 � 1010�2 � 11.3 � 103

Y1 � 7.00 � 1010�1 � 2.70 � 103

72. The volume knob on a radio has what is known as a
“logarithmic taper.” The electrical device connected to
the knob (called a potentiometer) has a resistance R
whose logarithm is proportional to the angular position
of the knob: that is, log If the intensity of the
sound I (in watts per square meter) produced by the
speaker is proportional to the resistance R, show that
the sound level 
 (in decibels) is a linear function of �.

73. The smallest wavelength possible for a sound wave in air
is on the order of the separation distance between air
molecules. Find the order of magnitude of the highest-
frequency sound wave possible in air, assuming a wave
speed of 343 m/s, a density of 1.20 kg/m3, and an aver-
age molecular mass of 4.82 � 10
26 kg.

R � �.

fS
vS

fO
vO

(b)

25.0 m/s

(a)

θOθ

θSθ

Figure P17.69

1 2
3

L3

L2L1

Figure P17.71

ANSWERS TO QUICK QUIZZES

17.3 Because the bottom of the bottle does not allow molecu-
lar motion, the displacement in this region is at its mini-
mum value. Because the pressure variation is a maxi-
mum when the displacement is a minimum, the
pressure variation at the bottom is a maximum.

17.4 (a) 10 dB. If we call the intensity of each violin I, the to-
tal intensity when all the violins are playing is

Therefore, the addition of the nine violins
increases the intensity of the sound over that of one vio-
lin by a factor of 10. From Equation 17.7 we see that an
increase in intensity by a factor of 10 increases the
sound level by 10 dB. (b) 13 dB. The intensity is now in-
creased by a factor of 20 over that of a single violin.

17.5 The Mach number is the ratio of the plane’s speed
(which does not change) to the speed of sound, which is
greater in the warm air than in the cold, as we learned

I � 9I � 10I.

17.1 The only correct answer is (c). Although the speed of a
wave is given by the product of its wavelength and fre-
quency, it is not affected by changes in either one. For
example, if the sound from a musical instrument in-
creases in frequency, the wavelength decreases, and thus

remains constant. The amplitude of a sound
wave determines the size of the oscillations of air mole-
cules but does not affect the speed of the wave through
the air.

17.2 The ground tremor represents a sound wave moving
through the Earth. Sound waves move faster through
the Earth than through air because rock and other
ground materials are much stiffer against compression.
Therefore—the vibration through the ground and the
sound in the air having started together—the vibration
through the ground reaches the observer first.

v � �f
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in Section 17.1 (see Quick Quiz 17.1). The denominator
of this fraction increases while the numerator stays con-
stant. Therefore, the fraction as a whole—the Mach
number—decreases.

17.6 (a) In the reference frame of the air, the observer is
moving toward the source at the wind speed through sta-
tionary air, and the source is moving away from the ob-
server with the same speed. In Equation 17.17, there-
fore, a plus sign is needed in both the numerator and

the denominator:

meaning the observed frequency is the same as if no
wind were blowing. (b) The observer “sees” the sound
waves coming toward him at a higher speed

(c) At this higher speed, he attributes a
greater wavelength to the wave.�� � (v sound � vwind)/f
(v sound � vwind).

f � � � v sound � vwind

v sound � vwind
� f
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A speaker for a stereo system operates
even if the wires connecting it to the am-
plifier are reversed, that is, � for � and
� for � (or red for black and black for
red). Nonetheless, the owner’s manual
says that for best performance you
should be careful to connect the two
speakers properly, so that they are “in
phase.” Why is this such an important
consideration for the quality of the sound
you hear? (George Semple)
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mportant in the study of waves is the combined effect of two or more waves
traveling in the same medium. For instance, what happens to a string when a
wave traveling along it hits a fixed end and is reflected back on itself ? What is

the air pressure variation at a particular seat in a theater when the instruments of
an orchestra sound together?

When analyzing a linear medium—that is, one in which the restoring force
acting on the particles of the medium is proportional to the displacement of the
particles—we can apply the principle of superposition to determine the resultant
disturbance. In Chapter 16 we discussed this principle as it applies to wave pulses.
In this chapter we study the superposition principle as it applies to sinusoidal
waves. If the sinusoidal waves that combine in a linear medium have the same fre-
quency and wavelength, a stationary pattern—called a standing wave—can be pro-
duced at certain frequencies under certain circumstances. For example, a taut
string fixed at both ends has a discrete set of oscillation patterns, called modes of vi-
bration, that are related to the tension and linear mass density of the string. These
modes of vibration are found in stringed musical instruments. Other musical in-
struments, such as the organ and the flute, make use of the natural frequencies of
sound waves in hollow pipes. Such frequencies are related to the length and shape
of the pipe and depend on whether the pipe is open at both ends or open at one
end and closed at the other.

We also consider the superposition and interference of waves having different
frequencies and wavelengths. When two sound waves having nearly the same fre-
quency interfere, we hear variations in the loudness called beats. The beat fre-
quency corresponds to the rate of alternation between constructive and destruc-
tive interference. Finally, we discuss how any non-sinusoidal periodic wave can be
described as a sum of sine and cosine functions.

SUPERPOSITION AND INTERFERENCE OF
SINUSOIDAL WAVES

Imagine that you are standing in a swimming pool and that a beach ball is floating
a couple of meters away. You use your right hand to send a series of waves toward
the beach ball, causing it to repeatedly move upward by 5 cm, return to its original
position, and then move downward by 5 cm. After the water becomes still, you use
your left hand to send an identical set of waves toward the beach ball and observe
the same behavior. What happens if you use both hands at the same time to send
two waves toward the beach ball? How the beach ball responds to the waves de-
pends on whether the waves work together (that is, both waves make the beach
ball go up at the same time and then down at the same time) or work against each
other (that is, one wave tries to make the beach ball go up, while the other wave
tries to make it go down). Because it is possible to have two or more waves in the
same location at the same time, we have to consider how waves interact with each
other and with their surroundings.

The superposition principle states that when two or more waves move in the
same linear medium, the net displacement of the medium (that is, the resultant
wave) at any point equals the algebraic sum of all the displacements caused by the
individual waves. Let us apply this principle to two sinusoidal waves traveling in the
same direction in a linear medium. If the two waves are traveling to the right and
have the same frequency, wavelength, and amplitude but differ in phase, we can

18.1
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express their individual wave functions as

where, as usual, and � is the phase constant, which we intro-
duced in the context of simple harmonic motion in Chapter 13. Hence, the resul-
tant wave function y is

To simplify this expression, we use the trigonometric identity

If we let and we find that the resultant wave func-
tion y reduces to

This result has several important features. The resultant wave function y also is sinus-
oidal and has the same frequency and wavelength as the individual waves, since the
sine function incorporates the same values of k and � that appear in the original
wave functions. The amplitude of the resultant wave is 2A cos(�/2), and its phase is
�/2. If the phase constant � equals 0, then cos(�/2) � cos 0 � 1, and the ampli-
tude of the resultant wave is 2A—twice the amplitude of either individual wave. In
this case, in which � � 0, the waves are said to be everywhere in phase and thus in-
terfere constructively. That is, the crests and troughs of the individual waves y1 and
y2 occur at the same positions and combine to form the red curve y of amplitude 2A
shown in Figure 18.1a. Because the individual waves are in phase, they are indistin-
guishable in Figure 18.1a, in which they appear as a single blue curve. In general,
constructive interference occurs when cos This is true, for example,
when 2�, 4�, . . . rad—that is, when � is an even multiple of �.

When � is equal to � rad or to any odd multiple of �, then cos(�/2) �
cos(�/2) � 0, and the crests of one wave occur at the same positions as the
troughs of the second wave (Fig. 18.1b). Thus, the resultant wave has zero ampli-
tude everywhere, as a consequence of destructive interference. Finally, when the
phase constant has an arbitrary value other than 0 or other than an integer multi-
ple of � rad (Fig. 18.1c), the resultant wave has an amplitude whose value is some-
where between 0 and 2A.

Interference of Sound Waves

One simple device for demonstrating interference of sound waves is illustrated in
Figure 18.2. Sound from a loudspeaker S is sent into a tube at point P, where there
is a T-shaped junction. Half of the sound power travels in one direction, and half
travels in the opposite direction. Thus, the sound waves that reach the receiver R
can travel along either of the two paths. The distance along any path from speaker
to receiver is called the path length r. The lower path length r1 is fixed, but the
upper path length r2 can be varied by sliding the U-shaped tube, which is similar to
that on a slide trombone. When the difference in the path lengths 
is either zero or some integer multiple of the wavelength � (that is, where

1, 2, 3, . . .), the two waves reaching the receiver at any instant are in
phase and interfere constructively, as shown in Figure 18.1a. For this case, a maxi-
mum in the sound intensity is detected at the receiver. If the path length r2 is ad-

n � 0,
r � n�,
�r � � r2 � r1 �

� � 0,
(�/2) � 	1.

y � 2A cos� �

2 � sin�kx � �t �
�

2 �

b � kx � �t � �,a � kx � �t

sin a � sin b � 2 cos� a � b
2 � sin� a � b

2 �

y � y1 � y2 � A[sin(kx � �t) � sin(kx � �t � �)]

k � 2�/�, � � 2�f,

y1 � A sin(kx � �t)  y2 � A sin(kx � �t � �)

Destructive interference

Constructive interference

Resultant of two traveling
sinusoidal waves
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justed such that the path difference 3�/2, . . . , n�/2(for n odd), the
two waves are exactly � rad, or 180°, out of phase at the receiver and hence cancel
each other. In this case of destructive interference, no sound is detected at the 
receiver. This simple experiment demonstrates that a phase difference may arise
between two waves generated by the same source when they travel along paths of
unequal lengths. This important phenomenon will be indispensable in our investi-
gation of the interference of light waves in Chapter 37.

�r � �/2,

y

= 0°

y
1 and y

2
 are identical

x

y
y

1 y
2 y

x

x

y

(a)

(b)

(c)

φ

y
y

1 y
2

= 180°φ

= 60°φ

y

Figure 18.1 The superposition of two identical waves y1 and y2 (blue) to yield a resultant wave
(red). (a) When y1 and y2 are in phase, the result is constructive interference. (b) When y1 and
y2 are � rad out of phase, the result is destructive interference. (c) When the phase angle has a
value other than 0 or � rad, the resultant wave y falls somewhere between the extremes shown in
(a) and (b).

r 1

r 2

R

Speaker

S

P
Receiver

Figure 18.2 An acoustical system for demon-
strating interference of sound waves. A sound
wave from the speaker (S) propagates into the
tube and splits into two parts at point P. The two
waves, which superimpose at the opposite side,
are detected at the receiver (R). The upper path
length r2 can be varied by sliding the upper sec-
tion.
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It is often useful to express the path difference in terms of the phase angle �
between the two waves. Because a path difference of one wavelength corresponds
to a phase angle of 2� rad, we obtain the ratio or

(18.1)

Using the notion of path difference, we can express our conditions for construc-
tive and destructive interference in a different way. If the path difference is any
even multiple of �/2, then the phase angle where 1, 2, 3, . . . ,
and the interference is constructive. For path differences of odd multiples of �/2,
� � (2n � 1)�, where 1, 2, 3 . . . , and the interference is destructive.
Thus, we have the conditions

and (18.2)

�r � (2n � 1) 
�

2
  for destructive interference 

�r � (2n) 
�

2
   for constructive interference

n � 0,

n � 0,� � 2n�,

�r �
�

2�
 �

�/2� � �r/�,

Two Speakers Driven by the Same SourceEXAMPLE 18.1
these triangles, we find that the path lengths are

and

Hence, the path difference is Because we
require that this path difference be equal to �/2 for the first
minimum, we find that � � 0.26 m.

To obtain the oscillator frequency, we use Equation 16.14,
where v is the speed of sound in air, 343 m/s:

Exercise If the oscillator frequency is adjusted such that
the first location at which a listener hears no sound is at a dis-
tance of 0.75 m from O, what is the new frequency?

Answer 0.63 kHz.

1.3 kHzf �
v
�

�
343 m/s
0.26 m

�

v � �f,

r2 � r1 � 0.13 m.

r2 � √(8.00 m)2 � (1.85 m)2 � 8.21 m

r1 � √(8.00 m)2 � (1.15 m)2 � 8.08 m

A pair of speakers placed 3.00 m apart are driven by the same
oscillator (Fig. 18.3). A listener is originally at point O, which
is located 8.00 m from the center of the line connecting the
two speakers. The listener then walks to point P, which is a
perpendicular distance 0.350 m from O, before reaching the
first minimum in sound intensity. What is the frequency of the
oscillator?

Solution To find the frequency, we need to know the
wavelength of the sound coming from the speakers. With this
information, combined with our knowledge of the speed of
sound, we can calculate the frequency. We can determine the
wavelength from the interference information given. The
first minimum occurs when the two waves reaching the lis-
tener at point P are 180° out of phase—in other words, when
their path difference �r equals �/2. To calculate the path dif-
ference, we must first find the path lengths r1 and r2 . 

Figure 18.3 shows the physical arrangement of the speak-
ers, along with two shaded right triangles that can be drawn
on the basis of the lengths described in the problem. From

8.00 m

r 1

r 2

8.00 m

1.15 m

3.00 m

0.350 m

1.85 m

P

O

Figure 18.3

Relationship between path
difference and phase angle
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You can now understand why the speaker wires in a stereo system should be
connected properly. When connected the wrong way—that is, when the positive
(or red) wire is connected to the negative (or black) terminal—the speakers are
said to be “out of phase” because the sound wave coming from one speaker de-
structively interferes with the wave coming from the other. In this situation, one
speaker cone moves outward while the other moves inward. Along a line midway
between the two, a rarefaction region from one speaker is superposed on a con-
densation region from the other speaker. Although the two sounds probably do
not completely cancel each other (because the left and right stereo signals are
usually not identical), a substantial loss of sound quality still occurs at points along
this line.

STANDING WAVES
The sound waves from the speakers in Example 18.1 left the speakers in the for-
ward direction, and we considered interference at a point in space in front of the
speakers. Suppose that we turn the speakers so that they face each other and then
have them emit sound of the same frequency and amplitude. We now have a situa-
tion in which two identical waves travel in opposite directions in the same
medium. These waves combine in accordance with the superposition principle.

We can analyze such a situation by considering wave functions for two trans-
verse sinusoidal waves having the same amplitude, frequency, and wavelength but
traveling in opposite directions in the same medium:

where y1 represents a wave traveling to the right and y2 represents one traveling to
the left. Adding these two functions gives the resultant wave function y:

When we use the trigonometric identity sin cos sin b, this
expression reduces to

(18.3)

which is the wave function of a standing wave. A standing wave, such as the one
shown in Figure 18.4, is an oscillation pattern with a stationary outline that results
from the superposition of two identical waves traveling in opposite directions.

Notice that Equation 18.3 does not contain a function of Thus, it is
not an expression for a traveling wave. If we observe a standing wave, we have no
sense of motion in the direction of propagation of either of the original waves. If
we compare this equation with Equation 13.3, we see that Equation 18.3 describes
a special kind of simple harmonic motion. Every particle of the medium oscillates
in simple harmonic motion with the same frequency � (according to the cos �t
factor in the equation). However, the amplitude of the simple harmonic motion of
a given particle (given by the factor 2A sin kx, the coefficient of the cosine func-
tion) depends on the location x of the particle in the medium. We need to distin-
guish carefully between the amplitude A of the individual waves and the amplitude
2A sin kx of the simple harmonic motion of the particles of the medium. A given
particle in a standing wave vibrates within the constraints of the envelope function
2A sin kx, where x is the particle’s position in the medium. This is in contrast to
the situation in a traveling sinusoidal wave, in which all particles oscillate with the

kx 	 �t.

y � (2A sin kx) cos �t

b 	 cos a(a 	 b) � sin a

y � y1 � y2 � A sin(kx � �t) � A sin(kx � �t)

y1 � A sin(kx � �t)  y2 � A sin(kx � �t)

18.2

Wave function for a standing wave
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same amplitude and the same frequency and in which the amplitude of the wave is
the same as the amplitude of the simple harmonic motion of the particles.

The maximum displacement of a particle of the medium has a minimum
value of zero when x satisfies the condition sin that is, when

Because these values for kx give

1, 2, 3, . . . (18.4)

These points of zero displacement are called nodes.
The particle with the greatest possible displacement from equilibrium has an

amplitude of 2A, and we define this as the amplitude of the standing wave. The
positions in the medium at which this maximum displacement occurs are called
antinodes. The antinodes are located at positions for which the coordinate x satis-
fies the condition sin that is, when

Thus, the positions of the antinodes are given by

3, 5, . . . (18.5)

In examining Equations 18.4 and 18.5, we note the following important fea-
tures of the locations of nodes and antinodes:

x �
�

4
, 

3�

4
, 

5�

4
, . . . �

n�

4
  n � 1,

kx �
�

2
, 

3�

2
, 

5�

2
, . . .

kx � 	1,

x �
�

2
, �, 

3�

2
, . . . �

n�

2
  n � 0,

k � 2�/� ,

kx � �, 2�, 3�, . . .

kx � 0,

Antinode Antinode

Node

2A sin kx

Node

Figure 18.4 Multiflash photograph of a standing wave on a string. The time behavior of the ver-
tical displacement from equilibrium of an individual particle of the string is given by cos �t. That
is, each particle vibrates at an angular frequency �. The amplitude of the vertical oscillation of any
particle on the string depends on the horizontal position of the particle. Each particle vibrates
within the confines of the envelope function 2A sin kx.

The distance between adjacent antinodes is equal to �/2.
The distance between adjacent nodes is equal to �/2.
The distance between a node and an adjacent antinode is �/4.

Displacement patterns of the particles of the medium produced at various
times by two waves traveling in opposite directions are shown in Figure 18.5. The
blue and green curves are the individual traveling waves, and the red curves are

Position of antinodes

Position of nodes
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the displacement patterns. At (Fig. 18.5a), the two traveling waves are in
phase, giving a displacement pattern in which each particle of the medium is expe-
riencing its maximum displacement from equilibrium. One quarter of a period
later, at (Fig. 18.5b), the traveling waves have moved one quarter of a
wavelength (one to the right and the other to the left). At this time, the traveling
waves are out of phase, and each particle of the medium is passing through the
equilibrium position in its simple harmonic motion. The result is zero displace-
ment for particles at all values of x—that is, the displacement pattern is a straight
line. At (Fig. 18.5c), the traveling waves are again in phase, producing a
displacement pattern that is inverted relative to the pattern. In the standing
wave, the particles of the medium alternate in time between the extremes shown
in Figure 18.5a and c.

Energy in a Standing Wave

It is instructive to describe the energy associated with the particles of a medium in
which a standing wave exists. Consider a standing wave formed on a taut string
fixed at both ends, as shown in Figure 18.6. Except for the nodes, which are always
stationary, all points on the string oscillate vertically with the same frequency but
with different amplitudes of simple harmonic motion. Figure 18.6 represents snap-
shots of the standing wave at various times over one half of a period.

In a traveling wave, energy is transferred along with the wave, as we discussed
in Chapter 16. We can imagine this transfer to be due to work done by one seg-
ment of the string on the next segment. As one segment moves upward, it exerts a
force on the next segment, moving it through a displacement—that is, work is
done. A particle of the string at a node, however, experiences no displacement.
Thus, it cannot do work on the neighboring segment. As a result, no energy is
transmitted along the string across a node, and energy does not propagate in a
standing wave. For this reason, standing waves are often called stationary waves.

The energy of the oscillating string continuously alternates between elastic po-
tential energy, when the string is momentarily stationary (see Fig. 18.6a), and ki-
netic energy, when the string is horizontal and the particles have their maximum
speed (see Fig. 18.6c). At intermediate times (see Fig. 18.6b and d), the string par-
ticles have both potential energy and kinetic energy.

t � 0
t � T/2

t � T/4

t � 0

(a) t = 0

y1

y2

y
N N N N N

AA

(b) t = T/4

y2

y1

y

(c) t = T/2

y1

A A

y2

y
N N N N N

A A

Figure 18.5 Standing-wave patterns produced at various times by two waves of equal amplitude
traveling in opposite directions. For the resultant wave y, the nodes (N) are points of zero dis-
placement, and the antinodes (A) are points of maximum displacement.

Figure 18.6 A standing-wave pat-
tern in a taut string. The five “snap-
shots” were taken at half-cycle in-
tervals. (a) At the string is
momentarily at rest; thus, 
and all the energy is potential en-
ergy U associated with the vertical
displacements of the string parti-
cles. (b) At the string is in
motion, as indicated by the brown
arrows, and the energy is half ki-
netic and half potential. (c) At

the string is moving but
horizontal (undeformed); thus,

and all the energy is kinetic.
(d) The motion continues as indi-
cated. (e) At the string is
again momentarily at rest, but the
crests and troughs of (a) are re-
versed. The cycle continues until
ultimately, when a time interval
equal to T has passed, the configu-
ration shown in (a) is repeated.

t � T/2,

U � 0,

t � T/4,

t � T/8,

K � 0,
t � 0,

NN N
t = 0

(a)

(b) t = T/ 8

t = T/4(c)

t = 3T/ 8(d)

(e) t = T/ 2
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STANDING WAVES IN A STRING
FIXED AT BOTH ENDS

Consider a string of length L fixed at both ends, as shown in Figure 18.7. Standing
waves are set up in the string by a continuous superposition of waves incident on
and reflected from the ends. Note that the ends of the string, because they are
fixed and must necessarily have zero displacement, are nodes by definition. The
string has a number of natural patterns of oscillation, called normal modes, each
of which has a characteristic frequency that is easily calculated.

18.3

A standing wave described by Equation 18.3 is set up on a string. At what points on the
string do the particles move the fastest?

Quick Quiz 18.1

Formation of a Standing WaveEXAMPLE 18.2
and from Equation 18.5 we find that the antinodes are lo-
cated at

3, 5, . . .

(c) What is the amplitude of the simple harmonic motion
of a particle located at an antinode?

Solution According to Equation 18.3, the maximum dis-
placement of a particle at an antinode is the amplitude of the
standing wave, which is twice the amplitude of the individual
traveling waves:

Let us check this result by evaluating the coefficient of our
standing-wave function at the positions we found for the an-
tinodes:

In evaluating this expression, we have used the fact that n is
an odd integer; thus, the sine function is equal to unity.

 � (8.0 cm) sin�n � �

2 � rad� � 8.0 cm

 � (8.0 cm) sin�3.0n � �

6 � rad� 

ymax � (8.0 cm) sin 3.0x �x �n(�/6) 

8.0 cmymax � 2A � 2(4.0 cm) �

n � 1,n � �

6 � cmx � n 
�

4
�

Two waves traveling in opposite directions produce a stand-
ing wave. The individual wave functions 
are

and

where x and y are measured in centimeters. (a) Find the am-
plitude of the simple harmonic motion of the particle of the
medium located at cm.

Solution The standing wave is described by Equation 18.3;
in this problem, we have cm, rad/cm, and 
� � 2.0 rad/s. Thus,

Thus, we obtain the amplitude of the simple harmonic mo-
tion of the particle at the position cm by evaluating
the coefficient of the cosine function at this position:

(b) Find the positions of the nodes and antinodes.

Solution With rad/cm, we see that 
cm. Therefore, from Equation 18.4 we find that the

nodes are located at

1, 2, 3 . . .n � 0,n � �

3 � cmx � n 
�

2
�

2�/3
� �k � 2�/� � 3.0

4.6 cm � (8.0 cm) sin(6.9 rad) �

ymax � (8.0 cm) sin 3.0x �x �2.3 

x � 2.3

y � (2A sin kx) cos �t � [(8.0 cm) sin 3.0x] cos 2.0t

k � 3.0A � 4.0

x � 2.3

y2 � (4.0 cm) sin(3.0x � 2.0t)

y1 � (4.0 cm) sin(3.0x � 2.0t)

y � A sin(kx � �t)

9.9
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In general, the motion of an oscillating string fixed at both ends is described
by the superposition of several normal modes. Exactly which normal modes are
present depends on how the oscillation is started. For example, when a guitar
string is plucked near its middle, the modes shown in Figure 18.7b and d, as well
as other modes not shown, are excited.

In general, we can describe the normal modes of oscillation for the string by im-
posing the requirements that the ends be nodes and that the nodes and antinodes
be separated by one fourth of a wavelength. The first normal mode, shown in Figure
18.7b, has nodes at its ends and one antinode in the middle. This is the longest-
wavelength mode, and this is consistent with our requirements. This first normal
mode occurs when the wavelength �1 is twice the length of the string, that is,

The next normal mode, of wavelength �2 (see Fig. 18.7c), occurs when the
wavelength equals the length of the string, that is, The third normal mode
(see Fig. 18.7d) corresponds to the case in which In general, the wave-
lengths of the various normal modes for a string of length L fixed at both ends are

2, 3, . . . (18.6)

where the index n refers to the nth normal mode of oscillation. These are the pos-
sible modes of oscillation for the string. The actual modes that are excited by a
given pluck of the string are discussed below.

The natural frequencies associated with these modes are obtained from the re-
lationship where the wave speed v is the same for all frequencies. Using
Equation 18.6, we find that the natural frequencies fn of the normal modes are

(18.7)

Because (see Eq. 16.4), where T is the tension in the string and 
 is its
linear mass density, we can also express the natural frequencies of a taut string as

(18.8)fn �
n

2L
 √ T



  n � 1, 2, 3, . . .

v � √T/


fn �
v
�n

� n 
v

2L
  n � 1, 2, 3, . . .

f � v/�,

�n �
2L
n

  n � 1,

�3 � 2L/3.
�2 � L.

�1 � 2L.

Frequencies of normal modes as
functions of wave speed and
length of string

Wavelengths of normal modes

Frequencies of normal modes as
functions of string tension and
linear mass density

L

(a) (c)

(b) (d)

n = 2

n = 3

L = λ2

L = – λ3
3
2

n = 1 L = – λ1
1
2

f1 f3

f2

N

A

N

λ

λλ

Figure 18.7 (a) A string of length L fixed at both ends. The normal modes of vibration form a
harmonic series: (b) the fundamental, or first harmonic; (c) the second harmonic; 
(d) the third harmonic.
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The lowest frequency f1 , which corresponds to is called either the funda-
mental or the fundamental frequency and is given by

(18.9)

The frequencies of the remaining normal modes are integer multiples of the
fundamental frequency. Frequencies of normal modes that exhibit an integer-
multiple relationship such as this form a harmonic series, and the normal modes
are called harmonics. The fundamental frequency f 1 is the frequency of the first
harmonic; the frequency is the frequency of the second harmonic; and
the frequency is the frequency of the nth harmonic. Other oscillating sys-
tems, such as a drumhead, exhibit normal modes, but the frequencies are not re-
lated as integer multiples of a fundamental. Thus, we do not use the term harmonic
in association with these types of systems.

In obtaining Equation 18.6, we used a technique based on the separation dis-
tance between nodes and antinodes. We can obtain this equation in an alternative
manner. Because we require that the string be fixed at and the wave
function y(x, t) given by Equation 18.3 must be zero at these points for all times.
That is, the boundary conditions require that and that for all
values of t. Because the standing wave is described by the
first boundary condition, is automatically satisfied because sin 
at To meet the second boundary condition, we require that 
sin This condition is satisfied when the angle kL equals an integer multiple
of � rad. Therefore, the allowed values of k are given by1

2, 3, . . . (18.10)

Because we find that

which is identical to Equation 18.6.
Let us now examine how these various harmonics are created in a string. If we

wish to excite just a single harmonic, we need to distort the string in such a way
that its distorted shape corresponded to that of the desired harmonic. After being
released, the string vibrates at the frequency of that harmonic. This maneuver is
difficult to perform, however, and it is not how we excite a string of a musical in-

� 2�

�n
�L � n�  or  �n �

2L
n

kn � 2�/�n ,

knL � n�  n � 1,

kL � 0.
y(L, t) � 0,x � 0.

kx � 0y(0, t) � 0,
y � (2A sin kx) cos �t,

y(L, t) � 0y(0, t) � 0

x � L,x � 0

fn � nf1

f2 � 2f1

f1 �
1

2L
 √ T




n � 1,

Fundamental frequency of a taut
string

Multiflash photographs of standing-wave patterns in a cord driven by a vibrator at its left end.
The single-loop pattern represents the first normal mode The double-loop pattern rep-
resents the second normal mode and the triple-loop pattern represents the third nor-
mal mode (n � 3).

(n � 2),
(n � 1).

1 We exclude because this value corresponds to the trivial case in which no wave exists (k � 0).n � 0

QuickLab
Compare the sounds of a guitar string
plucked first near its center and then
near one of its ends. More of the
higher harmonics are present in the
second situation. Can you hear the
difference?
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strument. If the string is distorted such that its distorted shape is not that of just
one harmonic, the resulting vibration includes various harmonics. Such a distor-
tion occurs in musical instruments when the string is plucked (as in a guitar),
bowed (as in a cello), or struck (as in a piano). When the string is distorted into a
non-sinusoidal shape, only waves that satisfy the boundary conditions can persist
on the string. These are the harmonics.

The frequency of a stringed instrument can be varied by changing either the
tension or the string’s length. For example, the tension in guitar and violin strings
is varied by a screw adjustment mechanism or by tuning pegs located on the neck
of the instrument. As the tension is increased, the frequency of the normal modes
increases in accordance with Equation 18.8. Once the instrument is “tuned,” play-
ers vary the frequency by moving their fingers along the neck, thereby changing
the length of the oscillating portion of the string. As the length is shortened, the
frequency increases because, as Equation 18.8 specifies, the normal-mode frequen-
cies are inversely proportional to string length.

Give Me a C Note!EXAMPLE 18.3
Setting up the ratio of these frequencies, we find that

(c) With respect to a real piano, the assumption we made
in (b) is only partially true. The string densities are equal, but
the length of the A string is only 64 percent of the length of
the C string. What is the ratio of their tensions?

Solution Using Equation 18.8 again, we set up the ratio of
frequencies:

1.16 
TA

TC
� (0.64)2� 440

262 �
2

�

f1A

f1C
�

LC

LA
 √ TA

TC
� � 100

64 � √ TA

TC

2.82
TA

TC
� � f1A

f1C
�

2
� � 440

262 �
2

�

f1A

f1C
� √ TA

TC
 

Middle C on a piano has a fundamental frequency of 262 Hz,
and the first A above middle C has a fundamental frequency
of 440 Hz. (a) Calculate the frequencies of the next two har-
monics of the C string.

Solution Knowing that the frequencies of higher harmon-
ics are integer multiples of the fundamental frequency

Hz, we find that

(b) If the A and C strings have the same linear mass den-
sity 
 and length L, determine the ratio of tensions in the two
strings.

Solution Using Equation 18.8 for the two strings vibrating
at their fundamental frequencies gives

f1A �
1

2L
 √ TA



  and  f1C �

1
2L

 √ TC




786 Hzf3 � 3f1 �

524 Hzf2 � 2f1 �

f1 � 262

Guitar BasicsEXAMPLE 18.4
speed of the wave on the string,

Because we have not adjusted the tuning peg, the tension in
the string, and hence the wave speed, remain constant. We
can again use Equation 18.7, this time solving for L and sub-

v �
2L
n

 fn �
2(0.640 m)

1
 (330 Hz) � 422 m/s

The high E string on a guitar measures 64.0 cm in length and
has a fundamental frequency of 330 Hz. By pressing down on
it at the first fret (Fig. 18.8), the string is shortened so that it
plays an F note that has a frequency of 350 Hz. How far is the
fret from the neck end of the string?

Solution Equation 18.7 relates the string’s length to the
fundamental frequency. With we can solve for then � 1,
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Figure 18.8 Playing an F note on a guitar. (Charles D. Winters)

Figure 18.9 Graph of the ampli-
tude (response) versus driving fre-
quency for an oscillating system.
The amplitude is a maximum at
the resonance frequency f0 . Note
that the curve is not symmetric.

stituting the new frequency to find the shortened string
length:

The difference between this length and the measured length
of 64.0 cm is the distance from the fret to the neck end of the 

string, or 3.70 cm.

L � n 
v

2fn
� (1)

422 m/s
2(350 Hz)

� 0.603 m

RESONANCE
We have seen that a system such as a taut string is capable of oscillating in one or
more normal modes of oscillation. If a periodic force is applied to such a sys-
tem, the amplitude of the resulting motion is greater than normal when the
frequency of the applied force is equal to or nearly equal to one of the nat-
ural frequencies of the system. We discussed this phenomenon, known as reso-
nance, briefly in Section 13.7. Although a block–spring system or a simple pendu-
lum has only one natural frequency, standing-wave systems can have a whole set of
natural frequencies. Because an oscillating system exhibits a large amplitude when
driven at any of its natural frequencies, these frequencies are often referred to as
resonance frequencies.

Figure 18.9 shows the response of an oscillating system to various driving fre-
quencies, where one of the resonance frequencies of the system is denoted by f0 .
Note that the amplitude of oscillation of the system is greatest when the frequency
of the driving force equals the resonance frequency. The maximum amplitude is
limited by friction in the system. If a driving force begins to work on an oscillating
system initially at rest, the input energy is used both to increase the amplitude of
the oscillation and to overcome the frictional force. Once maximum amplitude is
reached, the work done by the driving force is used only to overcome friction.

A system is said to be weakly damped when the amount of friction to be over-
come is small. Such a system has a large amplitude of motion when driven at one
of its resonance frequencies, and the oscillations persist for a long time after the
driving force is removed. A system in which considerable friction must be over-
come is said to be strongly damped. For a given driving force applied at a resonance
frequency, the maximum amplitude attained by a strongly damped oscillator is
smaller than that attained by a comparable weakly damped oscillator. Once the
driving force in a strongly damped oscillator is removed, the amplitude decreases
rapidly with time.

Examples of Resonance

A playground swing is a pendulum having a natural frequency that depends on its
length. Whenever we use a series of regular impulses to push a child in a swing,
the swing goes higher if the frequency of the periodic force equals the natural fre-

18.4

A
m

pl
it

ud
e

f0
Frequency of driving force

9.9
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quency of the swing. We can demonstrate a similar effect by suspending pendu-
lums of different lengths from a horizontal support, as shown in Figure 18.10. If
pendulum A is set into oscillation, the other pendulums begin to oscillate as a re-
sult of the longitudinal waves transmitted along the beam. However, pendulum C,
the length of which is close to the length of A, oscillates with a much greater am-
plitude than pendulums B and D, the lengths of which are much different from
that of pendulum A. Pendulum C moves the way it does because its natural fre-
quency is nearly the same as the driving frequency associated with pendulum A.

Next, consider a taut string fixed at one end and connected at the opposite
end to an oscillating blade, as illustrated in Figure 18.11. The fixed end is a node,
and the end connected to the blade is very nearly a node because the amplitude of
the blade’s motion is small compared with that of the string. As the blade oscil-
lates, transverse waves sent down the string are reflected from the fixed end. As we
learned in Section 18.3, the string has natural frequencies that are determined by
its length, tension, and linear mass density (see Eq. 18.8). When the frequency of
the blade equals one of the natural frequencies of the string, standing waves are
produced and the string oscillates with a large amplitude. In this resonance case,
the wave generated by the oscillating blade is in phase with the reflected wave, and
the string absorbs energy from the blade. If the string is driven at a frequency that
is not one of its natural frequencies, then the oscillations are of low amplitude and
exhibit no stable pattern.

Once the amplitude of the standing-wave oscillations is a maximum, the me-
chanical energy delivered by the blade and absorbed by the system is lost because
of the damping forces caused by friction in the system. If the applied frequency
differs from one of the natural frequencies, energy is transferred to the string at
first, but later the phase of the wave becomes such that it forces the blade to re-
ceive energy from the string, thereby reducing the energy in the string.

Some singers can shatter a wine glass by maintaining a certain frequency of their voice for
several seconds. Figure 18.12a shows a side view of a wine glass vibrating because of a sound
wave. Sketch the standing-wave pattern in the rim of the glass as seen from above. If an inte-

Quick Quiz 18.2

Figure 18.10 An example of res-
onance. If pendulum A is set into
oscillation, only pendulum C,
whose length matches that of A,
eventually oscillates with large am-
plitude, or resonates. The arrows
indicate motion perpendicular to
the page.

A

B

C

D

Vibrating
blade

Figure 18.11 Standing waves are
set up in a string when one end is
connected to a vibrating blade.
When the blade vibrates at one of
the natural frequencies of the
string, large-amplitude standing
waves are created.

Figure 18.12 (a) Standing-wave pattern in a vibrating wine glass. The glass shatters if the ampli-
tude of vibration becomes too great.
(b) A wine glass shattered by the amplified sound of a human voice.

(a) (b)
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gral number of waves “fit” around the circumference of the vibrating rim, how many wave-
lengths fit around the rim in Figure 18.12a?

“Rumble strips” (Fig. 18.13) are sometimes placed across a road to warn drivers that they
are approaching a stop sign, or laid along the sides of the road to alert drivers when they
are drifting out of their lane. Why are these sets of small bumps so effective at getting a dri-
ver’s attention?

Quick Quiz 18.3

QuickLab
Snip off pieces at one end of a drink-
ing straw so that the end tapers to a
point. Chew on this end to flatten it,
and you’ll have created a double-reed
instrument! Put your lips around the
tapered end, press them tightly to-
gether, and blow through the straw.
When you hear a steady tone, slowly
snip off pieces of the straw from the
other end. Be careful to maintain a
constant pressure with your lips. How
does the frequency change as the
straw is shortened?

9.9

STANDING WAVES IN AIR COLUMNS
Standing waves can be set up in a tube of air, such as that in an organ pipe, as the
result of interference between longitudinal sound waves traveling in opposite di-
rections. The phase relationship between the incident wave and the wave reflected
from one end of the pipe depends on whether that end is open or closed. This re-
lationship is analogous to the phase relationships between incident and reflected
transverse waves at the end of a string when the end is either fixed or free to move
(see Figs. 16.13 and 16.14).

In a pipe closed at one end, the closed end is a displacement node be-
cause the wall at this end does not allow longitudinal motion of the air mol-
ecules. As a result, at a closed end of a pipe, the reflected sound wave is 180° out
of phase with the incident wave. Furthermore, because the pressure wave is 90° out
of phase with the displacement wave (see Section 17.2), the closed end of an air
column corresponds to a pressure antinode (that is, a point of maximum pres-
sure variation).

The open end of an air column is approximately a displacement anti-
node2 and a pressure node. We can understand why no pressure variation occurs
at an open end by noting that the end of the air column is open to the atmos-
phere; thus, the pressure at this end must remain constant at atmospheric pres-
sure.

18.5

Figure 18.13 Rumble strips along the side of a highway.

2 Strictly speaking, the open end of an air column is not exactly a displacement antinode. A condensa-
tion reaching an open end does not reflect until it passes beyond the end. For a thin-walled tube of 
circular cross section, this end correction is approximately 0.6R , where R is the tube’s radius. Hence,
the effective length of the tube is longer than the true length L. We ignore this end correction in this
discussion.
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You may wonder how a sound wave can reflect from an open end, since there
may not appear to be a change in the medium at this point. It is indeed true that
the medium through which the sound wave moves is air both inside and outside
the pipe. Remember that sound is a pressure wave, however, and a compression re-
gion of the sound wave is constrained by the sides of the pipe as long as 
the region is inside the pipe. As the compression region exits at the open end 
of the pipe, the constraint is removed and the compressed air is free to expand
into the atmosphere. Thus, there is a change in the character of the medium be-
tween the inside of the pipe and the outside even though there is no change in
the material of the medium. This change in character is sufficient to allow some re-
flection.

The first three normal modes of oscillation of a pipe open at both ends are
shown in Figure 18.14a. When air is directed against an edge at the left, longitudi-
nal standing waves are formed, and the pipe resonates at its natural frequencies.
All normal modes are excited simultaneously (although not with the same ampli-
tude). Note that both ends are displacement antinodes (approximately). In the
first normal mode, the standing wave extends between two adjacent antinodes,

L

λ1 = 2L

f1 = — = —v
λ1

v
2L

λ2 = L

f2 = — = 2f1
v
L

λ3 = — L

f3 = — = 3f1
3v
2L

2
3

(a) Open at both ends

λ1 = 4L

f1 = — = —v
λ1

v
4L

λ3 = — L

f3 = — = 3f1
3v
4L

λ5 = — L

f5 = — = 5f1
5v
4L

4
5

4
3

First harmonic

Second harmonic

Third harmonic

First harmonic

Third harmonic

Fifth harmonic

(b) Closed at one end, open at the other
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λ

Figure 18.14 Motion of air molecules in standing longitudinal waves in a pipe, along with
schematic representations of the waves. The graphs represent the displacement amplitudes, not
the pressure amplitudes. (a) In a pipe open at both ends, the harmonic series created consists of
all integer multiples of the fundamental frequency: f1 , 2f1 , 3f1 , . . . . (b) In a pipe closed at
one end and open at the other, the harmonic series created consists of only odd-integer multi-
ples of the fundamental frequency: f1 , 3f1 , 5f1 , . . . .



Because all harmonics are present, and because the fundamental frequency is
given by the same expression as that for a string (see Eq. 18.7), we can express the
natural frequencies of oscillation as

2, 3 . . . (18.11)

Despite the similarity between Equations 18.7 and 18.11, we must remember that v
in Equation 18.7 is the speed of waves on the string, whereas v in Equation 18.11 is
the speed of sound in air.

If a pipe is closed at one end and open at the other, the closed end is a dis-
placement node (see Fig. 18.14b). In this case, the standing wave for the funda-
mental mode extends from an antinode to the adjacent node, which is one fourth
of a wavelength. Hence, the wavelength for the first normal mode is 4L, and the
fundamental frequency is As Figure 18.14b shows, the higher-frequency
waves that satisfy our conditions are those that have a node at the closed end and
an antinode at the open end; this means that the higher harmonics have frequen-
cies  3f1 , 5f1 , . . . :

f1 � v/4L.

  n � 1,fn � n 
v

2L
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We express this result mathematically as

3, 5, . . . (18.12)

It is interesting to investigate what happens to the frequencies of instruments
based on air columns and strings during a concert as the temperature rises. The
sound emitted by a flute, for example, becomes sharp (increases in frequency) as
it warms up because the speed of sound increases in the increasingly warmer air
inside the flute (consider Eq. 18.11). The sound produced by a violin becomes flat
(decreases in frequency) as the strings expand thermally because the expansion
causes their tension to decrease (see Eq. 18.8).

A pipe open at both ends resonates at a fundamental frequency fopen . When one end is cov-
ered and the pipe is again made to resonate, the fundamental frequency is fclosed . Which 
of the following expressions describes how these two resonant frequencies compare? 
(a) (b) (c) (d) fclosed � 3

2 fopenfclosed � 2fopenfclosed � 1
2 fopenfclosed � fopen

Quick Quiz 18.4

  n � 1,fn � n 
v

4L

in a pipe open at both ends, the natural frequencies of oscillation form a har-
monic series that includes all integral multiples of the fundamental frequency.

In a pipe closed at one end and open at the other, the natural frequencies of os-
cillation form a harmonic series that includes only odd integer multiples of the
fundamental frequency.

Natural frequencies of a pipe
closed at one end and open at the
other

Natural frequencies of a pipe open
at both ends

QuickLab
Blow across the top of an empty soda-
pop bottle. From a measurement of
the height of the bottle, estimate the
frequency of the sound you hear.
Note that the cross-sectional area of
the bottle is not constant; thus, this is
not a perfect model of a cylindrical
air column.

which is a distance of half a wavelength. Thus, the wavelength is twice the length
of the pipe, and the fundamental frequency is As Figure 18.14a shows,
the frequencies of the higher harmonics are 2f1 , 3f1 , . . . . Thus, we can say that

f1 � v/2L.
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Measuring the Frequency of a Tuning ForkEXAMPLE 18.6
of the tuning fork is constant, the next two normal modes 
(see Fig. 18.15b) correspond to lengths of 

and 0.450 m.L � 5�/4 �0.270 m

L � 3�/4 �
A simple apparatus for demonstrating resonance in an air
column is depicted in Figure 18.15. A vertical pipe open at
both ends is partially submerged in water, and a tuning fork
vibrating at an unknown frequency is placed near the top of
the pipe. The length L of the air column can be adjusted by
moving the pipe vertically. The sound waves generated by the
fork are reinforced when L corresponds to one of the reso-
nance frequencies of the pipe.

For a certain tube, the smallest value of L for which a peak
occurs in the sound intensity is 9.00 cm. What are (a) the fre-
quency of the tuning fork and (b) the value of L for the next
two resonance frequencies?

Solution (a) Although the pipe is open at its lower end to
allow the water to enter, the water’s surface acts like a wall at
one end. Therefore, this setup represents a pipe closed at
one end, and so the fundamental frequency is 
Taking m/s for the speed of sound in air and

we obtain

Because the tuning fork causes the air column to resonate at
this frequency, this must be the frequency of the tuning fork.

(b) Because the pipe is closed at one end, we know from
Figure 18.14b that the wavelength of the fundamental mode
is Because the frequency� � 4L � 4(0.090 0 m) � 0.360 m.

953 Hzf1 �
v

4L
�

343 m/s
4(0.090 0 m)

�

L � 0.090 0 m,
v � 343

f1 � v/4L.

Wind in a CulvertEXAMPLE 18.5
In this case, only odd harmonics are present; hence, the next 

two harmonics have frequencies and 

(c) For the culvert open at both ends, how many of the
harmonics present fall within the normal human hearing
range (20 to 17 000 Hz)?

Solution Because all harmonics are present, we can ex-
press the frequency of the highest harmonic heard as 

where n is the number of harmonics that we can hear.
For Hz, we find that the number of harmonics
present in the audible range is

Only the first few harmonics are of sufficient amplitude to be
heard.

122n �
17 000 Hz

139 Hz
�

fn � 17 000
nf1 ,

fn �

349 Hz.f5 � 5f1 �

209 Hzf3 � 3f1 �

A section of drainage culvert 1.23 m in length makes a howl-
ing noise when the wind blows. (a) Determine the frequen-
cies of the first three harmonics of the culvert if it is open at
both ends. Take m/s as the speed of sound in air.

Solution The frequency of the first harmonic of a pipe
open at both ends is

Because both ends are open, all harmonics are present; thus, 

and 

(b) What are the three lowest natural frequencies of the
culvert if it is blocked at one end?

Solution The fundamental frequency of a pipe closed at
one end is

69.7 Hzf1 �
v

4L
�

343 m/s
4(1.23 m)

�

417 Hz.f3 � 3f1 �278 Hzf2 � 2f1 �

139 Hzf1 �
v

2L
�

343 m/s
2(1.23 m)

�

v � 343

L

Water

f = ?

First
resonance

Second
resonance

(third
harmonic) Third

resonance
(fifth

harmonic)

(b)

(a)

λ/4 3λ/4

5λ/4

λ λ

λ

Figure 18.15 (a) Apparatus for demonstrating the resonance of
sound waves in a tube closed at one end. The length L of the air col-
umn is varied by moving the tube vertically while it is partially sub-
merged in water. (b) The first three normal modes of the system
shown in part (a).
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Optional Section

STANDING WAVES IN RODS AND PLATES
Standing waves can also be set up in rods and plates. A rod clamped in the middle
and stroked at one end oscillates, as depicted in Figure 18.16a. The oscillations of
the particles of the rod are longitudinal, and so the broken lines in Figure 18.16
represent longitudinal displacements of various parts of the rod. For clarity, we have
drawn them in the transverse direction, just as we did for air columns. The mid-
point is a displacement node because it is fixed by the clamp, whereas the ends are
displacement antinodes because they are free to oscillate. The oscillations in this
setup are analogous to those in a pipe open at both ends. The broken lines in Fig-
ure 18.16a represent the first normal mode, for which the wavelength is 2L and
the frequency is where v is the speed of longitudinal waves in the rod.
Other normal modes may be excited by clamping the rod at different points. For
example, the second normal mode (Fig. 18.16b) is excited by clamping the rod a
distance L/4 away from one end.

Two-dimensional oscillations can be set up in a flexible membrane stretched
over a circular hoop, such as that in a drumhead. As the membrane is struck at
some point, wave pulses that arrive at the fixed boundary are reflected many times.
The resulting sound is not harmonic because the oscillating drumhead and the
drum’s hollow interior together produce a set of standing waves having frequen-
cies that are not related by integer multiples. Without this relationship, the sound
may be more correctly described as noise than as music. This is in contrast to the
situation in wind and stringed instruments, which produce sounds that we de-
scribe as musical.

Some possible normal modes of oscillation for a two-dimensional circular
membrane are shown in Figure 18.17. The lowest normal mode, which has a fre-
quency f1, contains only one nodal curve; this curve runs around the outer edge of
the membrane. The other possible normal modes show additional nodal curves
that are circles and straight lines across the diameter of the membrane.

f � v/2L,

18.6

NA N A

λ1 = 2L

(a)

L

A A

(b)

L
4
–

A N

λ2 = L

f2 = – = 2f1
v
L

f1 = – = –v
λ1

v
2L

λ

λ

λ

Figure 18.16 Normal-mode longitudinal vibrations of a rod of length L (a) clamped at the
middle to produce the first normal mode and (b) clamped at a distance L/4 from one end to
produce the second normal mode. Note that the dashed lines represent amplitudes parallel to
the rod (longitudinal waves).

The sound from a tuning fork is
produced by the vibrations of each
of its prongs.

Wind chimes are usually de-
signed so that the waves emanat-
ing from the vibrating rods
blend into a harmonious sound.

564 C H A P T E R  1 8 Superposition and Standing Waves

BEATS: INTERFERENCE IN TIME
The interference phenomena with which we have been dealing so far involve the
superposition of two or more waves having the same frequency. Because the resul-
tant wave depends on the coordinates of the disturbed medium, we refer to the
phenomenon as spatial interference. Standing waves in strings and pipes are com-
mon examples of spatial interference.

We now consider another type of interference, one that results from the su-
perposition of two waves having slightly different frequencies. In this case, when the
two waves are observed at the point of superposition, they are periodically in and
out of phase. That is, there is a temporal (time) alternation between constructive
and destructive interference. Thus, we refer to this phenomenon as interference in
time or temporal interference. For example, if two tuning forks of slightly different fre-
quencies are struck, one hears a sound of periodically varying intensity. This phe-
nomenon is called beating:

18.7

Beating is the periodic variation in intensity at a given point due to the superpo-
sition of two waves having slightly different frequencies.

Definition of beating

f1

2.295 f1

3.599 f1 4.230 f1

2.917 f1

1.593 f1

Figure 18.17 Representation of some of the normal modes possible in a circular membrane
fixed at its perimeter. The frequencies of oscillation do not form a harmonic series.
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The number of intensity maxima one hears per second, or the beat frequency, equals
the difference in frequency between the two sources, as we shall show below. The
maximum beat frequency that the human ear can detect is about 20 beats/s.
When the beat frequency exceeds this value, the beats blend indistinguishably with
the compound sounds producing them.

A piano tuner can use beats to tune a stringed instrument by “beating” a note
against a reference tone of known frequency. The tuner can then adjust the string
tension until the frequency of the sound it emits equals the frequency of the refer-
ence tone. The tuner does this by tightening or loosening the string until the beats
produced by it and the reference source become too infrequent to notice.

Consider two sound waves of equal amplitude traveling through a medium
with slightly different frequencies f1 and f2 . We use equations similar to Equation
16.11 to represent the wave functions for these two waves at a point that we choose
as 

Using the superposition principle, we find that the resultant wave function at this
point is

The trigonometric identity

allows us to write this expression in the form

(18.13)

Graphs of the individual waves and the resultant wave are shown in Figure 18.18.
From the factors in Equation 18.13, we see that the resultant sound for a listener
standing at any given point has an effective frequency equal to the average
frequency and an amplitude given by the expression in the square( f1 � f2)/2

y � �2 A cos 2�� f1 � f2

2 �t� cos 2�� f1 � f2

2 �t

cos a � cos b � 2 cos� a � b
2 � cos� a � b

2 �

y � y1 � y2 � A(cos 2�f1t � cos 2�f2t)

y2 � A cos �2t � A cos 2�f2t

y1 � A cos �1t � A cos 2�f1t

x � 0:

Resultant of two waves of different
frequencies but equal amplitude

y

(a)

(b)

y

t

t

Figure 18.18 Beats are formed by the combination of two waves of slightly different frequen-
cies. (a) The individual waves. (b) The combined wave has an amplitude (broken line) that oscil-
lates in time.
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brackets:

(18.14)

That is, the amplitude and therefore the intensity of the resultant sound vary
in time. The broken blue line in Figure 18.18b is a graphical representation of
Equation 18.14 and is a sine wave varying with frequency 

Note that a maximum in the amplitude of the resultant sound wave is detected
whenever

This means there are two maxima in each period of the resultant wave. Because
the amplitude varies with frequency as the number of beats per sec-
ond, or the beat frequency fb , is twice this value. That is,

(18.15)

For instance, if one tuning fork vibrates at 438 Hz and a second one vibrates at
442 Hz, the resultant sound wave of the combination has a frequency of 440 Hz
(the musical note A) and a beat frequency of 4 Hz. A listener would hear a
440-Hz sound wave go through an intensity maximum four times every second.

Optional Section

NON-SINUSOIDAL WAVE PATTERNS
The sound-wave patterns produced by the majority of musical instruments are
non-sinusoidal. Characteristic patterns produced by a tuning fork, a flute, and a
clarinet, each playing the same note, are shown in Figure 18.19. Each instrument
has its own characteristic pattern. Note, however, that despite the differences in
the patterns, each pattern is periodic. This point is important for our analysis of
these waves, which we now discuss.

We can distinguish the sounds coming from a trumpet and a saxophone even
when they are both playing the same note. On the other hand, we may have diffi-
culty distinguishing a note played on a clarinet from the same note played on an
oboe. We can use the pattern of the sound waves from various sources to explain
these effects.

The wave patterns produced by a musical instrument are the result of the su-
perposition of various harmonics. This superposition results in the corresponding
richness of musical tones. The human perceptive response associated with various
mixtures of harmonics is the quality or timbre of the sound. For instance, the sound
of the trumpet is perceived to have a “brassy” quality (that is, we have learned to
associate the adjective brassy with that sound); this quality enables us to distinguish
the sound of the trumpet from that of the saxophone, whose quality is perceived
as “reedy.” The clarinet and oboe, however, are both straight air columns excited
by reeds; because of this similarity, it is more difficult for the ear to distinguish
them on the basis of their sound quality.

The problem of analyzing non-sinusoidal wave patterns appears at first sight to
be a formidable task. However, if the wave pattern is periodic, it can be repre-
sented as closely as desired by the combination of a sufficiently large number of si-

18.8

fb � � f1 � f2 �

( f1 � f2)/2,

cos 2�� f1 � f2

2 �t � 	1

( f1 � f2)/2.

Aresultant � 2A cos 2�� f1 � f2

2 �t

9.6

Beat frequency

Tuning fork

Flute

Clarinet

(a)

(b)

(c)

t

t

t

Figure 18.19 Sound wave pat-
terns produced by (a) a tuning fork,
(b) a flute, and (c) a clarinet, each
at approximately the same fre-
quency.



18.8 Non-Sinusoidal Wave Patterns 567

nusoidal waves that form a harmonic series. In fact, we can represent any periodic
function as a series of sine and cosine terms by using a mathematical technique
based on Fourier’s theorem.3 The corresponding sum of terms that represents
the periodic wave pattern is called a Fourier series.

Let y(t) be any function that is periodic in time with period T, such that 
y(t � T ) � y(t). Fourier’s theorem states that this function can be written as

(18.16)

where the lowest frequency is The higher frequencies are integer multi-
ples of the fundamental, and the coefficients An and Bn represent the
amplitudes of the various waves. Figure 18.20 represents a harmonic analysis of the
wave patterns shown in Figure 18.19. Note that a struck tuning fork produces only
one harmonic (the first), whereas the flute and clarinet produce the first and
many higher ones.

Note the variation in relative intensity of the various harmonics for the flute
and the clarinet. In general, any musical sound consists of a fundamental fre-
quency f plus other frequencies that are integer multiples of f , all having different
intensities.

We have discussed the analysis of a wave pattern using Fourier’s theorem. The
analysis involves determining the coefficients of the harmonics in Equation 18.16
from a knowledge of the wave pattern. The reverse process, called Fourier synthesis,
can also be performed. In this process, the various harmonics are added together
to form a resultant wave pattern. As an example of Fourier synthesis, consider the
building of a square wave, as shown in Figure 18.21. The symmetry of the square
wave results in only odd multiples of the fundamental frequency combining in its
synthesis. In Figure 18.21a, the orange curve shows the combination of f and 3f. In
Figure 18.21b, we have added 5f to the combination and obtained the green
curve. Notice how the general shape of the square wave is approximated, even
though the upper and lower portions are not flat as they should be.

fn � nf1 ,
f1 � 1/T.

y(t) � �
n

(An sin 2�fnt � Bn cos 2�fnt)

3 Developed by Jean Baptiste Joseph Fourier (1786–1830).

Fourier’s theorem
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Figure 18.20 Harmonics of the wave patterns shown in Figure 18.19. Note the variations in in-
tensity of the various harmonics.
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Figure 18.21c shows the result of adding odd frequencies up to 9f. This approx-
imation to the square wave (purple curve) is better than the approximations in
parts a and b. To approximate the square wave as closely as possible, we would need
to add all odd multiples of the fundamental frequency, up to infinite frequency.

Using modern technology, we can generate musical sounds electronically by
mixing different amplitudes of any number of harmonics. These widely used elec-
tronic music synthesizers are capable of producing an infinite variety of musical
tones.

SUMMARY

When two traveling waves having equal amplitudes and frequencies superimpose,
the resultant wave has an amplitude that depends on the phase angle � between

(c)

f + 3f + 5f + 7f + 9f

Square wave
f + 3f + 5f + 7f + 9f + ...

(b)

f + 3f + 5f

5f

f

3f

(a)

f
f + 3f

3f

Figure 18.21 Fourier synthesis of a square wave, which is represented by the sum of odd multi-
ples of the first harmonic, which has frequency f. (a) Waves of frequency f and 3f are added. 
(b) One more odd harmonic of frequency 5f is added. (c) The synthesis curve approaches the
square wave when odd frequencies up to 9f are added.

This synthesizer can produce the
characteristic sounds of different
instruments by properly combining
frequencies from electronic oscilla-
tors.
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the two waves. Constructive interference occurs when the two waves are in
phase, corresponding to � � 0, 2�, 4�, . . . rad. Destructive interference
occurs when the two waves are 180° out of phase, corresponding to 
� � �, 3�, 5�, . . . rad. Given two wave functions, you should be able to deter-
mine which if either of these two situations applies.

Standing waves are formed from the superposition of two sinusoidal waves
having the same frequency, amplitude, and wavelength but traveling in opposite
directions. The resultant standing wave is described by the wave function

(18.3)

Hence, the amplitude of the standing wave is 2A, and the amplitude of the simple
harmonic motion of any particle of the medium varies according to its position as
2A sin kx. The points of zero amplitude (called nodes) occur at 
1, 2, 3, . . . ). The maximum amplitude points (called antinodes) occur at

(n � 1, 3, 5, . . . ). Adjacent antinodes are separated by a distance �/2.
Adjacent nodes also are separated by a distance �/2. You should be able to sketch
the standing-wave pattern resulting from the superposition of two traveling waves.

The natural frequencies of vibration of a taut string of length L and fixed at
both ends are

2, 3, . . . (18.8)

where T is the tension in the string and 
 is its linear mass density. The natural fre-
quencies of vibration f1 , 2f1 , 3f1 , . . . form a harmonic series.

An oscillating system is in resonance with some driving force whenever the
frequency of the driving force matches one of the natural frequencies of the sys-
tem. When the system is resonating, it responds by oscillating with a relatively large
amplitude.

Standing waves can be produced in a column of air inside a pipe. If the pipe is
open at both ends, all harmonics are present and the natural frequencies of oscil-
lation are

2, 3, . . . (18.11)

If the pipe is open at one end and closed at the other, only the odd harmonics are
present, and the natural frequencies of oscillation are

3, 5, . . . (18.12)

The phenomenon of beating is the periodic variation in intensity at a given
point due to the superposition of two waves having slightly different frequencies.

fn � n 
v

4L
  n � 1,

fn � n 
v

2L
  n � 1,

fn �
n

2L
 √ T



  n � 1,

x � n�/4

x � n�/2 (n � 0,

y � (2A sin kx) cos �t

QUESTIONS

4. A standing wave is set up on a string, as shown in Figure
18.6. Explain why no energy is transmitted along the
string.

5. What is common to all points (other than the nodes) on
a string supporting a standing wave?

6. What limits the amplitude of motion of a real vibrating
system that is driven at one of its resonant frequencies?

7. In Balboa Park in San Diego, CA, there is a huge outdoor
organ. Does the fundamental frequency of a particular

1. For certain positions of the movable section shown in Fig-
ure 18.2, no sound is detected at the receiver—a situa-
tion corresponding to destructive interference. This sug-
gests that perhaps energy is somehow lost! What happens
to the energy transmitted by the speaker?

2. Does the phenomenon of wave interference apply only to
sinusoidal waves?

3. When two waves interfere constructively or destructively,
is there any gain or loss in energy? Explain.
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PROBLEMS

point as the first, but at a later time. Determine the
minimum possible time interval between the starting
moments of the two waves if the amplitude of the resul-
tant wave is the same as that of each of the two initial
waves.

5. A tuning fork generates sound waves with a frequency
of 246 Hz. The waves travel in opposite directions along
a hallway, are reflected by walls, and return. The hallway
is 47.0 m in length, and the tuning fork is located 
14.0 m from one end. What is the phase difference be-
tween the reflected waves when they meet? The speed
of sound in air is 343 m/s.

6. Two identical speakers 10.0 m apart are driven by the
same oscillator with a frequency of Hz (Fig.
P18.6). (a) Explain why a receiver at point A records a
minimum in sound intensity from the two speakers. 
(b) If the receiver is moved in the plane of the speak-
ers, what path should it take so that the intensity re-
mains at a minimum? That is, determine the relation-
ship between x and y (the coordinates of the receiver)
that causes the receiver to record a minimum in sound
intensity. Take the speed of sound to be 343 m/s.

7. Two speakers are driven by the same oscillator with fre-
quency of 200 Hz. They are located 4.00 m apart on a

f � 21.5

Section 18.1 Superposition and Interference of 
Sinusoidal Waves

1. Two sinusoidal waves are described by the equations

and

where x, y1 , and y2 are in meters and t is in seconds. 
(a) What is the amplitude of the resultant wave? 
(b) What is the frequency of the resultant wave?

2. A sinusoidal wave is described by the equation

where y1 and x are in meters and t is in seconds. Write
an expression for a wave that has the same frequency,
amplitude, and wavelength as y1 but which, when added
to y1 , gives a resultant with an amplitude of cm.

3. Two waves are traveling in the same direction along a
stretched string. The waves are 90.0° out of phase. Each
wave has an amplitude of 4.00 cm. Find the amplitude
of the resultant wave.

4. Two identical sinusoidal waves with wavelengths of 
3.00 m travel in the same direction at a speed of 
2.00 m/s. The second wave originates from the same

8√3

y1 � (0.080 0 m) sin[2�(0.100x � 80.0t)]

y2 � (5.00 m) sin[�(4.00x � 1 200t � 0.250)]

y1 � (5.00 m) sin[�(4.00x � 1 200t)] 

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB

pipe of this organ change on hot and cold days? How
about on days with high and low atmospheric pressure?

8. Explain why your voice seems to sound better than usual
when you sing in the shower.

9. What is the purpose of the slide on a trombone or of the
valves on a trumpet?

10. Explain why all harmonics are present in an organ pipe
open at both ends, but only the odd harmonics are
present in a pipe closed at one end.

11. Explain how a musical instrument such as a piano may be
tuned by using the phenomenon of beats.

12. An airplane mechanic notices that the sound from a twin-
engine aircraft rapidly varies in loudness when both en-
gines are running. What could be causing this variation
from loudness to softness?

13. Why does a vibrating guitar string sound louder when
placed on the instrument than it would if it were allowed
to vibrate in the air while off the instrument?

14. When the base of a vibrating tuning fork is placed against
a chalkboard, the sound that it emits becomes louder.
This is due to the fact that the vibrations of the tuning
fork are transmitted to the chalkboard. Because it has a
larger area than that of the tuning fork, the vibrating

chalkboard sets a larger number of air molecules into vi-
bration. Thus, the chalkboard is a better radiator of
sound than the tuning fork. How does this affect the
length of time during which the fork vibrates? Does this
agree with the principle of conservation of energy?

15. To keep animals away from their cars, some people
mount short thin pipes on the front bumpers. The pipes
produce a high-frequency wail when the cars are moving.
How do they create this sound?

16. Guitarists sometimes play a “harmonic” by lightly touch-
ing a string at the exact center and plucking the string.
The result is a clear note one octave higher than the fun-
damental frequency of the string, even though the string
is not pressed to the fingerboard. Why does this happen?

17. If you wet your fingers and lightly run them around the
rim of a fine wine glass, a high-frequency sound is heard.
Why? How could you produce various musical notes with
a set of wine glasses, each of which contains a different
amount of water?

18. Despite a reasonably steady hand, one often spills coffee
when carrying a cup of it from one place to another. Dis-
cuss resonance as a possible cause of this difficulty, and
devise a means for solving the problem.
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WEB

9.00 m

10.0 m

y

(x,y)

A
x

vertical pole. A man walks straight toward the lower
speaker in a direction perpendicular to the pole, as
shown in Figure P18.7. (a) How many times will he hear
a minimum in sound intensity, and (b) how far is he
from the pole at these moments? Take the speed of
sound to be 330 m/s, and ignore any sound reflections
coming off the ground.

8. Two speakers are driven by the same oscillator of fre-
quency f. They are located a distance d from each other
on a vertical pole. A man walks straight toward the
lower speaker in a direction perpendicular to the pole,
as shown in Figure P18.7. (a) How many times will he
hear a minimum in sound intensity, and (b) how far is
he from the pole at these moments? Take the speed of
sound to be v, and ignore any sound reflections coming
off the ground.

Figure P18.6

equation

where x is in meters and t is in seconds. Determine the
wavelength, frequency, and speed of the interfering
waves.

10. Two waves in a long string are described by the equa-
tions

and

where y1 , y2 , and x are in meters and t is in seconds. 
(a) Determine the positions of the nodes of the result-
ing standing wave. (b) What is the maximum displace-
ment at the position 

11. Two speakers are driven by a common oscillator at 
800 Hz and face each other at a distance of 1.25 m. Lo-
cate the points along a line joining the two speakers
where relative minima of sound pressure would be ex-
pected. (Use 

12. Two waves that set up a standing wave in a long string
are given by the expressions

and

Show (a) that the addition of the arbitrary phase angle
changes only the position of the nodes, and (b) that the
distance between the nodes remains constant in time.

13. Two sinusoidal waves combining in a medium are de-
scribed by the equations

and

where x is in centimeters and t is in seconds. Determine
the maximum displacement of the medium at 
(a) (b) and 
(c) (d) Find the three smallest values of 
x corresponding to antinodes.

14. A standing wave is formed by the interference of two
traveling waves, each of which has an amplitude 

cm, angular wave number cm�1, and
angular frequency rad/s. (a) Calculate the dis-
tance between the first two antinodes. (b) What is the
amplitude of the standing wave at cm?

15. Verify by direct substitution that the wave function for a
standing wave given in Equation 18.3,

is a solution of the general lineary � 2A sin kx cos �t,

x � 0.250

� � 10�
k � (�/2)A � �

x � 1.50 cm.
x � 0.500 cm,x � 0.250 cm,

y2 � (3.0 cm) sin �(x � 0.60t)

y1 � (3.0 cm) sin �(x � 0.60t)

y2 � A sin(kx � �t) 

y1 � A sin(kx � �t � �)

v � 343 m/s.)

x � 0.400 m?

y2 � (0.015 0 m) cos� x
2

� 40t�

y1 � (0.015 0 m) cos� x
2

� 40t�

y � (1.50 m) sin(0.400x) cos(200t)

Section 18.2 Standing Waves

9. Two sinusoidal waves traveling in opposite directions in-
terfere to produce a standing wave described by the

dL

Figure P18.7 Problems 7 and 8.
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wave equation, Equation 16.26:

Section 18.3 Standing Waves in a 
String Fixed at Both Ends

16. A 2.00-m-long wire having a mass of 0.100 kg is fixed at
both ends. The tension in the wire is maintained at 
20.0 N. What are the frequencies of the first three al-
lowed modes of vibration? If a node is observed at a
point 0.400 m from one end, in what mode and with
what frequency is it vibrating?

17. Find the fundamental frequency and the next three fre-
quencies that could cause a standing-wave pattern on a
string that is 30.0 m long, has a mass per length of 
9.00 � 10�3 kg/m, and is stretched to a tension of 
20.0 N.

18. A standing wave is established in a 120-cm-long string
fixed at both ends. The string vibrates in four segments
when driven at 120 Hz. (a) Determine the wavelength.
(b) What is the fundamental frequency of the string?

19. A cello A-string vibrates in its first normal mode with a
frequency of 220 vibrations/s. The vibrating segment is
70.0 cm long and has a mass of 1.20 g. (a) Find the ten-
sion in the string. (b) Determine the frequency of vibra-
tion when the string vibrates in three segments.

20. A string of length L, mass per unit length 
, and ten-
sion T is vibrating at its fundamental frequency. De-
scribe the effect that each of the following conditions
has on the fundamental frequency: (a) The length of
the string is doubled, but all other factors are held con-
stant. (b) The mass per unit length is doubled, but all
other factors are held constant. (c) The tension is dou-
bled, but all other factors are held constant.

21. A 60.0-cm guitar string under a tension of 50.0 N has a
mass per unit length of 0.100 g/cm. What is the highest
resonance frequency of the string that can be heard by
a person able to hear frequencies of up to 20 000 Hz?

22. A stretched wire vibrates in its first normal mode at a
frequency of 400 Hz. What would be the fundamental
frequency if the wire were half as long, its diameter
were doubled, and its tension were increased four-fold?

23. A violin string has a length of 0.350 m and is tuned to
concert G, with Where must the violinist
place her finger to play concert A, with If
this position is to remain correct to one-half the width
of a finger (that is, to within 0.600 cm), what is the max-
imum allowable percentage change in the string’s ten-
sion?

24. Review Problem. A sphere of mass M is supported by a
string that passes over a light horizontal rod of length L
(Fig. P18.24). Given that the angle is 
 and that the fun-
damental frequency of standing waves in the section of
the string above the horizontal rod is f , determine the
mass of this section of the string.

fA � 440 Hz?
fG � 392 Hz.

�2y
�x2 �

1
v2  

�2y
�t2

25. In the arrangement shown in Figure P18.25, a mass can
be hung from a string (with a linear mass density of

kg/m) that passes over a light pulley. The
string is connected to a vibrator (of constant frequency
f ), and the length of the string between point P and the
pulley is m. When the mass m is either 16.0 kg
or 25.0 kg, standing waves are observed; however, no
standing waves are observed with any mass between
these values. (a) What is the frequency of the vibrator?
(Hint: The greater the tension in the string, the smaller
the number of nodes in the standing wave.) (b) What is
the largest mass for which standing waves could be ob-
served?

L � 2.00


 � 0.002 00

26. On a guitar, the fret closest to the bridge is a distance of
21.4 cm from it. The top string, pressed down at this last
fret, produces the highest frequency that can be played
on the guitar, 2 349 Hz. The next lower note has a fre-
quency of 2 217 Hz. How far away from the last fret
should the next fret be?

Section 18.4 Resonance
27. The chains suspending a child’s swing are 2.00 m long.

At what frequency should a big brother push to make
the child swing with greatest amplitude?

28. Standing-wave vibrations are set up in a crystal goblet
with four nodes and four antinodes equally spaced

L

M

θ

Figure P18.24

Figure P18.25

µ

L

P

Vibrator

Pulley

m
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around the 20.0-cm circumference of its rim. If trans-
verse waves move around the glass at 900 m/s, an opera
singer would have to produce a high harmonic with
what frequency to shatter the glass with a resonant vi-
bration?

29. An earthquake can produce a seiche (pronounced “saysh”)
in a lake, in which the water sloshes back and forth from
end to end with a remarkably large amplitude and long
period. Consider a seiche produced in a rectangular farm
pond, as diagrammed in the cross-sectional view of Figure
P18.29 (figure not drawn to scale). Suppose that the
pond is 9.15 m long and of uniform depth. You measure
that a wave pulse produced at one end reaches the other
end in 2.50 s. (a) What is the wave speed? (b) To produce
the seiche, you suggest that several people stand on the
bank at one end and paddle together with snow shovels,
moving them in simple harmonic motion. What must be
the frequency of this motion?

31. Calculate the length of a pipe that has a fundamental
frequency of 240 Hz if the pipe is (a) closed at one end
and (b) open at both ends.

32. A glass tube (open at both ends) of length L is positioned
near an audio speaker of frequency kHz. For
what values of L will the tube resonate with the speaker?

33. The overall length of a piccolo is 32.0 cm. The resonat-
ing air column vibrates as a pipe open at both ends. 
(a) Find the frequency of the lowest note that a piccolo
can play, assuming that the speed of sound in air is 
340 m/s. (b) Opening holes in the side effectively
shortens the length of the resonant column. If the high-
est note that a piccolo can sound is 4 000 Hz, find the
distance between adjacent antinodes for this mode of 
vibration.

34. The fundamental frequency of an open organ pipe cor-
responds to middle C (261.6 Hz on the chromatic musi-
cal scale). The third resonance of a closed organ pipe
has the same frequency. What are the lengths of the two
pipes?

35. Estimate the length of your ear canal, from its opening
at the external ear to the eardrum. (Do not stick any-
thing into your ear!) If you regard the canal as a tube
that is open at one end and closed at the other, at ap-
proximately what fundamental frequency would you ex-
pect your hearing to be most sensitive? Explain why you
can hear especially soft sounds just around this fre-
quency.

36. An open pipe 0.400 m in length is placed vertically in a
cylindrical bucket and nearly touches the bottom of the
bucket, which has an area of 0.100 m2. Water is slowly
poured into the bucket until a sounding tuning fork of
frequency 440 Hz, held over the pipe, produces reso-
nance. Find the mass of water in the bucket at this mo-
ment.

37. A shower stall measures 86.0 cm � 86.0 cm � 210 cm.
If you were singing in this shower, which frequencies
would sound the richest (because of resonance)? As-
sume that the stall acts as a pipe closed at both ends,
with nodes at opposite sides. Assume that the voices of
various singers range from 130 Hz to 2 000 Hz. Let the
speed of sound in the hot shower stall be 355 m/s.

38. When a metal pipe is cut into two pieces, the lowest res-
onance frequency in one piece is 256 Hz and that for
the other is 440 Hz. (a) What resonant frequency would
have been produced by the original length of pipe? 
(b) How long was the original pipe?

39. As shown in Figure P18.39, water is pumped into a long
vertical cylinder at a rate of 18.0 cm3/s. The radius of
the cylinder is 4.00 cm, and at the open top of the cylin-
der is a tuning fork vibrating with a frequency of 
200 Hz. As the water rises, how much time elapses be-
tween successive resonances?

40. As shown in Figure P18.39, water is pumped into a long
vertical cylinder at a volume flow rate R. The radius of

f � 0.680

30. The Bay of Fundy, Nova Scotia, has the highest tides in
the world. Assume that in mid-ocean and at the mouth
of the bay, the Moon’s gravity gradient and the Earth’s
rotation make the water surface oscillate with an ampli-
tude of a few centimeters and a period of 12 h 24 min.
At the head of the bay, the amplitude is several meters.
Argue for or against the proposition that the tide is am-
plified by standing-wave resonance. Suppose that the
bay has a length of 210 km and a depth everywhere of
36.1 m. The speed of long-wavelength water waves is
given by where d is the water’s depth.

Section 18.5 Standing Waves in Air Columns
Note: In this section, assume that the speed of sound in air is 
343 m/s at 20°C and is described by the equation

at any Celsius temperature TC .

v � (331 m/s)√1 �
TC

273�

√gd,

Figure P18.29 WEB
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the cylinder is r , and at the open top of the cylinder is a
tuning fork vibrating with a frequency f. As the water
rises, how much time elapses between successive reso-
nances?

41. A tuning fork with a frequency of 512 Hz is placed near
the top of the tube shown in Figure 18.15a. The water
level is lowered so that the length L slowly increases
from an initial value of 20.0 cm. Determine the next
two values of L that correspond to resonant modes.

42. A student uses an audio oscillator of adjustable fre-
quency to measure the depth of a water well. Two suc-
cessive resonances are heard at 51.5 Hz and 60.0 Hz.
How deep is the well?

43. A glass tube is open at one end and closed at the other
by a movable piston. The tube is filled with air warmer
than that at room temperature, and a 384-Hz tuning
fork is held at the open end. Resonance is heard when
the piston is 22.8 cm from the open end and again
when it is 68.3 cm from the open end. (a) What speed
of sound is implied by these data? (b) How far from the
open end will the piston be when the next resonance is
heard?

44. The longest pipe on an organ that has pedal stops is
often 4.88 m. What is the fundamental frequency 
(at 0.00°C) if the nondriven end of the pipe is 
(a) closed and (b) open? (c) What are the frequencies
at 20.0°C?

45. With a particular fingering, a flute sounds a note with a
frequency of 880 Hz at 20.0°C. The flute is open at both
ends. (a) Find the length of the air column. (b) Find
the frequency it produces during the half-time perfor-
mance at a late-season football game, when the ambient
temperature is � 5.00°C.

(Optional)
Section 18.6 Standing Waves in Rods and Plates

46. An aluminum rod is clamped one quarter of the way
along its length and set into longitudinal vibration by a
variable-frequency driving source. The lowest frequency
that produces resonance is 4 400 Hz. The speed of
sound in aluminum is 5 100 m/s. Determine the length
of the rod.

47. An aluminum rod 1.60 m in length is held at its center.
It is stroked with a rosin-coated cloth to set up a longitu-
dinal vibration. (a) What is the fundamental frequency
of the waves established in the rod? (b) What harmon-
ics are set up in the rod held in this manner? (c) What
would be the fundamental frequency if the rod were
made of copper?

48. A 60.0-cm metal bar that is clamped at one end is struck
with a hammer. If the speed of longitudinal (compres-
sional) waves in the bar is 4 500 m/s, what is the lowest
frequency with which the struck bar resonates?

Section 18.7 Beats: Interference in Time
49. In certain ranges of a piano keyboard, more than one

string is tuned to the same note to provide extra loud-
ness. For example, the note at 110 Hz has two strings
that vibrate at this frequency. If one string slips from its
normal tension of 600 N to 540 N, what beat frequency
is heard when the hammer strikes the two strings simul-
taneously?

50. While attempting to tune the note C at 523 Hz, a piano
tuner hears 2 beats/s between a reference oscillator and
the string. (a) What are the possible frequencies of the
string? (b) When she tightens the string slightly, she
hears 3 beats/s. What is the frequency of the string now?
(c) By what percentage should the piano tuner now
change the tension in the string to bring it into tune?

51. A student holds a tuning fork oscillating at 256 Hz. He
walks toward a wall at a constant speed of 1.33 m/s. 
(a) What beat frequency does he observe between the
tuning fork and its echo? (b) How fast must he walk
away from the wall to observe a beat frequency of 
5.00 Hz?

(Optional)
Section 18.8 Non-Sinusoidal Wave Patterns

52. Suppose that a flutist plays a 523-Hz C note with first
harmonic displacement amplitude nm. From
Figure 18.20b, read, by proportion, the displacement
amplitudes of harmonics 2 through 7. Take these as the
values A2 through A7 in the Fourier analysis of the
sound, and assume that Con-
struct a graph of the waveform of the sound. Your wave-
form will not look exactly like the flute waveform in Fig-
ure 18.19b because you simplify by ignoring cosine
terms; nevertheless, it produces the same sensation to
human hearing.

B1 � B2 � . . . � B7 � 0.

A1 � 100

WEB

18.0 cm3/s

200 Hz

Figure P18.39 Problems 39 and 40.
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53. An A-major chord consists of the notes called A, C�,
and E. It can be played on a piano by simultaneously
striking strings that have fundamental frequencies of 
440.00 Hz, 554.37 Hz, and 659.26 Hz. The rich conso-
nance of the chord is associated with the near equality
of the frequencies of some of the higher harmonics of
the three tones. Consider the first five harmonics of
each string and determine which harmonics show near
equality.

ADDITIONAL PROBLEMS

54. Review Problem. For the arrangement shown in Fig-
ure P18.54, the inclined plane and the small
pulley are frictionless, the string supports the mass M at
the bottom of the plane, and the string has a mass m
that is small compared with M. The system is in equilib-
rium, and the vertical part of the string has a length h.
Standing waves are set up in the vertical section of the
string. Find (a) the tension in the string, (b) the whole
length of the string (ignoring the radius of curvature of
the pulley), (c) the mass per unit length of the string,
(d) the speed of waves on the string, (e) the lowest-fre-
quency standing wave, (f) the period of the standing
wave having three nodes, (g) the wavelength of the
standing wave having three nodes, and (h) the fre-
quency of the beats resulting from the interference of
the sound wave of lowest frequency generated by the
string with another sound wave having a frequency that
is 2.00% greater.


 � 30.0�,

56. On a marimba (Fig. P18.56), the wooden bar that
sounds a tone when it is struck vibrates in a transverse
standing wave having three antinodes and two nodes.
The lowest-frequency note is 87.0 Hz; this note is pro-
duced by a bar 40.0 cm long. (a) Find the speed of
transverse waves on the bar. (b) The loudness of the
emitted sound is enhanced by a resonant pipe sus-
pended vertically below the center of the bar. If the
pipe is open at the top end only and the speed of sound
in air is 340 m/s, what is the length of the pipe required
to resonate with the bar in part (a)?

57. Two train whistles have identical frequencies of 180 Hz.
When one train is at rest in the station and is sounding
its whistle, a beat frequency of 2.00 Hz is heard from a
train moving nearby. What are the two possible speeds
and directions that the moving train can have?

58. A speaker at the front of a room and an identical
speaker at the rear of the room are being driven by the
same oscillator at 456 Hz. A student walks at a uniform
rate of 1.50 m/s along the length of the room. How
many beats does the student hear per second?

59. While Jane waits on a railroad platform, she observes
two trains approaching from the same direction at
equal speeds of 8.00 m/s. Both trains are blowing their
whistles (which have the same frequency), and one
train is some distance behind the other. After the first
train passes Jane, but before the second train passes her,
she hears beats having a frequency of 4.00 Hz. What is
the frequency of the trains’ whistles?

60. A string fixed at both ends and having a mass of 4.80 g,
a length of 2.00 m, and a tension of 48.0 N vibrates in
its second (n � 2) natural mode. What is the wave-
length in air of the sound emitted by this vibrating
string?

55. Two loudspeakers are placed on a wall 2.00 m apart. A
listener stands 3.00 m from the wall directly in front of
one of the speakers. The speakers are being driven by a
single oscillator at a frequency of 300 Hz. (a) What is
the phase difference between the two waves when they
reach the observer? (b) What is the frequency closest to
300 Hz to which the oscillator may be adjusted such
that the observer hears minimal sound?

M
θ

h

Figure P18.54

Figure P18.56 Marimba players in Mexico City. (Murray Greenberg)
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18.2 For each natural frequency of the glass, the standing
wave must “fit” exactly around the rim. In Figure 18.12a
we see three antinodes on the near side of the glass, and
thus there must be another three on the far side. This

18.1 At the antinodes. All particles have the same period
but a particle at an antinode must travel

through the greatest vertical distance in this amount of
time and therefore must travel fastest.

T � 2�/�,

61. A string 0.400 m in length has a mass per unit length of
9.00 � 10�3 kg/m. What must be the tension in the
string if its second harmonic is to have the same fre-
quency as the second resonance mode of a 1.75-m-long
pipe open at one end?

62. In a major chord on the physical pitch musical scale,
the frequencies are in the ratios 4:5:6:8. A set of pipes,
closed at one end, must be cut so that, when they are
sounded in their first normal mode, they produce a ma-
jor chord. (a) What is the ratio of the lengths of the
pipes? (b) What are the lengths of the pipes needed if
the lowest frequency of the chord is 256 Hz? (c) What
are the frequencies of this chord?

63. Two wires are welded together. The wires are made of
the same material, but the diameter of one wire is twice
that of the other. They are subjected to a tension of 
4.60 N. The thin wire has a length of 40.0 cm and a lin-
ear mass density of 2.00 g/m. The combination is fixed
at both ends and vibrated in such a way that two anti-
nodes are present, with the node between them being
right at the weld. (a) What is the frequency of vibration? 
(b) How long is the thick wire?

64. Two identical strings, each fixed at both ends, are
arranged near each other. If string A starts oscillating in
its first normal mode, string B begins vibrating in its
third (n � 3) natural mode. Determine the ratio of the
tension of string B to the tension of string A.

65. A standing wave is set up in a string of variable length
and tension by a vibrator of variable frequency. When
the vibrator has a frequency f, in a string of length L
and under a tension T, n antinodes are set up in the
string. (a) If the length of the string is doubled, by what
factor should the frequency be changed so that the
same number of antinodes is produced? (b) If the fre-
quency and length are held constant, what tension pro-
duces antinodes? (c) If the frequency is tripled
and the length of the string is halved, by what factor
should the tension be changed so that twice as many an-
tinodes are produced?

66. A 0.010 0-kg, 2.00-m-long wire is fixed at both ends and
vibrates in its simplest mode under a tension of 200 N.
When a tuning fork is placed near the wire, a beat fre-
quency of 5.00 Hz is heard. (a) What could the fre-
quency of the tuning fork be? (b) What should the ten-
sion in the wire be if the beats are to disappear?

67. If two adjacent natural frequencies of an organ pipe are
determined to be 0.550 kHz and 0.650 kHz, calculate

n � 1

the fundamental frequency and length of the pipe.
(Use m/s.)

68. Two waves are described by the equations

and

where x is in meters and t is in seconds. Show that the
resulting wave is sinusoidal, and determine the ampli-
tude and phase of this sinusoidal wave.

69. The wave function for a standing wave is given in Equa-
tion 18.3 as cos �t. (a) Rewrite this wave
function in terms of the wavelength � and the wave
speed v of the wave. (b) Write the wave function of the
simplest standing-wave vibration of a stretched string of
length L. (c) Write the wave function for the second
harmonic. (d) Generalize these results, and write the
wave function for the nth resonance vibration.

70. Review Problem. A 12.0-kg mass hangs in equilibrium
from a string with a total length of m and a
linear mass density of kg/m. The string is
wrapped around two light, frictionless pulleys that are
separated by a distance of m (Fig. P18.70a).
(a) Determine the tension in the string. (b) At what fre-
quency must the string between the pulleys vibrate to
form the standing-wave pattern shown in Figure
P18.70b?

d � 2.00


 � 0.001 00
L � 5.00

y � (2A sin kx)

y2(x, t) � 10 cos(2.0x � 10t)

y1(x, t) � 5.0 sin(2.0x � 10t)

v � 340

m

d

(b)

m

d

(a)

g

Figure P18.70
WEB



Answers to Quick Quizzes 577

corresponds to three complete waves. In a top view, the
wave pattern looks like this (although we have greatly
exaggerated the amplitude):

18.3 At highway speeds, a car crosses the ridges on the rum-
ble strip at a rate that matches one of the car’s natural
frequencies of oscillation. This causes the car to oscillate
substantially more than when it is traveling over the ran-
domly spaced bumps of regular pavement. This sudden
resonance oscillation alerts the driver that he or she
must pay attention.

18.4 (b). With both ends open, the pipe has a fundamental
frequency given by Equation 18.11: With
one end closed, the pipe has a fundamental frequency
given by Equation 18.12: 

fclosed �
v

4L
�

1
2

 
v

2L
�

1
2

 fopen 

fopen � v/2L.
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After this bottle of champagne was
shaken, the cork was popped off and
champagne spewed everywhere. Con-
trary to common belief, shaking a cham-
pagne bottle before opening it does not
increase the pressure of the carbon
dioxide (CO2) inside. In fact, if you know
the trick, you can open a thoroughly
shaken bottle without spraying a drop.
What’s the secret? And why isn’t the
pressure inside the bottle greater after
the bottle is shaken? (Steve Niedorf/The

Image Bank)
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19.1 Temperature and the Zeroth Law of Thermodynamics 581

n our study of mechanics, we carefully defined such concepts as mass, force,
and kinetic energy to facilitate our quantitative approach. Likewise, a quantita-
tive description of thermal phenomena requires a careful definition of such im-

portant terms as temperature, heat, and internal energy. This chapter begins with a
look at these three entities and with a description of one of the laws of thermody-
namics (the poetically named “zeroth law”). We then discuss the three most com-
mon temperature scales—Celsius, Fahrenheit, and Kelvin.

Next, we consider why the composition of a body is an important factor when
we are dealing with thermal phenomena. For example, gases expand appreciably
when heated, whereas liquids and solids expand only slightly. If a gas is not free to
expand as it is heated, its pressure increases. Certain substances may melt, boil,
burn, or explode when they are heated, depending on their composition and
structure.

This chapter concludes with a study of ideal gases on the macroscopic scale.
Here, we are concerned with the relationships among such quantities as pressure,
volume, and temperature. Later on, in Chapter 21, we shall examine gases on a
microscopic scale, using a model that represents the components of a gas as small
particles.

TEMPERATURE AND THE ZEROTH LAW
OF THERMODYNAMICS

We often associate the concept of temperature with how hot or cold an object feels
when we touch it. Thus, our senses provide us with a qualitative indication of tem-
perature. However, our senses are unreliable and often mislead us. For example, if
we remove a metal ice tray and a cardboard box of frozen vegetables from the
freezer, the ice tray feels colder than the box even though both are at the same
temperature. The two objects feel different because metal is a better thermal con-
ductor than cardboard is. What we need, therefore, is a reliable and reproducible
method for establishing the relative hotness or coldness of bodies. Scientists have
developed a variety of thermometers for making such quantitative measurements.

We are all familiar with the fact that two objects at different initial tempera-
tures eventually reach some intermediate temperature when placed in contact
with each other. For example, when a scoop of ice cream is placed in a room-
temperature glass bowl, the ice cream melts and the temperature of the bowl de-
creases. Likewise, when an ice cube is dropped into a cup of hot coffee, it melts
and the coffee’s temperature decreases.

To understand the concept of temperature, it is useful to define two often-
used phrases: thermal contact and thermal equilibrium. To grasp the meaning of ther-
mal contact, let us imagine that two objects are placed in an insulated container
such that they interact with each other but not with the rest of the world. If the ob-
jects are at different temperatures, energy is exchanged between them, even if
they are initially not in physical contact with each other. Heat is the transfer of
energy from one object to another object as a result of a difference in tem-
perature between the two. We shall examine the concept of heat in greater de-
tail in Chapter 20. For purposes of the current discussion, we assume that two ob-
jects are in thermal contact with each other if energy can be exchanged between
them. Thermal equilibrium is a situation in which two objects in thermal contact
with each other cease to exchange energy by the process of heat.

Let us consider two objects A and B, which are not in thermal contact, and a
third object C, which is our thermometer. We wish to determine whether A and B

19.1

I

QuickLab
Fill three cups with tap water: one
hot, one cold, and one lukewarm.
Dip your left index finger into the
hot water and your right index finger
into the cold water. Slowly count to
20, then quickly dip both fingers into
the lukewarm water. What do you
feel?

Molten lava flowing down a moun-
tain in Kilauea, Hawaii. The tem-
perature of the hot lava flowing
from a central crater decreases un-
til the lava is in thermal equilib-
rium with its surroundings. At that
equilibrium temperature, the lava
has solidified and formed the
mountains.10.3 

& 
10.4
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are in thermal equilibrium with each other. The thermometer (object C) is first
placed in thermal contact with object A until thermal equilibrium is reached.
From that moment on, the thermometer’s reading remains constant, and we
record this reading. The thermometer is then removed from object A and placed
in thermal contact with object B. The reading is again recorded after thermal
equilibrium is reached. If the two readings are the same, then object A and object
B are in thermal equilibrium with each other.

We can summarize these results in a statement known as the zeroth law of
thermodynamics (the law of equilibrium):

If objects A and B are separately in thermal equilibrium with a third object C,
then objects A and B are in thermal equilibrium with each other.

This statement can easily be proved experimentally and is very important because
it enables us to define temperature. We can think of temperature as the property
that determines whether an object is in thermal equilibrium with other objects.
Two objects in thermal equilibrium with each other are at the same tempera-
ture. Conversely, if two objects have different temperatures, then they are not in
thermal equilibrium with each other.

THERMOMETERS AND THE CELSIUS
TEMPERATURE SCALE

Thermometers are devices that are used to define and measure temperatures. All
thermometers are based on the principle that some physical property of a system
changes as the system’s temperature changes. Some physical properties that
change with temperature are (1) the volume of a liquid, (2) the length of a solid,
(3) the pressure of a gas at constant volume, (4) the volume of a gas at constant
pressure, (5) the electric resistance of a conductor, and (6) the color of an object.
For a given substance and a given temperature range, a temperature scale can be
established on the basis of any one of these physical properties.

A common thermometer in everyday use consists of a mass of liquid—usually
mercury or alcohol—that expands into a glass capillary tube when heated (Fig.
19.1). In this case the physical property is the change in volume of a liquid. Any
temperature change can be defined as being proportional to the change in length
of the liquid column. The thermometer can be calibrated by placing it in thermal
contact with some natural systems that remain at constant temperature. One such
system is a mixture of water and ice in thermal equilibrium at atmospheric pres-
sure. On the Celsius temperature scale, this mixture is defined to have a tem-
perature of zero degrees Celsius, which is written as 0°C; this temperature is called
the ice point of water. Another commonly used system is a mixture of water and
steam in thermal equilibrium at atmospheric pressure; its temperature is 100°C,
which is the steam point of water. Once the liquid levels in the thermometer have
been established at these two points, the distance between the two points is di-
vided into 100 equal segments to create the Celsius scale. Thus, each segment de-
notes a change in temperature of one Celsius degree. (This temperature scale
used to be called the centigrade scale because there are 100 gradations between the
ice and steam points of water.)

Thermometers calibrated in this way present problems when extremely accu-
rate readings are needed. For instance, the readings given by an alcohol ther-

19.2

Zeroth law of thermodynamics

19.3 The Constant-Volume Gas Thermometer and the Absolute Temperature Scale 583

mometer calibrated at the ice and steam points of water might agree with those
given by a mercury thermometer only at the calibration points. Because mercury
and alcohol have different thermal expansion properties, when one thermometer
reads a temperature of, for example, 50°C, the other may indicate a slightly differ-
ent value. The discrepancies between thermometers are especially large when the
temperatures to be measured are far from the calibration points.1

An additional practical problem of any thermometer is the limited range of
temperatures over which it can be used. A mercury thermometer, for example,
cannot be used below the freezing point of mercury, which is � 39°C, and an alco-
hol thermometer is not useful for measuring temperatures above 85°C, the boiling
point of alcohol. To surmount this problem, we need a universal thermometer
whose readings are independent of the substance used in it. The gas thermometer,
discussed in the next section, approaches this requirement.

THE CONSTANT-VOLUME GAS THERMOMETER AND
THE ABSOLUTE TEMPERATURE SCALE

The temperature readings given by a gas thermometer are nearly independent of
the substance used in the thermometer. One version is the constant-volume gas
thermometer shown in Figure 19.2. The physical change exploited in this device is
the variation of pressure of a fixed volume of gas with temperature. When the 
constant-volume gas thermometer was developed, it was calibrated by using the ice

19.3

1 Two thermometers that use the same liquid may also give different readings. This is due in part to dif-
ficulties in constructing uniform-bore glass capillary tubes.

Figure 19.1 As a result of thermal expansion, the level of the mercury in the thermometer
rises as the mercury is heated by water in the test tube.

Scale

Bath or
environment
to be measured Flexible

hose

Mercury
reservoir

A B

h

P
Gas

0

P0 (�j)

Figure 19.2 A constant-volume
gas thermometer measures the
pressure of the gas contained in
the flask immersed in the bath.
The volume of gas in the flask is
kept constant by raising or lower-
ing reservoir B to keep the mer-
cury level in column A constant.
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and steam points of water, as follows (a different calibration procedure, which we
shall discuss shortly, is now used): The flask was immersed in an ice bath, and mer-
cury reservoir B was raised or lowered until the top of the mercury in column A
was at the zero point on the scale. The height h, the difference between the mer-
cury levels in reservoir B and column A, indicated the pressure in the flask at 0°C.

The flask was then immersed in water at the steam point, and reservoir B was
readjusted until the top of the mercury in column A was again at zero on the scale;
this ensured that the gas’s volume was the same as it was when the flask was in the
ice bath (hence, the designation “constant volume”). This adjustment of reservoir
B gave a value for the gas pressure at 100°C. These two pressure and temperature
values were then plotted, as shown in Figure 19.3. The line connecting the two
points serves as a calibration curve for unknown temperatures. If we wanted to
measure the temperature of a substance, we would place the gas flask in thermal
contact with the substance and adjust the height of reservoir B until the top of the
mercury column in A was at zero on the scale. The height of the mercury column
would indicate the pressure of the gas; knowing the pressure, we could find the
temperature of the substance using the graph in Figure 19.3.

Now let us suppose that temperatures are measured with gas thermometers
containing different gases at different initial pressures. Experiments show that the
thermometer readings are nearly independent of the type of gas used, as long as
the gas pressure is low and the temperature is well above the point at which the
gas liquefies (Fig. 19.4). The agreement among thermometers using various gases
improves as the pressure is reduced.

If you extend the curves shown in Figure 19.4 toward negative temperatures,
you find, in every case, that the pressure is zero when the temperature is
� 273.15°C. This significant temperature is used as the basis for the absolute tem-
perature scale, which sets � 273.15°C as its zero point. This temperature is often
referred to as absolute zero. The size of a degree on the absolute temperature
scale is identical to the size of a degree on the Celsius scale. Thus, the conversion
between these temperatures is

(19.1)

where TC is the Celsius temperature and T is the absolute temperature.
Because the ice and steam points are experimentally difficult to duplicate, an

absolute temperature scale based on a single fixed point was adopted in 1954 by
the International Committee on Weights and Measures. From a list of fixed points
associated with various substances (Table 19.1), the triple point of water was cho-
sen as the reference temperature for this new scale. The triple point of water is
the single combination of temperature and pressure at which liquid water, gaseous

TC � T � 273.15

web
For more information about the
temperature standard, visit the National
Institute of Standards and Technology at
http://www.nist.gov

Figure 19.3 A typical graph of
pressure versus temperature taken
with a constant-volume gas ther-
mometer. The two dots represent
known reference temperatures
(the ice and steam points of water).

100°C0°C
T(°C)

P

Gas 2

Gas 3

Gas 1P

200 T(°C)1000–100–200–273.15

Figure 19.4 Pressure versus tempera-
ture for three dilute gases. Note that, for
all gases, the pressure extrapolates to zero
at the temperature � 273.15°C.
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water, and ice (solid water) coexist in equilibrium. This triple point occurs at a
temperature of approximately 0.01°C and a pressure of 4.58 mm of mercury. On
the new scale, which uses the unit kelvin, the temperature of water at the triple
point was set at 273.16 kelvin, abbreviated 273.16 K. (Note: no degree sign “°” is
used with the unit kelvin.) This choice was made so that the old absolute tempera-
ture scale based on the ice and steam points would agree closely with the new scale
based on the triple point. This new absolute temperature scale (also called the
Kelvin scale) employs the SI unit of absolute temperature, the kelvin, which is
defined to be 1/273.16 of the difference between absolute zero and the tem-
perature of the triple point of water.

Figure 19.5 shows the absolute temperature for various physical processes and
structures. The temperature of absolute zero (0 K) cannot be achieved, although lab-
oratory experiments incorporating the laser cooling of atoms have come very close.

What would happen to a gas if its temperature could reach 0 K? As Figure 19.4
indicates, the pressure it exerts on the walls of its container would be zero. In Sec-
tion 19.5 we shall show that the pressure of a gas is proportional to the average ki-
netic energy of its molecules. Thus, according to classical physics, the kinetic en-
ergy of the gas molecules would become zero at absolute zero, and molecular
motion would cease; hence, the molecules would settle out on the bottom of the
container. Quantum theory modifies this model and shows that some residual en-
ergy, called the zero-point energy, would remain at this low temperature.

The Celsius, Fahrenheit, and Kelvin Temperature Scales2

Equation 19.1 shows that the Celsius temperature TC is shifted from the absolute
(Kelvin) temperature T by 273.15°. Because the size of a degree is the same on the

TABLE 19.1 Fixed-Point Temperaturesa

Fixed Point Temperature (°C) Temperature (K)

Triple point of hydrogen � 259.34 13.81
Boiling point of helium � 268.93 4.215
Boiling point of hydrogen � 256.108 17.042

at 33.36 kPa pressure
Boiling point of hydrogen � 252.87 20.28
Triple point of neon � 246.048 27.102
Triple point of oxygen � 218.789 54.361
Boiling point of oxygen � 182.962 90.188
Triple point of water 0.01 273.16
Boiling point of water 100.00 373.15
Freezing point of tin 231.968 1 505.118 1
Freezing point of zinc 419.58 692.73
Freezing point of silver 961.93 1 235.08
Freezing point of gold 1 064.43 1 337.58

a All values are from National Bureau of Standards Special Publication 420; U. S. Department of
Commerce, May 1975. All values are at standard atmospheric pressure except for triple points
and as noted.
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Surface of the Sun
Copper melts

Water freezes
Liquid nitrogen
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Lowest temperature
achieved ˜10–7 K

Temperature (K)

Figure 19.5 Absolute tempera-
tures at which various physical
processes occur. Note that the scale
is logarithmic.

2 Named after Anders Celsius (1701–1744), Gabriel Fahrenheit (1686–1736), and William Thomson,
Lord Kelvin (1824–1907), respectively.



THERMAL EXPANSION OF SOLIDS AND LIQUIDS
Our discussion of the liquid thermometer made use of one of the best-known
changes in a substance: As its temperature increases, its volume almost always in-
creases. (As we shall see shortly, in some substances the volume decreases when
the temperature increases.) This phenomenon, known as thermal expansion, has

19.4
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two scales, a temperature difference of 5°C is equal to a temperature difference 
of 5 K. The two scales differ only in the choice of the zero point. Thus, the 
ice-point temperature on the Kelvin scale, 273.15 K, corresponds to 0.00°C, and
the Kelvin-scale steam point, 373.15 K, is equivalent to 100.00°C.

A common temperature scale in everyday use in the United States is the
Fahrenheit scale. This scale sets the temperature of the ice point at 32°F and the
temperature of the steam point at 212°F. The relationship between the Celsius and
Fahrenheit temperature scales is

(19.2)

What is the physical significance of the factor in Equation 19.2? Why is this factor missing
in Equation 19.1?

Extending the ideas considered in Quick Quiz 19.1, we use Equation 19.2 to
find a relationship between changes in temperature on the Celsius, Kelvin, and
Fahrenheit scales:

(19.3)�TC � �T � 5
9 �TF

9
5

Quick Quiz 19.1

TF � 9
5TC � 32�F

Converting TemperaturesEXAMPLE 19.1
From Equation 19.1, we find that

A convenient set of weather-related temperature equivalents
to keep in mind is that 0°C is (literally) freezing at 32°F, 10°C
is cool at 50°F, 30°C is warm at 86°F, and 40°C is a hot day at
104°F.

283 KT � TC � 273.15 � 10�C � 273.15 �

On a day when the temperature reaches 50°F, what is the
temperature in degrees Celsius and in kelvins?

Solution Substituting into Equation 19.2, we
obtain

10�CTC � 5
9(TF � 32) � 5

9(50 � 32) �

TF � 50�F

Heating a Pan of WaterEXAMPLE 19.2

From Equation 19.3, we also find that

99�F�TF � 9
5�TC � 9

5(55�C) �

55 K�T � �TC � 80�C � 25�C � 55�C �
A pan of water is heated from 25°C to 80°C. What is the
change in its temperature on the Kelvin scale and on the
Fahrenheit scale?

Solution From Equation 19.3, we see that the change in
temperature on the Celsius scale equals the change on the
Kelvin scale. Therefore,
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an important role in numerous engineering applications. For example, thermal-
expansion joints, such as those shown in Figure 19.6, must be included in build-
ings, concrete highways, railroad tracks, brick walls, and bridges to compensate for
dimensional changes that occur as the temperature changes.

Thermal expansion is a consequence of the change in the average separation
between the constituent atoms in an object. To understand this, imagine that the
atoms are connected by stiff springs, as shown in Figure 19.7. At ordinary tempera-
tures, the atoms in a solid oscillate about their equilibrium positions with an am-
plitude of approximately 10�11 m and a frequency of approximately 1013 Hz. The
average spacing between the atoms is about 10�10 m. As the temperature of the
solid increases, the atoms oscillate with greater amplitudes; as a result, the average
separation between them increases.3 Consequently, the object expands.

If thermal expansion is sufficiently small relative to an object’s initial dimen-
sions, the change in any dimension is, to a good approximation, proportional to
the first power of the temperature change. Suppose that an object has an initial
length Li along some direction at some temperature and that the length increases
by an amount �L for a change in temperature �T. Because it is convenient to con-
sider the fractional change in length per degree of temperature change, we define
the average coefficient of linear expansion as

Experiments show that � is constant for small changes in temperature. For pur-
poses of calculation, this equation is usually rewritten as

(19.4)

or as
(19.5)Lf � Li � �Li(Tf � Ti)

�L � �Li �T

� �
�L/Li

�T

3 More precisely, thermal expansion arises from the asymmetrical nature of the potential-energy curve
for the atoms in a solid. If the oscillators were truly harmonic, the average atomic separations would
not change regardless of the amplitude of vibration.

Figure 19.6 (a) Thermal-expansion joints are used to separate sections of roadways on bridges.
Without these joints, the surfaces would buckle due to thermal expansion on very hot days or
crack due to contraction on very cold days. (b) The long, vertical joint is filled with a soft mater-
ial that allows the wall to expand and contract as the temperature of the bricks changes.

Figure 19.7 A mechanical model
of the atomic configuration in a
substance. The atoms (spheres) are
imagined to be attached to each
other by springs that reflect the
elastic nature of the interatomic
forces.

Average coefficient of linear
expansion

The change in length of an object
is proportional to the change in
temperature

(a) (b)
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where Lf is the final length, Ti and Tf are the initial and final temperatures, and
the proportionality constant � is the average coefficient of linear expansion for a
given material and has units of °C�1.

It may be helpful to think of thermal expansion as an effective magnification
or as a photographic enlargement of an object. For example, as a metal washer is
heated (Fig. 19.8), all dimensions, including the radius of the hole, increase ac-
cording to Equation 19.4.

Table 19.2 lists the average coefficient of linear expansion for various materi-
als. Note that for these materials � is positive, indicating an increase in length with
increasing temperature. This is not always the case. Some substances—calcite
(CaCO3) is one example—expand along one dimension (positive �) and contract
along another (negative �) as their temperatures are increased.

Because the linear dimensions of an object change with temperature, it fol-
lows that surface area and volume change as well. The change in volume at con-
stant pressure is proportional to the initial volume Vi and to the change in temper-
ature according to the relationship

(19.6)

where � is the average coefficient of volume expansion. For a solid, the average
coefficient of volume expansion is approximately three times the average linear
expansion coefficient: (This assumes that the average coefficient of linear
expansion of the solid is the same in all directions.)

To see that for a solid, consider a box of dimensions �, w, and h. Its
volume at some temperature Ti is If the temperature changes to

its volume changes to where each dimension changes according
to Equation 19.4. Therefore,

 � Vi[1 � 3� �T � 3(� �T )2 � (� �T )3] 

 � �wh(1 � � �T )3 

 � (� � �� �T )(w � �w �T )(h � �h �T )

Vi � �V � (� � ��)(w � �w)(h � �h) 

Vi � �V,Ti � �T,
Vi � �wh.

� � 3�

� � 3�.

�V � �Vi �T
The change in volume of a solid at
constant pressure is proportional
to the change in temperature

a

b

T + ∆T

b + ∆b

a + ∆a

Ti

Ti TABLE 19.2 Average Expansion Coefficients for Some Materials 
Near Room Temperature

Average Average
Linear Expansion Volume Expansion

Coefficient (�) Coefficient (�)
Material (°C)�1 Material (°C)�1

Aluminum 24 � 10�6 Alcohol, ethyl 1.12 � 10�4

Brass and bronze 19 � 10�6 Benzene 1.24 � 10�4

Copper 17 � 10�6 Acetone 1.5 � 10�4

Glass (ordinary) 9 � 10�6 Glycerin 4.85 � 10�4

Glass (Pyrex) 3.2 � 10�6 Mercury 1.82 � 10�4

Lead 29 � 10�6 Turpentine 9.0 � 10�4

Steel 11 � 10�6 Gasoline 9.6 � 10�4

Invar (Ni–Fe alloy) 0.9 � 10�6 Air at 0°C 3.67 � 10�3

Concrete 12 � 10�6 Helium 3.665 � 10�3

Figure 19.8 Thermal expansion
of a homogeneous metal washer. As
the washer is heated, all dimen-
sions increase. (The expansion is
exaggerated in this figure.)

19.4 Thermal Expansion of Solids and Liquids 589

If we now divide both sides by Vi and then isolate the term �V/Vi , we obtain the
fractional change in volume:

Because for typical values of �T (	 � 100°C), we can neglect the terms
3(� �T)2 and (� �T)3. Upon making this approximation, we see that

Equation 19.6 shows that the right side of this expression is equal to �, and so we
have �, the relationship we set out to prove. In a similar way, you can show
that the change in area of a rectangular plate is given by (see Prob-
lem 53).

As Table 19.2 indicates, each substance has its own characteristic average coef-
ficient of expansion. For example, when the temperatures of a brass rod and a
steel rod of equal length are raised by the same amount from some common ini-
tial value, the brass rod expands more than the steel rod does because brass has a
greater average coefficient of expansion than steel does. A simple mechanism
called a bimetallic strip utilizes this principle and is found in practical devices such
as thermostats. It consists of two thin strips of dissimilar metals bonded together.
As the temperature of the strip increases, the two metals expand by different
amounts and the strip bends, as shown in Figure 19.9.

�A � 2�Ai �T
3� �

3� �
1
Vi

 
�V
�T

�V
Vi

� 3� �T

� �
 V 1

�V
Vi

� 3� �T � 3(� �T )2 � (� �T )3

QuickLab
Tape two plastic straws tightly to-
gether along their entire length but
with a 2-cm offset. Hold them in a
stream of very hot water from a faucet
so that water pours through one but
not through the other. Quickly hold
the straws up and sight along their
length. You should be able to see a
very slight curvature in the tape
caused by the difference in expansion
of the two straws. The effect is small,
so look closely. Running cold water
through the same straw and again
sighting along the length will help
you see the small change in shape
more clearly.

(b)

(a)

Steel

Brass

Room temperature Higher temperature

Bimetallic strip

Off 30°COn 25°C

Figure 19.9 (a) A bimetallic strip bends as the temperature changes because the two metals
have different expansion coefficients. (b) A bimetallic strip used in a thermostat to break or
make electrical contact. (c) The interior of a thermostat, showing the coiled bimetallic strip. Why
do you suppose the strip is coiled?

(c)
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If you quickly plunge a room-temperature thermometer into very hot water, the mercury
level will go down briefly before going up to a final reading. Why?

You are offered a prize for making the most sensitive glass thermometer using the materials
in Table 19.2. Which glass and which working liquid would you choose?

Quick Quiz 19.3

Quick Quiz 19.2

Expansion of a Railroad TrackEXAMPLE 19.3
Solution Making use of Table 19.2 and noting that the
change in temperature is 40.0°C, we find that the increase in
length is

If the track is 30.000 m long at 0.0°C, its length at 40.0°C is 

(b) Suppose that the ends of the rail are rigidly clamped
at 0.0°C so that expansion is prevented. What is the thermal
stress set up in the rail if its temperature is raised to 40.0°C?

Solution From the definition of Young’s modulus for a
solid (see Eq. 12.6), we have

Because Y for steel is 20 � 1010 N/m2 (see Table 12.1), we
have

Exercise If the rail has a cross-sectional area of 30.0 cm2,
what is the force of compression in the rail?

Answer 2.6 � 105 N � 58 000 lb!

8.7 � 107 N/m2F
A

� (20 � 1010 N/m2)� 0.013 m
30.000 m � �

Tensile stress �
F
A

� Y 
�L
Li

30.013 m.

 � 0.013 m

�L � �Li �T � [11 � 10�6(�C)�1](30.000 m)(40.0�C)

A steel railroad track has a length of 30.000 m when the tem-
perature is 0.0°C.  (a) What is its length when the tempera-
ture is 40.0°C?

Thermal expansion: The extreme temperature of a July day in As-
bury Park, NJ, caused these railroad tracks to buckle and derail the
train in the distance. (AP/Wide World Photos)

The Unusual Behavior of Water

Liquids generally increase in volume with increasing temperature and have aver-
age coefficients of volume expansion about ten times greater than those of solids.
Water is an exception to this rule, as we can see from its density-versus-tempera-
ture curve shown in Figure 19.10. As the temperature increases from 0°C to 4°C,
water contracts and thus its density increases. Above 4°C, water expands with in-
creasing temperature, and so its density decreases. In other words, the density of
water reaches a maximum value of 1 000 kg/m3 at 4°C.
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We can use this unusual thermal-expansion behavior of water to explain why a
pond begins freezing at the surface rather than at the bottom. When the atmos-
pheric temperature drops from, for example, 7°C to 6°C, the surface water also
cools and consequently decreases in volume. This means that the surface water is
denser than the water below it, which has not cooled and decreased in volume. As
a result, the surface water sinks, and warmer water from below is forced to the sur-
face to be cooled. When the atmospheric temperature is between 4°C and 0°C,
however, the surface water expands as it cools, becoming less dense than the water
below it. The mixing process stops, and eventually the surface water freezes. As the
water freezes, the ice remains on the surface because ice is less dense than water.
The ice continues to build up at the surface, while water near the bottom remains
at 4°C. If this were not the case, then fish and other forms of marine life would not
survive.

MACROSCOPIC DESCRIPTION OF AN IDEAL GAS
In this section we examine the properties of a gas of mass m confined to a con-
tainer of volume V at a pressure P and a temperature T. It is useful to know how
these quantities are related. In general, the equation that interrelates these quanti-
ties, called the equation of state, is very complicated. However, if the gas is main-
tained at a very low pressure (or low density), the equation of state is quite simple
and can be found experimentally. Such a low-density gas is commonly referred to
as an ideal gas.4

19.5
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Figure 19.10 How the density of water at atmospheric pressure changes with temperature. The
inset at the right shows that the maximum density of water occurs at 4°C.

4 To be more specific, the assumption here is that the temperature of the gas must not be too low (the
gas must not condense into a liquid) or too high, and that the pressure must be low. In reality, an ideal
gas does not exist. However, the concept of an ideal gas is very useful in view of the fact that real gases
at low pressures behave as ideal gases do. The concept of an ideal gas implies that the gas molecules do
not interact except upon collision, and that the molecular volume is negligible compared with the vol-
ume of the container.

10.5
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It is convenient to express the amount of gas in a given volume in terms of the
number of moles n. As we learned in Section 1.3, one mole of any substance is that
amount of the substance that contains Avogadro’s number of
constituent particles (atoms or molecules). The number of moles n of a substance
is related to its mass m through the expression

(19.7)

where M is the molar mass of the substance (see Section 1.3), which is usually ex-
pressed in units of grams per mole (g/mol). For example, the molar mass of oxy-
gen (O2) is 32.0 g/mol. Therefore, the mass of one mole of oxygen is 32.0 g.

Now suppose that an ideal gas is confined to a cylindrical container whose vol-
ume can be varied by means of a movable piston, as shown in Figure 19.11. If we
assume that the cylinder does not leak, the mass (or the number of moles) of the
gas remains constant. For such a system, experiments provide the following infor-
mation: First, when the gas is kept at a constant temperature, its pressure is in-
versely proportional to its volume (Boyle’s law). Second, when the pressure of the
gas is kept constant, its volume is directly proportional to its temperature (the law
of Charles and Gay–Lussac). These observations are summarized by the equation
of state for an ideal gas:

(19.8)

In this expression, known as the ideal gas law, R is a universal constant that is the
same for all gases and T is the absolute temperature in kelvins. Experiments on
numerous gases show that as the pressure approaches zero, the quantity PV/nT ap-
proaches the same value R for all gases. For this reason, R is called the universal
gas constant. In SI units, in which pressure is expressed in pascals (1 Pa �
1 N/m2) and volume in cubic meters, the product PV has units of newton� meters,
or joules, and R has the value

(19.9)

If the pressure is expressed in atmospheres and the volume in liters (1 L �
103 cm3 � 10�3 m3), then R has the value

Using this value of R and Equation 19.8, we find that the volume occupied by 
1 mol of any gas at atmospheric pressure and at 0°C (273 K) is 22.4 L.

Now that we have presented the equation of state, we are ready for a formal
definition of an ideal gas: An ideal gas is one for which PV/nT is constant at
all pressures.

The ideal gas law states that if the volume and temperature of a fixed amount
of gas do not change, then the pressure also remains constant. Consider the bottle
of champagne shown at the beginning of this chapter. Because the temperature of
the bottle and its contents remains constant, so does the pressure, as can be shown
by replacing the cork with a pressure gauge. Shaking the bottle displaces some car-
bon dioxide gas from the “head space” to form bubbles within the liquid, and
these bubbles become attached to the inside of the bottle. (No new gas is gener-
ated by shaking.) When the bottle is opened, the pressure is reduced; this causes
the volume of the bubbles to increase suddenly. If the bubbles are attached to the
bottle (beneath the liquid surface), their rapid expansion expels liquid from the

R � 0.082 14 L�atm/mol�K

R � 8.315 J/mol�K

PV � nRT

n �
m
M

NA � 6.022 � 1023

The universal gas constant

QuickLab
Vigorously shake a can of soda pop
and then thoroughly tap its bottom
and sides to dislodge any bubbles
trapped there. You should be able to
open the can without spraying its
contents all over.

Figure 19.11 An ideal gas con-
fined to a cylinder whose volume
can be varied by means of a mov-
able piston.

Gas
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bottle. If the sides and bottom of the bottle are first tapped until no bubbles re-
main beneath the surface, then when the champagne is opened, the drop in pres-
sure will not force liquid from the bottle. Try the QuickLab, but practice before
demonstrating to a friend!

The ideal gas law is often expressed in terms of the total number of molecules
N. Because the total number of molecules equals the product of the number of
moles n and Avogadro’s number NA , we can write Equation 19.8 as

(19.10)

where kB is Boltzmann’s constant, which has the value

(19.11)

It is common to call quantities such as P, V, and T the thermodynamic vari-
ables of an ideal gas. If the equation of state is known, then one of the variables
can always be expressed as some function of the other two.

kB �
R

NA
� 1.38 � 10�23 J/K

PV � NkBT 

PV � nRT �
N
NA

 RT

Boltzmann’s constant

How Many Gas Molecules in a Container?EXAMPLE 19.4

Exercise How many molecules are in the container?

Answer 2.47 � 1018 molecules.

4.10 � 10�6 moln �
PV
RT

�
(100 Pa)(10�4 m3)

(8.315 J/mol�K)(293 K)
�

An ideal gas occupies a volume of 100 cm3 at 20°C 
and 100 Pa. Find the number of moles of gas in the con-
tainer.

Solution The quantities given are volume, pressure, and
temperature: P � 100 Pa,
and T � 20°C � 293 K. Using Equation 19.8, we find that

V � 100 cm3 � 1.00 � 10�4 m3,

Filling a Scuba TankEXAMPLE 19.5
The initial pressure of the air is 14.7 lb/in.2, its final pressure
is 3 000 lb/in.2, and the air is compressed from an initial vol-
ume of 66 ft3 to a final volume of 0.35 ft3. The initial temper-
ature, converted to SI units, is 295 K. Solving for Tf , we ob-
tain

Exercise What is the air temperature in degrees Celsius
and in degrees Fahrenheit?

Answer 45.9°C; 115°F.

319 K�

Tf � � PfVf

PiVi
�Ti �

(3 000 lb/in.2)(0.35 ft3)
(14.7 lb/in.2)(66 ft3)

 (295 K )

A certain scuba tank is designed to hold 66 ft3 of air when it
is at atmospheric pressure at 22°C. When this volume of air is
compressed to an absolute pressure of 3 000 lb/in.2 and
stored in a 10-L (0.35-ft3) tank, the air becomes so hot that
the tank must be allowed to cool before it can be used. If the
air does not cool, what is its temperature? (Assume that the
air behaves like an ideal gas.)

Solution If no air escapes from the tank during filling,
then the number of moles n remains constant; therefore, us-
ing and with n and R being constant, we obtain
for the initial and final values:

PiVi

Ti
�

PfVf

Tf

PV � nRT,



SUMMARY

Two bodies are in thermal equilibrium with each other if they have the same
temperature.

The zeroth law of thermodynamics states that if objects A and B are sepa-
rately in thermal equilibrium with a third object C, then objects A and B are in
thermal equilibrium with each other.

The SI unit of absolute temperature is the kelvin, which is defined to be the
fraction 1/273.16 of the temperature of the triple point of water.

When the temperature of an object is changed by an amount �T, its length
changes by an amount �L that is proportional to �T and to its initial length 
Li :

(19.4)

where the constant � is the average coefficient of linear expansion. The 
average volume expansion coefficient � for a solid is approximately equal 
to 3�.

An ideal gas is one for which PV/nT is constant at all pressures. An ideal gas
is described by the equation of state,

(19.8)

where n equals the number of moles of the gas, V is its volume, R is the universal
gas constant (8.315 J/mol� K), and T is the absolute temperature. A real gas be-
haves approximately as an ideal gas if it is far from liquefaction.

PV � nRT

�L � �Li �T
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In the previous example we used SI units for the temperature in our calculation step but
not for the pressures or volumes. When working with the ideal gas law, how do you decide
when it is necessary to use SI units and when it is not?

Quick Quiz 19.4

Heating a Spray CanEXAMPLE 19.6

Solving for Pf gives

Obviously, the higher the temperature, the higher the
pressure exerted by the trapped gas. Of course, if the pres-
sure increases high enough, the can will explode. Because of
this possibility, you should never dispose of spray cans in a
fire.

320 kPaPf � � Tf

Ti
�(Pi) � � 468 K

295 K �(202 kPa) �

Pi

Ti
�

Pf

Tf

A spray can containing a propellant gas at twice atmospheric
pressure (202 kPa) and having a volume of 125 cm3 is at
22°C. It is then tossed into an open fire. When the tempera-
ture of the gas in the can reaches 195°C, what is the pressure
inside the can? Assume any change in the volume of the can
is negligible.

Solution We employ the same approach we used in Exam-
ple 19.5, starting with the expression

Because the initial and final volumes of the gas are assumed
to be equal, this expression reduces to

PiVi

Ti
�

PfVf

Tf
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QUESTIONS

contain the same kind of gas and the same number of
moles of gas. If the volume of cylinder A is three times
greater than the volume of cylinder B, what can you say
about the relative pressures in the cylinders?

12. The pendulum of a certain pendulum clock is made of
brass. When the temperature increases, does the clock
run too fast, run too slowly, or remain unchanged? Ex-
plain.

13. An automobile radiator is filled to the brim with water
while the engine is cool. What happens to the water when
the engine is running and the water is heated? What do
modern automobiles have in their cooling systems to pre-
vent the loss of coolants?

14. Metal lids on glass jars can often be loosened by running
them under hot water. How is this possible?

15. When the metal ring and metal sphere shown in Figure
Q19.15 are both at room temperature, the sphere can just
be passed through the ring. After the sphere is heated, it
cannot be passed through the ring. Explain.

1. Is it possible for two objects to be in thermal equilibrium
if they are not in contact with each other? Explain.

2. A piece of copper is dropped into a beaker of water. If the
water’s temperature increases, what happens to the tem-
perature of the copper? Under what conditions are the
water and copper in thermal equilibrium?

3. In principle, any gas can be used in a constant-volume gas
thermometer. Why is it not possible to use oxygen for
temperatures as low as 15 K? What gas would you use?
(Refer to the data in Table 19.1.)

4. Rubber has a negative average coefficient of linear expan-
sion. What happens to the size of a piece of rubber as it is
warmed?

5. Why should the amalgam used in dental fillings have the
same average coefficient of expansion as a tooth? What
would occur if they were mismatched?

6. Explain why the thermal expansion of a spherical shell
made of a homogeneous solid is equivalent to that of a
solid sphere of the same material.

7. A steel ring bearing has an inside diameter that is 0.1 mm
smaller than the diameter of an axle. How can it be made
to fit onto the axle without removing any material?

8. Markings to indicate length are placed on a steel tape in a
room that has a temperature of 22°C. Are measurements
made with the tape on a day when the temperature is
27°C greater than, less than, or the same length as the ob-
ject’s length? Defend your answer.

9. Determine the number of grams in 1 mol of each of the
following gases: (a) hydrogen, (b) helium, and (c) car-
bon monoxide.

10. An inflated rubber balloon filled with air is immersed in a
flask of liquid nitrogen that is at 77 K. Describe what hap-
pens to the balloon, assuming that it remains flexible
while being cooled.

11. Two identical cylinders at the same temperature each Figure Q19.15 (Courtesy of Central Scientific Company)

PROBLEMS

body temperature, 98.6°F; (b) the air temperature on a
cold day, � 5.00°F.

2. In a constant-volume gas thermometer, the pressure at
20.0°C is 0.980 atm. (a) What is the pressure at 45.0°C?
(b) What is the temperature if the pressure is 
0.500 atm?

3. A constant-volume gas thermometer is calibrated in
dry ice (that is, carbon dioxide in the solid state, which
has a temperature of � 80.0°C) and in boiling ethyl al-
cohol (78.0°C). The two pressures are 0.900 atm and

Section 19.1 Temperature and the Zeroth Law of 
Thermodynamics
Section 19.2 Thermometers and the Celsius Temperature
Scale
Section 19.3 The Constant-Volume Gas Thermometer and
the Absolute Temperature Scale
Note: A pressure of 1 atm � 1.013 � 105 Pa � 101.3 kPa.

1. Convert the following to equivalent temperatures on
the Celsius and Kelvin scales: (a) the normal human

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB
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1.635 atm. (a) What Celsius value of absolute zero does
the calibration yield? What is the pressure at (b) the freez-
ing point of water and (c) the boiling point of water?

4. There is a temperature whose numerical value is the
same on both the Celsius and Fahrenheit scales. What is
this temperature?

5. Liquid nitrogen has a boiling point of � 195.81°C at at-
mospheric pressure. Express this temperature in 
(a) degrees Fahrenheit and (b) kelvins.

6. On a Strange temperature scale, the freezing point of
water is � 15.0°S and the boiling point is � 60.0°S.
Develop a linear conversion equation between this tem-
perature scale and the Celsius scale.

7. The temperature difference between the inside and the
outside of an automobile engine is 450°C. Express this
temperature difference on the (a) Fahrenheit scale and
(b) Kelvin scale.

8. The melting point of gold is 1 064°C , and the boiling
point is 2 660°C. (a) Express these temperatures in
kelvins. (b) Compute the difference between these tem-
peratures in Celsius degrees and in kelvins.

Section 19.4 Thermal Expansion of Solids and Liquids
Note: When solving the problems in this section, use the data
in Table 19.2.

9. A copper telephone wire has essentially no sag between
poles 35.0 m apart on a winter day when the tempera-
ture is � 20.0°C. How much longer is the wire on a sum-
mer day when TC � 35.0°C?

10. The concrete sections of a certain superhighway are de-
signed to have a length of 25.0 m. The sections are
poured and cured at 10.0°C. What minimum spacing
should the engineer leave between the sections to elimi-
nate buckling if the concrete is to reach a temperature
of 50.0°C?

11. An aluminum tube is 3.000 0 m long at 20.0°C. What is
its length at (a) 100.0°C and (b) 0.0°C?

12. A brass ring with a diameter of 10.00 cm at 20.0°C is
heated and slipped over an aluminum rod with a diame-
ter of 10.01 cm at 20.0°C. Assume that the average coef-
ficients of linear expansion are constant. (a) To what
temperature must this combination be cooled to sepa-
rate them? Is this temperature attainable? (b) If the alu-
minum rod were 10.02 cm in diameter, what would be
the required temperature?

13. A pair of eyeglass frames is made of epoxy plastic. At
room temperature (20.0°C), the frames have circular
lens holes 2.20 cm in radius. To what temperature must
the frames be heated if lenses 2.21 cm in radius are to
be inserted in them? The average coefficient of linear
expansion for epoxy is 1.30 � 10�4 (°C)�1.

14. The New River Gorge bridge in West Virginia is a steel
arch bridge 518 m in length. How much does its length
change between temperature extremes of � 20.0°C and
35.0°C?

15. A square hole measuring 8.00 cm along each side is cut

in a sheet of copper. (a) Calculate the change in the
area of this hole if the temperature of the sheet is in-
creased by 50.0 K. (b) Does the result represent an in-
crease or a decrease in the area of the hole?

16. The average coefficient of volume expansion for carbon
tetrachloride is 5.81 � 10�4 (°C)�1. If a 50.0-gal steel
container is filled completely with carbon tetrachloride
when the temperature is 10.0°C, how much will spill
over when the temperature rises to 30.0°C?

17. The active element of a certain laser is a glass rod 
30.0 cm long by 1.50 cm in diameter. If the temperature
of the rod increases by 65.0°C, what is the increase in 
(a) its length, (b) its diameter, and (c) its volume? (As-
sume that � � 9.00 � 10�6 (°C)�1.)

18. A volumetric glass flask made of Pyrex is calibrated at
20.0°C. It is filled to the 100-mL mark with 35.0°C ace-
tone with which it immediately comes to thermal equi-
librium. (a) What is the volume of the acetone when it
cools to 20.0°C? (b) How significant is the change in
volume of the flask?

19. A concrete walk is poured on a day when the tempera-
ture is 20.0°C, in such a way that the ends are unable to
move. (a) What is the stress in the cement on a hot day
of 50.0°C? (b) Does the concrete fracture? Take Young’s
modulus for concrete to be 7.00 � 109 N/m2 and the
tensile strength to be 2.00 � 109 N/m2.

20. Figure P19.20 shows a circular steel casting with a gap.
If the casting is heated, (a) does the width of the gap in-
crease or decrease? (b) The gap width is 1.600 cm when
the temperature is 30.0°C. Determine the gap width
when the temperature is 190°C.

21. A steel rod undergoes a stretching force of 500 N. Its
cross-sectional area is 2.00 cm2. Find the change in tem-
perature that would elongate the rod by the same
amount that the 500-N force does. (Hint: Refer to
Tables 12.1 and 19.2.)

22. A steel rod 4.00 cm in diameter is heated so that its tem-
perature increases by 70.0°C. It is then fastened be-
tween two rigid supports. The rod is allowed to cool to
its original temperature. Assuming that Young’s modu-
lus for the steel is 20.6 � 1010 N/m2 and that its average

Figure P19.20
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coefficient of linear expansion is 11.0 � 10�6 (°C)�1,
calculate the tension in the rod.

23. A hollow aluminum cylinder 20.0 cm deep has an inter-
nal capacity of 2.000 L at 20.0°C. It is completely filled
with turpentine and then warmed to 80.0°C. (a) How
much turpentine overflows? (b) If the cylinder is then
cooled back to 20.0°C, how far below the surface of the
cylinder’s rim does the turpentine’s surface recede?

24. At 20.0°C, an aluminum ring has an inner diameter 
of 5.000 0 cm and a brass rod has a diameter of 
5.050 0 cm. (a) To what temperature must the ring be
heated so that it will just slip over the rod? (b) To what
common temperature must the two be heated so that
the ring just slips over the rod? Would this latter process
work?

Section 19.5 Macroscopic Description of an Ideal Gas
25. Gas is contained in an 8.00-L vessel at a temperature of

20.0°C and a pressure of 9.00 atm. (a) Determine the
number of moles of gas in the vessel. (b) How many
molecules of gas are in the vessel?

26. A tank having a volume of 0.100 m3 contains helium gas
at 150 atm. How many balloons can the tank blow up if
each filled balloon is a sphere 0.300 m in diameter at an
absolute pressure of 1.20 atm?

27. An auditorium has dimensions 10.0 m � 20.0 m �
30.0 m. How many molecules of air fill the auditorium
at 20.0°C and a pressure of 101 kPa?

28. Nine grams of water are placed in a 2.00-L pressure
cooker and heated to 500°C. What is the pressure inside
the container if no gas escapes?

29. The mass of a hot-air balloon and its cargo (not includ-
ing the air inside) is 200 kg. The air outside is at 10.0°C
and 101 kPa. The volume of the balloon is 400 m3. To
what temperature must the air in the balloon be heated
before the balloon will lift off? (Air density at 10.0°C is
1.25 kg/m3.)

30. One mole of oxygen gas is at a pressure of 6.00 atm and
a temperature of 27.0°C. (a) If the gas is heated at con-
stant volume until the pressure triples, what is the final
temperature? (b) If the gas is heated until both the
pressure and the volume are doubled, what is the final
temperature?

31. (a) Find the number of moles in 1.00 m3 of an ideal gas
at 20.0°C and atmospheric pressure. (b) For air, Avo-
gadro’s number of molecules has a mass of 28.9 g. Cal-
culate the mass of 1 m3 of air. Compare the result with
the tabulated density of air.

32. A cube 10.0 cm on each edge contains air (with equiva-
lent molar mass 28.9 g/mol) at atmospheric pressure
and temperature 300 K. Find (a) the mass of the gas,
(b) its weight, and (c) the force it exerts on each face of
the cube. (d) Comment on the underlying physical rea-
son why such a small sample can exert such a great force.

33. An automobile tire is inflated with air originally at
10.0°C and normal atmospheric pressure. During the

process, the air is compressed to 28.0% of its original
volume and its temperature is increased to 40.0°C. 
(a) What is the tire pressure? (b) After the car is driven
at high speed, the tire air temperature rises to 85.0°C
and the interior volume of the tire increases by 2.00%.
What is the new tire pressure (absolute) in pascals?

34. A spherical weather balloon is designed to expand to a
maximum radius of 20.0 m when in flight at its working
altitude, where the air pressure is 0.030 0 atm and the
temperature is 200 K. If the balloon is filled at atmos-
pheric pressure and 300 K, what is its radius at liftoff?

35. A room of volume 80.0 m3 contains air having an equiv-
alent molar mass of 28.9 g/mol. If the temperature of
the room is raised from 18.0°C to 25.0°C, what mass of
air (in kilograms) will leave the room? Assume that the
air pressure in the room is maintained at 101 kPa.

36. A room of volume V contains air having equivalent
molar mass M (in g/mol). If the temperature of the
room is raised from T1 to T2 , what mass of air will leave
the room? Assume that the air pressure in the room is
maintained at P0 .

37. At 25.0 m below the surface of the sea (density �
1 025 kg/m3), where the temperature is 5.00°C, a diver
exhales an air bubble having a volume of 1.00 cm3. If
the surface temperature of the sea is 20.0°C, what is the
volume of the bubble right before it breaks the surface?

38. Estimate the mass of the air in your bedroom. State the
quantities you take as data and the value you measure
or estimate for each.

39. The pressure gauge on a tank registers the gauge pres-
sure, which is the difference between the interior and
exterior pressures. When the tank is full of oxygen
(O2), it contains 12.0 kg of the gas at a gauge pressure
of 40.0 atm. Determine the mass of oxygen that has
been withdrawn from the tank when the pressure read-
ing is 25.0 atm. Assume that the temperature of the
tank remains constant.

40. In state-of-the-art vacuum systems, pressures as low as
10�9 Pa are being attained. Calculate the number of
molecules in a 1.00-m3 vessel at this pressure if the tem-
perature is 27°C.

41. Show that 1 mol of any gas (assumed to be ideal) at at-
mospheric pressure (101.3 kPa) and standard tempera-
ture (273 K) occupies a volume of 22.4 L.

42. A diving bell in the shape of a cylinder with a height of
2.50 m is closed at the upper end and open at the lower
end. The bell is lowered from air into sea water (� �
1.025 g/cm3). The air in the bell is initially at 20.0°C.
The bell is lowered to a depth (measured to the bottom
of the bell) of 45.0 fathoms, or 82.3 m. At this depth,
the water temperature is 4.0°C, and the air in the bell is
in thermal equilibrium with the water. (a) How high
does sea water rise in the bell? (b) To what minimum
pressure must the air in the bell be increased for the wa-
ter that entered to be expelled?
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ADDITIONAL PROBLEMS

43. A student measures the length of a brass rod with a steel
tape at 20.0°C. The reading is 95.00 cm. What will the
tape indicate for the length of the rod when the rod
and the tape are at (a) � 15.0°C and (b) 55.0°C?

44. The density of gasoline is 730 kg/m3 at 0°C. Its average
coefficient of volume expansion is 9.60 � 10�4 (°C)�1.
If 1.00 gal of gasoline occupies 0.003 80 m3, how many
extra kilograms of gasoline would you get if you bought
10.0 gal of gasoline at 0°C rather than at 20.0°C from a
pump that is not temperature compensated?

45. A steel ball bearing is 4.000 cm in diameter at 20.0°C. 
A bronze plate has a hole in it that is 3.994 cm in diame-
ter at 20.0°C. What common temperature must they
have so that the ball just squeezes through the hole?

46. Review Problem. An aluminum pipe 0.655 m long at
20.0°C and open at both ends is used as a flute. The
pipe is cooled to a low temperature but is then filled
with air at 20.0°C as soon as it is played. By how much
does its fundamental frequency change as the tempera-
ture of the metal increases from 5.00°C to 20.0°C?

47. A mercury thermometer is constructed as shown in
Figure P19.47. The capillary tube has a diameter of
0.004 00 cm, and the bulb has a diameter of 0.250 cm.
Neglecting the expansion of the glass, find the change
in height of the mercury column that occurs with a tem-
perature change of 30.0°C.

49. A liquid has a density �. (a) Show that the fractional
change in density for a change in temperature �T is
��/� � � � �T. What does the negative sign signify?
(b) Fresh water has a maximum density of 1.000 0 g/cm3

at 4.0°C. At 10.0°C, its density is 0.999 7 g/cm3. What is
� for water over this temperature interval?

50. A cylinder is closed by a piston connected to a spring of
constant 2.00 � 103 N/m (Fig. P19.50). While the
spring is relaxed, the cylinder is filled with 5.00 L of gas
at a pressure of 1.00 atm and a temperature of 20.0°C. 
(a) If the piston has a cross-sectional area of 0.010 0 m2

and a negligible mass, how high will it rise when the
temperature is increased to 250°C? (b) What is the pres-
sure of the gas at 250°C?

WEB

WEB 51. A vertical cylinder of cross-sectional area A is fitted with
a tight-fitting, frictionless piston of mass m (Fig.
P19.51). (a) If n moles of an ideal gas are in the cylin-
der at a temperature of T, what is the height h at which
the piston is in equilibrium under its own weight? 
(b) What is the value for h if n � 0.200 mol, T � 400 K,
A � 0.008 00 m2, and m � 20.0 kg?

48. A liquid with a coefficient of volume expansion � just
fills a spherical shell of volume Vi at a temperature of Ti
(see Fig. P19.47). The shell is made of a material that
has an average coefficient of linear expansion �. The
liquid is free to expand into an open capillary of area A
projecting from the top of the sphere. (a) If the tem-
perature increases by �T, show that the liquid rises in
the capillary by the amount �h given by the equation

�T. (b) For a typical system, such
as a mercury thermometer, why is it a good approxima-
tion to neglect the expansion of the shell?

�h � (Vi/A)(� � 3�)

Ti + ∆T

A

Ti

∆h

Figure P19.47 Problems 47 and 48.

h
20°C

k

250°C

Figure P19.50

Gas
h

m

Figure P19.51
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52. A bimetallic bar is made of two thin strips of dissimilar
metals bonded together. As they are heated, the one
with the greater average coefficient of expansion ex-
pands more than the other, forcing the bar into an arc,
with the outer radius having a greater circumference
(Fig. P19.52). (a) Derive an expression for the angle of
bending 
 as a function of the initial length of the
strips, their average coefficients of linear expansion, the
change in temperature, and the separation of the cen-
ters of the strips (b) Show that the an-
gle of bending decreases to zero when �T decreases to
zero or when the two average coefficients of expansion
become equal. (c) What happens if the bar is cooled?

(�r � r2 � r1).

55. Review Problem. A clock with a brass pendulum has a
period of 1.000 s at 20.0°C. If the temperature increases
to 30.0°C, (a) by how much does the period change,
and (b) how much time does the clock gain or lose in
one week?

56. Review Problem. Consider an object with any one of
the shapes displayed in Table 10.2. What is the percent-
age increase in the moment of inertia of the object
when it is heated from 0°C to 100°C if it is composed of
(a) copper or (b) aluminum? (See Table 19.2. Assume
that the average linear expansion coefficients do not
vary between 0°C and 100°C.)

57. Review Problem. (a) Derive an expression for the
buoyant force on a spherical balloon that is submerged
in water as a function of the depth below the surface,
the volume (Vi) of the balloon at the surface, the pres-
sure (P0) at the surface, and the density of the water.
(Assume that water temperature does not change with
depth.) (b) Does the buoyant force increase or de-
crease as the balloon is submerged? (c) At what depth is
the buoyant force one-half the surface value?

58. (a) Show that the density of an ideal gas occupying a
volume V is given by where M is the molar
mass. (b) Determine the density of oxygen gas at atmos-
pheric pressure and 20.0°C.

59. Starting with Equation 19.10, show that the total pres-
sure P in a container filled with a mixture of several
ideal gases is where P1 , 
P2 , . . . are the pressures that each gas would exert if
it alone filled the container. (These individual pressures
are called the partial pressures of the respective gases.)
This is known as Dalton’s law of partial pressures.

60. A sample of dry air that has a mass of 100.00 g, col-
lected at sea level, is analyzed and found to consist of
the following gases:

as well as trace amounts of neon, helium, methane, and
other gases. (a) Calculate the partial pressure (see Prob-
lem 59) of each gas when the pressure is 101.3 kPa. 
(b) Determine the volume occupied by the 100-g 
sample at a temperature of 15.00°C and a pressure of
1.013 � 105 Pa. What is the density of the air for these
conditions? (c) What is the effective molar mass of the
air sample?

61. Steel rails for an interurban rapid transit system form a
continuous track that is held rigidly in place in con-
crete. (a) If the track was laid when the temperature
was 0°C, what is the stress in the rails on a warm day
when the temperature is 25.0°C? (b) What fraction of
the yield strength of 52.2 � 107 N/m2 does this stress
represent?

carbon dioxide (CO2) � 0.05 g 

 argon (Ar) � 1.28 g 

 oxygen (O2) � 23.15 g

 nitrogen (N2) � 75.52 g

P � P1 � P2 � P3 � . . . ,

� � PM/RT,

53. The rectangular plate shown in Figure P19.53 has an
area Ai equal to �w. If the temperature increases by �T,
show that the increase in area is where �
is the average coefficient of linear expansion. What ap-
proximation does this expression assume? (Hint: Note
that each dimension increases according to the equa-
tion .)�L � �Li �T

�A � 2�Ai �T,

54. Precise temperature measurements are often made on
the basis of the change in electrical resistance of a metal
with temperature. The resistance varies approximately
according to the expression where
R0 and A are constants. A certain element has a resis-
tance of 50.0 ohms (�) at 0°C and 71.5 � at the freez-
ing point of tin (231.97°C). (a) Determine the con-
stants A and R0 . (b) At what temperature is the
resistance equal to 89.0 �?

R � R 0(1 � ATC),

r 2
r 1

θ

Figure P19.52

Figure P19.53

w w  +  ∆w

�  +  ∆�

�

Ti T + ∆TTi
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62. (a) Use the equation of state for an ideal gas and the
definition of the average coefficient of volume expan-
sion, in the form � � (1/V )dV/dT, to show that the av-
erage coefficient of volume expansion for an ideal gas
at constant pressure is given by � � 1/T, where T is the
absolute temperature. (b) What value does this expres-
sion predict for � at 0°C? Compare this with the experi-
mental values for helium and air in Table 19.2.

63. Two concrete spans of a 250-m-long bridge are placed
end to end so that no room is allowed for expansion
(Fig. P19.63a). If a temperature increase of 20.0°C oc-
curs, what is the height y to which the spans rise when
they buckle (Fig. P19.63b)?

64. Two concrete spans of a bridge of length L are placed
end to end so that no room is allowed for expansion
(see Fig. P19.63a). If a temperature increase of �T oc-
curs, what is the height y to which the spans rise when
they buckle (see Fig. P19.63b)?

when � � 0.0200 (°C)�1 (an unrealistically large value
for comparison).

68. A steel wire and a copper wire, each of diameter 
2.000 mm, are joined end to end. At 40.0°C, each has
an unstretched length of 2.000 m; they are connected
between two fixed supports 4.000 m apart on a tabletop,
so that the steel wire extends from x � � 2.000 m to 
x � 0, the copper wire extends from x � 0 to 
x � 2.000 m, and the tension is negligible. The temper-
ature is then lowered to 20.0°C. At this lower tempera-
ture, what are the tension in the wire and the x coordi-
nate of the junction between the wires? (Refer to Tables
12.1 and 19.2.)

69. Review Problem. A steel guitar string with a diameter
of 1.00 mm is stretched between supports 80.0 cm
apart. The temperature is 0.0°C. (a) Find the mass per
unit length of this string. (Use 7.86 � 103 kg/m3 as the
mass density.) (b) The fundamental frequency of trans-
verse oscillations of the string is 200 Hz. What is the ten-
sion in the string? (c) If the temperature is raised to
30.0°C, find the resulting values of the tension and the
fundamental frequency. (Assume that both the Young’s
modulus [Table 12.1] and the average coefficient of lin-
ear expansion [Table 19.2] have constant values be-
tween 0.0°C and 30.0°C.)

70. A 1.00-km steel railroad rail is fastened securely at both
ends when the temperature is 20.0°C. As the tempera-
ture increases, the rail begins to buckle. If its shape is
an arc of a vertical circle, find the height h of the center
of the buckle when the temperature is 25.0°C. (You will
need to solve a transcendental equation.)

65. A copper rod and a steel rod are heated. At 0°C the
copper rod has length Lc , and the steel rod has length
Ls . When the rods are being heated or cooled, the dif-
ference between their lengths stays constant at 5.00 cm.
Determine the values of Lc and Ls .

66. A cylinder that has a 40.0-cm radius and is 50.0 cm deep
is filled with air at 20.0°C and 1.00 atm (Fig. P19.66a).
A 20.0-kg piston is now lowered into the cylinder, com-
pressing the air trapped inside (Fig. P19.66b). Finally, a
75.0-kg man stands on the piston, further compressing
the air, which remains at 20°C (Fig. P19.66c). (a) How
far down (�h) does the piston move when the man
steps onto it? (b) To what temperature should the gas
be heated to raise the piston and the man back to hi ?

67. The relationship is an approxima-
tion that works when the average coefficient of expan-
sion is small. If � is large, one must integrate the rela-
tionship dL/dT � �L to determine the final length. 
(a) Assuming that the average coefficient of linear ex-
pansion is constant as L varies, determine a general ex-
pression for the final length. (b) Given a rod of length
1.00 m and a temperature change of 100.0 °C, deter-
mine the error caused by the approximation when � �
2.00 � 10�5 (°C)�1 (a typical value for a metal) and

Lf � Li  (1 � ��T)

(a)

T

250 m

T + 20°C

(b)

y

Figure P19.63 Problems 63 and 64.

Figure P19.66

50.0 cm

(a)

(b)

hi

∆h

(c)
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ANSWERS TO QUICK QUIZZES

is sufficient to raise the mercury level in the capillary
tube.

19.3 For the glass, choose Pyrex, which has a lower average
coefficient of linear expansion than does ordinary glass.
For the working liquid, choose gasoline, which has the
largest average coefficient of volume expansion.

19.4 You do not have to convert the units for pressure and
volume to SI units as long as the same units appear in
the numerator and the denominator. This is not true for
ratios of temperature units, as you can see by comparing
the ratios 300 K/200 K and 26.85°C/(� 73.15°C). You
must always use absolute (kelvin) temperatures when ap-
plying the ideal gas law. 

19.1 The size of a degree on the Fahrenheit scale is the size
of a degree on the Celsius scale. This is true because the
Fahrenheit range of 32°F to 212°F is equivalent to the
Celsius range of 0°C to 100°C. The factor in Equation
19.2 corrects for this difference. Equation 19.1 does not
need this correction because the size of a Celsius degree
is the same as the size of a kelvin.

19.2 The glass bulb containing most of the mercury warms
up first because it is in direct thermal contact with the
hot water. It expands slightly, and thus its volume in-
creases. This causes the mercury level in the capillary
tube to drop. As the mercury inside the bulb warms 
up, it also expands. Eventually, its increase in volume 

9
5

5
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ntil about 1850, the fields of thermodynamics and mechanics were consid-
ered two distinct branches of science, and the law of conservation of energy
seemed to describe only certain kinds of mechanical systems. However,

mid–19th century experiments performed by the Englishman James Joule and oth-
ers showed that energy may be added to (or removed from) a system either by heat
or by doing work on the system (or having the system do work). Today we know
that internal energy, which we formally define in this chapter, can be transformed to
mechanical energy. Once the concept of energy was broadened to include internal
energy, the law of conservation of energy emerged as a universal law of nature.

This chapter focuses on the concept of internal energy, the processes by which
energy is transferred, the first law of thermodynamics, and some of the important
applications of the first law. The first law of thermodynamics is the law of conserva-
tion of energy. It describes systems in which the only energy change is that of inter-
nal energy, which is due to transfers of energy by heat or work. Furthermore, the
first law makes no distinction between the results of heat and the results of work.
According to the first law, a system’s internal energy can be changed either by an
energy transfer by heat to or from the system or by work done on or by the system.

HEAT AND INTERNAL ENERGY
At the outset, it is important that we make a major distinction between internal en-
ergy and heat. Internal energy is all the energy of a system that is associated
with its microscopic components—atoms and molecules—when viewed
from a reference frame at rest with respect to the object. The last part of this
sentence ensures that any bulk kinetic energy of the system due to its motion
through space is not included in internal energy. Internal energy includes kinetic
energy of translation, rotation, and vibration of molecules, potential energy within
molecules, and potential energy between molecules. It is useful to relate internal
energy to the temperature of an object, but this relationship is limited—we shall
find in Section 20.3 that internal energy changes can also occur in the absence of
temperature changes.

As we shall see in Chapter 21, the internal energy of a monatomic ideal gas is
associated with the translational motion of its atoms. This is the only type of en-
ergy available for the microscopic components of this system. In this special case,
the internal energy is simply the total kinetic energy of the atoms of the gas; the
higher the temperature of the gas, the greater the average kinetic energy of the
atoms and the greater the internal energy of the gas. More generally, in solids, liq-
uids, and molecular gases, internal energy includes other forms of molecular en-
ergy. For example, a diatomic molecule can have rotational kinetic energy, as well
as vibrational kinetic and potential energy.

Heat is defined as the transfer of energy across the boundary of a sys-
tem due to a temperature difference between the system and its surround-
ings. When you heat a substance, you are transferring energy into it by placing it in
contact with surroundings that have a higher temperature. This is the case, for ex-
ample, when you place a pan of cold water on a stove burner—the burner is at a
higher temperature than the water, and so the water gains energy. We shall also
use the term heat to represent the amount of energy transferred by this method.

Scientists used to think of heat as a fluid called caloric, which they believed was
transferred between objects; thus, they defined heat in terms of the temperature
changes produced in an object during heating. Today we recognize the distinct
difference between internal energy and heat. Nevertheless, we refer to quantities

20.1

U

Heat

James Prescott Joule British
physicist (1818 – 1889) Joule re-
ceived some formal education in
mathematics, philosophy, and chem-
istry but was in large part self-
educated. His research led to the
establishment of the principle of
conservation of energy. His study of
the quantitative relationship among
electrical, mechanical, and chemical
effects of heat culminated in his dis-
covery in 1843 of the amount of work
required to produce a unit of energy,
called the mechanical equivalent of
heat. (By kind permission of the Presi-
dent and Council of the Royal Society)

10.3
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using names that do not quite correctly define the quantities but which have be-
come entrenched in physics tradition based on these early ideas. Examples of such
quantities are latent heat and heat capacity.

As an analogy to the distinction between heat and internal energy, consider
the distinction between work and mechanical energy discussed in Chapter 7.
The work done on a system is a measure of the amount of energy transferred to
the system from its surroundings, whereas the mechanical energy of the system
(kinetic or potential, or both) is a consequence of the motion and relative posi-
tions of the members of the system. Thus, when a person does work on a system,
energy is transferred from the person to the system. It makes no sense to talk
about the work of a system—one can refer only to the work done on or by a sys-
tem when some process has occurred in which energy has been transferred to or
from the system. Likewise, it makes no sense to talk about the heat of a system—
one can refer to heat only when energy has been transferred as a result of a tem-
perature difference. Both heat and work are ways of changing the energy of a 
system.

It is also important to recognize that the internal energy of a system can be
changed even when no energy is transferred by heat. For example, when a gas is
compressed by a piston, the gas is warmed and its internal energy increases, but no
transfer of energy by heat from the surroundings to the gas has occurred. If the
gas then expands rapidly, it cools and its internal energy decreases, but no transfer
of energy by heat from it to the surroundings has taken place. The temperature
changes in the gas are due not to a difference in temperature between the gas and
its surroundings but rather to the compression and the expansion. In each case,
energy is transferred to or from the gas by work, and the energy change within the
system is an increase or decrease of internal energy. The changes in internal en-
ergy in these examples are evidenced by corresponding changes in the tempera-
ture of the gas.

Units of Heat

As we have mentioned, early studies of heat focused on the resultant increase in
temperature of a substance, which was often water. The early notions of heat based
on caloric suggested that the flow of this fluid from one body to another caused
changes in temperature. From the name of this mythical fluid, we have an energy
unit related to thermal processes, the calorie (cal), which is defined as the
amount of energy transfer necessary to raise the temperature of 1 g of wa-
ter from 14.5°C to 15.5°C.1 (Note that the “Calorie,” written with a capital “C”
and used in describing the energy content of foods, is actually a kilocalorie.) The
unit of energy in the British system is the British thermal unit (Btu), which is de-
fined as the amount of energy transfer required to raise the temperature of 
1 lb of water from 63°F to 64°F.

Scientists are increasingly using the SI unit of energy, the joule, when describ-
ing thermal processes. In this textbook, heat and internal energy are usually mea-
sured in joules. (Note that both heat and work are measured in energy units. Do
not confuse these two means of energy transfer with energy itself, which is also mea-
sured in joules.)

The calorie

1 Originally, the calorie was defined as the “heat” necessary to raise the temperature of 1 g of water by
1°C. However, careful measurements showed that the amount of energy required to produce a 1°C
change depends somewhat on the initial temperature; hence, a more precise definition evolved.
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The Mechanical Equivalent of Heat

In Chapters 7 and 8, we found that whenever friction is present in a mechanical
system, some mechanical energy is lost—in other words, mechanical energy is not
conserved in the presence of nonconservative forces. Various experiments show
that this lost mechanical energy does not simply disappear but is transformed into
internal energy. We can perform such an experiment at home by simply hammer-
ing a nail into a scrap piece of wood. What happens to all the kinetic energy of the
hammer once we have finished? Some of it is now in the nail as internal energy, as
demonstrated by the fact that the nail is measurably warmer. Although this con-
nection between mechanical and internal energy was first suggested by Benjamin
Thompson, it was Joule who established the equivalence of these two forms of
energy.

A schematic diagram of Joule’s most famous experiment is shown in Figure
20.1. The system of interest is the water in a thermally insulated container. Work is
done on the water by a rotating paddle wheel, which is driven by heavy blocks
falling at a constant speed. The stirred water is warmed due to the friction between
it and the paddles. If the energy lost in the bearings and through the walls is ne-
glected, then the loss in potential energy associated with the blocks equals the work
done by the paddle wheel on the water. If the two blocks fall through a distance h,
the loss in potential energy is 2mgh, where m is the mass of one block; it is this en-
ergy that causes the temperature of the water to increase. By varying the conditions
of the experiment, Joule found that the loss in mechanical energy 2mgh is propor-
tional to the increase in water temperature �T. The proportionality constant was
found to be approximately 4.18 J/g � °C. Hence, 4.18 J of mechanical energy raises
the temperature of 1 g of water by 1°C. More precise measurements taken later
demonstrated the proportionality to be 4.186 J/g � °C when the temperature of the
water was raised from 14.5°C to 15.5°C. We adopt this “15-degree calorie” value:

(20.1)

This equality is known, for purely historical reasons, as the mechanical equiva-
lent of heat.

1 cal � 4.186 J

mm

Thermal
insulator

Benjamin Thompson
(1753–1814).

Figure 20.1 Joule’s experiment for determining the
mechanical equivalent of heat. The falling blocks rotate
the paddles, causing the temperature of the water to in-
crease.

Mechanical equivalent of heat
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HEAT CAPACITY AND SPECIFIC HEAT
When energy is added to a substance and no work is done, the temperature of the
substance usually rises. (An exception to this statement is the case in which a sub-
stance undergoes a change of state—also called a phase transition—as discussed in
the next section.) The quantity of energy required to raise the temperature of a
given mass of a substance by some amount varies from one substance to another.
For example, the quantity of energy required to raise the temperature of 1 kg of
water by 1°C is 4 186 J, but the quantity of energy required to raise the tempera-
ture of 1 kg of copper by 1°C is only 387 J. In the discussion that follows, we shall
use heat as our example of energy transfer, but we shall keep in mind that we
could change the temperature of our system by doing work on it.

The heat capacity C of a particular sample of a substance is defined as the
amount of energy needed to raise the temperature of that sample by 1°C. From
this definition, we see that if heat Q produces a change �T in the temperature of a
substance, then

(20.2)

The specific heat c of a substance is the heat capacity per unit mass. Thus, if
energy Q transferred by heat to mass m of a substance changes the temperature of
the sample by �T, then the specific heat of the substance is

(20.3)

Specific heat is essentially a measure of how thermally insensitive a substance is to
the addition of energy. The greater a material’s specific heat, the more energy
must be added to a given mass of the material to cause a particular temperature
change. Table 20.1 lists representative specific heats.

From this definition, we can express the energy Q transferred by heat between
a sample of mass m of a material and its surroundings for a temperature change
�T as

(20.4)

For example, the energy required to raise the temperature of 0.500 kg of water by
3.00°C is (0.500 kg)(4 186 J/kg � °C)(3.00°C) � 6.28 � 103 J. Note that when the
temperature increases, Q and �T are taken to be positive, and energy flows into

Q � mc�T

c �
Q

m�T

Q � C�T

20.2

Heat capacity

Specific heat

10.3

Losing Weight the Hard WayEXAMPLE 20.1
The work done in lifting the barbell a distance h is equal to
mgh, and the work done in lifting it n times is nmgh. We
equate this to the total work required:

If the student is in good shape and lifts the barbell once every
5 s, it will take him about 12 h to perform this feat. Clearly, it
is much easier for this student to lose weight by dieting.

8.54 � 103 times n �
8.37 � 106 J

(50.0 kg)(9.80 m/s2)(2.00 m)
�

W � nmgh � 8.37 � 106 J 

A student eats a dinner rated at 2 000 Calories. He wishes to
do an equivalent amount of work in the gymnasium by lifting
a 50.0-kg barbell. How many times must he raise the barbell
to expend this much energy? Assume that he raises the bar-
bell 2.00 m each time he lifts it and that he regains no energy
when he drops the barbell to the floor.

Solution Because 1 Calorie � 1.00 � 103 cal, the work re-
quired is 2.00 � 106 cal. Converting this value to joules, we
have for the total work required:

W � (2.00 � 106 cal)(4.186 J/cal) � 8.37 � 106 J
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the system. When the temperature decreases, Q and �T are negative, and energy
flows out of the system.

Specific heat varies with temperature. However, if temperature intervals are
not too great, the temperature variation can be ignored and c can be treated as a
constant.2 For example, the specific heat of water varies by only about 1% from
0°C to 100°C at atmospheric pressure. Unless stated otherwise, we shall neglect
such variations.

Measured values of specific heats are found to depend on the conditions of
the experiment. In general, measurements made at constant pressure are different
from those made at constant volume. For solids and liquids, the difference be-
tween the two values is usually no greater than a few percent and is often ne-
glected. Most of the values given in Table 20.1 were measured at atmospheric pres-
sure and room temperature. As we shall see in Chapter 21, the specific heats for

2 The definition given by Equation 20.3 assumes that the specific heat does not vary with temperature
over the interval In general, if c varies with temperature over the interval, then the cor-
rect expression for Q is

Q � m �Tf

Ti

 c dT

�T � Tf � Ti .

TABLE 20.1 Specific Heats of Some
Substances at 25°C and
Atmospheric Pressure

Specific Heat c

Substance

Elemental Solids
Aluminum 900 0.215
Beryllium 1 830 0.436
Cadmium 230 0.055
Copper 387 0.092 4
Germanium 322 0.077
Gold 129 0.030 8
Iron 448 0.107
Lead 128 0.030 5
Silicon 703 0.168
Silver 234 0.056

Other Solids
Brass 380 0.092
Glass 837 0.200
Ice (� 5°C) 2 090 0.50
Marble 860 0.21
Wood 1 700 0.41

Liquids
Alcohol (ethyl) 2 400 0.58
Mercury 140 0.033
Water (15°C) 4 186 1.00

Gas
Steam (100°C) 2 010 0.48

cal/g��CJ/kg ��C
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gases measured at constant pressure are quite different from values measured at
constant volume.

Imagine you have 1 kg each of iron, glass, and water, and that all three samples are at 10°C.
(a) Rank the samples from lowest to highest temperature after 100 J of energy is added to
each. (b) Rank them from least to greatest amount of energy transferred by heat if each in-
creases in temperature by 20°C.

It is interesting to note from Table 20.1 that water has the highest specific heat
of common materials. This high specific heat is responsible, in part, for the mod-
erate temperatures found near large bodies of water. As the temperature of a body
of water decreases during the winter, energy is transferred from the cooling water
to the air by heat, increasing the internal energy of the air. Because of the high
specific heat of water, a relatively large amount of energy is transferred to the air
for even modest temperature changes of the water. The air carries this internal en-
ergy landward when prevailing winds are favorable. For example, the prevailing
winds on the West Coast of the United States are toward the land (eastward).
Hence, the energy liberated by the Pacific Ocean as it cools keeps coastal areas
much warmer than they would otherwise be. This explains why the western coastal
states generally have more favorable winter weather than the eastern coastal states,
where the prevailing winds do not tend to carry the energy toward land.

A difference in specific heats causes the cheese topping on a slice of pizza to
burn you more than a mouthful of crust at the same temperature. Both crust and
cheese undergo the same change in temperature, starting at a high straight-from-
the-oven value and ending at the temperature of the inside of your mouth, which is
about 37°C. Because the cheese is much more likely to burn you, it must release
much more energy as it cools than does the crust. If we assume roughly the same
mass for both cheese and crust, then Equation 20.3 indicates that the specific heat of
the cheese, which is mostly water, is greater than that of the crust, which is mostly air.

Conservation of Energy: Calorimetry

One technique for measuring specific heat involves heating a sample to some
known temperature Tx , placing it in a vessel containing water of known mass and
temperature and measuring the temperature of the water after equilib-
rium has been reached. Because a negligible amount of mechanical work is done
in the process, the law of the conservation of energy requires that the amount of
energy that leaves the sample (of unknown specific heat) equal the amount of en-
ergy that enters the water.3 This technique is called calorimetry, and devices in
which this energy transfer occurs are called calorimeters.

Conservation of energy allows us to write the equation

(20.5)

which simply states that the energy leaving the hot part of the system by heat is
equal to that entering the cold part of the system. The negative sign in the equa-
tion is necessary to maintain consistency with our sign convention for heat. The

Q cold � �Q hot

Tw � Tx ,

Quick Quiz 20.1

3 For precise measurements, the water container should be included in our calculations because it also
exchanges energy with the sample. However, doing so would require a knowledge of its mass and com-
position. If the mass of the water is much greater than that of the container, we can neglect the effects
of the container.

QuickLab
In an open area, such as a parking
lot, use the flame from a match to
pop an air-filled balloon. Now try the
same thing with a water-filled bal-
loon. Why doesn’t the water-filled bal-
loon pop?
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heat Q hot is negative because energy is leaving the hot sample. The negative sign
in the equation ensures that the right-hand side is positive and thus consistent with
the left-hand side, which is positive because energy is entering the cold water.

Suppose mx is the mass of a sample of some substance whose specific heat we
wish to determine. Let us call its specific heat cx and its initial temperature Tx .
Likewise, let mw , cw , and Tw represent corresponding values for the water. If Tf is
the final equilibrium temperature after everything is mixed, then from Equation
20.4, we find that the energy transfer for the water is which is posi-
tive because , and that the energy transfer for the sample of unknown spe-
cific heat is which is negative. Substituting these expressions into
Equation 20.5 gives

Solving for cx gives

cx �
mwcw(Tf � Tw)

mx(Tx � Tf )

mwcw(Tf � Tw) � �mxcx(Tf � Tx)

mxcx(Tf � Tx),
Tf � Tw

mwcw(Tf � Tw),

Cooling a Hot IngotEXAMPLE 20.2
The ingot is most likely iron, as we can see by comparing

this result with the data given in Table 20.1. Note that the
temperature of the ingot is initially above the steam point.
Thus, some of the water may vaporize when we drop the in-
got into the water. We assume that we have a sealed system
and thus that this steam cannot escape. Because the final
equilibrium temperature is lower than the steam point, any
steam that does result recondenses back into water.

Exercise What is the amount of energy transferred to the
water as the ingot is cooled?

Answer 4 020 J.

A 0.050 0-kg ingot of metal is heated to 200.0°C and then
dropped into a beaker containing 0.400 kg of water initially
at 20.0°C. If the final equilibrium temperature of the mixed
system is 22.4°C, find the specific heat of the metal.

Solution According to Equation 20.5, we can write

From this we find that

453 J/kg��Ccx �

�(0.050 0 kg)(cx)(22.4�C � 200.0�C)

(0.400 kg)(4 186 J/kg��C)(22.4�C � 20.0�C) �

mwcw(Tf � Tw) � �mxcx(Tf � Tx)

Fun Time for a CowboyEXAMPLE 20.3
heat from a stove to the bullet. If we imagine this latter
process taking place, we can calculate �T from Equation
20.4. Using 234 J/kg � °C as the specific heat of silver (see
Table 20.1), we obtain

Exercise Suppose that the cowboy runs out of silver bullets
and fires a lead bullet of the same mass and at the same
speed into the wall. What is the temperature change of the
bullet?

Answer 156°C.

85.5�C�T �
Q
mc

�
40.0 J

(2.00 � 10�3 kg)(234 J/kg ��C)
�

A cowboy fires a silver bullet with a mass of 2.00 g and with a
muzzle speed of 200 m/s into the pine wall of a saloon. As-
sume that all the internal energy generated by the impact re-
mains with the bullet. What is the temperature change of the
bullet?

Solution The kinetic energy of the bullet is

Because nothing in the environment is hotter than the bullet,
the bullet gains no energy by heat. Its temperature increases
because the 40.0 J of kinetic energy becomes 40.0 J of extra
internal energy. The temperature change is the same as that
which would take place if 40.0 J of energy were transferred by

1
2mv2 � 1

2(2.00 � 10�3 kg)(200 m/s)2 � 40.0 J
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LATENT HEAT
A substance often undergoes a change in temperature when energy is transferred
between it and its surroundings. There are situations, however, in which the trans-
fer of energy does not result in a change in temperature. This is the case whenever
the physical characteristics of the substance change from one form to another;
such a change is commonly referred to as a phase change. Two common phase
changes are from solid to liquid (melting) and from liquid to gas (boiling); an-
other is a change in the crystalline structure of a solid. All such phase changes in-
volve a change in internal energy but no change in temperature. The increase in
internal energy in boiling, for example, is represented by the breaking of bonds
between molecules in the liquid state; this bond breaking allows the molecules to
move farther apart in the gaseous state, with a corresponding increase in intermol-
ecular potential energy.

As you might expect, different substances respond differently to the addition
or removal of energy as they change phase because their internal molecular
arrangements vary. Also, the amount of energy transferred during a phase change
depends on the amount of substance involved. (It takes less energy to melt an ice
cube than it does to thaw a frozen lake.) If a quantity Q of energy transfer is re-
quired to change the phase of a mass m of a substance, the ratio charac-
terizes an important thermal property of that substance. Because this added or re-
moved energy does not result in a temperature change, the quantity L is called the
latent heat (literally, the “hidden” heat) of the substance. The value of L for a
substance depends on the nature of the phase change, as well as on the properties
of the substance.

From the definition of latent heat, and again choosing heat as our energy
transfer mechanism, we find that the energy required to change the phase of a
given mass m of a pure substance is

(20.6)

Latent heat of fusion Lf is the term used when the phase change is from solid to
liquid (to fuse means “to combine by melting”), and latent heat of vaporization

Q � mL

L � Q /m

20.3

TABLE 20.2 Latent Heats of Fusion and Vaporization

Melting Latent Heat Boiling Latent Heat of
Point of Fusion Point Vaporization

Substance ( °C) ( J/kg) (°C) ( J/kg)

Helium � 269.65 5.23 � 103 � 268.93 2.09 � 104

Nitrogen � 209.97 2.55 � 104 � 195.81 2.01 � 105

Oxygen � 218.79 1.38 � 104 � 182.97 2.13 � 105

Ethyl alcohol � 114 1.04 � 105 78 8.54 � 105

Water 0.00 3.33 � 105 100.00 2.26 � 106

Sulfur 119 3.81 � 104 444.60 3.26 � 105

Lead 327.3 2.45 � 104 1 750 8.70 � 105

Aluminum 660 3.97 � 105 2 450 1.14 � 107

Silver 960.80 8.82 � 104 2 193 2.33 � 106

Gold 1 063.00 6.44 � 104 2 660 1.58 � 106

Copper 1 083 1.34 � 105 1 187 5.06 � 106
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Lv is the term used when the phase change is from liquid to gas (the liquid “vapor-
izes”).4 The latent heats of various substances vary considerably, as data in Table
20.2 show.

Which is more likely to cause a serious burn, 100°C liquid water or an equal mass of 100°C
steam?

To understand the role of latent heat in phase changes, consider the energy
required to convert a 1.00-g block of ice at � 30.0°C to steam at 120.0°C. Figure
20.2 indicates the experimental results obtained when energy is gradually added to
the ice. Let us examine each portion of the red curve.

Part A. On this portion of the curve, the temperature of the ice changes from
� 30.0°C to 0.0°C. Because the specific heat of ice is 2 090 J/kg � °C, we can calcu-
late the amount of energy added by using Equation 20.4:

Part B. When the temperature of the ice reaches 0.0°C, the ice–water mixture
remains at this temperature—even though energy is being added—until all the ice
melts. The energy required to melt 1.00 g of ice at 0.0°C is, from Equation 20.6,

Thus, we have moved to the 396 J (� 62.7 J 	 333 J) mark on the energy axis.

Q � mLf � (1.00 � 10�3 kg)(3.33 � 105 J/kg) � 333 J

Q � mici �T � (1.00 � 10�3 kg)(2 090 J/kg��C)(30.0�C) � 62.7 J

Quick Quiz 20.2

4 When a gas cools, it eventually condenses—that is, it returns to the liquid phase. The energy given up
per unit mass is called the latent heat of condensation and is numerically equal to the latent heat of vapor-
ization. Likewise, when a liquid cools, it eventually solidifies, and the latent heat of solidification is numeri-
cally equal to the latent heat of fusion.
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Figure 20.2 A plot of temperature versus energy added when 1.00 g of ice initially at � 30.0°C
is converted to steam at 120.0°C.
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Part C. Between 0.0°C and 100.0°C, nothing surprising happens. No phase
change occurs, and so all energy added to the water is used to increase its temper-
ature. The amount of energy necessary to increase the temperature from 0.0°C to
100.0°C is

Part D. At 100.0°C, another phase change occurs as the water changes from wa-
ter at 100.0°C to steam at 100.0°C. Similar to the ice–water mixture in part B, the
water–steam mixture remains at 100.0°C—even though energy is being added—
until all of the liquid has been converted to steam. The energy required to convert
1.00 g of water to steam at 100.0°C is

Part E. On this portion of the curve, as in parts A and C, no phase change oc-
curs; thus, all energy added is used to increase the temperature of the steam. The
energy that must be added to raise the temperature of the steam from 100.0°C to
120.0°C is

The total amount of energy that must be added to change 1 g of ice at � 30.0°C to
steam at 120.0°C is the sum of the results from all five parts of the curve, which is
3.11 � 103 J. Conversely, to cool 1 g of steam at 120.0°C to ice at � 30.0°C, we
must remove 3.11 � 103 J of energy.

We can describe phase changes in terms of a rearrangement of molecules
when energy is added to or removed from a substance. (For elemental substances
in which the atoms do not combine to form molecules, the following discussion
should be interpreted in terms of atoms. We use the general term molecules to refer
to both molecular substances and elemental substances.) Consider first the liquid-
to-gas phase change. The molecules in a liquid are close together, and the forces
between them are stronger than those between the more widely separated mole-
cules of a gas. Therefore, work must be done on the liquid against these attractive
molecular forces if the molecules are to separate. The latent heat of vaporization is
the amount of energy per unit mass that must be added to the liquid to accom-
plish this separation.

Similarly, for a solid, we imagine that the addition of energy causes the ampli-
tude of vibration of the molecules about their equilibrium positions to become
greater as the temperature increases. At the melting point of the solid, the ampli-
tude is great enough to break the bonds between molecules and to allow mole-
cules to move to new positions. The molecules in the liquid also are bound to each
other, but less strongly than those in the solid phase. The latent heat of fusion is
equal to the energy required per unit mass to transform the bonds among all mol-
ecules from the solid-type bond to the liquid-type bond.

As you can see from Table 20.2, the latent heat of vaporization for a given sub-
stance is usually somewhat higher than the latent heat of fusion. This is not sur-
prising if we consider that the average distance between molecules in the gas
phase is much greater than that in either the liquid or the solid phase. In the
solid-to-liquid phase change, we transform solid-type bonds between molecules
into liquid-type bonds between molecules, which are only slightly less strong. In
the liquid-to-gas phase change, however, we break liquid-type bonds and create a
situation in which the molecules of the gas essentially are not bonded to each

Q � mscs �T � (1.00 � 10�3 kg)(2.01 � 103 J/kg��C)(20.0�C) � 40.2 J

Q � mLv � (1.00 � 10�3 kg)(2.26 � 106 J/kg) � 2.26 � 103 J

Q � mwcw �T � (1.00 � 10�3 kg)(4.19 � 103 J/kg��C)(100.0�C) � 419 J
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other. Therefore, it is not surprising that more energy is required to vaporize a
given mass of substance than is required to melt it.

Calculate the slopes for the A, C, and E portions of Figure 20.2. Rank the slopes from least
to greatest and explain what this ordering means.

Quick Quiz 20.3

Problem-Solving Hints
Calorimetry Problems
If you are having difficulty in solving calorimetry problems, be sure to con-
sider the following points:

• Units of measure must be consistent. For instance, if you are using specific
heats measured in cal/g � °C, be sure that masses are in grams and tempera-
tures are in Celsius degrees.

• Transfers of energy are given by the equation only for those
processes in which no phase changes occur. Use the equations and

only when phase changes are taking place.
• Often, errors in sign are made when the equation is used.

Make sure that you use the negative sign in the equation, and remember
that �T is always the final temperature minus the initial temperature.

Q cold � �Q hot

Q � mLv

Q � mLf

Q � mc �T

Cooling the SteamEXAMPLE 20.4
Adding the energy transfers in these three stages, we obtain

Now, we turn our attention to the temperature increase of
the water and the glass. Using Equation 20.4, we find that

Using Equation 20.5, we can solve for the unknown mass:

1.09 � 10�2 kg � 10.9 g ms �

� �[�ms(2.53 � 106 J/kg)]2.77 � 104 J

Q cold � �Q hot

 � 2.77 � 104 J 

    	(0.100 kg)(837 J/kg ��C)(30.0�C)

Q cold � (0.200 kg)(4.19 � 103 J/kg��C)(30.0�C)

 � �ms(2.53 � 106 J/kg) 

  	 2.09 � 105 J/kg)

 � �ms(6.03 � 104 J/kg 	 2.26 � 106 J/kg

Q hot � Q 1 	 Q 2 	 Q 3 

What mass of steam initially at 130°C is needed to warm 200 g
of water in a 100-g glass container from 20.0°C to 50.0°C?

Solution The steam loses energy in three stages. In the
first stage, the steam is cooled to 100°C. The energy transfer
in the process is

where ms is the unknown mass of the steam.
In the second stage, the steam is converted to water. To

find the energy transfer during this phase change, we use
where the negative sign indicates that energy is

leaving the steam:

In the third stage, the temperature of the water created
from the steam is reduced to 50.0°C. This change requires an
energy transfer of

 � �ms(2.09 � 105 J/kg)

Q 3 � mscw �T � ms(4.19 � 103 J/kg��C)(�50.0�C)

Q 2 � �ms(2.26 � 106 J/kg)

Q � �mLv ,

 � �ms(6.03 � 104 J/kg)

Q 1 � mscs �T � ms(2.01 � 103 J/kg��C)(�30.0�C)
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WORK AND HEAT IN THERMODYNAMIC PROCESSES
In the macroscopic approach to thermodynamics, we describe the state of a system
using such variables as pressure, volume, temperature, and internal energy. The
number of macroscopic variables needed to characterize a system depends on the
nature of the system. For a homogeneous system, such as a gas containing only
one type of molecule, usually only two variables are needed. However, it is impor-
tant to note that a macroscopic state of an isolated system can be specified only if the
system is in thermal equilibrium internally. In the case of a gas in a container, in-
ternal thermal equilibrium requires that every part of the gas be at the same pres-
sure and temperature.

Consider a gas contained in a cylinder fitted with a movable piston (Fig. 20.3).
At equilibrium, the gas occupies a volume V and exerts a uniform pressure P on
the cylinder’s walls and on the piston. If the piston has a cross-sectional area A, the

20.4

Boiling Liquid HeliumEXAMPLE 20.5
of energy is

Exercise If 10.0 W of power is supplied to 1.00 kg of water
at 100°C, how long does it take for the water to completely
boil away?

Answer 62.8 h.

35 mint �
2.09 � 104 J

10.0 J/s
� 2.09 � 103 s �

Liquid helium has a very low boiling point, 4.2 K, and a very
low latent heat of vaporization, 2.09 � 104 J/kg. If energy is
transferred to a container of boiling liquid helium from an
immersed electric heater at a rate of 10.0 W, how long does it
take to boil away 1.00 kg of the liquid?

Solution Because we must supply
2.09 � 104 J of energy to boil away 1.00 kg. Because 10.0 W �
10.0 J/s, 10.0 J of energy is transferred to the helium each
second. Therefore, the time it takes to transfer 2.09 � 104 J

Lv � 2.09 � 104 J/kg,

10.6

P

A

V
V + dV

dy

(b)(a)

Figure 20.3 Gas contained in a
cylinder at a pressure P does work
on a moving piston as the system
expands from a volume V to a vol-
ume V 	 dV.
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force exerted by the gas on the piston is Now let us assume that the gas ex-
pands quasi-statically, that is, slowly enough to allow the system to remain essen-
tially in thermal equilibrium at all times. As the piston moves up a distance dy, the
work done by the gas on the piston is

Because A dy is the increase in volume of the gas dV, we can express the work done
by the gas as

(20.7)

Because the gas expands, dV is positive, and so the work done by the gas is positive.
If the gas were compressed, dV would be negative, indicating that the work done
by the gas (which can be interpreted as work done on the gas) was negative.

In the thermodynamics problems that we shall solve, we shall identify the sys-
tem of interest as a substance that is exchanging energy with the environment. In
many problems, this will be a gas contained in a vessel; however, we will also con-
sider problems involving liquids and solids. It is an unfortunate fact that, because
of the separate historical development of thermodynamics and mechanics, positive
work for a thermodynamic system is commonly defined as the work done by the
system, rather than that done on the system. This is the reverse of the case for our
study of work in mechanics. Thus, in thermodynamics, positive work repre-
sents a transfer of energy out of the system. We will use this convention to be
consistent with common treatments of thermodynamics.

The total work done by the gas as its volume changes from Vi to Vf is given by
the integral of Equation 20.7:

(20.8)

To evaluate this integral, it is not enough that we know only the initial and final
values of the pressure. We must also know the pressure at every instant during the
expansion; we would know this if we had a functional dependence of P with re-
spect to V. This important point is true for any process—the expansion we are dis-
cussing here, or any other. To fully specify a process, we must know the values of
the thermodynamic variables at every state through which the system passes be-
tween the initial and final states. In the expansion we are considering here, we can
plot the pressure and volume at each instant to create a PV diagram like the one
shown in Figure 20.4. The value of the integral in Equation 20.8 is the area
bounded by such a curve. Thus, we can say that

W � �Vf

Vi

P dV

dW � P dV

dW � F dy � PA dy

F � PA.

i
Pi

P

Work = Area under
   curve

f

V
VfVi

Pf

Figure 20.4 A gas expands quasi-
statically (slowly) from state i to
state f. The work done by the gas
equals the area under the PV
curve.

the work done by a gas in the expansion from an initial state to a final state is
the area under the curve connecting the states in a PV diagram.

As Figure 20.4 shows, the work done in the expansion from the initial state i to
the final state f depends on the path taken between these two states, where the
path on a PV diagram is a description of the thermodynamic process through
which the system is taken. To illustrate this important point, consider several paths
connecting i and f (Fig. 20.5). In the process depicted in Figure 20.5a, the pres-
sure of the gas is first reduced from Pi to Pf by cooling at constant volume Vi . The
gas then expands from Vi to Vf at constant pressure Pf . The value of the work done
along this path is equal to the area of the shaded rectangle, which is equal to

Work equals area under the curve
in a PV diagram.
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In Figure 20.5b, the gas first expands from Vi to Vf at constant pressure
Pi . Then, its pressure is reduced to Pf at constant volume Vf . The value of the work
done along this path is which is greater than that for the process de-
scribed in Figure 20.5a. Finally, for the process described in Figure 20.5c, where
both P and V change continuously, the work done has some value intermediate be-
tween the values obtained in the first two processes. Therefore, we see that the
work done by a system depends on the initial and final states and on the
path followed by the system between these states.

The energy transfer by heat Q into or out of a system also depends on the
process. Consider the situations depicted in Figure 20.6. In each case, the gas has
the same initial volume, temperature, and pressure and is assumed to be ideal. In
Figure 20.6a, the gas is thermally insulated from its surroundings except at the bot-
tom of the gas-filled region, where it is in thermal contact with an energy reservoir.
An energy reservoir is a source of energy that is considered to be so great that a finite
transfer of energy from the reservoir does not change its temperature. The piston
is held at its initial position by an external agent—a hand, for instance. When the
force with which the piston is held is reduced slightly, the piston rises very slowly to
its final position. Because the piston is moving upward, the gas is doing work on

Pi(Vf � Vi),

Pf(Vf � Vi).

Work done depends on the path
between the initial and final states.

Figure 20.5 The work done by a gas as it is taken from an initial state to a final state depends
on the path between these states.
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Energy reservoir
at Ti

Gas at Ti

(a)

Insulating
wall

Final
position

Initial
position

Insulating
wall

Gas at Ti

(b)

Membrane

Vacuum

Figure 20.6 (a) A gas at temperature Ti expands slowly while absorbing energy from a reser-
voir in order to maintain a constant temperature. (b) A gas expands rapidly into an evacuated re-
gion after a membrane is broken.
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the piston. During this expansion to the final volume Vf , just enough energy is trans-
ferred by heat from the reservoir to the gas to maintain a constant temperature Ti .

Now consider the completely thermally insulated system shown in Figure
20.6b. When the membrane is broken, the gas expands rapidly into the vacuum
until it occupies a volume Vf and is at a pressure Pf . In this case, the gas does no
work because there is no movable piston on which the gas applies a force. Further-
more, no energy is transferred by heat through the insulating wall.

The initial and final states of the ideal gas in Figure 20.6a are identical to the
initial and final states in Figure 20.6b, but the paths are different. In the first case,
the gas does work on the piston, and energy is transferred slowly to the gas. In the
second case, no energy is transferred, and the value of the work done is zero.
Therefore, we conclude that energy transfer by heat, like work done, depends
on the initial, final, and intermediate states of the system. In other words, be-
cause heat and work depend on the path, neither quantity is determined solely by
the end points of a thermodynamic process.

THE FIRST LAW OF THERMODYNAMICS
When we introduced the law of conservation of mechanical energy in Chapter 8,
we stated that the mechanical energy of a system is constant in the absence of non-
conservative forces such as friction. That is, we did not include changes in the inter-
nal energy of the system in this mechanical model. The first law of thermodynamics
is a generalization of the law of conservation of energy that encompasses changes in
internal energy. It is a universally valid law that can be applied to many processes
and provides a connection between the microscopic and macroscopic worlds.

We have discussed two ways in which energy can be transferred between a sys-
tem and its surroundings. One is work done by the system, which requires that there
be a macroscopic displacement of the point of application of a force (or pressure).
The other is heat, which occurs through random collisions between the molecules
of the system. Both mechanisms result in a change in the internal energy of the sys-
tem and therefore usually result in measurable changes in the macroscopic variables
of the system, such as the pressure, temperature, and volume of a gas.

To better understand these ideas on a quantitative basis, suppose that a system
undergoes a change from an initial state to a final state. During this change, en-
ergy transfer by heat Q to the system occurs, and work W is done by the system. As
an example, suppose that the system is a gas in which the pressure and volume
change from Pi and Vi to Pf and Vf . If the quantity is measured for various
paths connecting the initial and final equilibrium states, we find that it is the same
for all paths connecting the two states. We conclude that the quantity is de-
termined completely by the initial and final states of the system, and we call this
quantity the change in the internal energy of the system. Although Q and W
both depend on the path, the quantity Q � W is independent of the path. If we
use the sumbol E int to represent the internal energy, then the change in internal
energy �E int can be expressed as5

(20.9)�E int � Q � W

Q � W

Q � W

20.5

Q � W is the change in internal
energy

First-law equation

5 It is an unfortunate accident of history that the traditional symbol for internal energy is U, which is
also the traditional symbol for potential energy, as introduced in Chapter 8. To avoid confusion be-
tween potential energy and internal energy, we use the symbol E int for internal energy in this book. If
you take an advanced course in thermodynamics, however, be prepared to see U used as the symbol for
internal energy.

10.6

This device, called Hero’s engine, was
invented around 150 B.C. by Hero
in Alexandria. When water is
boiled in the flask, which is sus-
pended by a cord, steam exits
through two tubes at the sides (in
opposite directions), creating a
torque that rotates the flask.



618 C H A P T E R  2 0 Heat and the First Law of Thermodynamics

where all quantities must have the same units of measure for energy.6 Equation 20.9
is known as the first-law equation and is a key concept in many applications. As a
reminder, we use the convention that Q is positive when energy enters the system
and negative when energy leaves the system, and that W is positive when the system
does work on the surroundings and negative when work is done on the system.

When a system undergoes an infinitesimal change in state in which a small
amount of energy dQ is transferred by heat and a small amount of work dW is
done, the internal energy changes by a small amount dE int . Thus, for infinitesimal
processes we can express the first-law equation as7

The first-law equation is an energy conservation equation specifying that the
only type of energy that changes in the system is the internal energy E int . Let us
look at some special cases in which this condition exists. 

First, let us consider an isolated system—that is, one that does not interact with
its surroundings. In this case, no energy transfer by heat takes place and the 
value of the work done by the system is zero; hence, the internal energy remains
constant. That is, because it follows that and thus

We conclude that the internal energy Eint of an isolated system
remains constant.

Next, we consider the case of a system (one not isolated from its surround-
ings) that is taken through a cyclic process—that is, a process that starts and
ends at the same state. In this case, the change in the internal energy must again
be zero, and therefore the energy Q added to the system must equal the work W
done by the system during the cycle. That is, in a cyclic process,

On a PV diagram, a cyclic process appears as a closed curve. (The processes de-
scribed in Figure 20.5 are represented by open curves because the initial and final
states differ.) It can be shown that in a cyclic process, the net work done by the
system per cycle equals the area enclosed by the path representing the
process on a PV diagram.

If the value of the work done by the system during some process is zero, then
the change in internal energy �E int equals the energy transfer Q into or out of the
system:

If energy enters the system, then Q is positive and the internal energy increases.
For a gas, we can associate this increase in internal energy with an increase in the
kinetic energy of the molecules. Conversely, if no energy transfer occurs during
some process but work is done by the system, then the change in internal energy
equals the negative value of the work done by the system:

�E int � �W

�E int � Q

�E int � 0  and  Q � W

E int , i � E int , f .
�E int � 0,Q � W � 0,

dE int � dQ � dWFirst-law equation for infinitesimal
changes

Isolated system

Cyclic process

6 For the definition of work from our mechanics studies, the first law would be written as
because energy transfer into the system by either work or heat would increase the inter-

nal energy of the system. Because of the reversal of the definition of positive work discussed in Section
20.4, the first law appears as in Equation 20.9, with a minus sign.
7 Note that dQ and dW are not true differential quantities; however, dE int is. Because dQ and dW are in-
exact differentials, they are often represented by the symbols and . For further details on this
point, see an advanced text on thermodynamics, such as R. P. Bauman, Modern Thermodynamics and Sta-
tistical Mechanics, New York, Macmillan Publishing Co., 1992.

dWdQ

�E int � Q 	 W
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For example, if a gas is compressed by a moving piston in an insulated cylinder, no
energy is transferred by heat and the work done by the gas is negative; thus, the in-
ternal energy increases because kinetic energy is transferred from the moving pis-
ton to the gas molecules.

On a microscopic scale, no distinction exists between the result of heat and
that of work. Both heat and work can produce a change in the internal energy of a
system. Although the macroscopic quantities Q and W are not properties of a sys-
tem, they are related to the change of the internal energy of a system through the
first-law equation. Once we define a process, or path, we can either calculate or
measure Q and W, and we can find the change in the system’s internal energy us-
ing the first-law equation.

One of the important consequences of the first law of thermodynamics is
that there exists a quantity known as internal energy whose value is determined
by the state of the system. The internal energy function is therefore called a state
function.

SOME APPLICATIONS OF THE FIRST LAW
OF THERMODYNAMICS

Before we apply the first law of thermodynamics to specific systems, it is useful for
us to first define some common thermodynamic processes. An adiabatic process
is one during which no energy enters or leaves the system by heat—that is, 
An adiabatic process can be achieved either by thermally insulating the system
from its surroundings (as shown in Fig. 20.6b) or by performing the process
rapidly, so that there is little time for energy to transfer by heat. Applying the first
law of thermodynamics to an adiabatic process, we see that

(20.10)

From this result, we see that if a gas expands adiabatically such that W is positive,
then �E int is negative and the temperature of the gas decreases. Conversely, the
temperature of a gas increases when the gas is compressed adiabatically.

Adiabatic processes are very important in engineering practice. Some com-
mon examples are the expansion of hot gases in an internal combustion engine,
the liquefaction of gases in a cooling system, and the compression stroke in a
diesel engine.

The process described in Figure 20.6b, called an adiabatic free expansion, is
unique. The process is adiabatic because it takes place in an insulated container.
Because the gas expands into a vacuum, it does not apply a force on a piston as
was depicted in Figure 20.6a, so no work is done on or by the gas. Thus, in this adi-
abatic process, both and As a result, for this process, as we
can see from the first law. That is, the initial and final internal energies of a
gas are equal in an adiabatic free expansion. As we shall see in the next chap-
ter, the internal energy of an ideal gas depends only on its temperature. Thus, we
expect no change in temperature during an adiabatic free expansion. This predic-
tion is in accord with the results of experiments performed at low pressures. (Ex-
periments performed at high pressures for real gases show a slight decrease or in-
crease in temperature after the expansion. This change is due to intermolecular
interactions, which represent a deviation from the model of an ideal gas.)

A process that occurs at constant pressure is called an isobaric process. In
such a process, the values of the heat and the work are both usually nonzero. The

�E int � 0W � 0.Q � 0

�E int � �W  (adiabatic process)

Q � 0.

20.6

In an adiabatic process, Q � 0.

First-law equation for an adiabatic
process

In an adiabatic free expansion,
�E int � 0.

In an isobaric process, P remains
constant.
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work done by the gas is simply

(20.11)

where P is the constant pressure.
A process that takes place at constant volume is called an isovolumetric

process. In such a process, the value of the work done is clearly zero because the
volume does not change. Hence, from the first law we see that in an isovolumetric
process, because 

(20.12)

This expression specifies that if energy is added by heat to a system kept at
constant volume, then all of the transferred energy remains in the system as
an increase of the internal energy of the system. For example, when a can of
spray paint is thrown into a fire, energy enters the system (the gas in the can) by
heat through the metal walls of the can. Consequently, the temperature, and thus
the pressure, in the can increases until the can possibly explodes.

A process that occurs at constant temperature is called an isothermal
process. A plot of P versus V at constant temperature for an ideal gas yields a hy-
perbolic curve called an isotherm. The internal energy of an ideal gas is a function
of temperature only. Hence, in an isothermal process involving an ideal gas,

For an isothermal process, then, we conclude from the first law that the
energy transfer Q must be equal to the work done by the gas—that is, Any
energy that enters the system by heat is transferred out of the system by work; as a
result, no change of the internal energy of the system occurs.

In the last three columns of the following table, fill in the boxes with �, 	, or 0. For each
situation, the system to be considered is identified.

Quick Quiz 20.4

Q � W.
�E int � 0.

�E int � Q  (isovolumetric process)

W � 0,

W � P(Vf � Vi)  (isobaric process)

In an isothermal process, T
remains constant.

First-law equation for a constant-
volume process

f

i

V

PV = constant

Isotherm

P

Pi

Pf

Vi Vf

Situation System Q W �E int

(a) Rapidly pumping up Air in the pump
a bicycle tire

(b) Pan of room-temperature Water in the pan
water sitting on a hot stove

(c) Air quickly leaking Air originally in
out of a balloon balloon

Figure 20.7 The PV diagram for
an isothermal expansion of an
ideal gas from an initial state to a fi-
nal state. The curve is a hyperbola.

Isothermal Expansion of an Ideal Gas

Suppose that an ideal gas is allowed to expand quasi-statically at constant tempera-
ture, as described by the PV diagram shown in Figure 20.7. The curve is a hyper-
bola (see Appendix B, Eq. B.23), and the equation of state of an ideal gas with T
constant indicates that the equation of this curve is PV � constant. The isothermal
expansion of the gas can be achieved by placing the gas in thermal contact with an
energy reservoir at the same temperature, as shown in Figure 20.6a.

Let us calculate the work done by the gas in the expansion from state i to state
f. The work done by the gas is given by Equation 20.8. Because the gas is ideal and
the process is quasi-static, we can use the expression for each point onPV � nRT
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An Isothermal ExpansionEXAMPLE 20.6

(b) How much energy transfer by heat occurs with the sur-
roundings in this process?

2.7 � 103 J�

 W � (1.0 mol)(8.31 J/mol �K)(273 K) ln � 10.0
3.0 �A 1.0-mol sample of an ideal gas is kept at 0.0°C during an ex-

pansion from 3.0 L to 10.0 L. (a) How much work is done by
the gas during the expansion?

Solution Substituting the values into Equation 20.13, we
have

W � nRT ln� Vf

Vi
�

Work done by an ideal gas in an
isothermal process

the path. Therefore, we have

Because T is constant in this case, it can be removed from the integral along with
n and R:

To evaluate the integral, we used Evaluating this at the initial and 
final volumes, we have

(20.13)

Numerically, this work W equals the shaded area under the PV curve shown in Fig-
ure 20.7. Because the gas expands, and the value for the work done by the
gas is positive, as we expect. If the gas is compressed, then and the work
done by the gas is negative.

Characterize the paths in Figure 20.8 as isobaric, isovolumetric, isothermal, or adiabatic.
Note that for path B.Q � 0

Quick Quiz 20.5

Vf � Vi ,
Vf � Vi ,

W � nRT ln� Vf

Vi
�

�(dx/x) � lnx.

W � nRT �Vf

Vi

 
dV
V

� nRT ln V �Vf

Vi

W � �Vf

Vi

 P dV � �Vf

Vi

 
nRT

V
 dV

A

B

C

D

V

P

T1

T3

T2

T4
Figure 20.8 Identify the nature of paths
A, B, C, and D.
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Boiling WaterEXAMPLE 20.7
To determine the change in internal energy, we must know
the energy transfer Q needed to vaporize the water. Using
Equation 20.6 and the latent heat of vaporization for water,
we have

Hence, from the first law, the change in internal energy is

The positive value for �E int indicates that the internal energy
of the system increases. We see that most (2 090 J/2 260 J �
93%) of the energy transferred to the liquid goes into
increasing the internal energy of the system. Only 
169 J/2 260 J � 7% leaves the system by work done by the
steam on the surrounding atmosphere.

2.09 kJ�E int � Q � W � 2 260 J � 169 J �

Q � mLv � (1.00 � 10�3 kg)(2.26 � 106 J/kg) � 2 260 J

Suppose 1.00 g of water vaporizes isobarically at atmospheric
pressure (1.013 � 105 Pa). Its volume in the liquid state is

cm3, and its volume in the vapor state is
cm3. Find the work done in the expansion

and the change in internal energy of the system. Ignore any
mixing of the steam and the surrounding air—imagine that
the steam simply pushes the surrounding air out of the way.

Solution Because the expansion takes place at constant
pressure, the work done by the system in pushing away the
surrounding air is, from Equation 20.11,

169 J �

 � (1.013 � 105 Pa)(1 671 � 10�6 m3 � 1.00 � 10�6 m3)

W � P(Vf � Vi) 

Vf � Vvapor � 1 671
Vi � Vliquid � 1.00

Solution From the first law, we find that

(c) If the gas is returned to the original volume by means
of an isobaric process, how much work is done by the gas?

Solution The work done in an isobaric process is given by
Equation 20.11. We are not given the pressure, so we need to
incorporate the ideal gas law:

2.7 � 103 J  Q � W �

0 � Q � W

�E int � Q � W

Notice that we use the initial temperature and volume to de-
termine the value of the constant pressure because we do not
know the final temperature. The work done by the gas is neg-
ative because the gas is being compressed.

�1.6 � 103 J  �

   � (3.0 � 10�3m3 � 10.0 � 10�3m3)

 �
(1.0 mol)(8.31 J/mol �K)(273 K)

10.0 � 10�3 m3

W � P(Vf � Vi) �
nRTi

Vi
 (Vf � Vi) 

Heating a SolidEXAMPLE 20.8

The work done is

(b) What quantity of energy is transferred to the copper
by heat?

Solution Taking the specific heat of copper from Table
20.1 and using Equation 20.4, we find that the energy trans-
ferred by heat is

1.7 � 10�2 J�

W � P�V � (1.013 � 105 N/m2)(1.7 � 10�7 m3)

�V � (1.5 � 10�3)� 1.0 kg
8.92 � 103 kg/m3 � � 1.7 � 10�7 m3

A 1.0-kg bar of copper is heated at atmospheric pressure. If
its temperature increases from 20°C to 50°C, (a) what is the
work done by the copper on the surrounding atmosphere?

Solution Because the process is isobaric, we can find the
work done by the copper using Equation 20.11,

We can calculate the change in volume of
the copper using Equation 19.6. Using the average linear ex-
pansion coefficient for copper given in Table 19.2, and re-
membering that 
 � 3�, we obtain

The volume Vi is equal to m/�, and Table 15.1 indicates that
the density of copper is 8.92 � 103 kg/m3. Hence,

 � [5.1 � 10�5(�C)�1](50�C � 20�C)Vi � 1.5 � 10�3 Vi

�V � 
Vi �T

W � P(Vf � Vi).
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ENERGY TRANSFER MECHANISMS
It is important to understand the rate at which energy is transferred between a sys-
tem and its surroundings and the mechanisms responsible for the transfer. There-
fore, let us now look at three common energy transfer mechanisms that can result
in a change in internal energy of a system.

Thermal Conduction

The energy transfer process that is most clearly associated with a temperature dif-
ference is thermal conduction. In this process, the transfer can be represented
on an atomic scale as an exchange of kinetic energy between microscopic parti-
cles—molecules, atoms, and electrons—in which less energetic particles gain en-
ergy in collisions with more energetic particles. For example, if you hold one end
of a long metal bar and insert the other end into a flame, you will find that the
temperature of the metal in your hand soon increases. The energy reaches your
hand by means of conduction. We can understand the process of conduction by
examining what is happening to the microscopic particles in the metal. Initially,
before the rod is inserted into the flame, the microscopic particles are vibrating
about their equilibrium positions. As the flame heats the rod, those particles near
the flame begin to vibrate with greater and greater amplitudes. These particles, in
turn, collide with their neighbors and transfer some of their energy in the colli-
sions. Slowly, the amplitudes of vibration of metal atoms and electrons farther and
farther from the flame increase until, eventually, those in the metal near your
hand are affected. This increased vibration represents an increase in the tempera-
ture of the metal and of your potentially burned hand.

The rate of thermal conduction depends on the properties of the substance
being heated. For example, it is possible to hold a piece of asbestos in a flame in-
definitely. This implies that very little energy is conducted through the asbestos. In
general, metals are good thermal conductors, and materials such as asbestos, cork,
paper, and fiberglass are poor conductors. Gases also are poor conductors because
the separation distance between the particles is so great. Metals are good thermal
conductors because they contain large numbers of electrons that are relatively free
to move through the metal and so can transport energy over large distances. Thus,
in a good conductor, such as copper, conduction takes place both by means of the
vibration of atoms and by means of the motion of free electrons.

Conduction occurs only if there is a difference in temperature between two
parts of the conducting medium. Consider a slab of material of thickness �x and
cross-sectional area A. One face of the slab is at a temperature T1 , and the other
face is at a temperature (Fig. 20.9). Experimentally, it is found that theT2 � T1

20.7

(c) What is the increase in internal energy of the copper?

Solution From the first law of thermodynamics, we have

1.2 � 104 J�E int � Q � W � 1.2 � 104 J � 1.7 � 10�2 J �

1.2 � 104 JQ � mc�T � (1.0 kg)(387 J/kg ��C)(30�C) �
Note that almost all of the energy transferred into the system
by heat goes into increasing the internal energy. The fraction
of energy used to do work on the surrounding atmosphere is
only about 10�6! Hence, when analyzing the thermal expan-
sion of a solid or a liquid, the small amount of work done by
the system is usually ignored.

Melted snow pattern on a parking
lot surface indicates the presence
of underground hot water pipes
used to aid snow removal. Energy
from the water is conducted from
the pipes to the pavement, where it
causes the snow to melt.
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energy Q transferred in a time �t flows from the hotter face to the colder one. The
rate Q /�t at which this energy flows is found to be proportional to the cross-
sectional area and the temperature difference and inversely pro-
portional to the thickness:

It is convenient to use the symbol for power to represent the rate of energy
transfer: Note that has units of watts when Q is in joules and �t is in
seconds. For a slab of infinitesimal thickness dx and temperature difference dT, we
can write the law of thermal conduction as

(20.14)

where the proportionality constant k is the thermal conductivity of the material
and is the temperature gradient (the variation of temperature with posi-
tion).

Suppose that a long, uniform rod of length L is thermally insulated so that en-
ergy cannot escape by heat from its surface except at the ends, as shown in Figure
20.10. One end is in thermal contact with an energy reservoir at temperature T1 ,
and the other end is in thermal contact with a reservoir at temperature 
When a steady state has been reached, the temperature at each point along the
rod is constant in time. In this case if we assume that k is not a function of temper-
ature, the temperature gradient is the same everywhere along the rod and is

Thus the rate of energy transfer by conduction through the rod is

(20.15)

Substances that are good thermal conductors have large thermal conductivity
values, whereas good thermal insulators have low thermal conductivity values.
Table 20.3 lists thermal conductivities for various substances. Note that metals are
generally better thermal conductors than nonmetals are.

Will an ice cube wrapped in a wool blanket remain frozen for (a) a shorter length of time,
(b) the same length of time, or (c) a longer length of time than an identical ice cube ex-
posed to air at room temperature?

For a compound slab containing several materials of thicknesses L1 , L2 , . . .
and thermal conductivities k1 , k2 , . . . , the rate of energy transfer through the
slab at steady state is

(20.16)� �
A(T2 � T1)



i

(Li/k i)

Quick Quiz 20.6

� � kA 
(T2 � T1)

L

� dT
dx � �

T2 � T1

L

T2 � T1 .

� dT/dx �

� � kA� dT
dx �

�� � Q /�t.
�

Q
�t

� A 
�T
�x

�T � T2 � T1 ,

Law of thermal conduction

T1

Energy flow
for T2 >T1

T2
A

∆x

Figure 20.9 Energy transfer
through a conducting slab with a
cross-sectional area A and a thick-
ness �x. The opposite faces are at
different temperatures T1 and T2 .

T2

Insulation
T2 > T1

T1

L

Energy flow

Figure 20.10 Conduction of en-
ergy through a uniform, insulated
rod of length L. The opposite ends
are in thermal contact with energy
reservoirs at different tempera-
tures.
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where T1 and T2 are the temperatures of the outer surfaces (which are held con-
stant) and the summation is over all slabs. The following example shows how this
equation results from a consideration of two thicknesses of materials.

TABLE 20.3 Thermal Conductivities

Substance Thermal Conductivity (W/m °C)

Metals (at 25°C)
Aluminum 238
Copper 397
Gold 314
Iron 79.5
Lead 34.7
Silver 427

Nonmetals (approximate values)
Asbestos 0.08
Concrete 0.8
Diamond 2 300
Glass 0.8
Ice 2
Rubber 0.2
Water 0.6
Wood 0.08

Gases (at 20°C)
Air 0.023 4
Helium 0.138
Hydrogen 0.172
Nitrogen 0.023 4
Oxygen 0.023 8

�

Energy Transfer Through Two SlabsEXAMPLE 20.9
Two slabs of thickness L1 and L2 and thermal conductivities
k1 and k2 are in thermal contact with each other, as shown in
Figure 20.11. The temperatures of their outer surfaces are T1
and T2 , respectively, and T2 � T1 . Determine the tempera-
ture at the interface and the rate of energy transfer by con-
duction through the slabs in the steady-state condition.

Solution If T is the temperature at the interface, then the
rate at which energy is transferred through slab 1 is

(1)

The rate at which energy is transferred through slab 2 is

(2)

When a steady state is reached, these two rates must be equal;
hence,

�2 �
k2A(T2 � T)

L2

�1 �
k1A(T � T1)

L1

L 2 L 1

T 2 k 2 k 1 T 1

T

Figure 20.11 Energy transfer by conduction through two slabs in
thermal contact with each other. At steady state, the rate of energy
transfer through slab 1 equals the rate of energy transfer through
slab 2.
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Home Insulation

In engineering practice, the term L/k for a particular substance is referred to as
the R value of the material. Thus, Equation 20.16 reduces to

(20.17)

where The R values for a few common building materials are given in
Table 20.4. In the United States, the insulating properties of materials used in
buildings are usually expressed in engineering units, not SI units. Thus, in Table
20.4, measurements of R values are given as a combination of British thermal
units, feet, hours, and degrees Fahrenheit.

At any vertical surface open to the air, a very thin stagnant layer of air adheres
to the surface. One must consider this layer when determining the R value for a
wall. The thickness of this stagnant layer on an outside wall depends on the speed
of the wind. Energy loss from a house on a windy day is greater than the loss on a
day when the air is calm. A representative R value for this stagnant layer of air is
given in Table 20.4.

R i � Li/k i .

� �
A(T2 � T1)



i

R i

TABLE 20.4 R Values for Some Common Building
Materials

Material R value (ft2 °F h/Btu)

Hardwood siding (1 in. thick) 0.91
Wood shingles (lapped) 0.87
Brick (4 in. thick) 4.00
Concrete block (filled cores) 1.93
Fiberglass batting (3.5 in. thick) 10.90
Fiberglass batting (6 in. thick) 18.80
Fiberglass board (1 in. thick) 4.35
Cellulose fiber (1 in. thick) 3.70
Flat glass (0.125 in. thick) 0.89
Insulating glass (0.25-in. space) 1.54
Air space (3.5 in. thick) 1.01
Stagnant air layer 0.17
Drywall (0.5 in. thick) 0.45
Sheathing (0.5 in. thick) 1.32

��

Solving for T gives

(3) T �
k1L2T1 	 k2L1T2

k1L2 	 k2L1

k1A(T � T1)
L1

�
k2A(T2 � T)

L2

Substituting (3) into either (1) or (2), we obtain

Extension of this model to several slabs of materials leads to
Equation 20.16.

� �
A(T2 � T1)

(L1/k1) 	 (L2/k2)

Energy is conducted from the in-
side to the exterior more rapidly
on the part of the roof where the
snow has melted. The dormer ap-
pears to have been added and insu-
lated. The main roof does not ap-
pear to be well insulated.
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Convection

At one time or another, you probably have warmed your hands by holding them
over an open flame. In this situation, the air directly above the flame is heated and
expands. As a result, the density of this air decreases and the air rises. This warmed
mass of air heats your hands as it flows by. Energy transferred by the movement
of a heated substance is said to have been transferred by convection. When
the movement results from differences in density, as with air around a fire, it is re-
ferred to as natural convection. Air flow at a beach is an example of natural convec-
tion, as is the mixing that occurs as surface water in a lake cools and sinks (see

The R Value of a Typical WallEXAMPLE 20.10
Exercise If a layer of fiberglass insulation 3.5 in. thick is
placed inside the wall to replace the air space, as shown in
Figure 20.12b, what is the new total R value? By what factor is
the energy loss reduced?

Answer ft2 � °F � h/Btu; 2.4.R � 17

Calculate the total R value for a wall constructed as shown in
Figure 20.12a. Starting outside the house (toward the front in
the figure) and moving inward, the wall consists of 4-in.
brick, 0.5-in. sheathing, an air space 3.5 in. thick, and 0.5-in.
drywall. Do not forget the stagnant air layers inside and out-
side the house.

Solution Referring to Table 20.4, we find that

7.12 ft2��F�h/Btu�R total

R6 (inside stagnant air layer)  � 0.17 ft2��F�h/Btu

R5 (drywall)  � 0.45 ft2��F�h/Btu

R4 (air space)  � 1.01 ft2��F�h/Btu

R3 (sheathing)  � 1.32 ft2��F�h/Btu

R2 (brick)  � 4.00 ft2��F�h/Btu

R1 (outside stagnant air layer)  � 0.17 ft2��F�h/Btu

Sheathing

Insulation

Brick

Air
space

(a) (b)

Dry wall

Figure 20.12 An exterior house wall containing (a) an air space
and (b) insulation.

This thermogram of a home, made during cold weather, shows colors ranging from white and or-
ange (areas of greatest energy loss) to blue and purple (areas of least energy loss).
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Chapter 19). When the heated substance is forced to move by a fan or pump, as in
some hot-air and hot-water heating systems, the process is called forced convection.

If it were not for convection currents, it would be very difficult to boil water. As
water is heated in a teakettle, the lower layers are warmed first. The heated water
expands and rises to the top because its density is lowered. At the same time, the
denser, cool water at the surface sinks to the bottom of the kettle and is heated.

The same process occurs when a room is heated by a radiator. The hot radia-
tor warms the air in the lower regions of the room. The warm air expands and
rises to the ceiling because of its lower density. The denser, cooler air from above
sinks, and the continuous air current pattern shown in Figure 20.13 is established.

Radiation

The third means of energy transfer that we shall discuss is radiation. All objects
radiate energy continuously in the form of electromagnetic waves (see Chapter
34) produced by thermal vibrations of the molecules. You are likely familiar with
electromagnetic radiation in the form of the orange glow from an electric stove
burner, an electric space heater, or the coils of a toaster.

The rate at which an object radiates energy is proportional to the fourth
power of its absolute temperature. This is known as Stefan’s law and is expressed
in equation form as

(20.18)

where is the power in watts radiated by the object, � is a constant equal to 
5.669 6 � 10�8 W/m2 � K4, A is the surface area of the object in square meters, e is
the emissivity constant, and T is the surface temperature in kelvins. The value of
e can vary between zero and unity, depending on the properties of the surface of
the object. The emissivity is equal to the fraction of the incoming radiation that
the surface absorbs.

Approximately 1 340 J of electromagnetic radiation from the Sun passes per-
pendicularly through each 1 m2 at the top of the Earth’s atmosphere every second.
This radiation is primarily visible and infrared light accompanied by a significant
amount of ultraviolet radiation. We shall study these types of radiation in detail in
Chapter 34. Some of this energy is reflected back into space, and some is absorbed
by the atmosphere. However, enough energy arrives at the surface of the Earth
each day to supply all our energy needs on this planet hundreds of times over—if
only it could be captured and used efficiently. The growth in the number of solar
energy–powered houses built in this country reflects the increasing efforts being
made to use this abundant energy. Radiant energy from the Sun affects our day-to-
day existence in a number of ways. For example, it influences the Earth’s average
temperature, ocean currents, agriculture, and rain patterns.

What happens to the atmospheric temperature at night is another example of
the effects of energy transfer by radiation. If there is a cloud cover above the
Earth, the water vapor in the clouds absorbs part of the infrared radiation emitted
by the Earth and re-emits it back to the surface. Consequently, temperature levels
at the surface remain moderate. In the absence of this cloud cover, there is noth-
ing to prevent this radiation from escaping into space; thus the temperature de-
creases more on a clear night than on a cloudy one.

As an object radiates energy at a rate given by Equation 20.18, it also absorbs
electromagnetic radiation. If the latter process did not occur, an object would
eventually radiate all its energy, and its temperature would reach absolute zero.
The energy an object absorbs comes from its surroundings, which consist of other
objects that radiate energy. If an object is at a temperature T and its surroundings

�

� � �AeT 4Stefan’s law

Figure 20.13 Convection cur-
rents are set up in a room heated
by a radiator.
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are at a temperature T0 , then the net energy gained or lost each second by the ob-
ject as a result of radiation is

(20.19)

When an object is in equilibrium with its surroundings, it radiates and absorbs
energy at the same rate, and so its temperature remains constant. When an object
is hotter than its surroundings, it radiates more energy than it absorbs, and its tem-
perature decreases. An ideal absorber is defined as an object that absorbs all the
energy incident on it, and for such a body, e = 1. Such an object is often referred to
as a black body. An ideal absorber is also an ideal radiator of energy. In contrast,
an object for which absorbs none of the energy incident on it. Such an ob-
ject reflects all the incident energy, and thus is an ideal reflector.

The Dewar Flask

The Dewar flask8 is a container designed to minimize energy losses by conduction,
convection, and radiation. Such a container is used to store either cold or hot liq-
uids for long periods of time. (A Thermos bottle is a common household equiva-
lent of a Dewar flask.) The standard construction (Fig. 20.14) consists of a double-
walled Pyrex glass vessel with silvered walls. The space between the walls is
evacuated to minimize energy transfer by conduction and convection. The silvered
surfaces minimize energy transfer by radiation because silver is a very good reflec-
tor and has very low emissivity. A further reduction in energy loss is obtained by re-
ducing the size of the neck. Dewar flasks are commonly used to store liquid nitro-
gen (boiling point: 77 K) and liquid oxygen (boiling point: 90 K).

To confine liquid helium (boiling point: 4.2 K), which has a very low heat of
vaporization, it is often necessary to use a double Dewar system in which the Dewar
flask containing the liquid is surrounded by a second Dewar flask. The space be-
tween the two flasks is filled with liquid nitrogen.

Newer designs of storage containers use “super insulation” that consists of
many layers of reflecting material separated by fiberglass. All of this is in a vacuum,
and no liquid nitrogen is needed with this design.

e � 0

�net � �Ae(T 4 � T0 

4)

Who Turned Down the Thermostat?EXAMPLE 20.11
(Why is the temperature given in kelvins?) At this rate, the to-
tal energy lost by the skin in 10 min is

Note that the energy radiated by the student is roughly equiv-
alent to that produced by two 60-W light bulbs!

7.5 � 104 JQ � �net � �t � (125 W)(600 s) �

A student is trying to decide what to wear. The surroundings
(his bedroom) are at 20.0°C. If the skin temperature of the
unclothed student is 35°C, what is the net energy loss from
his body in 10.0 min by radiation? Assume that the emissivity
of skin is 0.900 and that the surface area of the student is 
1.50 m2.

Solution Using Equation 20.19, we find that the net rate
of energy loss from the skin is

   �  (0.900)[(308 K)4 � (293 K)4] � 125 W

 � (5.67 � 10�8 W/m2�K4)(1.50 m2)

�net � �Ae(T 4 � T0 

4) 

8 Invented by Sir James Dewar (1842–1923).

Vacuum

Silvered
surfaces

Hot or
cold

substance

Figure 20.14 A cross-sectional
view of a Dewar flask, which is used
to store hot or cold substances.
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SUMMARY

Internal energy is all of a system’s energy that is associated with the system’s mi-
croscopic components. Internal energy includes kinetic energy of translation, rota-
tion, and vibration of molecules, potential energy within molecules, and potential
energy between molecules.

Heat is the transfer of energy across the boundary of a system resulting from a
temperature difference between the system and its surroundings. We use the sym-
bol Q for the amount of energy transferred by this process.

The calorie is the amount of energy necessary to raise the temperature of 1 g
of water from 14.5°C to 15.5°C. The mechanical equivalent of heat is 1 cal �
4.186 J.

The heat capacity C of any sample is the amount of energy needed to raise
the temperature of the sample by 1°C. The energy Q required to change the tem-
perature of a mass m of a substance by an amount �T is

(20.4)

where c is the specific heat of the substance.
The energy required to change the phase of a pure substance of mass m is

(20.6)

where L is the latent heat of the substance and depends on the nature of the
phase change and the properties of the substance.

The work done by a gas as its volume changes from some initial value Vi to
some final value Vf is

(20.8)

where P is the pressure, which may vary during the process. In order to evaluate
W, the process must be fully specified—that is, P and V must be known during
each step. In other words, the work done depends on the path taken between the
initial and final states.

The first law of thermodynamics states that when a system undergoes a
change from one state to another, the change in its internal energy is

(20.9)

where Q is the energy transferred into the system by heat and W is the work done
by the system. Although Q and W both depend on the path taken from the initial
state to the final state, the quantity �E int is path-independent. This central equation
is a statement of conservation of energy that includes changes in internal energy.

In a cyclic process (one that originates and terminates at the same state),
and, therefore, That is, the energy transferred into the system by

heat equals the work done by the system during the process.
In an adiabatic process, no energy is transferred by heat between the system

and its surroundings In this case, the first law gives That is,
the internal energy changes as a consequence of work being done by the system.
In the adiabatic free expansion of a gas, and thus, That
is, the internal energy of the gas does not change in such a process.

An isobaric process is one that occurs at constant pressure. The work done
in such a process is 

An isovolumetric process is one that occurs at constant volume. No work is
done in such a process, so �E int � Q .

W � P(Vf � Vi).

�E int � 0.W � 0;Q � 0

�E int � �W.(Q � 0).

Q � W.�E int � 0

�E int � Q � W

W � �Vf

Vi

 P dV

Q � mL

Q � mc�T
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An isothermal process is one that occurs at constant temperature. The work
done by an ideal gas during an isothermal process is

(20.13)

Energy may be transferred by work, which we addressed in Chapter 7, and by
conduction, convection, or radiation. Conduction can be viewed as an exchange
of kinetic energy between colliding molecules or electrons. The rate at which en-
ergy flows by conduction through a slab of area A is

(20.14)

where k is the thermal conductivity of the material from which the slab is made
and is the temperature gradient. This equation can be used in many sit-
uations in which the rate of transfer of energy through materials is important.

In convection, a heated substance moves from one place to another.
All bodies emit radiation in the form of electromagnetic waves at the rate

(20.18)

A body that is hotter than its surroundings radiates more energy than it absorbs,
whereas a body that is cooler than its surroundings absorbs more energy than it 
radiates.

� � �AeT 4

� dT/dx �

� � kA � dT
dx �

W � nRT ln� Vf

Vi
�

QUESTIONS

10. Figure Q20.10 shows a pattern formed by snow on the
roof of a barn. What causes the alternating pattern of
snowcover and exposed roof?

1. The specific heat of water is about two times that of ethyl
alcohol. Equal masses of alcohol and water are contained
in separate beakers and are supplied with the same
amount of energy. Compare the temperature increases of
the two liquids.

2. Give one reason why coastal regions tend to have a more
moderate climate than inland regions do.

3. A small metal crucible is taken from a 200°C oven and im-
mersed in a tub full of water at room temperature (this
process is often referred to as quenching). What is the ap-
proximate final equilibrium temperature?

4. What is the major problem that arises in measuring spe-
cific heats if a sample with a temperature greater than
100°C is placed in water?

5. In a daring lecture demonstration, an instructor dips his
wetted fingers into molten lead (327°C) and withdraws
them quickly, without getting burned. How is this possi-
ble? (This is a dangerous experiment that you should not
attempt.)

6. The pioneers found that placing a large tub of water in a
storage cellar would prevent their food from freezing on
really cold nights. Explain why.

7. What is wrong with the statement, “Given any two bodies,
the one with the higher temperature contains more heat.”

8. Why is it possible for you to hold a lighted match, even
when it is burned to within a few millimeters of your fin-
gertips?

9. Why is it more comfortable to hold a cup of hot tea by the
handle than by wrapping your hands around the cup itself?

Figure Q20.10 Alternating pattern on a snow-covered roof.

11. Why is a person able to remove a piece of dry aluminum
foil from a hot oven with bare fingers but burns his or her
fingers if there is moisture on the foil?

12. A tile floor in a bathroom may feel uncomfortably cold to
your bare feet, but a carpeted floor in an adjoining room
at the same temperature feels warm. Why?
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13. Why can potatoes be baked more quickly when a metal
skewer has been inserted through them?

14. Explain why a Thermos bottle has silvered walls and a vac-
uum jacket.

15. A piece of paper is wrapped around a rod made half of
wood and half of copper. When held over a flame, the pa-
per in contact with the wood burns but the paper in con-
tact with the metal does not. Explain.

16. Why is it necessary to store liquid nitrogen or liquid oxy-
gen in vessels equipped with either polystyrene insulation
or a double-evacuated wall?

17. Why do heavy draperies hung over the windows help
keep a home warm in the winter and cool in the summer?

18. If you wish to cook a piece of meat thoroughly on an
open fire, why should you not use a high flame? (Note:
Carbon is a good thermal insulator.)

19. When insulating a wood-frame house, is it better to place
the insulation against the cooler, outside wall or against
the warmer, inside wall? (In either case, an air barrier
must be considered.)

20. In an experimental house, polystyrene beads were
pumped into the air space between the panes of glass in
double-pane windows at night in the winter, and they
were pumped out to holding bins during the day. How
would this procedure assist in conserving energy in the
house?

21. Pioneers stored fruits and vegetables in underground cel-
lars. Discuss the advantages of choosing this location as a
storage site.

22. Concrete has a higher specific heat than soil does. Use
this fact to explain (partially) why cities have a higher av-
erage night-time temperature than the surrounding
countryside does. If a city is hotter than the surrounding
countryside, would you expect breezes to blow from city
to country or from country to city? Explain.

23. When camping in a canyon on a still night, a hiker no-

tices that a breeze begins to stir as soon as the Sun strikes
the surrounding peaks. What causes the breeze?

24. Updrafts of air are familiar to all pilots and are used to keep
non-motorized gliders aloft. What causes these currents?

25. If water is a poor thermal conductor, why can it be heated
quickly when placed over a flame?

26. The United States penny is now made of copper-coated
zinc. Can a calorimetric experiment be devised to test for
the metal content in a collection of pennies? If so, de-
scribe such a procedure.

27. If you hold water in a paper cup over a flame, you can
bring the water to a boil without burning the cup. How is
this possible?

28. When a sealed Thermos bottle full of hot coffee is shaken,
what are the changes, if any, in (a) the temperature of the
coffee and (b) the internal energy of the coffee?

29. Using the first law of thermodynamics, explain why the to-
tal energy of an isolated system is always constant.

30. Is it possible to convert internal energy into mechanical
energy? Explain using examples.

31. Suppose that you pour hot coffee for your guests and one
of them chooses to drink the coffee after it has been in
the cup for several minutes. For the coffee to be warmest,
should the person add the cream just after the coffee is
poured or just before drinking it? Explain.

32. Suppose that you fill two identical cups both at room tem-
perature with the same amount of hot coffee. One cup
contains a metal spoon, while the other does not. If you
wait for several minutes, which of the two contains the
warmer coffee? Which energy transfer process accounts
for this result?

33. A warning sign often seen on highways just before a
bridge is “Caution—Bridge Surface Freezes Before Road
Surface.” Which of the three energy transfer processes is
most important in causing a bridge surface to freeze be-
fore a road surface on very cold days?

PROBLEMS

Section 20.2 Heat Capacity and Specific Heat
3. The temperature of a silver bar rises by 10.0°C when it

absorbs 1.23 kJ of energy by heat. The mass of the bar is
525 g. Determine the specific heat of silver.

4. A 50.0-g sample of copper is at 25.0°C. If 1 200 J of energy
is added to it by heat, what is its final temperature?

5. A 1.50-kg iron horseshoe initially at 600°C is dropped
into a bucket containing 20.0 kg of water at 25.0°C.
What is the final temperature? (Neglect the heat capac-
ity of the container and assume that a negligible
amount of water boils away.)

Section 20.1 Heat and Internal Energy
1. Water at the top of Niagara Falls has a temperature of

10.0°C. It falls through a distance of 50.0 m. Assuming
that all of its potential energy goes into warming of the
water, calculate the temperature of the water at the bot-
tom of the Falls.

2. Consider Joule’s apparatus described in Figure 20.1.
Each of the two masses is 1.50 kg, and the tank is filled
with 200 g of water. What is the increase in the tempera-
ture of the water after the masses fall through a distance
of 3.00 m?

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB
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6. An aluminum cup with a mass of 200 g contains 800 g
of water in thermal equilibrium at 80.0°C. The combi-
nation of cup and water is cooled uniformly so that the
temperature decreases at a rate of 1.50°C/min. At what
rate is energy being removed by heat? Express your an-
swer in watts.

7. An aluminum calorimeter with a mass of 100 g contains
250 g of water. The calorimeter and water are in ther-
mal equilibrium at 10.0°C. Two metallic blocks are
placed into the water. One is a 50.0-g piece of copper at
80.0°C; the other block has a mass of 70.0 g and is origi-
nally at a temperature of 100°C. The entire system stabi-
lizes at a final temperature of 20.0°C. (a) Determine the
specific heat of the unknown sample. (b) Guess the ma-
terial of the unknown, using the data given in Table
20.1.

8. Lake Erie contains roughly 4.00 � 1011 m3 of water. 
(a) How much energy is required to raise the tempera-
ture of this volume of water from 11.0°C to 12.0°C? 
(b) Approximately how many years would it take to sup-
ply this amount of energy with the use of a 1 000-MW
wasted energy output of an electric power plant?

9. A 3.00-g copper penny at 25.0°C drops from a height of
50.0 m to the ground. (a) If 60.0% of the change in po-
tential energy goes into increasing the internal energy,
what is its final temperature? (b) Does the result you ob-
tained in (a) depend on the mass of the penny? Explain.

10. If a mass mh of water at Th is poured into an aluminum
cup of mass mAl containing mass mc of water at Tc ,
where what is the equilibrium temperature of
the system?

11. A water heater is operated by solar power. If the solar
collector has an area of 6.00 m2 and the power deliv-
ered by sunlight is 550 W/m2, how long does it take to
increase the temperature of 1.00 m3 of water from
20.0°C to 60.0°C?

Section 20.3 Latent Heat
12. How much energy is required to change a 40.0-g ice

cube from ice at � 10.0°C to steam at 110°C?
13. A 3.00-g lead bullet at 30.0°C is fired at a speed of 

240 m/s into a large block of ice at 0°C, in which it be-
comes embedded. What quantity of ice melts?

14. Steam at 100°C is added to ice at 0°C. (a) Find the
amount of ice melted and the final temperature when
the mass of steam is 10.0 g and the mass of ice is 50.0 g.
(b) Repeat this calculation, taking the mass of steam as
1.00 g and the mass of ice as 50.0 g.

15. A 1.00-kg block of copper at 20.0°C is dropped into a
large vessel of liquid nitrogen at 77.3 K. How many
kilograms of nitrogen boil away by the time the 
copper reaches 77.3 K? (The specific heat of copper is
0.092 0 cal/g � °C. The latent heat of vaporization of ni-
trogen is 48.0 cal/g.)

16. A 50.0-g copper calorimeter contains 250 g of water at
20.0°C. How much steam must be condensed into the

Th � Tc ,

water if the final temperature of the system is to reach
50.0°C?

17. In an insulated vessel, 250 g of ice at 0°C is added to
600 g of water at 18.0°C. (a) What is the final tempera-
ture of the system? (b) How much ice remains when the
system reaches equilibrium?

18. Review Problem. Two speeding lead bullets, each hav-
ing a mass of 5.00 g, a temperature of 20.0°C, and a
speed of 500 m/s, collide head-on. Assuming a perfectly
inelastic collision and no loss of energy to the atmos-
phere, describe the final state of the two-bullet system.

19. If 90.0 g of molten lead at 327.3°C is poured into a 
300-g casting form made of iron and initially at 20.0°C,
what is the final temperature of the system? (Assume
that no energy loss to the environment occurs.)

Section 20.4 Work and Heat in 
Thermodynamic Processes

20. Gas in a container is at a pressure of 1.50 atm and a
volume of 4.00 m3. What is the work done by the gas 
(a) if it expands at constant pressure to twice its initial
volume? (b) If it is compressed at constant pressure to
one quarter of its initial volume?

21. A sample of ideal gas is expanded to twice its original
volume of 1.00 m3 in a quasi-static process for which

with atm/m6, as shown in Figure
P20.21. How much work is done by the expanding gas?

� � 5.00P � �V 2,

WEB

WEB

P

i

f

P = αV 2

V
2.00 m31.00 m3O

α

Figure P20.21

Figure P20.22

22. (a) Determine the work done by a fluid that expands
from i to f as indicated in Figure P20.22. (b) How much

6 × 106

P(Pa)

4 × 106

2 × 106

i

f

V(m3)
43210
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cycle is reversed—that is, if the process follows the path
ACBA—what is the net energy input per cycle by heat?

31. Consider the cyclic process depicted in Figure P20.30. If
Q is negative for the process BC, and if �E int is negative
for the process CA, what are the signs of Q , W, and
�E int that are associated with each process?

32. A sample of an ideal gas goes through the process shown
in Figure P20.32. From A to B, the process is adiabatic;
from B to C, it is isobaric, with 100 kJ of energy flowing
into the system by heat. From C to D, the process is
isothermal; from D to A, it is isobaric, with 150 kJ of en-
ergy flowing out of the system by heat. Determine the
difference in internal energy, E int, B � E int, A .

WEB

Figure P20.27

work is performed by the fluid if it is compressed from 
f to i along the same path?

23. One mole of an ideal gas is heated slowly so that it goes
from PV state (Pi , Vi) to (3Pi , 3Vi) in such a way that the
pressure of the gas is directly proportional to the vol-
ume. (a) How much work is done in the process? 
(b) How is the temperature of the gas related to its vol-
ume during this process?

24. A sample of helium behaves as an ideal gas as energy is
added by heat at constant pressure from 273 K to 373 K.
If the gas does 20.0 J of work, what is the mass of helium
present?

25. An ideal gas is enclosed in a cylinder with a movable
piston on top. The piston has a mass of 8 000 g and an
area of 5.00 cm2 and is free to slide up and down, keep-
ing the pressure of the gas constant. How much work is
done as the temperature of 0.200 mol of the gas is
raised from 20.0°C to 300°C?

26. An ideal gas is enclosed in a cylinder that has a movable
piston on top. The piston has a mass m and an area A
and is free to slide up and down, keeping the pressure
of the gas constant. How much work is done as the tem-
perature of n mol of the gas is raised from T1 to T2 ?

27. A gas expands from I to F along three possible paths, as
indicated in Figure P20.27. Calculate the work in joules
done by the gas along the paths IAF, IF, and IBF.

I A

F
B

P(atm)

4

3

2

1

0 1 42 3
V(liters)

Section 20.5 The First Law of Thermodynamics
28. A gas is compressed from 9.00 L to 2.00 L at a constant

pressure of 0.800 atm. In the process, 400 J of energy
leaves the gas by heat. (a) What is the work done by the
gas? (b) What is the change in its internal energy?

29. A thermodynamic system undergoes a process in which
its internal energy decreases by 500 J. If, at the same
time, 220 J of work is done on the system, what is the
energy transferred to or from it by heat?

30. A gas is taken through the cyclic process described in
Figure P20.30. (a) Find the net energy transferred to
the system by heat during one complete cycle. (b) If the

Section 20.6 Some Applications of the First Law 
of Thermodynamics

33. An ideal gas initially at 300 K undergoes an isobaric
expansion at 2.50 kPa. If the volume increases from
1.00 m3 to 3.00 m3 and if 12.5 kJ of energy is trans-
ferred to the gas by heat, what are (a) the change in its
internal energy and (b) its final temperature?

34. One mole of an ideal gas does 3 000 J of work on its
surroundings as it expands isothermally to a final pres-
sure of 1.00 atm and a volume of 25.0 L. Determine 
(a) the initial volume and (b) the temperature of the
gas.

35. How much work is done by the steam when 1.00 mol of
water at 100°C boils and becomes 1.00 mol of steam at

4

6

2

8
P(kPa)

B

C
A

6 8 10
V(m3)

Figure P20.30 Problems 30 and 31.

1.0

3.0

P(atm)

0.090 0.20 0.40 1.2

A

CB

D

V(m3)

Figure P20.32

How much energy is lost every second by heat when the
steam is at 200°C and the surrounding air is at 20.0°C?
The pipe has a circumference of 20.0 cm and a length
of 50.0 m. Neglect losses through the ends of the pipe.

42. A box with a total surface area of 1.20 m2 and a wall
thickness of 4.00 cm is made of an insulating material.
A 10.0-W electric heater inside the box maintains the in-
side temperature at 15.0°C above the outside tempera-
ture. Find the thermal conductivity k of the insulating
material.

43. A glass window pane has an area of 3.00 m2 and a thick-
ness of 0.600 cm. If the temperature difference between
its surfaces is 25.0°C, what is the rate of energy transfer
by conduction through the window?

44. A thermal window with an area of 6.00 m2 is con-
structed of two layers of glass, each 4.00 mm thick and
separated from each other by an air space of 5.00 mm.
If the inside surface is at 20.0°C and the outside is at
� 30.0°C, what is the rate of energy transfer by conduc-
tion through the window?

45. A bar of gold is in thermal contact with a bar of silver of
the same length and area (Fig. P20.45). One end of the
compound bar is maintained at 80.0°C, while the oppo-
site end is at 30.0°C. When the rate of energy transfer
by conduction reaches steady state, what is the tempera-
ture at the junction?

Problems 635

100°C and at 1.00 atm pressure? Assuming the steam to
be an ideal gas, determine the change in internal en-
ergy of the steam as it vaporizes.

36. A 1.00-kg block of aluminum is heated at atmospheric
pressure such that its temperature increases from
22.0°C to 40.0°C. Find (a) the work done by the
aluminum, (b) the energy added to it by heat, and 
(c) the change in its internal energy.

37. A 2.00-mol sample of helium gas initially at 300 K and
0.400 atm is compressed isothermally to 1.20 atm.
Assuming the behavior of helium to be that of an ideal
gas, find (a) the final volume of the gas, (b) the work
done by the gas, and (c) the energy transferred by heat.

38. One mole of water vapor at a temperature of 373 K
cools down to 283 K. The energy given off from the
cooling vapor by heat is absorbed by 10.0 mol of an
ideal gas, causing it to expand at a constant tempera-
ture of 273 K. If the final volume of the ideal gas is 
20.0 L, what is the initial volume of the ideal gas?

39. An ideal gas is carried through a thermodynamic cycle
consisting of two isobaric and two isothermal processes,
as shown in Figure P20.39. Show that the net work done
in the entire cycle is given by the equation

Wnet � P1(V2 � V1) ln 
P2

P1

46. Two rods of the same length but made of different ma-
terials and having different cross-sectional areas are
placed side by side, as shown in Figure P20.46. Deter-

40. In Figure P20.40, the change in internal energy of a gas
that is taken from A to C is 	 800 J. The work done
along the path ABC is 	 500 J. (a) How much energy
must be added to the system by heat as it goes from A
through B and on to C ? (b) If the pressure at point A is
five times that at point C, what is the work done by the
system in going from C to D ? (c) What is the energy ex-
changed with the surroundings by heat as the gas is
taken from C to A along the green path? (d) If the
change in internal energy in going from point D to
point A is 	 500 J, how much energy must be added to
the system by heat as it goes from point C to point D ?

Section 20.7 Energy Transfer Mechanisms
41. A steam pipe is covered with 1.50-cm-thick insulating ma-

terial with a thermal conductivity of 0.200 cal/cm � °C � s.

Figure P20.39

V 1 V 2

P 1

P 2

P
B C

D
A

V

P

V

A B

D C

Figure P20.40

Figure P20.45

Insulation
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mine the rate of energy transfer by conduction in terms
of the thermal conductivity and the area of each rod.
Generalize your result to a system consisting of several
rods.

47. Calculate the R value of (a) a window made of a single
pane of flat glass in. thick; (b) a thermal window
made of two single panes, each in. thick and separated
by a -in. air space. (c) By what factor is the thermal
conduction reduced if the thermal window replaces the
single-pane window?

48. The surface of the Sun has a temperature of about
5 800 K. The radius of the Sun is 6.96 � 108 m. Calcu-
late the total energy radiated by the Sun each second.
(Assume that 

49. A large, hot pizza floats in outer space. What is the or-
der of magnitude (a) of its rate of energy loss? (b) of its
rate of temperature change? List the quantities you esti-
mate and the value you estimate for each.

50. The tungsten filament of a certain 100-W light bulb ra-
diates 2.00 W of light. (The other 98 W is carried away
by convection and conduction.) The filament has a sur-
face area of 0.250 mm2 and an emissivity of 0.950. Find
the filament’s temperature. (The melting point of tung-
sten is 3 683 K.)

51. At high noon, the Sun delivers 1 000 W to each square
meter of a blacktop road. If the hot asphalt loses energy
only by radiation, what is its equilibrium temperature?

52. At our distance from the Sun, the intensity of solar radi-
ation is 1 340 W/m2. The temperature of the Earth is af-
fected by the so-called “greenhouse effect” of the atmos-
phere. This effect makes our planet’s emissivity for
visible light higher than its emissivity for infrared light.
For comparison, consider a spherical object with no at-
mosphere at the same distance from the Sun as the
Earth. Assume that its emissivity is the same for all kinds
of electromagnetic waves and that its temperature is
uniform over its surface. Identify the projected area
over which it absorbs sunlight and the surface area over
which it radiates. Compute its equilibrium temperature.
Chilly, isn’t it? Your calculation applies to (a) the aver-
age temperature of the Moon, (b) astronauts in mortal
danger aboard the crippled Apollo 13 spacecraft, and 
(c) global catastrophe on the Earth if widespread fires
caused a layer of soot to accumulate throughout the up-
per atmosphere so that most of the radiation from the
Sun was absorbed there rather than at the surface below
the atmosphere.

e � 0.965.)

1
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1
8

1
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ADDITIONAL PROBLEMS

53. One hundred grams of liquid nitrogen at 77.3 K is
stirred into a beaker containing 200 g of water at
5.00°C. If the nitrogen leaves the solution as soon as it
turns to gas, how much water freezes? (The latent heat
of vaporization of nitrogen is 48.0 cal/g, and the latent
heat of fusion of water is 79.6 cal/g.)

54. A 75.0-kg cross-country skier moves across the snow
(Fig. P20.54). The coefficient of friction between the
skis and the snow is 0.200. Assume that all the snow be-
neath his skis is at 0°C and that all the internal energy
generated by friction is added to the snow, which sticks
to his skis until it melts. How far would he have to ski to
melt 1.00 kg of snow?

55. An aluminum rod 0.500 m in length and with a cross-
sectional area 2.50 cm2 is inserted into a thermally insu-
lated vessel containing liquid helium at 4.20 K. The rod
is initially at 300 K. (a) If one half of the rod is inserted
into the helium, how many liters of helium boil off by
the time the inserted half cools to 4.20 K? (Assume that
the upper half does not yet cool.) (b) If the upper end
of the rod is maintained at 300 K, what is the approxi-
mate boil-off rate of liquid helium after the lower half
has reached 4.20 K? (Aluminum has thermal conduc-
tivity of 31.0 J/s � cm � K at 4.2 K; ignore its tempera-
ture variation. Aluminum has a specific heat of 
0.210 cal/g � °C and density of 2.70 g/cm3. The density
of liquid helium is 0.125 g/cm3.)

56. On a cold winter day, you buy a hot dog from a street
vendor. Into the pocket of your down parka you put 
the change he gives you: coins consisting of 9.00 g of
copper at � 12.0°C. Your pocket already contains 
14.0 g of silver coins at 30.0°C. A short time later, the
temperature of the copper coins is 4.00°C and is in-
creasing at a rate of 0.500°C/s. At this time (a) what 
is the temperature of the silver coins, and (b) at what
rate is it changing? (Neglect energy transferred to the
surroundings.)

Figure P20.46

L

Insulation

1
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Tc Th

Figure P20.54 A cross-country skier. (Nathan Bilow/Leo de Wys, Inc.)

Problems 637

64. Water in an electric teakettle is boiling. The power ab-
sorbed by the water is 1.00 kW. Assuming that the pres-
sure of the vapor in the kettle equals atmospheric pres-
sure, determine the speed of effusion of vapor from the
kettle’s spout if the spout has a cross-sectional area of
2.00 cm2.

65. Liquid water evaporates and even boils at temperatures
other than 100°C, depending on the ambient pressure.
Suppose that the latent heat of vaporization in Table
20.2 describes the liquid–vapor transition at all temper-
atures. A chamber contains 1.00 kg of water at 0°C un-
der a piston, which just touches the water’s surface. The
piston is then raised quickly so that part of the water is
vaporized and the other part is frozen (no liquid re-
mains). Assuming that the temperature remains con-

57. A flow calorimeter is an apparatus used to measure the
specific heat of a liquid. The technique of flow calorime-
try involves measuring the temperature difference be-
tween the input and output points of a flowing stream of
the liquid while energy is added by heat at a known rate.
In one particular experiment, a liquid with a density of
0.780 g/cm3 flows through the calorimeter at the rate of
4.00 cm3/s. At steady state, a temperature difference of
4.80°C is established between the input and output
points when energy is supplied by heat at the rate of 
30.0 J/s. What is the specific heat of the liquid?

58. A flow calorimeter is an apparatus used to measure the
specific heat of a liquid. The technique of flow
calorimetry involves measuring the temperature differ-
ence between the input and output points of a flowing
stream of the liquid while energy is added by heat at a
known rate. In one particular experiment, a liquid of
density � flows through the calorimeter with volume
flow rate R. At steady state, a temperature difference
�T is established between the input and output points
when energy is supplied at the rate �. What is the spe-
cific heat of the liquid?

59. One mole of an ideal gas, initially at 300 K, is cooled at
constant volume so that the final pressure is one-fourth
the initial pressure. The gas then expands at constant
pressure until it reaches the initial temperature. Deter-
mine the work done by the gas.

60. One mole of an ideal gas is contained in a cylinder with
a movable piston. The initial pressure, volume, and tem-
perature are Pi , Vi , and Ti , respectively. Find the work
done by the gas for the following processes and show
each process on a PV diagram: (a) An isobaric compres-
sion in which the final volume is one-half the initial vol-
ume. (b) An isothermal compression in which the final
pressure is four times the initial pressure. (c) An isovol-
umetric process in which the final pressure is triple the
initial pressure.

61. An ideal gas initially at Pi , Vi , and Ti is taken through a
cycle as shown in Figure P20.61. (a) Find the net work
done by the gas per cycle. (b) What is the net energy
added by heat to the system per cycle? (c) Obtain a nu-

merical value for the net work done per cycle for 
1.00 mol of gas initially at 0°C.

62. Review Problem. An iron plate is held against an iron
wheel so that a sliding frictional force of 50.0 N acts be-
tween the two pieces of metal. The relative speed at
which the two surfaces slide over each other is 40.0 m/s.
(a) Calculate the rate at which mechanical energy is
converted to internal energy. (b) The plate and the
wheel each have a mass of 5.00 kg, and each receives
50.0% of the internal energy. If the system is run as de-
scribed for 10.0 s and each object is then allowed to
reach a uniform internal temperature, what is the resul-
tant temperature increase?

63. A “solar cooker” consists of a curved reflecting mirror
that focuses sunlight onto the object to be warmed (Fig.
P20.63). The solar power per unit area reaching the
Earth at the location is 600 W/m2, and the cooker has a
diameter of 0.600 m. Assuming that 40.0% of the inci-
dent energy is transferred to the water, how long does it
take to completely boil off 0.500 L of water initially at
20.0°C? (Neglect the heat capacity of the container.)

B C

D
A

P

Pi

3Pi

Vi 3Vi
V

Figure P20.61

Figure P20.63

WEB
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stant at 0°C, determine the mass of the ice that forms in
the chamber.

66. A cooking vessel on a slow burner contains 10.0 kg of
water and an unknown mass of ice in equilibrium at 0°C
at time The temperature of the mixture is mea-
sured at various times, and the result is plotted in Fig-
ure P20.66. During the first 50.0 min, the mixture re-
mains at 0°C. From 50.0 min to 60.0 min, the tem-
perature increases to 2.00°C. Neglecting the heat capac-
ity of the vessel, determine the initial mass of the ice.

t � 0.

side temperature is 0.0°C? Disregard radiation and the
energy lost by heat through the ground.

69. A pond of water at 0°C is covered with a layer of ice 
4.00 cm thick. If the air temperature stays constant at
� 10.0°C, how long does it take the ice’s thickness to
increase to 8.00 cm? (Hint: To solve this problem, use
Equation 20.14 in the form

and note that the incremental energy dQ extracted
from the water through the thickness x of ice is the
amount required to freeze a thickness dx of ice. That is,

where � is the density of the ice, A is the
area, and L is the latent heat of fusion.)

70. The inside of a hollow cylinder is maintained at a tem-
perature Ta while the outside is at a lower temperature
Tb (Fig. P20.70). The wall of the cylinder has a thermal
conductivity k. Neglecting end effects, show that the
rate of energy conduction from the inner to the outer
wall in the radial direction is

(Hint: The temperature gradient is dT/dr. Note that a
radial flow of energy occurs through a concentric cylin-
der of area 2�rL.)

dQ
dt

� 2�Lk � Ta � Tb

ln(b/a) �

dQ � L�A dx,

dQ
dt

� kA 
�T
x

67. Review Problem. (a) In air at 0°C, a 1.60-kg copper
block at 0°C is set sliding at 2.50 m/s over a sheet of ice
at 0°C. Friction brings the block to rest. Find the mass
of the ice that melts. To describe the process of slowing
down, identify the energy input Q , the work output W,
the change in internal energy �E int , and the change in
mechanical energy �K for both the block and the ice.
(b) A 1.60-kg block of ice at 0°C is set sliding at 
2.50 m/s over a sheet of copper at 0°C. Friction brings
the block to rest. Find the mass of the ice that melts.
Identify Q , W, �E int , and �K for the block and for the
metal sheet during the process. (c) A thin 1.60-kg slab
of copper at 20°C is set sliding at 2.50 m/s over an iden-
tical stationary slab at the same temperature. Friction
quickly stops the motion. If no energy is lost to the envi-
ronment by heat, find the change in temperature of
both objects. Identify Q , W, �E int , and �K for each ob-
ject during the process.

68. The average thermal conductivity of the walls (includ-
ing the windows) and roof of the house depicted in Fig-
ure P20.68 is 0.480 W/m � °C, and their average thick-
ness is 21.0 cm. The house is heated with natural gas
having a heat of combustion (that is, the energy pro-
vided per cubic meter of gas burned) of 9 300 kcal/m3.
How many cubic meters of gas must be burned each day
to maintain an inside temperature of 25.0°C if the out-

Figure P20.66

Figure P20.68

Figure P20.70
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ANSWERS TO QUICK QUIZZES

(a) Because the pumping is rapid, no energy enters or
leaves the system by heat; thus, Q � 0. Because work is
done on the system, this work is negative. Thus,

must be positive. The air in the pump is
warmer. (b) No work is done either by or on the system,
but energy flows into the water by heat from the hot
burner, making both Q and �E int positive. (c) Because
the leak is rapid, no energy flows into or out of the sys-
tem by heat; hence, Q � 0. The air molecules escaping
from the balloon do work on the surrounding air mole-
cules as they push them out of the way. Thus, W is posi-
tive and �E int is negative. The decrease in internal en-
ergy is evidenced by the fact that the escaping air
becomes cooler.

20.5 A is isovolumetric, B is adiabatic, C is isothermal, and D
is isobaric.

20.6 c. The blanket acts as a thermal insulator, slowing the
transfer of energy by heat from the air into the cube.

�E int � Q � W

20.1 (a) Water, glass, iron. Because water has the highest spe-
cific heat (4 186 J/kg � °C), it has the smallest change in
temperature. Glass is next (837 J/kg � °C), and iron is
last (448 J/kg � °C). (b) Iron, glass, water. For a given
temperature increase, the energy transfer by heat is pro-
portional to the specific heat.

20.2 Steam. According to Table 20.2, a kilogram of 100°C
steam releases 2.26 � 106 J of energy as it condenses to
100°C water. After it releases this much energy into your
skin, it is identical to 100°C water and will continue to
burn you.

20.3 C, A, E. The slope is the ratio of the temperature change
to the amount of energy input. Thus, the slope is pro-
portional to the reciprocal of the specific heat. Water,
which has the highest specific heat, has the least slope.

20.4

71. The passenger section of a jet airliner has the shape of a
cylindrical tube with a length of 35.0 m and an inner
radius of 2.50 m. Its walls are lined with an insulating
material 6.00 cm in thickness and having a thermal
conductivity of 4.00 � 10�5 cal/s � cm � °C. A heater
must maintain the interior temperature at 25.0°C while
the outside temperature is at � 35.0°C. What power
must be supplied to the heater if this temperature dif-
ference is to be maintained? (Use the result you ob-
tained in Problem 70.)

72. A student obtains the following data in a calorimetry ex-
periment designed to measure the specific heat of alu-
minum:

Use these data to determine the specific heat of alu-
minum. Your result should be within 15% of the value
listed in Table 20.1.

Initial temperature of water 70°C
and calorimeter

Mass of water 0.400 kg
Mass of calorimeter 0.040 kg
Specific heat of calorimeter 0.63 kJ/kg � °C
Initial temperature of aluminum 27°C
Mass of aluminum 0.200 kg
Final temperature of mixture 66.3°C

Situation System Q W �E int

(a) Rapidly pumping Air in the pump 0 � 	

up a bicycle tire
(b) Pan of room- Water in the pan 	 0 	

temperature water 
sitting on a hot stove

(c) Air quickly leaking Air originally in 0 	 �

out of a balloon the balloon



P U Z Z L E R

During periods of strenuous exertion, our
bodies generate excess internal energy
that must be released into our surround-
ings. To facilitate this release, humans
perspire. Dogs and other animals pant to
accomplish the same goal. Both actions
involve the evaporation of a liquid. How
does this process help cool the body?
(Photograph of runner by Jim Cummins/FPG

International; photograph of beagle by Renee

Lynn/Photo Researchers, Inc.)
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21.1 Molecular Model of an Ideal Gas 641

n Chapter 19 we discussed the properties of an ideal gas, using such macro-
scopic variables as pressure, volume, and temperature. We shall now show that
such large-scale properties can be described on a microscopic scale, where mat-

ter is treated as a collection of molecules. Newton’s laws of motion applied in a sta-
tistical manner to a collection of particles provide a reasonable description of ther-
modynamic processes. To keep the mathematics relatively simple, we shall
consider molecular behavior of gases only, because in gases the interactions be-
tween molecules are much weaker than they are in liquids or solids. In the current
view of gas behavior, called the kinetic theory, gas molecules move about in a ran-
dom fashion, colliding with the walls of their container and with each other. Per-
haps the most important feature of this theory is that it demonstrates that the ki-
netic energy of molecular motion and the internal energy of a gas system are
equivalent. Furthermore, the kinetic theory provides us with a physical basis for
our understanding of the concept of temperature.

In the simplest model of a gas, each molecule is considered to be a hard
sphere that collides elastically with other molecules and with the container’s walls.
The hard-sphere model assumes that the molecules do not interact with each
other except during collisions and that they are not deformed by collisions. This
description is adequate only for monatomic gases, for which the energy is entirely
translational kinetic energy. One must modify the theory for more complex mole-
cules, such as oxygen (O2) and carbon dioxide (CO2), to include the internal en-
ergy associated with rotations and vibrations of the molecules.

MOLECULAR MODEL OF AN IDEAL GAS
We begin this chapter by developing a microscopic model of an ideal gas. The
model shows that the pressure that a gas exerts on the walls of its container is a
consequence of the collisions of the gas molecules with the walls. As we shall see,
the model is consistent with the macroscopic description of Chapter 19. In devel-
oping this model, we make the following assumptions:

• The number of molecules is large, and the average separation between mole-
cules is great compared with their dimensions. This means that the volume of
the molecules is negligible when compared with the volume of the container.

• The molecules obey Newton’s laws of motion, but as a whole they move ran-
domly. By “randomly” we mean that any molecule can move in any direction
with equal probability. We also assume that the distribution of speeds does not
change in time, despite the collisions between molecules. That is, at any given
moment, a certain percentage of molecules move at high speeds, a certain per-
centage move at low speeds, and a certain percentage move at speeds intermedi-
ate between high and low.

• The molecules undergo elastic collisions with each other and with the walls of
the container. Thus, in the collisions, both kinetic energy and momentum are
constant.

• The forces between molecules are negligible except during a collision. The
forces between molecules are short-range, so the molecules interact with each
other only during collisions.

• The gas under consideration is a pure substance. That is, all of its molecules are
identical.

Although we often picture an ideal gas as consisting of single atoms, we can as-
sume that the behavior of molecular gases approximates that of ideal gases rather

21.1

I

10.5

Assumptions of the molecular
model of an ideal gas
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well at low pressures. Molecular rotations or vibrations have no effect, on the aver-
age, on the motions that we considered here.

Now let us derive an expression for the pressure of an ideal gas consisting of N
molecules in a container of volume V. The container is a cube with edges of length
d (Fig. 21.1). Consider the collision of one molecule moving with a velocity v to-
ward the right-hand face of the box. The molecule has velocity components vx , vy ,
and vz . Previously, we used m to represent the mass of a sample, but throughout
this chapter we shall use m to represent the mass of one molecule. As the molecule
collides with the wall elastically, its x component of velocity is reversed, while its y
and z components of velocity remain unaltered (Fig. 21.2). Because the x compo-
nent of the momentum of the molecule is mvx before the collision and � mvx after
the collision, the change in momentum of the molecule is

Applying the impulse–momentum theorem (Eq. 9.9) to the molecule gives

where F1 is the magnitude of the average force exerted by the wall on the mole-
cule in the time �t. The subscript 1 indicates that we are currently considering
only one molecule. For the molecule to collide twice with the same wall, it must
travel a distance 2d in the x direction. Therefore, the time interval between two
collisions with the same wall is Over a time interval that is long com-
pared with �t, the average force exerted on the molecule for each collision is

(21.1)

According to Newton’s third law, the average force exerted by the molecule on the
wall is equal in magnitude and opposite in direction to the force in Equation 21.1:

Each molecule of the gas exerts a force F1 on the wall. We find the total force F ex-
erted by all the molecules on the wall by adding the forces exerted by the individ-
ual molecules:

In this equation, vx1 is the x component of velocity of molecule 1, vx2 is the x com-
ponent of velocity of molecule 2, and so on. The summation terminates when we
reach N molecules because there are N molecules in the container.

To proceed further, we must note that the average value of the square of the
velocity in the x direction for N molecules is

Thus, the total force exerted on the wall can be written

Now let us focus on one molecule in the container whose velocity components
are vx , vy , and vz . The Pythagorean theorem relates the square of the speed of this

F �
Nm
d

 vx 

2

vx 

2 �
vx1 

2 � vx 2 

2 � ��� � vxN 

2

N

F �
m
d

 (vx1 

2 � vx 2 

2 � ���)

F1, on wall � �F1 � �� �mvx 

2

d � �
mvx 

2

d

F1 �
�2mvx

�t
�

�2mvx

2d/vx
�

�mvx 

2

d

�t � 2d/vx .

F1 �t � �px � �2mvx

�px � �mvx � (mvx) � �2mvx
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Figure 21.1 A cubical box with
sides of length d containing an
ideal gas. The molecule shown
moves with velocity v.

Figure 21.2 A molecule makes
an elastic collision with the wall of
the container. Its x component of
momentum is reversed, while its y
component remains unchanged. In
this construction, we assume that
the molecule moves in the xy
plane.
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vx

v
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v
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molecule to the squares of these components:

Hence, the average value of v2 for all the molecules in the container is related to
the average values of vx

2, vy
2, and vz

2 according to the expression

Because the motion is completely random, the average values and are
equal to each other. Using this fact and the previous equation, we find that

Thus, the total force exerted on the wall is

Using this expression, we can find the total pressure exerted on the wall:

(21.2)

This result indicates that the pressure is proportional to the number of mole-
cules per unit volume and to the average translational kinetic energy of the
molecules, In deriving this simplified model of an ideal gas, we obtain an
important result that relates the large-scale quantity of pressure to an atomic quan-
tity—the average value of the square of the molecular speed. Thus, we have estab-
lished a key link between the atomic world and the large-scale world.

You should note that Equation 21.2 verifies some features of pressure with
which you are probably familiar. One way to increase the pressure inside a con-
tainer is to increase the number of molecules per unit volume in the container.
This is what you do when you add air to a tire. The pressure in the tire can also be
increased by increasing the average translational kinetic energy of the air mole-
cules in the tire. As we shall soon see, this can be accomplished by increasing the
temperature of that air. It is for this reason that the pressure inside a tire increases
as the tire warms up during long trips. The continuous flexing of the tire as it
moves along the surface of a road results in work done as parts of the tire distort
and in an increase in internal energy of the rubber. The increased temperature of
the rubber results in the transfer of energy by heat into the air inside the tire. This
transfer increases the air’s temperature, and this increase in temperature in turn
produces an increase in pressure.

Molecular Interpretation of Temperature

We can gain some insight into the meaning of temperature by first writing Equa-
tion 21.2 in the more familiar form

Let us now compare this with the equation of state for an ideal gas (Eq. 19.10):

PV � NkBT

PV � 2
3N �1

2mv2�

1
2mv2.

P �
2
3

 � N
V �� 1

2
 mv2�  

P �
F
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�
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d2 �

1
3
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d3  mv2� �

1
3
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V �mv2

F �
N
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 � mv2

d �

v2 � 3vx 
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Ludwig Boltzmann Austrian
theoretical physicist (1844 – 1906)
Boltzmann made many important con-
tributions to the development of the
kinetic theory of gases, electromag-
netism, and thermodynamics. His pio-
neering work in the field of kinetic
theory led to the branch of physics
known as statistical mechanics.
(Courtesy of AIP Niels Bohr Library, Lande
Collection)

Relationship between pressure and
molecular kinetic energy

10.3
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Recall that the equation of state is based on experimental facts concerning the
macroscopic behavior of gases. Equating the right sides of these expressions, we
find that

(21.3)

That is, temperature is a direct measure of average molecular kinetic energy.
By rearranging Equation 21.3, we can relate the translational molecular ki-

netic energy to the temperature:

(21.4)

That is, the average translational kinetic energy per molecule is Because
it follows that

(21.5)

In a similar manner, it follows that the motions in the y and z directions give us

Thus, each translational degree of freedom contributes an equal amount of en-
ergy to the gas, namely, (In general, “degrees of freedom” refers to the num-
ber of independent means by which a molecule can possess energy.) A generaliza-
tion of this result, known as the theorem of equipartition of energy, states that

1
2 kBT.

1
2 mvy 

2 � 1
2 kBT  and  1

2 mvz 

2 � 1
2 kBT

1
2 mvx 

2 � 1
2 kBT

vx 

2 � 1
3 v2,

3
2 kBT.

1
2 mv2 � 3

2 kBT

T �
2

3kB
�1

2 mv 

2�

each degree of freedom contributes to the energy of a system.1
2 kBT

Temperature is proportional to
average kinetic energy

Average kinetic energy per
molecule

Theorem of equipartition of
energy

Total translational kinetic energy
of N molecules

The total translational kinetic energy of N molecules of gas is simply N times
the average energy per molecule, which is given by Equation 21.4:

(21.6)

where we have used for Boltzmann’s constant and for the
number of moles of gas. If we consider a gas for which the only type of energy for
the molecules is translational kinetic energy, we can use Equation 21.6 to express

n � N/NAkB � R/NA

E trans � N �1
2 mv 

2� � 3
2 NkBT � 3

2 nRT

TABLE 21.1 Some rms Speeds

Molar Mass vrms
Gas (g/mol) at 20°C (m/s)

H2 2.02 1904
He 4.00 1352
H2O 18.0 637
Ne 20.2 602
N2 or CO 28.0 511
NO 30.0 494
CO2 44.0 408
SO2 64.1 338

21.2 Molar Specific Heat of an Ideal Gas 645

the internal energy of the gas. This result implies that the internal energy of an
ideal gas depends only on the temperature.

The square root of is called the root-mean-square (rms) speed of the mole-
cules. From Equation 21.4 we obtain, for the rms speed,

(21.7)

where M is the molar mass in kilograms per mole. This expression shows that, at a
given temperature, lighter molecules move faster, on the average, than do heavier
molecules. For example, at a given temperature, hydrogen molecules, whose mo-
lar mass is 2 � 10�3 kg/mol, have an average speed four times that of oxygen mol-
ecules, whose molar mass is 32 � 10�3 kg/mol. Table 21.1 lists the rms speeds for
various molecules at 20°C.

v rms � !v2 �! 3kBT
m

�! 3RT
M

v 

2

At room temperature, the average speed of an air molecule is several hundred meters per
second. A molecule traveling at this speed should travel across a room in a small fraction of
a second. In view of this, why does it take the odor of perfume (or other smells) several
minutes to travel across the room?

MOLAR SPECIFIC HEAT OF AN IDEAL GAS
The energy required to raise the temperature of n moles of gas from Ti to Tf de-
pends on the path taken between the initial and final states. To understand this,
let us consider an ideal gas undergoing several processes such that the change in
temperature is for all processes. The temperature change can be
achieved by taking a variety of paths from one isotherm to another, as shown in
Figure 21.3. Because �T is the same for each path, the change in internal energy
�E int is the same for all paths. However, we know from the first law,

that the heat Q is different for each path because W (the area un-
der the curves) is different for each path. Thus, the heat associated with a given
change in temperature does not have a unique value.

Q � �E int � W,

�T � Tf � Ti

21.2

Quick Quiz 21.1

Root-mean-square speed

A Tank of HeliumEXAMPLE 21.1
Solution Using Equation 21.4, we find that the average ki-
netic energy per molecule is

Exercise Using the fact that the molar mass of helium is
4.00 � 10�3 kg/mol, determine the rms speed of the atoms
at 20.0°C.

Answer 1.35 � 103 m/s.

6.07 � 10�21 J�

1
2 mv2 � 3

2 kBT � 3
2 (1.38 � 10�23 J/K)(293 K)

A tank used for filling helium balloons has a volume of 
0.300 m3 and contains 2.00 mol of helium gas at 20.0°C. Assum-
ing that the helium behaves like an ideal gas, (a) what is the
total translational kinetic energy of the molecules of the gas?

Solution Using Equation 21.6 with mol and 
293 K, we find that

(b) What is the average kinetic energy per molecule?

7.30 � 103 J�

E trans � 3
2 nRT � 3

2(2.00 mol)(8.31 J/mol �K)(293 K)

T �n � 2.00

P

V

Isotherms

i

f

f ′

T + ∆T

f ′′

T

Figure 21.3 An ideal gas is taken
from one isotherm at temperature
T to another at temperature

along three different
paths.
T � �T

10.5



646 C H A P T E R  2 1 The Kinetic Theory of Gases

We can address this difficulty by defining specific heats for two processes that
frequently occur: changes at constant volume and changes at constant pressure.
Because the number of moles is a convenient measure of the amount of gas, we
define the molar specific heats associated with these processes with the following
equations:

(constant volume) (21.8)

(constant pressure) (21.9)

where CV is the molar specific heat at constant volume and CP is the molar
specific heat at constant pressure. When we heat a gas at constant pressure, not
only does the internal energy of the gas increase, but the gas also does work be-
cause of the change in volume. Therefore, the heat Q constant P must account for
both the increase in internal energy and the transfer of energy out of the system
by work, and so Q constant P is greater than Q constant V . Thus, CP is greater than CV .

In the previous section, we found that the temperature of a gas is a measure of
the average translational kinetic energy of the gas molecules. This kinetic energy is
associated with the motion of the center of mass of each molecule. It does not in-
clude the energy associated with the internal motion of the molecule—namely, vi-
brations and rotations about the center of mass. This should not be surprising be-
cause the simple kinetic theory model assumes a structureless molecule.

In view of this, let us first consider the simplest case of an ideal monatomic
gas, that is, a gas containing one atom per molecule, such as helium, neon, or ar-
gon. When energy is added to a monatomic gas in a container of fixed volume (by
heating, for example), all of the added energy goes into increasing the transla-
tional kinetic energy of the atoms. There is no other way to store the energy in a
monatomic gas. Therefore, from Equation 21.6, we see that the total internal en-
ergy E int of N molecules (or n mol) of an ideal monatomic gas is

(21.10)

Note that for a monatomic ideal gas, E int is a function of T only, and the functional
relationship is given by Equation 21.10. In general, the internal energy of an ideal
gas is a function of T only, and the exact relationship depends on the type of gas,
as we shall soon explore.

How does the internal energy of a gas change as its pressure is decreased while its volume is
increased in such a way that the process follows the isotherm labeled T in Figure 21.4? 
(a) E int increases. (b) E int decreases. (c) Eint stays the same. (d) There is not enough infor-
mation to determine �E int .

If energy is transferred by heat to a system at constant volume, then no work is
done by the system. That is, for a constant-volume process. Hence,
from the first law of thermodynamics, we see that

(21.11)

In other words, all of the energy transferred by heat goes into increasing the in-
ternal energy (and temperature) of the system. A constant-volume process from i
to f is described in Figure 21.4, where �T is the temperature difference between
the two isotherms. Substituting the expression for Q given by Equation 21.8 into

Q � �E int

W � �P dV � 0

Quick Quiz 21.2

E int � 3
2 NkBT � 3

2 nRT

Q � nCP �T

Q � nCV �T

Internal energy of an ideal
monatomic gas is proportional to
its temperature
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Equation 21.11, we obtain

(21.12)

If the molar specific heat is constant, we can express the internal energy of a gas as

This equation applies to all ideal gases—to gases having more than one atom per
molecule, as well as to monatomic ideal gases.

In the limit of infinitesimal changes, we can use Equation 21.12 to express the
molar specific heat at constant volume as

(21.13)

Let us now apply the results of this discussion to the monatomic gas that we
have been studying. Substituting the internal energy from Equation 21.10 into
Equation 21.13, we find that

(21.14)

This expression predicts a value of for all monatomic
gases. This is in excellent agreement with measured values of molar specific heats
for such gases as helium, neon, argon, and xenon over a wide range of tempera-
tures (Table 21.2).

Now suppose that the gas is taken along the constant-pressure path i : f �
shown in Figure 21.4. Along this path, the temperature again increases by �T. The
energy that must be transferred by heat to the gas in this process is 
Because the volume increases in this process, the work done by the gas is

where P is the constant pressure at which the process occurs. ApplyingW � P�V,

Q � nCP �T.

CV � 3
2 R � 12.5 J/mol�K

CV � 3
2 R

CV �
1
n

 
dE int

dT

E int � nCVT

�E int � nCV �T
P

V

T + ∆T
T

i

f

f ′

Isotherms

Figure 21.4 Energy is trans-
ferred by heat to an ideal gas in two
ways. For the constant-volume path
i : f, all the energy goes into in-
creasing the internal energy of the
gas because no work is done. Along
the constant-pressure path i : f �,
part of the energy transferred in by
heat is transferred out by work
done by the gas.

TABLE 21.2 Molar Specific Heats of Various Gases

Molar Specific Heat ( J/mol K)a

Gas CP CV CP � CV � � CP/CV

Monatomic Gases
He 20.8 12.5 8.33 1.67
Ar 20.8 12.5 8.33 1.67
Ne 20.8 12.7 8.12 1.64
Kr 20.8 12.3 8.49 1.69

Diatomic Gases
H2 28.8 20.4 8.33 1.41
N2 29.1 20.8 8.33 1.40
O2 29.4 21.1 8.33 1.40
CO 29.3 21.0 8.33 1.40
Cl2 34.7 25.7 8.96 1.35

Polyatomic Gases
CO2 37.0 28.5 8.50 1.30
SO2 40.4 31.4 9.00 1.29
H2O 35.4 27.0 8.37 1.30
CH4 35.5 27.1 8.41 1.31

a All values except that for water were obtained at 300 K.

�
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the first law to this process, we have

(21.15)

In this case, the energy added to the gas by heat is channeled as follows: Part of it
does external work (that is, it goes into moving a piston), and the remainder in-
creases the internal energy of the gas. But the change in internal energy for the
process i : f � is equal to that for the process i : f because E int depends only on
temperature for an ideal gas and because �T is the same for both processes. In ad-
dition, because we note that for a constant-pressure process,

Substituting this value for P�V into Equation 21.15 with
(Eq. 21.12) gives

(21.16)

This expression applies to any ideal gas. It predicts that the molar specific heat of
an ideal gas at constant pressure is greater than the molar specific heat at constant
volume by an amount R, the universal gas constant (which has the value 
8.31 J/mol � K). This expression is applicable to real gases, as the data in Table 21.2
show.

Because for a monatomic ideal gas, Equation 21.16 predicts a value 
for the molar specific heat of a monatomic gas at con-

stant pressure. The ratio of these heat capacities is a dimensionless quantity �
(Greek letter gamma):

(21.17)

Theoretical values of CP and � are in excellent agreement with experimental val-
ues obtained for monatomic gases, but they are in serious disagreement with the
values for the more complex gases (see Table 21.2). This is not surprising because
the value was derived for a monatomic ideal gas, and we expect some ad-
ditional contribution to the molar specific heat from the internal structure of the
more complex molecules. In Section 21.4, we describe the effect of molecular
structure on the molar specific heat of a gas. We shall find that the internal en-
ergy—and, hence, the molar specific heat—of a complex gas must include con-
tributions from the rotational and the vibrational motions of the molecule.

We have seen that the molar specific heats of gases at constant pressure are
greater than the molar specific heats at constant volume. This difference is a con-
sequence of the fact that in a constant-volume process, no work is done and all of
the energy transferred by heat goes into increasing the internal energy (and tem-
perature) of the gas, whereas in a constant-pressure process, some of the energy
transferred by heat is transferred out as work done by the gas as it expands. In the
case of solids and liquids heated at constant pressure, very little work is done be-
cause the thermal expansion is small. Consequently, CP and CV are approximately
equal for solids and liquids.

CV � 3
2 R

� �
CP

CV
�

(5/2)R
(3/2)R

�
5
3

� 1.67

CP � 5
2 R � 20.8 J/mol�K

CV � 3
2 R

CP � CV � R 

nCV �T � nCP �T � nR�T

�E int � nCV �T
P�V � nR�T.

PV � nRT,

�E int � Q � W � nCP �T � P�V

Heating a Cylinder of HeliumEXAMPLE 21.2
Solution For the constant-volume process, we have

Because J/mol � K for helium and K, we�T � 200CV � 12.5

Q 1 � nCV �T

A cylinder contains 3.00 mol of helium gas at a temperature
of 300 K. (a) If the gas is heated at constant volume, how
much energy must be transferred by heat to the gas for its
temperature to increase to 500 K ?

Ratio of molar specific heats for a
monatomic ideal gas
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ADIABATIC PROCESSES FOR AN IDEAL GAS
As we noted in Section 20.6, an adiabatic process is one in which no energy is
transferred by heat between a system and its surroundings. For example, if a gas is
compressed (or expanded) very rapidly, very little energy is transferred out of (or
into) the system by heat, and so the process is nearly adiabatic. (We must remem-
ber that the temperature of a system changes in an adiabatic process even though
no energy is transferred by heat.) Such processes occur in the cycle of a gasoline
engine, which we discuss in detail in the next chapter.

Another example of an adiabatic process is the very slow expansion of a gas
that is thermally insulated from its surroundings. In general,

21.3

an adiabatic process is one in which no energy is exchanged by heat between
a system and its surroundings.

Let us suppose that an ideal gas undergoes an adiabatic expansion. At any
time during the process, we assume that the gas is in an equilibrium state, so that
the equation of state is valid. As we shall soon see, the pressure and vol-
ume at any time during an adiabatic process are related by the expression

(21.18)

where is assumed to be constant during the process. Thus, we see that
all three variables in the ideal gas law—P, V, and T—change during an adiabatic
process.

Proof That PV � � constant for an Adiabatic Process

When a gas expands adiabatically in a thermally insulated cylinder, no energy is
transferred by heat between the gas and its surroundings; thus, Let us take
the infinitesimal change in volume to be dV and the infinitesimal change in tem-
perature to be dT. The work done by the gas is P dV. Because the internal energy
of an ideal gas depends only on temperature, the change in the internal energy in
an adiabatic expansion is the same as that for an isovolumetric process between
the same temperatures, (Eq. 21.12). Hence, the first law of ther-
modynamics, with becomes

Taking the total differential of the equation of state of an ideal gas, wePV � nRT,

dE int � nCV dT � �P dV

Q � 0,�E int � Q � W,
dE int � nCV dT

Q � 0.

� � CP/CV

PV � � constant

PV � nRT

Definition of an adiabatic process

Relationship between P and V for
an adiabatic process involving an
ideal gas

obtain

(b) How much energy must be transferred by heat to the
gas at constant pressure to raise the temperature to 500 K?

Solution Making use of Table 21.2, we obtain

7.50 � 103 JQ 1 � (3.00 mol)(12.5 J/mol �K)(200 K) �

Exercise What is the work done by the gas in this isobaric
process?

Answer W � Q 2 � Q 1 � 5.00 � 103 J.

12.5 � 103 J�

Q 2 � nCP �T � (3.00 mol)(20.8 J/mol �K)(200 K)
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see that

Eliminating dT from these two equations, we find that

Substituting and dividing by PV, we obtain

Integrating this expression, we have

which is equivalent to Equation 21.18:

The PV diagram for an adiabatic expansion is shown in Figure 21.5. Because
the PV curve is steeper than it would be for an isothermal expansion. By the

definition of an adiabatic process, no energy is transferred by heat into or out of
the system. Hence, from the first law, we see that �E int is negative (the gas does
work, so its internal energy decreases) and so �T also is negative. Thus, we see that
the gas cools during an adiabatic expansion. Conversely, the tempera-
ture increases if the gas is compressed adiabatically. Applying Equation 21.18 to
the initial and final states, we see that

(21.19)

Using the ideal gas law, we can express Equation 21.19 as

(21.20)TiVi 

��1 � TfVf 

��1

PiVi 

� � PfVf 

�

(Tf 	 Ti)

� 
 1,

PV � � constant

ln P � � ln V � constant

dP
P

� � 
dV
V

� 0 

dV
V

�
dP
P

� �� CP � CV

CV
� 

dV
V

� (1 � �) 
dV
V

R � CP � CV

P dV � V dP � �
R
CV

 P dV

P dV � V dP � nR dT

A Diesel Engine CylinderEXAMPLE 21.3
no gas escapes from the cylinder,

The high compression in a diesel engine raises the tempera-
ture of the fuel enough to cause its combustion without the
use of spark plugs.

826 K � 553�C�

Tf �
PfVf

PiVi
 Ti �

(37.6 atm)(60.0 cm3)
(1.00 atm)(800.0 cm3)

 (293 K)

PiVi

Ti
�

PfVf

Tf

Air at 20.0°C in the cylinder of a diesel engine is compressed
from an initial pressure of 1.00 atm and volume of 800.0 cm3

to a volume of 60.0 cm3. Assume that air behaves as an ideal
gas with and that the compression is adiabatic. Find
the final pressure and temperature of the air.

Solution Using Equation 21.19, we find that

Because is valid during any process and becausePV � nRT

37.6 atm�

Pf � Pi � Vi

Vf
�

�

� (1.00 atm)� 800.0 cm3

60.0 cm3 �
1.40

� � 1.40

Adiabatic process

QuickLab
Rapidly pump up a bicycle tire and
then feel the coupling at the end of
the hose. Why is the coupling warm?

Ti
Tf

Isotherms

P

V

Pi

Pf

Vi Vf

Adiabatic process

i

f

Figure 21.5 The PV diagram for
an adiabatic expansion. Note that

in this process.Tf 	 Ti
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THE EQUIPARTITION OF ENERGY
We have found that model predictions based on molar specific heat agree quite
well with the behavior of monatomic gases but not with the behavior of complex
gases (see Table 21.2). Furthermore, the value predicted by the model for the
quantity is the same for all gases. This is not surprising because this
difference is the result of the work done by the gas, which is independent of its
molecular structure.

To clarify the variations in CV and CP in gases more complex than monatomic
gases, let us first explain the origin of molar specific heat. So far, we have assumed
that the sole contribution to the internal energy of a gas is the translational kinetic
energy of the molecules. However, the internal energy of a gas actually includes
contributions from the translational, vibrational, and rotational motion of the
molecules. The rotational and vibrational motions of molecules can be activated
by collisions and therefore are “coupled” to the translational motion of the mole-
cules. The branch of physics known as statistical mechanics has shown that, for a
large number of particles obeying the laws of Newtonian mechanics, the available
energy is, on the average, shared equally by each independent degree of freedom.
Recall from Section 21.1 that the equipartition theorem states that, at equilibrium,
each degree of freedom contributes of energy per molecule.

Let us consider a diatomic gas whose molecules have the shape of a dumbbell
(Fig. 21.6). In this model, the center of mass of the molecule can translate in the
x, y, and z directions (Fig. 21.6a). In addition, the molecule can rotate about three
mutually perpendicular axes (Fig. 21.6b). We can neglect the rotation about the y
axis because the moment of inertia Iy and the rotational energy about this
axis are negligible compared with those associated with the x and z axes. (If the
two atoms are taken to be point masses, then Iy is identically zero.) Thus, there are
five degrees of freedom: three associated with the translational motion and two as-
sociated with the rotational motion. Because each degree of freedom contributes,
on the average, of energy per molecule, the total internal energy for a sys-
tem of N molecules is

We can use this result and Equation 21.13 to find the molar specific heat at con-
stant volume:

From Equations 21.16 and 21.17, we find that

These results agree quite well with most of the data for diatomic molecules
given in Table 21.2. This is rather surprising because we have not yet accounted
for the possible vibrations of the molecule. In the vibratory model, the two atoms
are joined by an imaginary spring (see Fig. 21.6c). The vibrational motion adds
two more degrees of freedom, which correspond to the kinetic energy and the po-
tential energy associated with vibrations along the length of the molecule. Hence,
classical physics and the equipartition theorem predict an internal energy of

E int � 3N(1
2 kBT ) � 2N(1

2 kBT ) � 2N(1
2 kBT ) � 7

2 NkBT � 7
2 nRT

� �
CP

CV
�

7
2R
5
2R

�
7
5

� 1.40

CP � CV � R � 7
2 R 

CV �
1
n

 
dE int

dT
�

1
n

 
d

dT
 � 5

2
 nRT� �

5
2

 R

E int � 3N(1
2 kBT ) � 2N(1

2 kBT ) � 5
2 NkBT � 5

2 nRT

1
2 kBT

1
2 I y�

2

1
2kBT

CP � CV � R

21.4

(a)

x

z
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(b)

yx

z

(c)

Figure 21.6 Possible motions of
a diatomic molecule: (a) transla-
tional motion of the center of
mass, (b) rotational motion about
the various axes, and (c) vibra-
tional motion along the molecular
axis.
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and a molar specific heat at constant volume of

This value is inconsistent with experimental data for molecules such as H2 and N2
(see Table 21.2) and suggests a breakdown of our model based on classical physics.

For molecules consisting of more than two atoms, the number of degrees of
freedom is even larger and the vibrations are more complex. This results in an
even higher predicted molar specific heat, which is in qualitative agreement with
experiment. The more degrees of freedom available to a molecule, the more
“ways” it can store internal energy; this results in a higher molar specific heat.

We have seen that the equipartition theorem is successful in explaining some
features of the molar specific heat of gas molecules with structure. However, the
theorem does not account for the observed temperature variation in molar spe-
cific heats. As an example of such a temperature variation, CV for H2 is from
about 250 K to 750 K and then increases steadily to about well above 750 K
(Fig. 21.7). This suggests that much more significant vibrations occur at very high 
temperatures. At temperatures well below 250 K, CV has a value of about sug-
gesting that the molecule has only translational energy at low temperatures.

A Hint of Energy Quantization

The failure of the equipartition theorem to explain such phenomena is due to the
inadequacy of classical mechanics applied to molecular systems. For a more satisfac-
tory description, it is necessary to use a quantum-mechanical model, in which the
energy of an individual molecule is quantized. The energy separation between adja-
cent vibrational energy levels for a molecule such as H2 is about ten times greater
than the average kinetic energy of the molecule at room temperature. Conse-
quently, collisions between molecules at low temperatures do not provide enough
energy to change the vibrational state of the molecule. It is often stated that such de-
grees of freedom are “frozen out.” This explains why the vibrational energy does not
contribute to the molar specific heats of molecules at low temperatures.

3
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Figure 21.7 The molar specific heat of hydrogen as a function of temperature. The horizontal
scale is logarithmic. Note that hydrogen liquefies at 20 K.
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The rotational energy levels also are quantized, but their spacing at ordinary
temperatures is small compared with k BT. Because the spacing between quantized
energy levels is small compared with the available energy, the system behaves in ac-
cordance with classical mechanics. However, at sufficiently low temperatures (typi-
cally less than 50 K), where kBT is small compared with the spacing between rota-
tional levels, intermolecular collisions may not be sufficiently energetic to alter the
rotational states. This explains why CV reduces to for H2 in the range from 20 K
to approximately 100 K.

The Molar Specific Heat of Solids

The molar specific heats of solids also demonstrate a marked temperature depen-
dence. Solids have molar specific heats that generally decrease in a nonlinear man-
ner with decreasing temperature and approach zero as the temperature ap-
proaches absolute zero. At high temperatures (usually above 300 K), the molar
specific heats approach the value of a result known as the 
DuLong–Petit law. The typical data shown in Figure 21.8 demonstrate the tempera-
ture dependence of the molar specific heats for two semiconducting solids, silicon
and germanium.

We can explain the molar specific heat of a solid at high temperatures using
the equipartition theorem. For small displacements of an atom from its equilib-
rium position, each atom executes simple harmonic motion in the x, y, and z direc-
tions. The energy associated with vibrational motion in the x direction is

The expressions for vibrational motions in the y and z directions are analogous.
Therefore, each atom of the solid has six degrees of freedom. According to the
equipartition theorem, this corresponds to an average vibrational energy of

per atom. Therefore, the total internal energy of a solid consist-
ing of N atoms is

(21.21)

From this result, we find that the molar specific heat of a solid at constant volume
is

(21.22)

This result is in agreement with the empirical DuLong–Petit law. The discrepan-
cies between this model and the experimental data at low temperatures are again
due to the inadequacy of classical physics in describing the microscopic world.

THE BOLTZMANN DISTRIBUTION LAW
Thus far we have neglected the fact that not all molecules in a gas have the same
speed and energy. In reality, their motion is extremely chaotic. Any individual mol-
ecule is colliding with others at an enormous rate—typically, a billion times per
second. Each collision results in a change in the speed and direction of motion of
each of the participant molecules. From Equation 21.7, we see that average molec-
ular speeds increase with increasing temperature. What we would like to know now
is the relative number of molecules that possess some characteristic, such as a cer-
tain percentage of the total energy or speed. The ratio of the number of molecules

21.5
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Figure 21.8 Molar specific heat
of silicon and germanium. As T ap-
proaches zero, the molar specific
heat also approaches zero. (From C.
Kittel, Introduction to Solid State
Physics, New York, Wiley, 1971.)
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that have the desired characteristic to the total number of molecules is the proba-
bility that a particular molecule has that characteristic.

The Exponential Atmosphere

We begin by considering the distribution of molecules in our atmosphere. Let us
determine how the number of molecules per unit volume varies with altitude. Our
model assumes that the atmosphere is at a constant temperature T. (This assump-
tion is not entirely correct because the temperature of our atmosphere decreases
by about 2°C for every 300-m increase in altitude. However, the model does illus-
trate the basic features of the distribution.)

According to the ideal gas law, a gas containing N molecules in thermal equi-
librium obeys the relationship It is convenient to rewrite this equation
in terms of the number density which represents the number of mole-
cules per unit volume of gas. This quantity is important because it can vary from
one point to another. In fact, our goal is to determine how nV changes in our at-
mosphere. We can express the ideal gas law in terms of nV as Thus, if
the number density nV is known, we can find the pressure, and vice versa. The
pressure in the atmosphere decreases with increasing altitude because a given
layer of air must support the weight of all the atmosphere above it—that is, the
greater the altitude, the less the weight of the air above that layer, and the lower
the pressure.

To determine the variation in pressure with altitude, let us consider an atmos-
pheric layer of thickness dy and cross-sectional area A, as shown in Figure 21.9. Be-
cause the air is in static equilibrium, the magnitude PA of the upward force ex-
erted on the bottom of this layer must exceed the magnitude of the downward
force on the top of the layer, by an amount equal to the weight of 
gas in this thin layer. If the mass of a gas molecule in the layer is m, and if a total 
of N molecules are in the layer, then the weight of the layer is given by 

Thus, we see that

This expression reduces to

Because and T is assumed to remain constant, we see that 
Substituting this result into the previous expression for dP and rearrang-

ing terms, we have

Integrating this expression, we find that

(21.23)

where the constant n0 is the number density at y � 0. This result is known as the
law of atmospheres.

According to Equation 21.23, the number density decreases exponentially
with increasing altitude when the temperature is constant. The number density of
our atmosphere at sea level is about molecules/m3. Because the
pressure is we see from Equation 21.23 that the pressure of our atmos-
phere varies with altitude according to the expression

(21.24)P � P0e�mgy/k BT

P � nV kBT,
n0 � 2.69 � 1025

nV(y) � n0e�mgy/k BT

dnV

nV
� �

mg
kBT

 dy

kBT dnV .
dP �P � nV kBT

dP � �mgnVdy

PA � (P � dP)A � mgnVA dy

mgnVV � mgnVAdy.
mgN �

(P � dP)A,

P � nV kBT.

nV � N/V,
PV � NkBT.

Law of atmospheres

A (P + dP)A

PA
Nmg

dy

Figure 21.9 An atmospheric
layer of gas in equilibrium.
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where A comparison of this model with the actual atmospheric pres-
sure as a function of altitude shows that the exponential form is a reasonable ap-
proximation to the Earth’s atmosphere.

P0 � n0kBT.

High-Flying MoleculesEXAMPLE 21.4
Thus, Equation 21.23 gives

That is, the number density of air at an altitude of 11.0 km is
only 27.8% of the number density at sea level, if we assume
constant temperature. Because the temperature actually de-
creases with altitude, the number density of air is less than
this in reality. 

The pressure at this height is reduced in the same man-
ner. For this reason, high-flying aircraft must have pressur-
ized cabins to ensure passenger comfort and safety.

0.278n0nV � n0e�mgy/kBT � n0e�1.28 �

What is the number density of air at an altitude of 11.0 km
(the cruising altitude of a commercial jetliner) compared
with its number density at sea level? Assume that the air tem-
perature at this height is the same as that at the ground,
20°C.

Solution The number density of our atmosphere de-
creases exponentially with altitude according to the law of at-
mospheres, Equation 21.23. We assume an average molecular
mass of Taking y � 11.0 km, we cal-
culate the power of the exponential in Equation 21.23 to be

mgy
kBT

�
(4.80 � 10�26 kg)(9.80 m/s2)(11 000 m)

(1.38 � 10�23 J/K)(293 K)
� 1.28

28.9 u � 4.80 � 10�26 kg.

Computing Average Values

The exponential function that appears in Equation 21.23 can be inter-
preted as a probability distribution that gives the relative probability of finding a
gas molecule at some height y. Thus, the probability distribution p(y) is propor-
tional to the number density distribution nV(y). This concept enables us to deter-
mine many properties of the atmosphere, such as the fraction of molecules below
a certain height or the average potential energy of a molecule.

As an example, let us determine the average height of a molecule in the at-
mosphere at temperature T. The expression for this average height is

where the height of a molecule can range from 0 to 
. The numerator in this ex-
pression represents the sum of the heights of the molecules times their number,
while the denominator is the sum of the number of molecules. That is, the denom-
inator is the total number of molecules. After performing the indicated integra-
tions, we find that

This expression states that the average height of a molecule increases as T in-
creases, as expected.

We can use a similar procedure to determine the average potential energy of a
gas molecule. Because the gravitational potential energy of a molecule at height y
is the average potential energy is equal to Because we y � kBT/mg,mgy.U � mgy,

y �
(kBT/mg)2

kBT/mg
�

kBT
mg

y �

�


0
 ynV (y) dy

�


0
 nV (y) dy

 �

�


0
 ye�mgy/k BT dy

�


0
 e�mgy/k BT dy

 

y

e�mgy/k BT
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see that This important result indicates that the average
gravitational potential energy of a molecule depends only on temperature, and
not on m or g.

The Boltzmann Distribution

Because the gravitational potential energy of a molecule at height y is we
can express the law of atmospheres (Eq. 21.23) as

This means that gas molecules in thermal equilibrium are distributed in space with
a probability that depends on gravitational potential energy according to the expo-
nential factor 

This exponential expression describing the distribution of molecules in the at-
mosphere is powerful and applies to any type of energy. In general, the number
density of molecules having energy E is

(21.25)

This equation is known as the Boltzmann distribution law and is important in
describing the statistical mechanics of a large number of molecules. It states that
the probability of finding the molecules in a particular energy state varies
exponentially as the negative of the energy divided by kBT. All the molecules
would fall into the lowest energy level if the thermal agitation at a temperature T
did not excite the molecules to higher energy levels.

nV(E ) � n0e�E/k BT

e�U/k BT.

nV � n0e�U/k BT

U � mgy,

U � mg(kBT/mg) � kBT.

Thermal Excitation of Atomic Energy LevelsEXAMPLE 21.5

This result indicates that at only a small fraction
of the atoms are in the higher energy level. In fact, for every
atom in the higher energy level, there are about 1 000 atoms
in the lower level. The number of atoms in the higher level
increases at even higher temperatures, but the distribution
law specifies that at equilibrium there are always more atoms
in the lower level than in the higher level.

T � 2 500 K,

9.64 � 10�4n(E2)
n(E1)

� e�1.50 eV/0.216 eV � e�6.94 �
As we discussed briefly in Section 8.10, atoms can occupy only
certain discrete energy levels. Consider a gas at a temperature
of 2 500 K whose atoms can occupy only two energy levels
separated by 1.50 eV, where 1 eV (electron volt) is an energy
unit equal to 1.6 � 10�19 J (Fig. 21.10). Determine the ratio
of the number of atoms in the higher energy level to the
number in the lower energy level.

Solution Equation 21.25 gives the relative number of
atoms in a given energy level. In this case, the atom has two
possible energies, E1 and E2 , where E1 is the lower energy
level. Hence, the ratio of the number of atoms in the higher
energy level to the number in the lower energy level is

In this problem, eV, and the denominator of
the exponent is

Therefore, the required ratio is

 � 0.216 eV
kBT � (1.38 � 10�23 J/K)(2 500 K)/1.60 � 10�19 J/eV

E2 � E1 � 1.50

nV (E2)
nV (E1)

�
n0e�E2/k BT

n0e�E1/k BT � e�(E2�E1 )/k BT

Boltzmann distribution law

E1

E2

1.50 eV

Figure 21.10 Energy level diagram for a gas whose atoms can oc-
cupy two energy levels.
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DISTRIBUTION OF MOLECULAR SPEEDS
In 1860 James Clerk Maxwell (1831–1879) derived an expression that describes
the distribution of molecular speeds in a very definite manner. His work and sub-
sequent developments by other scientists were highly controversial because direct
detection of molecules could not be achieved experimentally at that time. How-
ever, about 60 years later, experiments were devised that confirmed Maxwell’s pre-
dictions.

Let us consider a container of gas whose molecules have some distribution of
speeds. Suppose we want to determine how many gas molecules have a speed in
the range from, for example, 400 to 410 m/s. Intuitively, we expect that the speed
distribution depends on temperature. Furthermore, we expect that the distribu-
tion peaks in the vicinity of vrms . That is, few molecules are expected to have
speeds much less than or much greater than vrms because these extreme speeds re-
sult only from an unlikely chain of collisions.

The observed speed distribution of gas molecules in thermal equilibrium is
shown in Figure 21.11. The quantity Nv , called the Maxwell–Boltzmann distri-
bution function, is defined as follows: If N is the total number of molecules, then
the number of molecules with speeds between v and is This
number is also equal to the area of the shaded rectangle in Figure 21.11. Further-
more, the fraction of molecules with speeds between v and is This
fraction is also equal to the probability that a molecule has a speed in the range v
to 

The fundamental expression that describes the distribution of speeds of N gas
molecules is

(21.26)

where m is the mass of a gas molecule, kB is Boltzmann’s constant, and T is the ab-
solute temperature.1 Observe the appearance of the Boltzmann factor with

As indicated in Figure 21.11, the average speed is somewhat lower than the
rms speed. The most probable speed vmp is the speed at which the distribution curve
reaches a peak. Using Equation 21.26, one finds that

(21.27)

(21.28)

(21.29)

The details of these calculations are left for the student (see Problems 41 and 62).
From these equations, we see that

Figure 21.12 represents speed distribution curves for N2 . The curves were ob-
tained by using Equation 21.26 to evaluate the distribution function at various
speeds and at two temperatures. Note that the peak in the curve shifts to the right

v rms 
 v 
 vmp 

 vmp � !2kBT/m � 1.41 !kBT/m

 v � !8kBT/�m � 1.60 !kBT/m 

v rms � !v2 � !3kBT/m � 1.73 !kBT/m

v
E � 1

2mv2.
e�E/k BT

Nv � 4�N � m
2�kBT �

3/2
v2e�mv2/2k BT

v � dv.

Nvdv/N.v � dv

dN � Nvdv.v � dv

21.6

1 For the derivation of this expression, see an advanced textbook on thermodynamics, such as that by
R. P. Bauman, Modern Thermodynamics with Statistical Mechanics, New York, Macmillan Publishing Co.,
1992.

Maxwell speed distribution
function

rms speed

Average speed

Most probable speed

vmp

vrms

Nv

v

v

Nv

Figure 21.11 The speed distribu-
tion of gas molecules at some tem-
perature. The number of mole-
cules having speeds in the range dv
is equal to the area of the shaded
rectangle, The function Nv
approaches zero as v approaches
infinity.

Nvdv.
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as T increases, indicating that the average speed increases with increasing temper-
ature, as expected. The asymmetric shape of the curves is due to the fact that the
lowest speed possible is zero while the upper classical limit of the speed is infinity.

Consider the two curves in Figure 21.12. What is represented by the area under each of the
curves between the 800-m/s and 1 000-m/s marks on the horizontal axis?

Equation 21.26 shows that the distribution of molecular speeds in a gas de-
pends both on mass and on temperature. At a given temperature, the fraction of
molecules with speeds exceeding a fixed value increases as the mass decreases.
This explains why lighter molecules, such as H2 and He, escape more readily from
the Earth’s atmosphere than do heavier molecules, such as N2 and O2 . (See the
discussion of escape speed in Chapter 14. Gas molecules escape even more readily
from the Moon’s surface than from the Earth’s because the escape speed on the
Moon is lower than that on the Earth.)

The speed distribution curves for molecules in a liquid are similar to those
shown in Figure 21.12. We can understand the phenomenon of evaporation of a
liquid from this distribution in speeds, using the fact that some molecules in the
liquid are more energetic than others. Some of the faster-moving molecules in
the liquid penetrate the surface and leave the liquid even at temperatures well be-
low the boiling point. The molecules that escape the liquid by evaporation are
those that have sufficient energy to overcome the attractive forces of the mole-
cules in the liquid phase. Consequently, the molecules left behind in the liquid
phase have a lower average kinetic energy; as a result, the temperature of the liq-
uid decreases. Hence, evaporation is a cooling process. For example, an alcohol-
soaked cloth often is placed on a feverish head to cool and comfort a patient.

Quick Quiz 21.3
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Figure 21.12 The speed distribution function for 105 nitrogen molecules at 300 K and 900 K.
The total area under either curve is equal to the total number of molecules, which in this case
equals 105. Note that v rms 
 v 
 v mp .

QuickLab
Fill one glass with very hot tap water
and another with very cold water. Put
a single drop of food coloring in each
glass. Which drop disperses faster?
Why?

The evaporation process

21.7 Mean Free Path 659

Optional Section

MEAN FREE PATH
Most of us are familiar with the fact that the strong odor associated with a gas such
as ammonia may take a fraction of a minute to diffuse throughout a room. How-
ever, because average molecular speeds are typically several hundred meters per
second at room temperature, we might expect a diffusion time much less than 1 s.
But, as we saw in Quick Quiz 21.1, molecules collide with one other because they
are not geometrical points. Therefore, they do not travel from one side of a room
to the other in a straight line. Between collisions, the molecules move with con-
stant speed along straight lines. The average distance between collisions is called
the mean free path. The path of an individual molecule is random and resembles
that shown in Figure 21.13. As we would expect from this description, the mean
free path is related to the diameter of the molecules and the density of the gas.

We now describe how to estimate the mean free path for a gas molecule. For
this calculation, we assume that the molecules are spheres of diameter d. We see
from Figure 21.14a that no two molecules collide unless their centers are less than
a distance d apart as they approach each other. An equivalent way to describe the

21.7

A System of Nine ParticlesEXAMPLE 21.6

Hence, the rms speed is

(c) What is the most probable speed of the particles?

Solution Three of the particles have a speed of 12 m/s,
two have a speed of 14 m/s, and the remaining have different
speeds. Hence, we see that the most probable speed vmp is 

12 m/s.

13.3 m/sv rms � !v2 � !178 m2/s2 �

 � 178 m2/s2

v2 �

(5.002 � 8.002 � 12.02 � 12.02 � 12.02

 � 14.02 � 14.02 � 17.02 � 20.02) m
9

Nine particles have speeds of 5.00, 8.00, 12.0, 12.0, 12.0, 14.0,
14.0, 17.0, and 20.0 m/s. (a) Find the particles’ average
speed.

Solution The average speed is the sum of the speeds di-
vided by the total number of particles:

(b) What is the rms speed?

Solution The average value of the square of the speed is

12.7 m/s �

v �

(5.00 � 8.00 � 12.0 � 12.0 � 12.0 � 14.0 � 14.0 � 17.0 � 20.0) m/s
9

Figure 21.13 A molecule moving
through a gas collides with other
molecules in a random fashion.
This behavior is sometimes re-
ferred to as a random-walk process.
The mean free path increases as
the number of molecules per unit
volume decreases. Note that the
motion is not limited to the plane
of the paper.

Figure 21.14 (a) Two spherical molecules, each of diameter d, collide if their centers are
within a distance d of each other. (b) The collision between the two molecules is equivalent to a
point molecule’s colliding with a molecule having an effective diameter of 2d.

(b)

2d

Equivalent
collision

(a)

d

d

Actual
collision
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collisions is to imagine that one of the molecules has a diameter 2d and that the rest
are geometrical points (Fig. 21.14b). Let us choose the large molecule to be one
moving with the average speed In a time t, this molecule travels a distance In
this time interval, the molecule sweeps out a cylinder having a cross-sectional area

and a length (Fig. 21.15). Hence, the volume of the cylinder is If nV is
the number of molecules per unit volume, then the number of point-size molecules
in the cylinder is The molecule of equivalent diameter 2d collides with
every molecule in this cylinder in the time t. Hence, the number of collisions in the
time t is equal to the number of molecules in the cylinder, 

The mean free path � equals the average distance traveled in a time t di-
vided by the number of collisions that occur in that time:

Because the number of collisions in a time t is the number of colli-
sions per unit time, or collision frequency f, is

The inverse of the collision frequency is the average time between collisions,
known as the mean free time.

Our analysis has assumed that molecules in the cylinder are stationary. When
the motion of these molecules is included in the calculation, the correct results are

(21.30)

(21.31)f � !2 �d 2vnV �
v
�

� �
1

!2 �d 2nV

f � �d 2vnV

(�d 2vt)nV ,

� �
vt

(�d 2vt)nV
�

1
�d 2nV

vt
(�d 2vt)nV .

(�d 2vt)nV .

�d 2vt.vt�d 2

vt.v.

Mean free path

Collision frequency

Figure 21.15 In a time t, a mole-
cule of effective diameter 2d
sweeps out a cylinder of length 
where is its average speed. In this
time, it collides with every point
molecule within this cylinder.

v
vt,

2d vt

Bouncing Around in the AirEXAMPLE 21.7
This value is about 103 times greater than the molecular di-
ameter.

(b) On average, how frequently does one molecule collide
with another?

Solution Because the rms speed of a nitrogen molecule at
20.0°C is 511 m/s (see Table 21.1), we know from Equations
21.27 and 21.28 that .
Therefore, the collision frequency is

The molecule collides with other molecules at the average
rate of about two billion times each second!

The mean free path � is not the same as the average sepa-
ration between particles. In fact, the average separation d be-
tween particles is approximately In this example, the
average molecular separation is

d �
1

nV 

1/3 �
1

(2.5 � 1025)1/3 � 3.4 � 10�9 m

nV 

�1/3.

2.10 � 109/sf �
v
�

�
473 m/s

2.25 � 10�7 m
�

v � (1.60/1.73)(511 m/s) � 473 m/s

Approximate the air around you as a collection of nitrogen
molecules, each of which has a diameter of 2.00 � 10�10 m.
(a) How far does a typical molecule move before it collides
with another molecule?

Solution Assuming that the gas is ideal, we can use the
equation to obtain the number of molecules per
unit volume under typical room conditions:

Hence, the mean free path is

2.25 � 10�7 m �

 �
1

!2 �(2.00 � 10�10 m)2(2.50 � 1025 molecules/m3)

� �
1

!2 �d 2nV
 

 � 2.50 � 1025 molecules/m3

nV �
N
V

�
P

kBT
�

1.01 � 105 N/m2

(1.38 � 10�23 J/K)(293 K)

PV � NkBT

Summary 661

SUMMARY

The pressure of N molecules of an ideal gas contained in a volume V is

(21.2)

The average translational kinetic energy per molecule of a gas, is related
to the temperature T of the gas through the expression

(21.4)

where kB is Boltzmann’s constant. Each translational degree of freedom (x, y, or z)
has of energy associated with it.

The theorem of equipartition of energy states that the energy of a system in
thermal equilibrium is equally divided among all degrees of freedom.

The total energy of N molecules (or n mol) of an ideal monatomic gas is

(21.10)

The change in internal energy for n mol of any ideal gas that undergoes a
change in temperature �T is

(21.12)

where CV is the molar specific heat at constant volume.
The molar specific heat of an ideal monatomic gas at constant volume is

the molar specific heat at constant pressure is The ratio of spe-
cific heats is 

If an ideal gas undergoes an adiabatic expansion or compression, the first law
of thermodynamics, together with the equation of state, shows that

(21.18)

The Boltzmann distribution law describes the distribution of particles
among available energy states. The relative number of particles having energy E is

(21.25)

The Maxwell–Boltzmann distribution function describes the distribution
of speeds of molecules in a gas:

(21.26)

This expression enables us to calculate the root-mean-square speed, the average
speed, and the most probable speed:

(21.27)

(21.28)

(21.29)   vmp � !2kBT/m � 1.41 !kBT/m

   v � !8kBT/�m � 1.60 !kBT/m

v rms � !v2 � !3kBT/m � 1.73 !kBT/m

Nv � 4�N � m
2�kBT �

3/2
v2e�mv2/2k BT

nV(E ) � n0e�E/k BT

PV � � constant

� � CP/CV � 5
3 .

CP � 5
2 R .CV � 3

2 R ;

�E int � nCV �T

E int � 3
2 NkBT � 3

2 nRT

1
2 kBT

1
2mv2 � 3

2 kBT

1
2mv2,

P �
2
3

 
N
V

 � 1
2

 mv2�
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QUESTIONS

8. A gas is compressed at a constant temperature. What hap-
pens to the mean free path of the molecules in the
process?

9. If a helium-filled balloon initially at room temperature is
placed in a freezer, will its volume increase, decrease, or
remain the same?

10. What happens to a helium-filled balloon released into the
air? Will it expand or contract? Will it stop rising at some
height?

11. Which is heavier, dry air or air saturated with water vapor?
Explain.

12. Why does a diatomic gas have a greater energy content
per mole than a monatomic gas at the same temperature?

13. An ideal gas is contained in a vessel at 300 K. If the tem-
perature is increased to 900 K, (a) by what factor does the
rms speed of each molecule change? (b) By what factor
does the pressure in the vessel change?

14. A vessel is filled with gas at some equilibrium pressure
and temperature. Can all gas molecules in the vessel have
the same speed?

15. In our model of the kinetic theory of gases, molecules
were viewed as hard spheres colliding elastically with the
walls of the container. Is this model realistic?

16. In view of the fact that hot air rises, why does it generally
become cooler as you climb a mountain? (Note that air is
a poor thermal conductor.)

1. Dalton’s law of partial pressures states that the total pres-
sure of a mixture of gases is equal to the sum of the par-
tial pressures of gases making up the mixture. Give a con-
vincing argument for this law on the basis of the kinetic
theory of gases.

2. One container is filled with helium gas and another with
argon gas. If both containers are at the same tempera-
ture, which gas molecules have the higher rms speed? Ex-
plain.

3. A gas consists of a mixture of He and N2 molecules. Do
the lighter He molecules travel faster than the N2 mole-
cules? Explain.

4. Although the average speed of gas molecules in thermal
equilibrium at some temperature is greater than zero, the
average velocity is zero. Explain why this statement must
be true.

5. When alcohol is rubbed on your body, your body temper-
ature decreases. Explain this effect.

6. A liquid partially fills a container. Explain why the tem-
perature of the liquid decreases if the container is then
partially evacuated. (Using this technique, one can freeze
water at temperatures above 0°C.)

7. A vessel containing a fixed volume of gas is cooled. Does
the mean free path of the gas molecules increase, de-
crease, or remain constant during the cooling process?
What about the collision frequency?

PROBLEMS

move with a speed of 300 m/s and strike the wall head-
on in perfectly elastic collisions, what is the pressure ex-
erted on the wall? (The mass of one N2 molecule is 
4.68 � 10�26 kg.)

6. A 5.00-L vessel contains 2 mol of oxygen gas at a pres-
sure of 8.00 atm. Find the average translational kinetic
energy of an oxygen molecule under these conditions.

7. A spherical balloon with a volume of 4 000 cm3 contains
helium at an (inside) pressure of 1.20 � 105 Pa. How
many moles of helium are in the balloon if each helium
atom has an average kinetic energy of 3.60 � 10�22 J?

8. The rms speed of a helium atom at a certain tempera-
ture is 1 350 m/s. Find by proportion the rms speed of
an oxygen molecule at this temperature. (The molar
mass of O2 is 32.0 g/mol, and the molar mass of He is
4.00 g/mol.)

9. (a) How many atoms of helium gas fill a balloon of di-
ameter 30.0 cm at 20.0°C and 1.00 atm? (b) What is the
average kinetic energy of the helium atoms? (c) What is
the root-mean-square speed of each helium atom?

Section 21.1 Molecular Model of an Ideal Gas
1. Use the definition of Avogadro’s number to find the

mass of a helium atom.
2. A sealed cubical container 20.0 cm on a side contains

three times Avogadro’s number of molecules at a tem-
perature of 20.0°C. Find the force exerted by the gas on
one of the walls of the container.

3. In a 30.0-s interval, 500 hailstones strike a glass window
with an area of 0.600 m2 at an angle of 45.0° to the win-
dow surface. Each hailstone has a mass of 5.00 g and a
speed of 8.00 m/s. If the collisions are elastic, what are
the average force and pressure on the window?

4. In a time t, N hailstones strike a glass window of area A
at an angle � to the window surface. Each hailstone has
a mass m and a speed v. If the collisions are elastic, what
are the average force and pressure on the window?

5. In a period of 1.00 s, 5.00 � 1023 nitrogen molecules
strike a wall with an area of 8.00 cm2. If the molecules

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

Problems 663

WEB

WEB

10. A 5.00-liter vessel contains nitrogen gas at 27.0°C and
3.00 atm. Find (a) the total translational kinetic energy
of the gas molecules and (b) the average kinetic energy
per molecule.

11. A cylinder contains a mixture of helium and argon gas
in equilibrium at 150°C. (a) What is the average kinetic
energy for each type of gas molecule? (b) What is the
root-mean-square speed for each type of molecule?

12. (a) Show that 1 Pa � 1 J/m3. (b) Show that the density
in space of the translational kinetic energy of an ideal
gas is 3P/2.

Section 21.2 Molar Specific Heat of an Ideal Gas
Note: You may use the data given in Table 21.2.

13. Calculate the change in internal energy of 3.00 mol of
helium gas when its temperature is increased by 2.00 K.

14. One mole of air at 300 K and confined in
a cylinder under a heavy piston occupies a volume of
5.00 L. Determine the new volume of the gas if 4.40 kJ
of energy is transferred to the air by heat.

15. One mole of hydrogen gas is heated at constant pres-
sure from 300 K to 420 K. Calculate (a) the energy
transferred by heat to the gas, (b) the increase in its in-
ternal energy, and (c) the work done by the gas.

16. In a constant-volume process, 209 J of energy is trans-
ferred by heat to 1.00 mol of an ideal monatomic gas
initially at 300 K. Find (a) the increase in internal en-
ergy of the gas, (b) the work it does, and (c) its final
temperature.

17. A house has well-insulated walls. It contains a volume of
100 m3 of air at 300 K. (a) Calculate the energy re-
quired to increase the temperature of this air by 1.00°C.
(b) If this energy could be used to lift an object of mass
m through a height of 2.00 m, what is the value of m?

18. A vertical cylinder with a heavy piston contains air at 
300 K. The initial pressure is 200 kPa, and the initial vol-
ume is 0.350 m3. Take the molar mass of air as 
28.9 g/mol and assume that (a) Find the
specific heat of air at constant volume in units of
J/kg � °C. (b) Calculate the mass of the air in the cylin-
der. (c) Suppose the piston is held fixed. Find the en-
ergy input required to raise the temperature of the air to
700 K. (d) Assume again the conditions of the initial
state and that the heavy piston is free to move. Find the
energy input required to raise the temperature to 700 K.

19. A 1-L Thermos bottle is full of tea at 90°C. You pour out
one cup and immediately screw the stopper back on.
Make an order-of-magnitude estimate of the change in
temperature of the tea remaining in the flask that re-
sults from the admission of air at room temperature.
State the quantities you take as data and the values you
measure or estimate for them.

20. For a diatomic ideal gas, One mole of this
gas has pressure P and volume V. When the gas is
heated, its pressure triples and its volume doubles. If
this heating process includes two steps, the first at con-

CV � 5R/2.

CV � 5R/2.

(CV � 5R/2)

stant pressure and the second at constant volume, de-
termine the amount of energy transferred to the gas by
heat.

21. One mole of an ideal monatomic gas is at an initial tem-
perature of 300 K. The gas undergoes an isovolumetric
process, acquiring 500 J of energy by heat. It then un-
dergoes an isobaric process, losing this same amount of
energy by heat. Determine (a) the new temperature of
the gas and (b) the work done on the gas.

22. A container has a mixture of two gases: n1 moles of gas
1, which has a molar specific heat C1 ; and n2 moles of
gas 2, which has a molar specific heat C2 . (a) Find the
molar specific heat of the mixture. (b) What is the mo-
lar specific heat if the mixture has m gases in the
amounts n1 , n2 , n3 , . . . , nm , and molar specific heats
C1 , C2 , C3 , . . . , Cm , respectively?

23. One mole of an ideal diatomic gas with oc-
cupies a volume Vi at a pressure Pi . The gas undergoes a
process in which the pressure is proportional to the vol-
ume. At the end of the process, it is found that the rms
speed of the gas molecules has doubled from its initial
value. Determine the amount of energy transferred to
the gas by heat.

Section 21.3 Adiabatic Processes for an Ideal Gas
24. During the compression stroke of a certain gasoline en-

gine, the pressure increases from 1.00 atm to 20.0 atm.
Assuming that the process is adiabatic and that the gas is
ideal, with (a) by what factor does the volume
change and (b) by what factor does the temperature
change? (c) If the compression starts with 0.016 0 mol of
gas at 27.0°C, find the values of Q , W, and �E int that
characterize the process.

25. Two moles of an ideal gas expands slowly
and adiabatically from a pressure of 5.00 atm and a vol-
ume of 12.0 L to a final volume of 30.0 L. (a) What is
the final pressure of the gas? (b) What are the initial
and final temperatures? (c) Find Q , W, and �E int .

26. Air at 27.0°C and at atmospheric pressure is
drawn into a bicycle pump that has a cylinder with an
inner diameter of 2.50 cm and a length of 50.0 cm. The
down stroke adiabatically compresses the air, which
reaches a gauge pressure of 800 kPa before entering the
tire. Determine (a) the volume of the compressed air
and (b) the temperature of the compressed air. 
(c) The pump is made of steel and has an inner wall
that is 2.00 mm thick. Assume that 4.00 cm of the cylin-
der’s length is allowed to come to thermal equilibrium
with the air. What will be the increase in wall tempera-
ture?

27. Air in a thundercloud expands as it rises. If its initial
temperature was 300 K, and if no energy is lost by ther-
mal conduction on expansion, what is its temperature
when the initial volume has doubled?

28. How much work is required to compress 5.00 mol of air
at 20.0°C and 1.00 atm to one tenth of the original vol-

(� � 1.40)

(� � 1.40)

� � 1.40,

CV � 5R/2
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P21.31), (4) the time involved in the expansion is one-
fourth that of the total cycle, and (5) the mixture be-
haves like an ideal gas, with Find the average
power generated during the expansion.

Section 21.4 The Equipartition of Energy
32. A certain molecule has f degrees of freedom. Show that

a gas consisting of such molecules has the following
properties: (1) its total internal energy is fnRT/2; (2) its
molar specific heat at constant volume is fR/2; (3) its
molar specific heat at constant pressure is 
(4) the ratio 

33. Consider 2.00 mol of an ideal diatomic gas. Find the to-
tal heat capacity at constant volume and at constant
pressure (a) if the molecules rotate but do not vibrate
and (b) if the molecules both rotate and vibrate.

34. Inspecting the magnitudes of CV and CP for the di-
atomic and polyatomic gases in Table 21.2, we find that
the values increase with increasing molecular mass. Give
a qualitative explanation of this observation.

35. In a crude model (Fig. P21.35) of a rotating diatomic
molecule of chlorine (Cl2), the two Cl atoms are 
2.00 � 10�10 m apart and rotate about their center of
mass with angular speed � � 2.00 � 1012 rad/s. What is
the rotational kinetic energy of one molecule of Cl2 ,
which has a molar mass of 70.0 g/mol?

� � CP/CV � ( f � 2)/f.
( f � 2)R/2;

� � 1.40.

WEB

Section 21.5 The Boltzmann Distribution Law
Section 21.6 Distribution of Molecular Speeds

36. One cubic meter of atomic hydrogen at 0°C contains
approximately 2.70 � 1025 atoms at atmospheric pres-
sure. The first excited state of the hydrogen atom has
an energy of 10.2 eV above the lowest energy level,
which is called the ground state. Use the Boltzmann fac-
tor to find the number of atoms in the first excited state
at 0°C and at 10 000°C.

37. If convection currents (weather) did not keep the
Earth’s lower atmosphere stirred up, its chemical com-
position would change somewhat with altitude because
the various molecules have different masses. Use the law
of atmospheres to determine how the equilibrium ratio
of oxygen to nitrogen molecules changes between sea
level and 10.0 km. Assume a uniform temperature of
300 K and take the masses to be 32.0 u for oxygen (O2)
and 28.0 u for nitrogen (N2).

400 cm3

After

50.0 cm3

Before

Figure P21.31

Figure P21.35

Cl

Cl

ume by (a) an isothermal process and (b) an adiabatic
process? (c) What is the final pressure in each of these
two cases?

29. Four liters of a diatomic ideal gas confined
to a cylinder is subject to a closed cycle. Initially, the gas
is at 1.00 atm and at 300 K. First, its pressure is tripled
under constant volume. Then, it expands adiabatically
to its original pressure. Finally, the gas is compressed
isobarically to its original volume. (a) Draw a PV dia-
gram of this cycle. (b) Determine the volume of the gas
at the end of the adiabatic expansion. (c) Find the tem-
perature of the gas at the start of the adiabatic expan-
sion. (d) Find the temperature at the end of the cycle.
(e) What was the net work done for this cycle?

30. A diatomic ideal gas confined to a cylinder is
subjected to a closed cycle. Initially, the gas is at Pi , Vi ,
and Ti . First, its pressure is tripled under constant vol-
ume. Then, it expands adiabatically to its original pres-
sure. Finally, the gas is compressed isobarically to its
original volume. (a) Draw a PV diagram of this cycle.
(b) Determine the volume of the gas at the end of the
adiabatic expansion. (c) Find the temperature of the
gas at the start of the adiabatic expansion. (d) Find the
temperature at the end of the cycle. (e) What was the
net work done for this cycle?

31. During the power stroke in a four-stroke automobile en-
gine, the piston is forced down as the mixture of gas
and air undergoes an adiabatic expansion. Assume that
(1) the engine is running at 2 500 rpm, (2) the gauge
pressure right before the expansion is 20.0 atm, (3) the
volumes of the mixture right before and after the ex-
pansion are 50.0 and 400 cm3, respectively (Fig.

(� � 1.40)

(� � 1.40)
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38. A mixture of two gases diffuses through a filter at rates
proportional to the gases’ rms speeds. (a) Find the ratio
of speeds for the two isotopes of chlorine, 35Cl and 37Cl,
as they diffuse through the air. (b) Which isotope
moves faster?

39. Fifteen identical particles have various speeds: one has 
a speed of 2.00 m/s; two have a speed of 3.00 m/s;
three have a speed of 5.00 m/s; four have a speed of
7.00 m/s; three have a speed of 9.00 m/s; and two have
a speed of 12.0 m/s. Find (a) the average speed, 
(b) the rms speed, and (c) the most probable speed of
these particles.

40. Gaseous helium is in thermal equilibrium with liquid
helium at 4.20 K. Even though it is on the point of con-
densation, model the gas as ideal and determine the
most probable speed of a helium atom (mass �
6.64 � 10�27 kg) in it.

41. From the Maxwell–Boltzmann speed distribution, show
that the most probable speed of a gas molecule is given
by Equation 21.29. Note that the most probable speed
corresponds to the point at which the slope of the
speed distribution curve, dNv/dv, is zero.

42. Review Problem. At what temperature would the aver-
age speed of helium atoms equal (a) the escape speed
from Earth, 1.12 � 104 m/s, and (b) the escape speed
from the Moon, 2.37 � 103 m/s ? (See Chapter 14 for a
discussion of escape speed, and note that the mass of a
helium atom is 6.64 � 10�27 kg.)

43. A gas is at 0°C. If we wish to double the rms speed of
the gas’s molecules, by how much must we raise its tem-
perature?

44. The latent heat of vaporization for water at room tem-
perature is 2 430 J/g. (a) How much kinetic energy
does each water molecule that evaporates possess be-
fore it evaporates? (b) Find the pre-evaporation rms
speed of a water molecule that is evaporating. (c) What
is the effective temperature of these molecules (mod-
eled as if they were already in a thin gas)? Why do these
molecules not burn you?

(Optional)
Section 21.7 Mean Free Path

45. In an ultrahigh vacuum system, the pressure is mea-
sured to be 1.00 � 10�10 torr (where 1 torr � 133 Pa).
Assume that the gas molecules have a molecular diame-
ter of 3.00 � 10�10 m and that the temperature is 
300 K. Find (a) the number of molecules in a volume of
1.00 m3, (b) the mean free path of the molecules, and
(c) the collision frequency, assuming an average speed
of 500 m/s.

46. In deep space it is reported that there is only one parti-
cle per cubic meter. Using the average temperature of
3.00 K and assuming that the particle is H2 (with a di-
ameter of 0.200 nm), (a) determine the mean free path
of the particle and the average time between collisions.

(b) Repeat part (a), assuming that there is only one
particle per cubic centimeter.

47. Show that the mean free path for the molecules of an
ideal gas at temperature T and pressure P is

where d is the molecular diameter.
48. In a tank full of oxygen, how many molecular diameters

d (on average) does an oxygen molecule travel (at 
1.00 atm and 20.0°C) before colliding with another O2
molecule? (The diameter of the O2 molecule is approx-
imately 3.60 � 10�10 m.)

49. Argon gas at atmospheric pressure and 20.0°C is con-
fined in a 1.00-m3 vessel. The effective hard-sphere di-
ameter of the argon atom is 3.10 � 10�10 m. (a) Deter-
mine the mean free path �. (b) Find the pressure when
the mean free path is � � 1.00 m. (c) Find the pressure
when � � 3.10 � 10�10 m.

ADDITIONAL PROBLEMS

50. The dimensions of a room are 4.20 m � 3.00 m �
2.50 m. (a) Find the number of molecules of air in it at
atmospheric pressure and 20.0°C. (b) Find the mass of
this air, assuming that the air consists of diatomic mole-
cules with a molar mass of 28.9 g/mol. (c) Find the av-
erage kinetic energy of a molecule. (d) Find the root-
mean-square molecular speed. (e) On the assumption
that the specific heat is a constant independent of tem-
perature, we have E int � 5nRT/2. Find the internal en-
ergy in the air. (f) Find the internal energy of the air in
the room at 25.0°C.

51. The function E int � 3.50nRT describes the internal en-
ergy of a certain ideal gas. A sample comprising 
2.00 mol of the gas always starts at pressure 100 kPa and
temperature 300 K. For each one of the following
processes, determine the final pressure, volume, and
temperature; the change in internal energy of the gas;
the energy added to the gas by heat; and the work done
by the gas: (a) The gas is heated at constant pressure to
400 K. (b) The gas is heated at constant volume to 
400 K. (c) The gas is compressed at constant tempera-
ture to 120 kPa. (d) The gas is compressed adiabatically
to 120 kPa.

52. Twenty particles, each of mass m and confined to a vol-
ume V, have various speeds: two have speed v; three
have speed 2v; five have speed 3v; four have speed 4v;
three have speed 5v; two have speed 6v; one has speed
7v. Find (a) the average speed, (b) the rms speed, 
(c) the most probable speed, (d) the pressure that the
particles exert on the walls of the vessel, and (e) the av-
erage kinetic energy per particle.

53. A cylinder contains n mol of an ideal gas that undergoes
an adiabatic process. (a) Starting with the expression

� �
kBT

!2�d 2P

WEB
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and using the expression 
show that the work done is

(b) Starting with the first law equation in differential
form, prove that the work done also is equal to

Show that this result is consistent with
the equation given in part (a).

54. A vessel contains 1.00 � 104 oxygen molecules at 500 K.
(a) Make an accurate graph of the Maxwell speed distri-
bution function versus speed with points at speed inter-
vals of 100 m/s. (b) Determine the most probable
speed from this graph. (c) Calculate the average and
rms speeds for the molecules and label these points on
your graph. (d) From the graph, estimate the fraction
of molecules having speeds in the range of 300 m/s to
600 m/s.

55. Review Problem. Oxygen at pressures much greater
than 1 atm is toxic to lung cells. By weight, what ratio of
helium gas (He) to oxygen gas (O2) must be used by a
scuba diver who is to descend to an ocean depth of 
50.0 m?

56. A cylinder with a piston contains 1.20 kg of air at 25.0°C
and 200 kPa. Energy is transferred into the system by
heat as it is allowed to expand, with the pressure rising
to 400 kPa. Throughout the expansion, the relationship
between pressure and volume is given by

where C is a constant. (a) Find the initial volume. 
(b) Find the final volume. (c) Find the final tempera-
ture. (d) Find the work that the air does. (e) Find the
energy transferred by heat. Take 

57. The compressibility � of a substance is defined as the
fractional change in volume of that substance for a
given change in pressure:

(a) Explain why the negative sign in this expression en-
sures that � is always positive. (b) Show that if an ideal
gas is compressed isothermally, its compressibility is
given by (c) Show that if an ideal gas is com-
pressed adiabatically, its compressibility is given by

(d) Determine values for �1 and �2 for a
monatomic ideal gas at a pressure of 2.00 atm.

58. Review Problem. (a) Show that the speed of sound in
an ideal gas is

where M is the molar mass. Use the general expression
for the speed of sound in a fluid from Section 17.1; the
definition of the bulk modulus from Section 12.4; and
the result of Problem 57 in this chapter. As a sound

v �! �RT
M

�2 � 1/�P.

�1 � 1/P.

� � �
1
V

 
dV
dP

M � 28.9 g/mol.

P � CV 1/2

nCV(Ti � Tf).

W � � 1
� � 1 �(PiVi � PfVf)

PV � � constant,W � � P dV wave passes through a gas, the compressions are either
so rapid or so far apart that energy flow by heat is pre-
vented by lack of time or by effective thickness of insula-
tion. The compressions and rarefactions are adiabatic.
(b) Compute the theoretical speed of sound in air at
20°C and compare it with the value given in Table 17.1.
Take M � 28.9 g/mol. (c) Show that the speed of
sound in an ideal gas is

where m is the mass of one molecule. Compare your re-
sult with the most probable, the average, and the rms
molecular speeds.

59. For a Maxwellian gas, use a computer or programmable
calculator to find the numerical value of the ratio

for the following values of v :

Give your results to three significant figures.
60. A pitcher throws a 0.142-kg baseball at 47.2 m/s (Fig.

P21.60). As it travels 19.4 m, the ball slows to 42.5 m/s
because of air resistance. Find the change in tempera-
ture of the air through which it passes. To find the
greatest possible temperature change, you may make
the following assumptions: Air has a molar heat capacity
of and an equivalent molar mass of 
28.9 g/mol. The process is so rapid that the cover of the
baseball acts as thermal insulation, and the temperature
of the ball itself does not change. A change in tempera-
ture happens initially only for the air in a cylinder 
19.4 m in length and 3.70 cm in radius. This air is ini-
tially at 20.0°C.

CP � 7R/2

50vmp .
(vmp/2), vmp , 2vmp , 10vmp ,v � (vmp/50), (vmp/10),

Nv(v)/Nv(vmp)

v �! �kBT
m

WEB

Figure P21.60 Nolan Ryan hurls the baseball
for his 5 000th strikeout. (Joe Patronite/ALLSPORT)

Problems 667

61. Consider the particles in a gas centrifuge, a device that
separates particles of different mass by whirling them 
in a circular path of radius r at angular speed �. New-
ton’s second law applied to circular motion states that a
force of magnitude equal to m�2r acts on a particle. 
(a) Discuss how a gas centrifuge can be used to separate
particles of different mass. (b) Show that the density of
the particles as a function of r is

62. Verify Equations 21.27 and 21.28 for the rms and aver-
age speeds of the molecules of a gas at a temperature T.
Note that the average value of vn is

and make use of the definite integrals

63. A sample of a monatomic ideal gas occupies 5.00 L at
atmospheric pressure and 300 K (point A in Figure
P21.63). It is heated at constant volume to 3.00 atm
(point B). Then, it is allowed to expand isothermally to
1.00 atm (point C) and at last is compressed isobarically
to its original state. (a) Find the number of moles in the
sample. (b) Find the temperatures at points B and C
and the volume at point C . (c) Assuming that the
specific heat does not depend on temperature, so that
E int � 3nRT/2, find the internal energy at points A, B,

�


0
 x3e�ax 2

 dx �
1

2a2   �


0
 x4e�ax 2

 dx �
3

8a2  ! �

a

vn �
1
N

 �


0
 vnNvdv

n(r) � n0emr2�2/2k BT

and C . (d) Tabulate P, V, T, and E int at the states at
points A, B, and C . (e) Now consider the processes 
A : B, B : C, and C : A. Describe just how to carry
out each process experimentally. (f) Find Q , W, and
�E int for each of the processes. (g) For the whole cycle
A : B : C : A, find Q , W, and �E int .

64. If you can’t walk to outer space, can you walk at least half
way? (a) Show that the fraction of particles below an al-
titude h in the atmosphere is

(b) Use this result to show that half the particles are be-
low the altitude What is the value of
h� for the Earth? (Assume a temperature of 270 K, and
note that the average molar mass for air is 28.9 g/mol.)

65. This problem will help you to think about the size of
molecules. In the city of Beijing, a restaurant keeps a
pot of chicken broth simmering continuously. Every
morning it is topped off to contain 10.0 L of water,
along with a fresh chicken, vegetables, and spices. The
soup is thoroughly stirred. The molar mass of water is 
18.0 g/mol. (a) Find the number of molecules of water
in the pot. (b) During a certain month, 90.0% of the
broth was served each day to people who then emi-
grated immediately. Of the water molecules present 
in the pot on the first day of the month, when was 
the last one likely to have been ladled out of the pot?
(c) The broth has been simmering for centuries,
through wars, earthquakes, and stove repairs. Suppose
that the water that was in the pot long ago has thor-
oughly mixed into the Earth’s hydrosphere, of mass
1.32 � 1021 kg. How many of the water molecules origi-
nally in the pot are likely to be present in it again today?

66. Review Problem. (a) If it has enough kinetic energy, a
molecule at the surface of the Earth can escape the
Earth’s gravitation. Using the principle of conservation
of energy, show that the minimum kinetic energy
needed for escape is mgR, where m is the mass of the
molecule, g is the free-fall acceleration at the surface of
the Earth, and R is the radius of the Earth. (b) Calcu-
late the temperature for which the minimum escape ki-
netic energy is ten times the average kinetic energy of
an oxygen molecule.

67. Using multiple laser beams, physicists have been able to
cool and trap sodium atoms in a small region. In one
experiment, the temperature of the atoms was reduced
to 0.240 mK. (a) Determine the rms speed of the
sodium atoms at this temperature. The atoms can be
trapped for about 1.00 s. The trap has a linear dimen-
sion of roughly 1.00 cm. (b) Approximately how long
would it take an atom to wander out of the trap region
if there were no trapping action?

h� � kBT ln(2)/mg.

f � 1 � e (�mgh/k BT )

Figure P21.63
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ANSWERS TO QUICK QUIZZES

is constant by definition. Therefore, the internal energy
of the gas does not change.

21.3 The area under each curve represents the number of
molecules in that particular velocity range. The T �
900 K curve has many more molecules moving between
800 m/s and 1000 m/s than does the T � 300 K curve.

21.1 Although a molecule moves very rapidly, it does not
travel far before it collides with another molecule. The
collision deflects the molecule from its original path.
Eventually, a perfume molecule will make its way from
one end of the room to the other, but the path it takes is
much longer than the straight-line distance from the
perfume bottle to your nose.

21.2 (c) E int stays the same. According to Equation 21.10, E int
is a function of temperature only. Along an isotherm, T
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Second Law of Thermodynamics

P U Z Z L E R

The purpose of a refrigerator is to keep
its contents cool. Beyond the attendant
increase in your electricity bill, there is
another good reason you should not try
to cool the kitchen on a hot day by 
leaving the refrigerator door open. 
What might this reason be?
(Charles D. Winters)
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he first law of thermodynamics, which we studied in Chapter 20, is a state-
ment of conservation of energy, generalized to include internal energy. This
law states that a change in internal energy in a system can occur as a result of

energy transfer by heat or by work, or by both. As was stated in Chapter 20, the law
makes no distinction between the results of heat and the results of work—either
heat or work can cause a change in internal energy. However, an important distinc-
tion between the two is not evident from the first law. One manifestation of this
distinction is that it is impossible to convert internal energy completely to mechan-
ical energy by taking a substance through a thermodynamic cycle such as in a heat
engine, a device we study in this chapter.

Although the first law of thermodynamics is very important, it makes no dis-
tinction between processes that occur spontaneously and those that do not. How-
ever, we find that only certain types of energy-conversion and energy-transfer
processes actually take place. The second law of thermodynamics, which we study in
this chapter, establishes which processes do and which do not occur in nature. The
following are examples of processes that proceed in only one direction, governed
by the second law:

• When two objects at different temperatures are placed in thermal contact with
each other, energy always flows by heat from the warmer to the cooler, never
from the cooler to the warmer.

• A rubber ball dropped to the ground bounces several times and eventually
comes to rest, but a ball lying on the ground never begins bouncing on its own.

• An oscillating pendulum eventually comes to rest because of collisions with air
molecules and friction at the point of suspension. The mechanical energy of the
system is converted to internal energy in the air, the pendulum, and the suspen-
sion; the reverse conversion of energy never occurs.

All these processes are irreversible—that is, they are processes that occur natu-
rally in one direction only. No irreversible process has ever been observed to run
backward—if it were to do so, it would violate the second law of thermodynamics.1

From an engineering standpoint, perhaps the most important implication of
the second law is the limited efficiency of heat engines. The second law states that
a machine capable of continuously converting internal energy completely to other
forms of energy in a cyclic process cannot be constructed.

HEAT ENGINES AND THE SECOND LAW
OF THERMODYNAMICS

A heat engine is a device that converts internal energy to mechanical energy. For
instance, in a typical process by which a power plant produces electricity, coal or
some other fuel is burned, and the high-temperature gases produced are used to
convert liquid water to steam. This steam is directed at the blades of a turbine, set-
ting it into rotation. The mechanical energy associated with this rotation is used to
drive an electric generator. Another heat engine—the internal combustion en-
gine in an automobile—uses energy from a burning fuel to perform work that re-
sults in the motion of the automobile.

22.1

T

10.8

1 Although we have never observed a process occurring in the time-reversed sense, it is possible for it to
occur. As we shall see later in the chapter, however, such a process is highly improbable. From this view-
point, we say that processes occur with a vastly greater probability in one direction than in the opposite
direction.
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A heat engine carries some working substance through a cyclic process during
which (1) the working substance absorbs energy from a high-temperature energy
reservoir, (2) work is done by the engine, and (3) energy is expelled by the engine
to a lower-temperature reservoir. As an example, consider the operation of a steam
engine (Fig. 22.1), in which the working substance is water. The water in a boiler
absorbs energy from burning fuel and evaporates to steam, which then does work
by expanding against a piston. After the steam cools and condenses, the liquid wa-
ter produced returns to the boiler and the cycle repeats.

It is useful to represent a heat engine schematically as in Figure 22.2. The en-
gine absorbs a quantity of energy Q h from the hot reservoir, does work W, and
then gives up a quantity of energy Q c to the cold reservoir. Because the working
substance goes through a cycle, its initial and final internal energies are equal, and
so Hence, from the first law of thermodynamics, and
with no change in internal energy, the net work W done by a heat engine is
equal to the net energy Q net flowing through it. As we can see from Figure
22.2, therefore,

(22.1)

In this expression and in many others throughout this chapter, to be consistent
with traditional treatments of heat engines, we take both Q h and Q c to be positive
quantities, even though Q c represents energy leaving the engine. In discussions of
heat engines, we shall describe energy leaving a system with an explicit minus sign,

W � Q h � Q c

Q net � Q h � Q c ;

�E int � Q � W,�E int � 0.

Lord Kelvin British physicist and
mathematician (1824 – 1907) Born
William Thomson in Belfast, Kelvin
was the first to propose the use of an
absolute scale of temperature. The
Kelvin temperature scale is named in
his honor. Kelvin’s work in thermo-
dynamics led to the idea that energy
cannot pass spontaneously from a
colder body to a hotter body. (J. L.
Charmet /SPL /Photo Researchers, Inc.)

Hot reservoir at Th

Q h

Q c

W

Cold reservoir at Tc

Engine

Figure 22.1 This steam-driven locomotive runs from Durango to Silverton, Colorado. It ob-
tains its energy by burning wood or coal. The generated energy vaporizes water into steam, which
powers the locomotive. (This locomotive must take on water from tanks located along the route
to replace steam lost through the funnel.) Modern locomotives use diesel fuel instead of wood or
coal. Whether old-fashioned or modern, such locomotives are heat engines, which extract energy
from a burning fuel and convert a fraction of it to mechanical energy.

Figure 22.2 Schematic represen-
tation of a heat engine. The engine
absorbs energy Q h from the hot
reservoir, expels energy Q c to the
cold reservoir, and does work W.
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as in Equation 22.1. Also note that we model the energy input and output for the
heat engine as heat, as it often is; however, the energy transfer could occur by an-
other mechanism.

The net work done in a cyclic process is the area enclosed by the curve
representing the process on a PV diagram. This is shown for an arbitrary cyclic
process in Figure 22.3.

The thermal efficiency e of a heat engine is defined as the ratio of the net
work done by the engine during one cycle to the energy absorbed at the higher
temperature during the cycle:

(22.2)e �
W
Q h

�
Q h � Q c

Q h
� 1 �

Q c

Q h

We can think of the efficiency as the ratio of what you get (mechanical work)
to what you give (energy transfer at the higher temperature). In practice, we find
that all heat engines expel only a fraction of the absorbed energy as mechanical
work and that consequently the efficiency is less than 100%. For example, a good
automobile engine has an efficiency of about 20%, and diesel engines have effi-
ciencies ranging from 35% to 40%.

Equation 22.2 shows that a heat engine has 100% efficiency (e � 1) only if 
Q c � 0—that is, if no energy is expelled to the cold reservoir. In other words, a
heat engine with perfect efficiency would have to expel all of the absorbed energy
as mechanical work. On the basis of the fact that efficiencies of real engines are
well below 100%, the Kelvin–Planck form of the second law of thermodynam-
ics states the following:

It is impossible to construct a heat engine that, operating in a cycle, produces
no effect other than the absorption of energy from a reservoir and the perfor-
mance of an equal amount of work.

Kelvin–Planck statement of the
second law of thermodynamics

P

V

Area = W

Figure 22.3 PV diagram for an
arbitrary cyclic process. The value
of the net work done equals the
area enclosed by the curve.

This statement of the second law means that, during the operation of a heat en-
gine, W can never be equal to Q h , or, alternatively, that some energy Q c must be

The impossible engine

Q h

Cold reservoir at Tc

Engine

W

Hot reservoir at Th

Figure 22.4 Schematic diagram of a heat engine
that absorbs energy Q h from a hot reservoir and does
an equivalent amount of work. It is impossible to con-
struct such a perfect engine.
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rejected to the environment. Figure 22.4 is a schematic diagram of the impossible
“perfect” heat engine.

The first and second laws of thermodynamics can be summarized as follows:
The first law specifies that we cannot get more energy out of a cyclic process
by work than the amount of energy we put in, and the second law states that
we cannot break even because we must put more energy in, at the higher
temperature, than the net amount of energy we get out by work.

The Efficiency of an EngineEXAMPLE 22.1
Equation 22.2:

or 25%e � 1 �
Q c

Q h
� 1 �

1 500 J
2 000 J

� 0.25,

Find the efficiency of a heat engine that absorbs 2 000 J of
energy from a hot reservoir and exhausts 1 500 J to a cold
reservoir.

Solution To calculate the efficiency of the engine, we use

Refrigerators and Heat Pumps

Refrigerators and heat pumps are heat engines running in reverse. Here, we in-
troduce them briefly for the purposes of developing an alternate statement of the
second law; we shall discuss them more fully in Section 22.5.

In a refrigerator or heat pump, the engine absorbs energy Q c from a cold
reservoir and expels energy Q h to a hot reservoir (Fig. 22.5). This can be accom-
plished only if work is done on the engine. From the first law, we know that the en-
ergy given up to the hot reservoir must equal the sum of the work done and the
energy absorbed from the cold reservoir. Therefore, the refrigerator or heat pump
transfers energy from a colder body (for example, the contents of a kitchen refrig-
erator or the winter air outside a building) to a hotter body (the air in the kitchen
or a room in the building). In practice, it is desirable to carry out this process with
a minimum of work. If it could be accomplished without doing any work, then the
refrigerator or heat pump would be “perfect” (Fig. 22.6). Again, the existence of

Refrigerator

Q h

Q c

Cold reservoir at Tc

Engine

W

Hot reservoir at Th

Impossible refrigerator

Cold reservoir at Tc

Engine

Hot reservoir at Th

Figure 22.5 Schematic diagram of a refrigerator,
which absorbs energy Q c from a cold reservoir and ex-
pels energy Q h to a hot reservoir. Work W is done on the
refrigerator. A heat pump, which can be used to heat or
cool a building, works the same way.

Figure 22.6 Schematic diagram
of an impossible refrigerator or
heat pump—that is, one that ab-
sorbs energy Q c from a cold reser-
voir and expels an equivalent
amount of energy to a hot reservoir
with W � 0.
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such a device would be in violation of the second law of thermodynamics, which in
the form of the Clausius statement2 states:

It is impossible to construct a cyclical machine whose sole effect is the continu-
ous transfer of energy from one object to another object at a higher tempera-
ture without the input of energy by work.

In simpler terms, energy does not flow spontaneously from a cold object to a
hot object. For example, we cool homes in summer using heat pumps called air
conditioners. The air conditioner pumps energy from the cool room in the home to
the warm air outside. This direction of energy transfer requires an input of energy
to the air conditioner, which is supplied by the electric power company.

The Clausius and Kelvin–Planck statements of the second law of thermody-
namics appear, at first sight, to be unrelated, but in fact they are equivalent in all
respects. Although we do not prove so here, if either statement is false, then so is
the other.3

REVERSIBLE AND IRREVERSIBLE PROCESSES
In the next section we discuss a theoretical heat engine that is the most efficient
possible. To understand its nature, we must first examine the meaning of re-
versible and irreversible processes. In a reversible process, the system undergoing
the process can be returned to its initial conditions along the same path shown on
a PV diagram, and every point along this path is an equilibrium state. A process
that does not satisfy these requirements is irreversible.

All natural processes are known to be irreversible. From the endless number
of examples that could be selected, let us examine the adiabatic free expansion of
a gas, which was already discussed in Section 20.6, and show that it cannot be re-
versible. The system that we consider is a gas in a thermally insulated container, as
shown in Figure 22.7. A membrane separates the gas from a vacuum. When the
membrane is punctured, the gas expands freely into the vacuum. As a result of
the puncture, the system has changed because it occupies a greater volume after
the expansion. Because the gas does not exert a force through a distance on the
surroundings, it does no work on the surroundings as it expands. In addition, no
energy is transferred to or from the gas by heat because the container is insulated
from its surroundings. Thus, in this adiabatic process, the system has changed but
the surroundings have not.

For this process to be reversible, we need to be able to return the gas to its
original volume and temperature without changing the surroundings. Imagine
that we try to reverse the process by compressing the gas to its original volume. To
do so, we fit the container with a piston and use an engine to force the piston in-
ward. During this process, the surroundings change because work is being done by
an outside agent on the system. In addition, the system changes because the com-
pression increases the temperature of the gas. We can lower the temperature of
the gas by allowing it to come into contact with an external energy reservoir. Al-
though this step returns the gas to its original conditions, the surroundings are

22.2

Clausius statement of the second
law of thermodynamics

2 First expressed by Rudolf Clausius (1822–1888).
3 See, for example, R. P. Bauman, Modern Thermodynamics and Statistical Mechanics, New York, Macmillan
Publishing Co., 1992.

Insulating
wall

Membrane

Vacuum

Gas at Ti

Figure 22.7 Adiabatic free ex-
pansion of a gas.
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again affected because energy is being added to the surroundings from the gas. If
this energy could somehow be used to drive the engine that we have used to com-
press the gas, then the net energy transfer to the surroundings would be zero. In
this way, the system and its surroundings could be returned to their initial condi-
tions, and we could identify the process as reversible. However, the Kelvin–Planck
statement of the second law specifies that the energy removed from the gas to re-
turn the temperature to its original value cannot be completely converted to me-
chanical energy in the form of the work done by the engine in compressing the
gas. Thus, we must conclude that the process is irreversible.

We could also argue that the adiabatic free expansion is irreversible by relying
on the portion of the definition of a reversible process that refers to equilibrium
states. For example, during the expansion, significant variations in pressure occur
throughout the gas. Thus, there is no well-defined value of the pressure for the en-
tire system at any time between the initial and final states. In fact, the process cannot
even be represented as a path on a PV diagram. The PV diagram for an adiabatic
free expansion would show the initial and final conditions as points, but these points
would not be connected by a path. Thus, because the intermediate conditions be-
tween the initial and final states are not equilibrium states, the process is irreversible.

Although all real processes are always irreversible, some are almost reversible.
If a real process occurs very slowly such that the system is always very nearly in an
equilibrium state, then the process can be approximated as reversible. For exam-
ple, let us imagine that we compress a gas very slowly by dropping some grains of
sand onto a frictionless piston, as shown in Figure 22.8. We make the process
isothermal by placing the gas in thermal contact with an energy reservoir, and we
transfer just enough energy from the gas to the reservoir during the process to
keep the temperature constant. The pressure, volume, and temperature of the gas
are all well defined during the isothermal compression, so each state during the
process is an equilibrium state. Each time we add a grain of sand to the piston, the
volume of the gas decreases slightly while the pressure increases slightly. Each
grain we add represents a change to a new equilibrium state. We can reverse the
process by slowly removing grains from the piston.

A general characteristic of a reversible process is that no dissipative effects
(such as turbulence or friction) that convert mechanical energy to internal energy
can be present. Such effects can be impossible to eliminate completely. Hence, it is
not surprising that real processes in nature are irreversible.

THE CARNOT ENGINE
In 1824 a French engineer named Sadi Carnot described a theoretical engine,
now called a Carnot engine, that is of great importance from both practical and
theoretical viewpoints. He showed that a heat engine operating in an ideal, re-
versible cycle—called a Carnot cycle—between two energy reservoirs is the most
efficient engine possible. Such an ideal engine establishes an upper limit on the
efficiencies of all other engines. That is, the net work done by a working substance
taken through the Carnot cycle is the greatest amount of work possible for a given
amount of energy supplied to the substance at the upper temperature. Carnot’s
theorem can be stated as follows:

22.3

Figure 22.8 A gas in thermal
contact with an energy reservoir is
compressed slowly as individual
grains of sand drop onto the pis-
ton. The compression is isothermal
and reversible.

Energy reservoir

Sand

No real heat engine operating between two energy reservoirs can be more effi-
cient than a Carnot engine operating between the same two reservoirs.

Sadi Carnot French physicist
(1796 – 1832) Carnot was the first to
show the quantitative relationship be-
tween work and heat. In 1824 he pub-
lished his only work — Reflections on
the Motive Power of Heat—which
reviewed the industrial, political, and
economic importance of the steam
engine. In it, he defined work as
“weight lifted through a height.”
(FPG)

10.9
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To argue the validity of this theorem, let us imagine two heat engines operating
between the same energy reservoirs. One is a Carnot engine with efficiency eC , and
the other is an engine with efficiency e, which is greater than eC . We use the more
efficient engine to drive the Carnot engine as a Carnot refrigerator. Thus, the out-
put by work of the more efficient engine is matched to the input by work of the

Cycle

D → A

Adiabatic
compression

Q = 0

(d)

B → C

Adiabatic
expansion

Q = 0

(b)

Energy reservoir at Th

(a)

A → B

Isothermal
expansion

(c)

Energy reservoir at Tc

C → D
Isothermal

compression

Q h

Q c

Figure 22.9 The Carnot cycle. In process A : B, the gas expands isothermally while in contact
with a reservoir at Th . In process B : C, the gas expands adiabatically (Q � 0). In process C : D,
the gas is compressed isothermally while in contact with a reservoir at In process D : A,
the gas is compressed adiabatically. The upward arrows on the piston indicate that weights are be-
ing removed during the expansions, and the downward arrows indicate that weights are being
added during the compressions.

Tc � Th .
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Carnot refrigerator. For the combination of the engine and refrigerator, then, no
exchange by work with the surroundings occurs. Because we have assumed that
the engine is more efficient than the refrigerator, the net result of the combina-
tion is a transfer of energy from the cold to the hot reservoir without work being
done on the combination. According to the Clausius statement of the second law,
this is impossible. Hence, the assumption that must be false. All real en-
gines are less efficient than the Carnot engine because they do not operate
through a reversible cycle. The efficiency of a real engine is further reduced by
such practical difficulties as friction and energy losses by conduction.

To describe the Carnot cycle taking place between temperatures Tc and Th , we
assume that the working substance is an ideal gas contained in a cylinder fitted
with a movable piston at one end. The cylinder’s walls and the piston are ther-
mally nonconducting. Four stages of the Carnot cycle are shown in Figure 22.9,
and the PV diagram for the cycle is shown in Figure 22.10. The Carnot cycle con-
sists of two adiabatic processes and two isothermal processes, all reversible:

1. Process A : B (Fig. 22.9a) is an isothermal expansion at temperature Th . The
gas is placed in thermal contact with an energy reservoir at temperature Th .
During the expansion, the gas absorbs energy Q h from the reservoir through
the base of the cylinder and does work WAB in raising the piston.

2. In process B : C (Fig. 22.9b), the base of the cylinder is replaced by a ther-
mally nonconducting wall, and the gas expands adiabatically —that is, no en-
ergy enters or leaves the system. During the expansion, the temperature of
the gas decreases from Th to Tc and the gas does work WBC in raising the 
piston.

3. In process C : D (Fig. 22.9c), the gas is placed in thermal contact with an en-
ergy reservoir at temperature Tc and is compressed isothermally at temperature
Tc . During this time, the gas expels energy Q c to the reservoir, and the work
done by the piston on the gas is WCD .

4. In the final process D : A (Fig. 22.9d), the base of the cylinder is replaced by a
nonconducting wall, and the gas is compressed adiabatically. The temperature
of the gas increases to Th , and the work done by the piston on the gas is WDA .

The net work done in this reversible, cyclic process is equal to the area en-
closed by the path ABCDA in Figure 22.10. As we demonstrated in Section 22.1,
because the change in internal energy is zero, the net work W done in one cycle
equals the net energy transferred into the system, Q h � Q c . The thermal efficiency
of the engine is given by Equation 22.2:

In Example 22.2, we show that for a Carnot cycle

(22.3)

Hence, the thermal efficiency of a Carnot engine is

(22.4)

This result indicates that all Carnot engines operating between the same two
temperatures have the same efficiency.

eC � 1 �
Tc

Th

Q c

Q h
�

Tc

Th

e �
W
Q h

�
Q h � Q c

Q h
� 1 �

Q c

Q h

e � eC

Ratio of energies for a Carnot
cycle

Efficiency of a Carnot engine

V

P

A

C

B

D

Q c

Q h

Th

Tc

W

Figure 22.10 PV diagram for the
Carnot cycle. The net work done,
W, equals the net energy received
in one cycle, Note that

for the cycle.�E int � 0
Q h � Q c .
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Efficiency of the Carnot EngineEXAMPLE 22.2
pression for P and substituting into (2), we obtain

which we can write as

where we have absorbed nR into the constant right-hand side.
Applying this result to the adiabatic processes B : C and 
D : A, we obtain

Dividing the first equation by the second, we obtain

(3)

Substituting (3) into (1), we find that the logarithmic terms
cancel, and we obtain the relationship

Using this result and Equation 22.2, we see that the thermal
efficiency of the Carnot engine is

which is Equation 22.4, the one we set out to prove.

eC � 1 �
Q c

Q h
� 1 �

Tc

Th

Q c

Q h
�

Tc

Th

VB

VA
�

VC

VD

(VB /VA)��1 � (VC /VD)��1

ThVA 

��1 � TcVD 

��1

ThVB 

��1 � TcVC 

��1

TV ��1 � constant

nRT
V

 V � � constant

Show that the efficiency of a heat engine operating in a
Carnot cycle using an ideal gas is given by Equation 22.4.

Solution During the isothermal expansion (process A : B
in Figure 22.9), the temperature does not change. Thus, the
internal energy remains constant. The work done by a gas
during an isothermal expansion is given by Equation 20.13.
According to the first law, this work is equal to Q h , the energy
absorbed, so that

In a similar manner, the energy transferred to the cold reser-
voir during the isothermal compression C : D is

We take the absolute value of the work because we are defin-
ing all values of Q for a heat engine as positive, as mentioned
earlier. Dividing the second expression by the first, we find
that

(1)

We now show that the ratio of the logarithmic quantities is
unity by establishing a relationship between the ratio of vol-
umes. For any quasi-static, adiabatic process, the pressure and
volume are related by Equation 21.18:

(2)

During any reversible, quasi-static process, the ideal gas must
also obey the equation of state, PV � nRT. Solving this ex-

PV � � constant

Q c

Q h
�

Tc

Th
 

ln(VC /VD)
ln(VB /VA)

Q c � � WCD � � nRTc ln 
VC

VD

Q h � WAB � nRTh ln 
VB

VA

The Steam EngineEXAMPLE 22.3
Solution Using Equation 22.4, we find that the maximum
thermal efficiency for any engine operating between these
temperatures is

or 40%eC � 1 �
Tc

Th
� 1 �

300 K
500 K

� 0.4,

A steam engine has a boiler that operates at 500 K. The en-
ergy from the burning fuel changes water to steam, and this
steam then drives a piston. The cold reservoir’s temperature
is that of the outside air, approximately 300 K. What is the
maximum thermal efficiency of this steam engine?

Equation 22.4 can be applied to any working substance operating in a Carnot
cycle between two energy reservoirs. According to this equation, the efficiency is
zero if as one would expect. The efficiency increases as Tc is lowered and
as Th is raised. However, the efficiency can be unity (100%) only if K. Such
reservoirs are not available; thus, the maximum efficiency is always less than 100%.
In most practical cases, Tc is near room temperature, which is about 300 K. There-
fore, one usually strives to increase the efficiency by raising Th .

Tc � 0
Tc � Th ,
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GASOLINE AND DIESEL ENGINES
In a gasoline engine, six processes occur in each cycle; five of these are illustrated
in Figure 22.11. In this discussion, we consider the interior of the cylinder above
the piston to be the system that is taken through repeated cycles in the operation
of the engine. For a given cycle, the piston moves up and down twice. This repre-
sents a four-stroke cycle consisting of two upstrokes and two downstrokes. The
processes in the cycle can be approximated by the Otto cycle, a PV diagram of
which is illustrated in Figure 22.12:

1. During the intake stroke O : A (Fig. 22.11a), the piston moves downward, and a
gaseous mixture of air and fuel is drawn into the cylinder at atmospheric pres-
sure. In this process, the volume increases from V2 to V1 . This is the energy in-
put part of the cycle, as energy enters the system (the interior of the cylinder)
as internal energy stored in the fuel. This is energy transfer by mass transfer—
that is, the energy is carried with a substance. It is similar to convection, which
we studied in Chapter 20.

2. During the compression stroke A : B (Fig. 22.11b), the piston moves upward, the
air– fuel mixture is compressed adiabatically from volume V1 to volume V2 , and
the temperature increases from TA to TB . The work done by the gas is negative,
and its value is equal to the area under the curve AB in Figure 22.12.

3. In process B : C, combustion occurs when the spark plug fires (Fig. 22.11c).
This is not one of the strokes of the cycle because it occurs in a very short 
period of time while the piston is at its highest position. The combustion repre-
sents a rapid transformation from internal energy stored in chemical bonds in
the fuel to internal energy associated with molecular motion, which is related
to temperature. During this time, the pressure and temperature in the cylinder
increase rapidly, with the temperature rising from TB to TC . The volume, how-
ever, remains approximately constant because of the short time interval. As a re-
sult, approximately no work is done by the gas. We can model this process in
the PV diagram (Fig. 22.12) as that process in which the energy Q h enters the
system. However, in reality this process is a transformation of energy already in
the cylinder (from process O : A) rather than a transfer.

4. In the power stroke C : D (Fig. 22.11d), the gas expands adiabatically from V2 to

22.4

The Carnot EfficiencyEXAMPLE 22.4

430 KTh �
Tc

1 � eC
�

300 K
1 � 0.30

�

eC � 1 �
Tc

Th
  

The highest theoretical efficiency of a certain engine is 30%.
If this engine uses the atmosphere, which has a temperature
of 300 K, as its cold reservoir, what is the temperature of its
hot reservoir?

Solution We use the Carnot efficiency to find Th :

You should note that this is the highest theoretical efficiency of
the engine. In practice, the efficiency is considerably lower.

Exercise Determine the maximum work that the engine

can perform in each cycle if it absorbs 200 J of energy from
the hot reservoir during each cycle.

Answer 80 J.
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V1 . This expansion causes the temperature to drop from TC to TD . Work is
done by the gas in pushing the piston downward, and the value of this work is
equal to the area under the curve CD.

5. In the process D : A (not shown in Fig. 22.11), an exhaust valve is opened as
the piston reaches the bottom of its travel, and the pressure suddenly drops for
a short time interval. During this interval, the piston is almost stationary and
the volume is approximately constant. Energy is expelled from the interior of
the cylinder and continues to be expelled during the next process.

6. In the final process, the exhaust stroke A : O (Fig. 22.11e), the piston moves up-
ward while the exhaust valve remains open. Residual gases are exhausted at at-
mospheric pressure, and the volume decreases from V1 to V2 . The cycle then 
repeats.

If the air– fuel mixture is assumed to be an ideal gas, then the efficiency of the
Otto cycle is

(22.5)

where � is the ratio of the molar specific heats CP/CV for the fuel–air mixture and
V1 /V2 is the compression ratio. Equation 22.5, which we derive in Example 22.5,
shows that the efficiency increases as the compression ratio increases. For a typical
compression ratio of 8 and with � � 1.4, we predict a theoretical efficiency of 56%
for an engine operating in the idealized Otto cycle. This value is much greater
than that achieved in real engines (15% to 20%) because of such effects as fric-
tion, energy transfer by conduction through the cylinder walls, and incomplete
combustion of the air– fuel mixture.

Diesel engines operate on a cycle similar to the Otto cycle but do not employ a
spark plug. The compression ratio for a diesel engine is much greater than that

e � 1 �
1

(V1 /V2)��1Efficiency of the Otto cycle

Air
and
fuel

Spark plug

Piston

Intake
(a)

Compression
(b)

Spark
(c)

Power
(d)

Exhaust

Exhaust
(e)

Figure 22.11 The four-stroke cycle of a conventional gasoline engine. (a) In the intake 
stroke, air is mixed with fuel. (b) The intake valve is then closed, and the air– fuel mixture is
compressed by the piston. (c) The mixture is ignited by the spark plug, with the result that the
temperature of the mixture increases. (d) In the power stroke, the gas expands against the pis-
ton. (e) Finally, the residual gases are expelled, and the cycle repeats.

P

V
V1V2

A

B
D

C

O

Q h

Q c

Adiabatic
processes

Figure 22.12 PV diagram for the
Otto cycle, which approximately
represents the processes occurring
in an internal combustion engine.
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Efficiency of the Otto CycleEXAMPLE 22.5
and we find that

(2)

(3)

Subtracting (2) from (3) and rearranging, we find that

(4)

Substituting (4) into (1), we obtain for the thermal efficiency

(5)

which is Equation 22.5.
We can also express this efficiency in terms of tempera-

tures by noting from (2) and (3) that

Therefore, (5) becomes

(6)

During the Otto cycle, the lowest temperature is TA and the
highest temperature is TC . Therefore, the efficiency of a
Carnot engine operating between reservoirs at these two
temperatures, which is given by the expression 

is greater than the efficiency of the Otto cycle
given by (6), as expected.
1 � (TA /TC),

eC �

e � 1 �
TA

TB
� 1 �

TD

TC

� V2

V1
�

��1
�

TA

TB
�

TD

TC

e � 1 �
1

(V1 /V2)��1

TD � TA

TC � TB
� � V2

V1
�

��1

TD � TC � V2

V1
�

��1

TDV1 

��1 � TCV2 

��1

TA � TB � V2

V1
�

��1

TAV1 

��1 � TBV2 

��1

VB � VC � V2,VA � VD � V1Show that the thermal efficiency of an engine operating in an
idealized Otto cycle (see Figs. 22.11 and 22.12) is given by
Equation 22.5. Treat the working substance as an ideal gas.

Solution First, let us calculate the work done by the gas
during each cycle. No work is done during processes B : C
and D : A. The work done by the gas during the adiabatic
compression A : B is negative, and the work done by the gas
during the adiabatic expansion C : D is positive. The value
of the net work done equals the area of the shaded region
bounded by the closed curve in Figure 22.12. Because the
change in internal energy for one cycle is zero, we see from
the first law that the net work done during one cycle equals
the net energy flow through the system:

W � Q h � Q c

Because processes B : C and D : A take place at constant
volume, and because the gas is ideal, we find from the defini-
tion of molar specific heat (Eq. 21.8) that

and

Using these expressions together with Equation 22.2, we ob-
tain for the thermal efficiency

(1)

We can simplify this expression by noting that processes 
A : B and C : D are adiabatic and hence obey the relation-
ship which we obtained in Example 22.2.
For the two adiabatic processes, then,

A : B :

C : D :

Using these equations and relying on the fact that

TCVC 

��1 � TDVD 

��1

TAVA 

��1 � TBVB 

��1

TV ��1 � constant,

e �
W
Q h

� 1 �
Q c

Q h
� 1 �

TD � TA

TC � TB

Q c � nCV (TD � TA)Q h � nCV (TC � TB)

for a gasoline engine. Air in the cylinder is compressed to a very small volume,
and, as a consequence, the cylinder temperature at the end of the compression
stroke is very high. At this point, fuel is injected into the cylinder. The temperature
is high enough for the fuel–air mixture to ignite without the assistance of a spark
plug. Diesel engines are more efficient than gasoline engines because of their
greater compression ratios and resulting higher combustion temperatures.

Models of Gasoline and Diesel EnginesAPPLICATION
mixture as the products of combustion expand in the cylinder.
The power of the engine is transferred from the piston to the
crankshaft by the connecting rod. 

Two important quantities of either engine are the displace-
ment volume, which is the volume displaced by the piston as it
moves from the bottom to the top of the cylinder, and the com-

We can use the thermodynamic principles discussed in this
and earlier chapters to model the performance of gasoline
and diesel engines. In both types of engine, a gas is first com-
pressed in the cylinders of the engine and then the fuel–air
mixture is ignited. Work is done on the gas during compres-
sion, but significantly more work is done on the piston by the
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We also know that the difference in volumes is the displace-
ment volume. The 3.00-L rating of the engine is the total 
displacement volume for all six cylinders. Thus, for one 
cylinder,

Solving these two equations simultaneously, we find the initial
and final volumes:

Using the ideal gas law (in the form PV � mRT, because we
are using the universal gas constant in terms of mass rather
than moles), we can find the mass of the air– fuel mixture:

Process A : B (see Fig. 22.12) is an adiabatic compression,
and this means that hence,

Using the ideal gas law, we find that the temperature after the
compression is

In process B : C, the combustion that transforms the in-
ternal energy in chemical bonds into internal energy of mo-
lecular motion occurs at constant volume; thus, VC � VB .
Combustion causes the temperature to increase to TC �
1 350°C � 1 623 K. Using this value and the ideal gas law, we
can calculate PC :

Process C : D is an adiabatic expansion; the pressure after
the expansion is

 � (5.14 � 103 kPa)� 1
9.50 �

1.40
� 220 kPa

PD � PC � VC

VD
�

�

� PC � VB

VA
�

�

� PC � 1
r �

�

 � 5.14 � 103 kPa

 �
(6.49 � 10�4 kg)(0.287 kPa �m3/kg�K)(1 623 K)

(0.588 � 10�4 m3)

PC �
mRTC

VC

 � 739 K

TB �
PBVB

mR
�

(2.34 � 103 kPa)(0.588 � 10�4 m3)
(6.49 � 10�4 kg)(0.287 kPa �m3/kg�K)

 � 2.34 � 103 kPa

  PB � PA� VA

VB
�

�

� PA(r)� � (100 kPa)(9.50)1.40

PBVB 

� � PAVA 

�  

PV � � constant;

 � 6.49 � 10�4 kg

m �
PAVA

RTA
�

(100 kPa)(0.559 � 10�3 m3)
(0.287 kPa�m3/kg�K)(300 K)

VA � 0.559 � 10�3 m3  VB � 0.588 � 10�4 m3

VA � VB �
3.00 L

6
�

3.00 � 10�3 m3

6
� 0.500 � 10�3 m3

VA

VB
� r � 9.50

pression ratio r, which is the ratio of the maximum and mini-
mum volumes of the cylinder (see p. 680). In our notation, 
r � VA/VB , or V1/V2 in Eq. 22.5. Most gasoline and diesel en-
gines operate with a four-cycle process (intake, compression,
power, exhaust), in which the net work of the intake and ex-
haust cycles can be considered negligible. Therefore, power
is developed only once for every two revolutions of the crank-
shaft.

In a diesel engine, only air (and no fuel) is present in the
cylinder at the beginning of the compression. In the ideal-
ized diesel cycle of Figure 22.13, air in the cylinder under-
goes an adiabatic compression from A to B. Starting at B, fuel
is injected into the cylinder in such a way that the fuel–air
mixture undergoes a constant-pressure expansion to an inter-
mediate volume VC(B : C ). The high temperature of the
mixture causes combustion, and the power stroke is an adia-
batic expansion back to VD � VA(C : D). The exhaust valve
is opened, and a constant-volume output of energy occurs 
(D : A) as the cylinder empties.

To simplify our calculations, we assume that the mixture
in the cylinder is air modeled as an ideal gas. We use specific
heats c instead of molar specific heats C and assume con-
stant values for air at 300 K. We express the specific heats 
and the universal gas constant in terms of unit masses rather
than moles. Thus, cV � 0.718 kJ/kg � K, cP � 1.005 kJ/kg � K,

and kJ/kg � K �
.

A 3.00-L Gasoline Engine
Let us calculate the power delivered by a six-cylinder gasoline
engine that has a displacement volume of 3.00 L operating at
4 000 rpm and having a compression ratio of r � 9.50. The
air– fuel mixture enters a cylinder at atmospheric pressure
and an ambient temperature of 27°C. During combustion,
the mixture reaches a temperature of 1 350°C.

First, let us calculate the work done by an individual cylin-
der. Using the initial pressure kPa and the initial
temperature K, we calculate the initial volume and
the mass of the air– fuel mixture. We know that the ratio of
the initial and final volumes is the compression ratio,

TA � 300
PA � 100

0.287 kPa�m3/kg�K
0.287R � cP � cV �� � cP/cV � 1.40,

Adiabatic
processes

A

B C

D

P

V

Qh

Qc

V2 = VB VC V1 = VA

Figure 22.13 PV diagram for an ideal diesel engine.



22.4 Gasoline and Diesel Engines 683

Process A : B is an adiabatic compression, so con-
stant; thus,

Using the ideal gas law, we find that the temperature of the
air after the compression is

Process B : C is a constant-pressure expansion; thus,
We know from the cutoff ratio of 2.00 that the vol-

ume doubles in this process. According to the ideal gas law, a
doubling of volume in an isobaric process results in a dou-
bling of the temperature, so

Process C : D is an adiabatic expansion; therefore,

We find the temperature at D from the ideal gas law:

Now that we have the temperatures at the beginning and the
end of each process, we can calculate the net energy transfer
by heat and the net work done by each cylinder every two cy-
cles:

The efficiency is 
The net power for the four-cylinder engine operating at 

3 000 rpm is

(3 000 rev/min) (1 min/60 s) (0.396 kJ)

� 39.6 kW � 53 hp

Of course, modern engine design goes beyond this simple
thermodynamic treatment, which uses idealized cycles.

�net � 4� 1
2 rev �

e � Wnet /Q in � 66%.

Wnet � Q in � Q out � 0.396 kJ 

 Q c � Q out � mcV(TD � TA) � 0.205 kJ

 Q h � Q in � mcP(TC � TB) � 0.601 kJ

 � 792 K

TD �
PDVD

mR
�

(264 kPa)(0.500 � 10�3 m3)
(5.81 � 10�4 kg)(0.287 kPa �m3/kg�K)

 � (7.57 � 103 kPa)� 2.00
22.0 �

1.40
� 264 kPa

PD � PC � VC

VD
�

�

� PC � VC

VB
 

VB

VD
�

�

� PC �rc 
1
r �

�

TC � 2TB � 2.06 � 103 K

PC � PB .

 � 1.03 � 103 K

TB �
PBVB

mR
�

(7.57 � 103 kPa)(0.500 � 10�3 m3)� 1
22.0 �

(5.81 � 10�4 kg)(0.287 kPa �m3/kg�K)

 PB � PA� VA

VB
�

�

� (100 kPa)(22.0)1.40 � 7.57 � 103 kPa

PBVB 

� � PAVA 

� 

PV � �

Using the ideal gas law again, we find the final temperature:

Now that we have the temperatures at the beginning and
end of each process of the cycle, we can calculate the net en-
ergy transfer and net work done by each cylinder every two
cycles. From Equation 21.8, we can state

From Equation 22.2, the efficiency is 
(We can also use Equation 22.5 to calculate the efficiency di-
rectly from the compression ratio.)

Recalling that power is delivered every other revolution of
the crankshaft, we find that the net power for the six-cylinder
engine operating at 4 000 rpm is

(4 000 rev/min) (1 min/60 s) (0.244 kJ)

� 49 kW � 66 hp

A 2.00-L Diesel Engine
Let us calculate the power delivered by a four-cylinder diesel
engine that has a displacement volume of 2.00 L and is 
operating at 3 000 rpm. The compression ratio is

, and the cutoff ratio, which is the ratio 
of the volume change during the constant-pressure process

in Figure 22.13, is The air enters
each cylinder at the beginning of the compression cycle at at-
mospheric pressure and at an ambient temperature of 27°C.

Our model of the diesel engine is similar to our model of
the gasoline engine except that now the fuel is injected at
point B and the mixture self-ignites near the end of the com-
pression cycle , when the temperature reaches the igni-
tion temperature. We assume that the energy input occurs in
the constant-pressure process , and that the expansion
process continues from C to D with no further energy transfer
by heat.

Let us calculate the work done by an individual cylinder
that has an initial volume of 

Because the compression ratio is quite
high, we approximate the maximum cylinder volume to be
the displacement volume. Using the initial pressure PA �
100 kPa and initial temperature TA � 300 K, we can calculate
the mass of the air in the cylinder using the ideal gas law:

0.500 � 10�3 m3.
VA � (2.00 � 10�3 m3)/4 �

B : C

A : B

rc � VC /VB � 2.00.B : C

r � VA /VB � 22.0

�net � 6� 1
2 rev �

e � Wnet/Q in � 59%.

 Wnet � Q in � Q out � 0.244 kJ   

 � 0.168 kJ

  � (6.49 � 10�4 kg)(0.718 kJ/kg�K)(660 K � 300 K)

Q c � Q out � mcV(TD � TA)

 � 0.412 kJ

  � (6.49 � 10�4 kg)(0.718 kJ/kg�K)(1 623 K � 739 K)

Q h � Q in � mcV(TC � TB)

 � 660 K

TD �
PDVD

mR
�

(220 kPa)(0.559 � 10�3 m3)
(6.49 � 10�4 kg)(0.287 kPa �m3/kg�K)

m �
PAVA

RTA
�

(100 kPa)(0.500 � 10�3 m3)
(0.287 kPa �m3/kg�K)(300 K)

� 5.81 � 10�4 kg
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HEAT PUMPS AND REFRIGERATORS
In Section 22.1 we introduced a heat pump as a mechanical device that moves en-
ergy from a region at lower temperature to a region at higher temperature. Heat
pumps have long been used for cooling homes and buildings, and they are now
becoming increasingly popular for heating them as well. The heat pump contains
two sets of metal coils that can exchange energy by heat with the surroundings:
one set on the outside of the building, in contact with the air or buried in the
ground; and the other set in the interior of the building. In the heating mode, a
circulating fluid flowing through the coils absorbs energy from the outside and re-
leases it to the interior of the building from the interior coils. The fluid is cold and
at low pressure when it is in the external coils, where it absorbs energy by heat
from either the air or the ground. The resulting warm fluid is then compressed
and enters the interior coils as a hot, high-pressure fluid, where it releases its
stored energy to the interior air.

An air conditioner is simply a heat pump operating in the cooling mode, with
its exterior and interior coils interchanged. Energy is absorbed into the circulating
fluid in the interior coils; then, after the fluid is compressed, energy leaves the
fluid through the external coils. The air conditioner must have a way to release en-
ergy to the outside. Otherwise, the work done on the air conditioner would repre-
sent energy added to the air inside the house, and the temperature would in-
crease. In the same manner, a refrigerator cannot cool the kitchen if the
refrigerator door is left open. The amount of energy leaving the external coils
(Fig. 22.14) behind or underneath the refrigerator is greater than the amount of
energy removed from the food or from the air in the kitchen if the door is left
open. The difference between the energy out and the energy in is the work done
by the electricity supplied to the refrigerator.

Figure 22.15 is a schematic representation of a heat pump. The cold tempera-
ture is Tc , the hot temperature is Th , and the energy absorbed by the circulating
fluid is Q c . The heat pump does work W on the fluid, and the energy transferred
from the pump to the building in the heating mode is Q h .

The effectiveness of a heat pump is described in terms of a number called the
coefficient of performance (COP). In the heating mode, the COP is defined as
the ratio of the energy transferred to the hot reservoir to the work required to
transfer that energy:

(22.6)

Note that the COP is similar to the thermal efficiency for a heat engine in that it is
a ratio of what you get (energy delivered to the interior of the building) to what
you give (work input). Because Q h is generally greater than W, typical values for the
COP are greater than unity. It is desirable for the COP to be as high as possible, just
as it is desirable for the thermal efficiency of an engine to be as high as possible.

If the outside temperature is 25°F or higher, then the COP for a heat pump is
about 4. That is, the amount of energy transferred to the building is about four
times greater than the work done by the motor in the heat pump. However, as the
outside temperature decreases, it becomes more difficult for the heat pump to ex-
tract sufficient energy from the air, and so the COP decreases. In fact, the COP
can fall below unity for temperatures below the midteens. Thus, the use of heat
pumps that extract energy from the air, while satisfactory in moderate climates, is
not appropriate in areas where winter temperatures are very low. It is possible to

COP (heating mode) �
Energy transferred at high temperature

Work done by pump
�

Q h

W

22.5

Figure 22.14 The coils on the
back of a refrigerator transfer en-
ergy by heat to the air. The second
law of thermodynamics states that
this amount of energy must be
greater than the amount of energy
removed from the contents of the
refrigerator (or from the air in the
kitchen, if the refrigerator door is
left open).
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use heat pumps in colder areas by burying the external coils deep in the ground.
In this case, the energy is extracted from the ground, which tends to be warmer
than the air in the winter.

In an electric heater, electrical energy can be converted to internal energy with an effi-
ciency of 100%. By what percentage does the cost of heating your home change when you
replace your electric heating system with a heat pump that has a COP of 4? Assume that the
motor running the heat pump is 100% efficient.

Theoretically, a Carnot-cycle heat engine run in reverse constitutes the most
effective heat pump possible, and it determines the maximum COP for a given
combination of hot and cold reservoir temperatures. Using Equations 22.1 and
22.3, we see that the maximum COP for a heat pump in its heating mode is

For a heat pump operating in the cooling mode, “what you get” is energy re-
moved from the cold reservoir. The most effective refrigerator or air conditioner is
one that removes the greatest amount of energy from the cold reservoir in ex-
change for the least amount of work. Thus, for these devices we define the COP in
terms of Q c :

(22.7)

A good refrigerator should have a high COP, typically 5 or 6.
The greatest possible COP for a heat pump in the cooling mode is that of a

heat pump whose working substance is carried through a Carnot cycle in reverse:

As the difference between the temperatures of the two reservoirs approaches zero
in this expression, the theoretical COP approaches infinity. In practice, the low
temperature of the cooling coils and the high temperature at the compressor limit
the COP to values below 10.

ENTROPY
The zeroth law of thermodynamics involves the concept of temperature, and the
first law involves the concept of internal energy. Temperature and internal energy
are both state functions—that is, they can be used to describe the thermodynamic
state of a system. Another state function—this one related to the second law of
thermodynamics—is entropy S. In this section we define entropy on a macro-
scopic scale as it was first expressed by Clausius in 1865.

22.6

COPC (cooling mode) �  
Tc

Th � Tc

COP (cooling mode) �
Q c

W

  �
Q h

Q h � Q c
�

1

1 �
Q c

Q h

�
1

1 �
Tc

Th

�
Th

Th � Tc

COPC(heating mode) �
Q h

W
 

Quick Quiz 22.1

10.10 
&

10.11

QuickLab
Estimate the COP of your refrigerator
by making rough temperature mea-
surements of the stored food and of
the exhaust coils (found either on
the back of the unit or behind a
panel on the bottom). Use just your
hand if no thermometer is available.

Hot reservoir at Th

Heat
pump

Q h

Q c

Cold reservoir at Tc

W

Figure 22.15 Schematic diagram
of a heat pump, which absorbs en-
ergy Q c from a cold reservoir and
expels energy Q h to a hot reservoir.
Note that this diagram is the same
as that for the refrigerator shown
in Figure 22.5.
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Consider any infinitesimal process in which a system changes from one equi-
librium state to another. If dQ r is the amount of energy transferred by heat when
the system follows a reversible path between the states, then the change in entropy
dS is equal to this amount of energy for the reversible process divided by the ab-
solute temperature of the system:

(22.8)

We have assumed that the temperature is constant because the process is infinitesi-
mal. Since we have claimed that entropy is a state function, the change in en-
tropy during a process depends only on the end points and therefore is in-
dependent of the actual path followed.

The subscript r on the quantity dQ r is a reminder that the transferred energy is
to be measured along a reversible path, even though the system may actually have
followed some irreversible path. When energy is absorbed by the system, dQ r is
positive and the entropy of the system increases. When energy is expelled by the
system, dQ r is negative and the entropy of the system decreases. Note that Equa-
tion 22.8 defines not entropy but rather the change in entropy. Hence, the mean-
ingful quantity in describing a process is the change in entropy.

Entropy was originally formulated as a useful concept in thermodynamics;
however, its importance grew tremendously as the field of statistical mechanics de-
veloped because the analytical techniques of statistical mechanics provide an alter-
native means of interpreting entropy. In statistical mechanics, the behavior of a
substance is described in terms of the statistical behavior of its atoms and mole-
cules. One of the main results of this treatment is that isolated systems tend to-
ward disorder and that entropy is a measure of this disorder. For example,
consider the molecules of a gas in the air in your room. If half of the gas mole-
cules had velocity vectors of equal magnitude directed toward the left and the
other half had velocity vectors of the same magnitude directed toward the right,
the situation would be very ordered. However, such a situation is extremely un-
likely. If you could actually view the molecules, you would see that they move hap-
hazardly in all directions, bumping into one another, changing speed upon colli-
sion, some going fast and others going slowly. This situation is highly disordered.

The cause of the tendency of an isolated system toward disorder is easily ex-
plained. To do so, we distinguish between microstates and macrostates of a system. A
microstate is a particular description of the properties of the individual molecules
of the system. For example, the description we just gave of the velocity vectors of
the air molecules in your room being very ordered refers to a particular mi-
crostate, and the more likely likely haphazard motion is another microstate—one
that represents disorder. A macrostate is a description of the conditions of the sys-
tem from a macroscopic point of view and makes use of macroscopic variables
such as pressure, density, and temperature. For example, in both of the mi-
crostates described for the air molecules in your room, the air molecules are dis-
tributed uniformly throughout the volume of the room; this uniform density distri-
bution is a macrostate. We could not distinguish between our two microstates by
making a macroscopic measurement—both microstates would appear to be the
same macroscopically, and the two macrostates corresponding to these microstates
are equivalent.

For any given macrostate of the system, a number of microstates are possible,
or accessible. Among these microstates, it is assumed that all are equally probable.
However, when all possible microstates are examined, it is found that far more of
them are disordered than are ordered. Because all of the microstates are equally

dS �
dQ r

T
Clausius definition of change in
entropy
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probable, it is highly likely that the actual macrostate is one resulting from one of
the highly disordered microstates, simply because there are many more of them.
Similarly, the probability of a macrostate’s forming from disordered microstates is
greater than the probability of a macrostate’s forming from ordered microstates. 

All physical processes that take place in a system tend to cause the system and
its surroundings to move toward more probable macrostates. The more probable
macrostate is always one of greater disorder. If we consider a system and its sur-
roundings to include the entire Universe, then the Universe is always moving to-
ward a macrostate corresponding to greater disorder. Because entropy is a mea-
sure of disorder, an alternative way of stating this is the entropy of the Universe
increases in all real processes. This is yet another statement of the second law of
thermodynamics that can be shown to be equivalent to the Kelvin–Planck and
Clausius statements.

To calculate the change in entropy for a finite process, we must recognize that
T is generally not constant. If dQ r is the energy transferred by heat when the sys-
tem is at a temperature T, then the change in entropy in an arbitrary reversible
process between an initial state and a final state is

(reversible path) (22.9)

As with an infinitesimal process, the change in entropy �S of a system going from
one state to another has the same value for all paths connecting the two states.
That is, the finite change in entropy �S of a system depends only on the properties
of the initial and final equilibrium states. Thus, we are free to choose a particular
reversible path over which to evaluate the entropy in place of the actual path, as
long as the initial and final states are the same for both paths.

Which of the following is true for the entropy change of a system that undergoes a re-
versible, adiabatic process? (a) �S � 0. (b) �S � 0. (c) �S � 0.

Let us consider the changes in entropy that occur in a Carnot heat engine op-
erating between the temperatures Tc and Th . In one cycle, the engine absorbs en-
ergy Q h from the hot reservoir and expels energy Q c to the cold reservoir. These
energy transfers occur only during the isothermal portions of the Carnot cycle;
thus, the constant temperature can be brought out in front of the integral sign in
Equation 22.9. The integral then simply has the value of the total amount of en-
ergy transferred by heat. Thus, the total change in entropy for one cycle is

where the negative sign represents the fact that energy Q c is expelled by the sys-
tem, since we continue to define Q c as a positive quantity when referring to heat
engines. In Example 22.2 we showed that, for a Carnot engine,

Using this result in the previous expression for �S, we find that the total change in

Q c

Q h
�

Tc

Th

�S �
Q h

Th
�

Q c

Tc

Quick Quiz 22.2

�S � �f

i
 dS � �f

i
 
dQ r

T

In real processes, the disorder of
the Universe increases

Change in entropy for a finite
process
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entropy for a Carnot engine operating in a cycle is zero:

�S � 0

Now let us consider a system taken through an arbitrary (non-Carnot) re-
versible cycle. Because entropy is a state function—and hence depends only on
the properties of a given equilibrium state—we conclude that �S � 0 for any re-
versible cycle. In general, we can write this condition in the mathematical form

(22.10)

where the symbol indicates that the integration is over a closed path.

Quasi-Static, Reversible Process for an Ideal Gas

Let us suppose that an ideal gas undergoes a quasi-static, reversible process from
an initial state having temperature Ti and volume Vi to a final state described by Tf
and Vf . Let us calculate the change in entropy of the gas for this process.

Writing the first law of thermodynamics in differential form and rearranging
the terms, we have where dW � P dV. For an ideal gas, recall
that (Eq. 21.12), and from the ideal gas law, we have P � nRT/V.
Therefore, we can express the energy transferred by heat in the process as

We cannot integrate this expression as it stands because the last term contains two
variables, T and V. However, if we divide all terms by T, each of the terms on the
right-hand side depends on only one variable:

(22.11)

Assuming that CV is constant over the interval in question, and integrating Equa-
tion 22.11 from the initial state to the final state, we obtain

(22.12)

This expression demonstrates mathematically what we argued earlier—that �S de-
pends only on the initial and final states and is independent of the path between
the states. Also, note in Equation 22.12 that �S can be positive or negative, de-
pending on the values of the initial and final volumes and temperatures. Finally,
for a cyclic process and we see from Equation 22.12 that �S � 0.
This is evidence that entropy is a state function.

Vi � Vf),(Ti � Tf

�S � �f

i
 
dQ r

T
� nCV ln 

Tf

Ti

 nR ln 

Vf

Vi

dQ r

T
� nCV  

dT
T


 nR 
dV
V

dQ r � dE int 
 P dV � nCV dT 
 nRT 
dV
V

dE int � nCV dT
dQ r � dE int 
 dW,

�

� 
dQ r

T
� 0

Change in Entropy — MeltingEXAMPLE 22.6
Making use of Equations 22.9 and that for the latent heat of
fusion (Eq. 20.6), we find that

mLf

Tm
�S � � 

dQ r

T
�

1

Tm
 � dQ �

Q

Tm
�

Q � mLf

A solid that has a latent heat of fusion Lf melts at a tempera-
ture Tm . (a) Calculate the change in entropy of this sub-
stance when a mass m of the substance melts.

Solution Let us assume that the melting occurs so slowly
that it can be considered a reversible process. In this case the
temperature can be regarded as constant and equal to Tm .

The change in entropy for a
Carnot cycle is zero

�S � 0 for any reversible cycle
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ENTROPY CHANGES IN IRREVERSIBLE PROCESSES
By definition, calculation of the change in entropy requires information about a re-
versible path connecting the initial and final equilibrium states. To calculate
changes in entropy for real (irreversible) processes, we must remember that entropy
(like internal energy) depends only on the state of the system. That is, entropy is a
state function. Hence, the change in entropy when a system moves between any two
equilibrium states depends only on the initial and final states. We can show that if
this were not the case, the second law of thermodynamics would be violated.

We now calculate the entropy change in some irreversible process between two
equilibrium states by devising a reversible process (or series of reversible
processes) between the same two states and computing for the re-
versible process. In irreversible processes, it is critically important that we distin-
guish between Q , the actual energy transfer in the process, and Q r , the energy
that would have been transferred by heat along a reversible path. Only Q r is the
correct value to be used in calculating the entropy change.

As we shall see in the following examples, the change in entropy for a system
and its surroundings is always positive for an irreversible process. In general, the
total entropy—and therefore the disorder—always increase in an irreversible
process. Keeping these considerations in mind, we can state the second law of
thermodynamics as follows:

�S � � dQ r /T

22.7

The total entropy of an isolated system that undergoes a change can never de-
crease.

Note that we are able to remove Tm from the integral because
the process is isothermal. Note also that �S is positive. This
means that when a solid melts, its entropy increases because
the molecules are much more disordered in the liquid state
than they are in the solid state. The positive value for �S also
means that the substance in its liquid state does not sponta-
neously transfer energy from itself to the surroundings and
freeze because to do so would involve a spontaneous decrease
in entropy.

(b) Estimate the value of the change in entropy of an ice
cube when it melts.

Solution Let us assume an ice tray makes cubes that are 
about 3 cm on a side. The volume per cube is then (very
roughly) 30 cm3. This much liquid water has a mass of 30 g.
From Table 20.2 we find that the latent heat of fusion of ice is
3.33 � 105 J/kg. Substituting these values into our answer for
part (a), we find that

We retain only one significant figure, in keeping with the na-
ture of our estimations.

4 � 101 J/K�S �
mLf

Tm
�

(0.03 kg)(3.33 � 105 J/kg)

273 K
�

Furthermore, if the process is irreversible, then the total entropy of an iso-
lated system always increases. In a reversible process, the total entropy of
an isolated system remains constant.

When dealing with a system that is not isolated from its surroundings, remem-
ber that the increase in entropy described in the second law is that of the system
and its surroundings. When a system and its surroundings interact in an irre-
versible process, the increase in entropy of one is greater than the decrease in en-
tropy of the other. Hence, we conclude that the change in entropy of the Uni-
verse must be greater than zero for an irreversible process and equal to zero
for a reversible process. Ultimately, the entropy of the Universe should reach a
maximum value. At this value, the Universe will be in a state of uniform tempera-
ture and density. All physical, chemical, and biological processes will cease because
a state of perfect disorder implies that no energy is available for doing work. This
gloomy state of affairs is sometimes referred to as the heat death of the Universe.
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In the presence of sunlight, a tree rearranges an unorganized collection of carbon dioxide
and water molecules into the highly ordered collection of molecules we see as leaves and
branches. True or false: This reduction of entropy in the tree is a violation of the second law
of thermodynamics. Explain your response.

Entropy Change in Thermal Conduction

Let us now consider a system consisting of a hot reservoir and a cold reservoir in
thermal contact with each other and isolated from the rest of the Universe. A
process occurs during which energy Q is transferred by heat from the hot reservoir
at temperature Th to the cold reservoir at temperature Tc . Because the cold reser-
voir absorbs energy Q , its entropy increases by Q /Tc . At the same time, the hot
reservoir loses energy Q , and so its entropy change is � Q /Th . Because ,
the increase in entropy of the cold reservoir is greater than the decrease in en-
tropy of the hot reservoir. Therefore, the change in entropy of the system (and of
the Universe) is greater than zero:

�SU �
Q
Tc



�Q
Th

� 0

Th � Tc 

Quick Quiz 22.3

Which Way Does the Energy Flow?EXAMPLE 22.7
that of our two-object system, which is

This decrease in entropy of the Universe is in violation of the
second law. That is, the spontaneous transfer of energy
from a cold to a hot object cannot occur.

In terms of disorder, let us consider the violation of the
second law if energy were to continue to transfer sponta-
neously from a cold object to a hot object. Before the trans-
fer, a certain degree of order is associated with the different
temperatures of the objects. The hot object’s molecules have
a higher average energy than the cold object’s molecules. If
energy spontaneously flows from the cold object to the hot
object, then, over a period of time, the cold object will be-
come colder and the hot object will become hotter. The dif-
ference in average molecular energy will become even
greater; this would represent an increase in order for the sys-
tem and a violation of the second law.

In comparison, the process that does occur naturally is the
flow of energy from the hot object to the cold object. In this
process, the difference in average molecular energy de-
creases; this represents a more random distribution of energy
and an increase in disorder.

Exercise Suppose that 8.00 J of energy is transferred from a
hot object to a cold one. What is the net entropy change of
the Universe?

Answer 
 0.007 9 J/K.

�SU � �Sc 
 �Sh � �0.007 9 J/K

A large, cold object is at 273 K, and a large, hot object is at
373 K. Show that it is impossible for a small amount of
energy—for example, 8.00 J—to be transferred sponta-
neously from the cold object to the hot one without a de-
crease in the entropy of the Universe and therefore a viola-
tion of the second law.

Solution We assume that, during the energy transfer, the
two objects do not undergo a temperature change. This is
not a necessary assumption; we make it only to avoid using in-
tegral calculus in our calculations. The process as described is
irreversible, and so we must find an equivalent reversible
process. It is sufficient to assume that the objects are con-
nected by a poor thermal conductor whose temperature
spans the range from 273 K to 373 K. This conductor trans-
fers energy slowly, and its state does not change during the
process. Under this assumption, the energy transfer to or
from each object is reversible, and we may set The
entropy change of the hot object is

The cold object loses energy, and its entropy change is

We consider the two objects to be isolated from the rest of
the Universe. Thus, the entropy change of the Universe is just

�Sc �
Q r

Tc
�

�8.00 J
273 K

� �0.029 3 J/K

�Sh �
Q r

Th
�

8.00 J
373 K

� 0.021 4 J/K

Q � Q r .
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Entropy Change in a Free Expansion

Let us again consider the adiabatic free expansion of a gas occupying an initial vol-
ume Vi (Fig. 22.16). A membrane separating the gas from an evacuated region is
broken, and the gas expands (irreversibly) to a volume Vf . Let us find the changes
in entropy of the gas and of the Universe during this process.

The process is clearly neither reversible nor quasi-static. The work done by the
gas against the vacuum is zero, and because the walls are insulating, no energy is
transferred by heat during the expansion. That is, W � 0 and Q � 0. Using the
first law, we see that the change in internal energy is zero. Because the gas is ideal,
E int depends on temperature only, and we conclude that �T � 0 or Ti � Tf .

To apply Equation 22.9, we cannot use Q � 0, the value for the irreversible
process, but must instead find Q r ; that is, we must find an equivalent reversible
path that shares the same initial and final states. A simple choice is an isothermal,
reversible expansion in which the gas pushes slowly against a piston while energy
enters the gas by heat from a reservoir to hold the temperature constant. Because
T is constant in this process, Equation 22.9 gives

For an isothermal process, the first law of thermodynamics specifies that is 
equal to the work done by the gas during the expansion from Vi to Vf , which is given
by Equation 20.13. Using this result, we find that the entropy change for the gas is

(22.13)

Because we conclude that �S is positive. This positive result indicates that
both the entropy and the disorder of the gas increase as a result of the irreversible,
adiabatic expansion.

Because the free expansion takes place in an insulated container, no energy is
transferred by heat from the surroundings. (Remember that the isothermal, re-
versible expansion is only a replacement process that we use to calculate the entropy
change for the gas; it is not the actual process.) Thus, the free expansion has no ef-
fect on the surroundings, and the entropy change of the surroundings is zero. Thus,
the entropy change for the Universe is positive; this is consistent with the second law.

Vf � Vi ,

�S � nR ln 
Vf

Vi

�f
i dQ r

�S � �f

i
 
dQ r

T
�

1
T

 �f

i
 dQ r

Insulating
wall

Membrane

Vacuum

Gas at Ti

Figure 22.16 Adiabatic free ex-
pansion of a gas. When the mem-
brane separating the gas from the
evacuated region is ruptured, the
gas expands freely and irreversibly.
As a result, it occupies a greater fi-
nal volume. The container is ther-
mally insulated from its surround-
ings; thus, Q � 0.

Free Expansion of a GasEXAMPLE 22.8

It is easy to see that the gas is more disordered after the ex-
pansion. Instead of being concentrated in a relatively small
space, the molecules are scattered over a larger region.

18.3 J/K�
Calculate the change in entropy for a process in which 
2.00 mol of an ideal gas undergoes a free expansion to three
times its initial volume.

Solution Using Equation 22.13 with n � 2.00 mol and
we find that

�S � nR ln 
Vf

Vi
� (2.00 mol)(8.31 J/mol �K) (ln 3)

Vf � 3Vi ,

Entropy Change in Calorimetric Processes

A substance of mass m1 , specific heat c1 , and initial temperature T1 is placed in
thermal contact with a second substance of mass m2 , specific heat c2 , and initial
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temperature The two substances are contained in a calorimeter so that
no energy is lost to the surroundings. The system of the two substances is allowed
to reach thermal equilibrium. What is the total entropy change for the system?

First, let us calculate the final equilibrium temperature Tf . Using the tech-
niques of Section 20.2—namely, Equation 20.5, and Equation
20.4, we obtain

Solving for Tf , we have

(22.14)

The process is irreversible because the system goes through a series of non-
equilibrium states. During such a transformation, the temperature of the system at
any time is not well defined because different parts of the system have different
temperatures. However, we can imagine that the hot substance at the initial tem-
perature T2 is slowly cooled to the temperature Tf as it comes into contact with a
series of reservoirs differing infinitesimally in temperature, the first reservoir being
at T2 and the last being at Tf . Such a series of very small changes in temperature
would approximate a reversible process. We imagine doing the same thing for the
cold substance. Applying Equation 22.9 and noting that for an infini-
tesimal change, we have

where we have assumed that the specific heats remain constant. Integrating, we
find that

(22.15)

where Tf is given by Equation 22.14. If Equation 22.14 is substituted into Equation
22.15, we can show that one of the terms in Equation 22.15 is always positive and
the other is always negative. (You may want to verify this for yourself.) The positive
term is always greater than the negative term, and this results in a positive value for
�S. Thus, we conclude that the entropy of the Universe increases in this irre-
versible process.

Finally, you should note that Equation 22.15 is valid only when no mixing of
different substances occurs, because a further entropy increase is associated with
the increase in disorder during the mixing. If the substances are liquids or gases
and mixing occurs, the result applies only if the two fluids are identical, as in the
following example.

�S � m1c1 ln 
Tf

T1

 m2c2 ln 

Tf

T2

�S � �
1
 
dQ cold

T

 �

2
 
dQ hot

T
� m1c1 �Tf

T1

 
dT
T


 m2c2 �Tf

T2

 
dT
T

dQ � mc dT

Tf �
m1c1T1 
 m2c2T2

m1c1 
 m2c2

m1c1(Tf � T1) � �m2c2(Tf � T2)

 m1c1 �T1 � �m2c2 �T2

Q � mc �T,
Q cold � �Q hot ,

T2 � T1 .

Calculating �S for a Calorimetric ProcessEXAMPLE 22.9
Solution We can calculate the change in entropy from
Equation 22.15 using the values 

J/kg �K, K, K, and Tf � 323 K :T2 � 373T1 � 273c2 � 4 186
c1 �m1 � m2 � 1.00 kg,

Suppose that 1.00 kg of water at 0.00°C is mixed with an
equal mass of water at 100°C. After equilibrium is reached,
the mixture has a uniform temperature of 50.0°C. What is the
change in entropy of the system?

Change in entropy for a
calorimetric process
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Optional Section

ENTROPY ON A MICROSCOPIC SCALE4

As we have seen, we can approach entropy by relying on macroscopic concepts
and using parameters such as pressure and temperature. We can also treat entropy
from a microscopic viewpoint through statistical analysis of molecular motions. We
now use a microscopic model to investigate once again the free expansion of an
ideal gas, which was discussed from a macroscopic point of view in the preceding
section.

In the kinetic theory of gases, gas molecules are represented as particles mov-
ing randomly. Let us suppose that the gas is initially confined to a volume Vi , as
shown in Figure 22.17a. When the partition separating Vi from a larger container
is removed, the molecules eventually are distributed throughout the greater vol-
ume Vf (Fig. 22.17b). For a given uniform distribution of gas in the volume, there
are a large number of equivalent microstates, and we can relate the entropy of the
gas to the number of microstates corresponding to a given macrostate.

We count the number of microstates by considering the variety of molecular
locations involved in the free expansion. The instant after the partition is removed
(and before the molecules have had a chance to rush into the other half of the
container), all the molecules are in the initial volume. We assume that each mole-
cule occupies some microscopic volume Vm . The total number of possible loca-
tions of a single molecule in a macroscopic initial volume Vi is the ratio

which is a huge number. We use wi here to represent the number of
ways that the molecule can be placed in the volume, or the number of microstates,
which is equivalent to the number of available locations. We assume that the mole-
cule’s occupying each of these locations is equally probable.

As more molecules are added to the system, the number of possible ways that
the molecules can be positioned in the volume multiplies. For example, in consid-
ering two molecules, for every possible placement of the first, all possible place-
ments of the second are available. Thus, there are w1 ways of locating the first mol-
ecule, and for each of these, there are w2 ways of locating the second molecule.
The total number of ways of locating the two molecules is w1w2 .

Neglecting the very small probability of having two molecules occupy the same
location, each molecule may go into any of the Vi/Vm locations, and so the num-
ber of ways of locating N molecules in the volume becomes 
(Wi is not to be confused with work.) Similarly, when the volume is increased to 
Vf , the number of ways of locating N molecules increases to 
The ratio of the number of ways of placing the molecules in the volume for the

(Vf /Vm)N.Wf � wf 

N �

Wi � wi 

N � (Vi/Vm)N.

wi � Vi/Vm ,

22.8

Figure 22.17 In a free expan-
sion, the gas is allowed to expand
into a region that was previously a
vacuum.

  
 (1.00 kg)(4 186 J/kg�K) ln� 323 K
373 K �

 � (1.00 kg)(4 186 J/kg�K) ln � 323 K
273 K �

�S � m1c1 ln 
Tf

T1

 m2c2 ln 

Tf

T2
 

That is, as a result of this irreversible process, the increase in
entropy of the cold water is greater than the decrease in en-
tropy of the warm water. Consequently, the increase in en-
tropy of the system is 102 J/K.

102 J/K � 704 J/K � 602 J/K �

4 This section was adapted from A. Hudson and R. Nelson, University Physics, Philadelphia, Saunders
College Publishing, 1990.

VacuumVi

(a)

Vf

(b)
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initial and final configurations is

If we now take the natural logarithm of this equation and multiply by Boltz-
mann’s constant, we find that

where we have used the equality We know from Equation 19.11 that
NAkB is the universal gas constant R ; thus, we can write this equation as

(22.16)

From Equation 22.13 we know that when n mol of a gas undergoes a free expan-
sion from Vi to Vf , the change in entropy is

(22.17)

Note that the right-hand sides of Equations 22.16 and 22.17 are identical. Thus, we
make the following important connection between entropy and the number of mi-
crostates for a given macrostate:

(22.18)

The more microstates there are that correspond to a given macrostate, the greater
is the entropy of that macrostate. As we have discussed previously, there are many
more disordered microstates than ordered microstates. Thus, Equation 22.18 indi-
cates mathematically that entropy is a measure of microscopic disorder. Al-
though in our discussion we used the specific example of the free expansion of an
ideal gas, a more rigorous development of the statistical interpretation of entropy
would lead us to the same conclusion.

Imagine the container of gas depicted in Figure 22.18a as having all of its mol-
ecules traveling at speeds greater than the mean value on the left side and all of its
molecules traveling at speeds less than the mean value on the right side (an or-
dered microstate). Compare this with the uniform mixture of fast- and slow-mov-

S � kB ln W

Sf � Si � nR ln� Vf

Vi
�

kB ln Wf � kB ln Wi � nR ln� Vf

Vi
�

N � nNA .

kB ln� Wf

Wi
� � nNAkB ln� Vf

Vi
�

Wf

Wi
�

(Vf /Vm)N

(Vi/Vm)N � � Vf

Vi
�

N

Entropy (microscopic definition)

Nature tends toward
this direction

(b) Disordered

Fast and slow
molecules intermixed

(a) Ordered

Faster
molecules

in this
half

Slower
molecules

in this
half

Figure 22.18 A container of gas in two equally probable states of molecular motion. (a) An or-
dered arrangement, which is one of a few and therefore a collectively unlikely set. (b) A disor-
dered arrangement, which is one of many and therefore a collectively likely set.
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ing molecules in Figure 22.18b (a disordered microstate). You might expect the
ordered microstate to be very unlikely because random motions tend to mix the
slow- and fast-moving molecules uniformly. Yet individually each of these mi-
crostates is equally probable. However, there are far more disordered microstates
than ordered microstates, and so a macrostate corresponding to a large number of
equivalent disordered microstates is much more probable than a macrostate corre-
sponding to a small number of equivalent ordered microstates.

Figure 22.19 shows a real-world example of this concept. There are two possi-
ble macrostates for the carnival game—winning a goldfish and winning a black
fish. Because only one jar in the array of jars contains a black fish, only one possi-
ble microstate corresponds to the macrostate of winning a black fish. A large num-
ber of microstates are described by the coin’s falling into a jar containing a gold-
fish. Thus, for the macrostate of winning a goldfish, there are many equivalent
microstates. As a result, the probability of winning a goldfish is much greater than
the probability of winning a black fish. If there are 24 goldfish and 1 black fish, the
probability of winning the black fish is 1 in 25. This assumes that all microstates
have the same probability, a situation that may not be quite true for the situation
shown in Figure 22.19. If you are an accurate coin tosser and you are aiming for
the edge of the array of jars, then the probability of the coin’s landing in a jar near
the edge is likely to be greater than the probability of its landing in a jar near the
center.

Let us consider a similar type of probability problem for 100 molecules in a
container. At any given moment, the probability of one molecule’s being in the
left part of the container shown in Figure 22.20a as a result of random motion is 
If there are two molecules, as shown in Figure 22.20b, the probability of both be-
ing in the left part is ( )2 or 1 in 4. If there are three molecules (Fig. 22.20c), the
probability of all of them being in the left portion at the same moment is ( )3, or 1
in 8. For 100 independently moving molecules, the probability that the 50 fastest
ones will be found in the left part at any moment is ( )50. Likewise, the probability
that the remaining 50 slower molecules will be found in the right part at any mo-
ment is ( )50. Therefore, the probability of finding this fast-slow separation 
as a result of random motion is the product which corre-
sponds to about 1 in 1030. When this calculation is extrapolated from 100 mole-
cules to the number in 1 mol of gas (6.02 � 1023), the ordered arrangement is
found to be extremely improbable!

(1
2 )50(1

2 )50 � (1
2 )100,

1
2

1
2

1
2

1
2

1
2.

Figure 22.19 By tossing a coin into a jar, the carnival-goer can win the fish in the jar. It is more
likely that the coin will land in a jar containing a goldfish than in the one containing the black
fish.

QuickLab
Roll a pair of dice 100 times and
record the total number of spots ap-
pearing on the dice for each throw.
Which total comes up most fre-
quently? Is this expected?
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Let’s Play Marbles!CONCEPTUAL EXAMPLE 22.11
macrostates for this set of events? What is the most likely
macrostate? What is the least likely macrostate?

Solution Because each marble is returned to the bag be-
fore the next one is drawn, the probability of drawing a red
marble is always the same as the probability of drawing a

Suppose you have a bag of 100 marbles. Fifty of the marbles
are red, and 50 are green. You are allowed to draw four mar-
bles from the bag according to the following rules: Draw one
marble, record its color, and return it to the bag. Then draw
another marble. Continue this process until you have drawn
and returned four marbles. What are the possible

Adiabatic Free Expansion — One Last TimeEXAMPLE 22.10
The number of microstates for all NA molecules in the final
volume is

Thus, the ratio of the number of final microstates to initial
microstates is

Using Equation 22.18, we obtain

The answer is the same as that for part (a), which dealt with
macroscopic parameters.

R ln 4� kB ln(4NA ) � NAkB ln 4 �

�S � kB ln Wf � kB ln Wi � kB ln� Wf

Wi
�

Wf

Wi
� 4NA

Wf � � Vf

Vm
�

NA

� � 4Vi

Vm
�

NA

Vf � 4Vi

Let us verify that the macroscopic and microscopic ap-
proaches to the calculation of entropy lead to the same con-
clusion for the adiabatic free expansion of an ideal gas. Sup-
pose that 1 mol of gas expands to four times its initial
volume. As we have seen for this process, the initial and final
temperatures are the same. (a) Using a macroscopic ap-
proach, calculate the entropy change for the gas. (b) Using
statistical considerations, calculate the change in entropy for
the gas and show that it agrees with the answer you obtained
in part (a).

Solution (a) Using Equation 22.13, we have

(b) The number of microstates available to a single mole-
cule in the initial volume Vi is For 1 mol (NA
molecules), the number of available microstates is

Wi � wi 

NA � � Vi

Vm
�

NA

wi � Vi/Vm .

R ln 4�S � nR ln� Vf

Vi
� � (1)R ln� 4Vi

Vi
� �

(a)

(b)

(c)

Figure 22.20 (a) One molecule in a two-sided container has a 1-in-2 chance of being on the
left side. (b) Two molecules have a 1-in-4 chance of being on the left side at the same time. 
(c) Three molecules have a 1-in-8 chance of being on the left  side at the same time.
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SUMMARY

A heat engine is a device that converts internal energy to other useful forms of
energy. The net work done by a heat engine in carrying a working substance
through a cyclic process is

(22.1)

where Q h is the energy absorbed from a hot reservoir and Q c is the energy ex-
pelled to a cold reservoir.

The thermal efficiency e of a heat engine is

(22.2)

The second law of thermodynamics can be stated in the following two ways:

• It is impossible to construct a heat engine that, operating in a cycle, produces
no effect other than the absorption of energy from a reservoir and the perfor-
mance of an equal amount of work (the Kelvin–Planck statement).

• It is impossible to construct a cyclic machine whose sole effect is the continuous
transfer of energy from one object to another object at a higher temperature
without the input of energy by work (the Clausius statement).

In a reversible process, the system can be returned to its initial conditions
along the same path shown on a PV diagram, and every point along this path is an
equilibrium state. A process that does not satisfy these requirements is irre-
versible. Carnot’s theorem states that no real heat engine operating (irre-
versibly) between the temperatures Tc and Th can be more efficient than an en-
gine operating reversibly in a Carnot cycle between the same two temperatures.

The thermal efficiency of a heat engine operating in the Carnot cycle is

(22.4)eC � 1 �
Tc

Th

e �
W
Q h

� 1 �
Q c

Q h

W � Q h � Q c

(�E int � 0)

TABLE 22.1 Possible Results of Drawing Four Marbles from a Bag

Total Number
Macrostate Possible Microstates of Microstates

All R RRRR 1
1G, 3R RRRG, RRGR, RGRR, GRRR 4
2G, 2R RRGG, RGRG, GRRG, RGGR, 

GRGR, GGRR 6
3G, 1R GGGR, GGRG, GRGG, RGGG 4
All G GGGG 1

green one. All the possible microstates and macrostates are
shown in Table 22.1. As this table indicates, there is only one
way to draw four red marbles, and so there is only one mi-
crostate. However, there are four possible microstates that
correspond to the macrostate of one green marble and three
red marbles; six microstates that correspond to two green
marbles and two red marbles; four microstates that corre-

spond to three green marbles and one red marble; and one
microstate that corresponds to four green marbles. The most
likely macrostate—two red marbles and two green marbles—
corresponds to the most disordered microstates. The least
likely macrostates—four red marbles or four green mar-
bles—correspond to the most ordered microstates.
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You should be able to use this equation (or an equivalent form involving a ratio of
heats) to determine the maximum possible efficiency of any heat engine.

The second law of thermodynamics states that when real (irreversible)
processes occur, the degree of disorder in the system plus the surroundings in-
creases. When a process occurs in an isolated system, the state of the system be-
comes more disordered. The measure of disorder in a system is called entropy S.
Thus, another way in which the second law can be stated is

• The entropy of the Universe increases in all real processes.

The change in entropy dS of a system during a process between two infinitesi-
mally separated equilibrium states is

(22.8)

where dQ r is the energy transfer by heat for a reversible process that connects the
initial and final states. The change in entropy of a system during an arbitrary
process between an initial state and a final state is

(22.9)

The value of �S for the system is the same for all paths connecting the initial and
final states. The change in entropy for a system undergoing any reversible, cyclic
process is zero, and when such a process occurs, the entropy of the Universe re-
mains constant.

From a microscopic viewpoint, entropy is defined as

(22.18)

where kB is Boltzmann’s constant and W is the number of microstates available to
the system for the existing macrostate. Because of the statistical tendency of sys-
tems to proceed toward states of greater probability and greater disorder, all nat-
ural processes are irreversible, and entropy increases. Thus, entropy is a measure
of microscopic disorder.

S � kB ln W

�S � �f

i
 
dQ r

T

dS �
dQ r

T

QUESTIONS

involve an increase in entropy. Be sure to account for all
parts of each system under consideration.

7. Discuss the change in entropy of a gas that expands (a) at
constant temperature and (b) adiabatically.

8. In solar ponds constructed in Israel, the Sun’s energy is
concentrated near the bottom of a salty pond. With the
proper layering of salt in the water, convection is pre-
vented, and temperatures of 100°C may be reached. Can
you estimate the maximum efficiency with which useful
energy can be extracted from the pond?

9. The vortex tube (Fig. Q22.9) is a T-shaped device that
takes in compressed air at 20 atm and 20°C and gives off
air at � 20°C from one flared end and air at 60°C from
the other flared end. Does the operation of this device vi-

1. Is it possible to convert internal energy to mechanical en-
ergy? Describe a process in which such a conversion occurs.

2. What are some factors that affect the efficiency of auto-
mobile engines?

3. In practical heat engines, which are we able to control
more: the temperature of the hot reservoir, or the tem-
perature of the cold reservoir? Explain.

4. A steam-driven turbine is one major component of an
electric power plant. Why is it advantageous to have the
temperature of the steam as high as possible?

5. Is it possible to construct a heat engine that creates no
thermal pollution? What does this tell us about environ-
mental considerations for an industrialized society?

6. Discuss three common examples of natural processes that
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olate the second law of thermodynamics? If not, explain
why not.

10. Why does your automobile burn more gas in winter than
in summer?

11. Can a heat pump have a coefficient of performance
(COP) less than unity? Explain.

12. Give some examples of irreversible processes that occur
in nature.

13. Give an example of a process in nature that is nearly re-
versible.

14. A thermodynamic process occurs in which the entropy of
a system changes by � 8.0 J/K. According to the second
law of thermodynamics, what can you conclude about the
entropy change of the environment?

15. If a supersaturated sugar solution is allowed to evaporate
slowly, sugar crystals form in the container. Hence, sugar
molecules go from a disordered form (in solution) to a
highly ordered crystalline form. Does this process violate
the second law of thermodynamics? Explain.

16. How could you increase the entropy of 1 mol of a metal
that is at room temperature? How could you decrease its
entropy?

17. A heat pump is to be installed in a region where the aver-
age outdoor temperature in the winter months is � 20°C.
In view of this, why would it be advisable to place the out-
door compressor unit deep in the ground? Why are heat
pumps not commonly used for heating in cold climates?

18. Suppose your roommate is “Mr. Clean” and tidies up your
messy room after a big party. That is, your roommate is
increasing order in the room. Does this represent a viola-
tion of the second law of thermodynamics?

19. Discuss the entropy changes that occur when you 
(a) bake a loaf of bread and (b) consume the bread.

20. The device shown in Figure Q22.20, which is called a
thermoelectric converter, uses a series of semiconductor
cells to convert internal energy to electrical energy. In the
photograph on the left, both legs of the device are at the
same temperature and no electrical energy is produced.
However, when one leg is at a higher temperature than
the other, as shown in the photograph on the right, elec-
trical energy is produced as the device extracts energy
from the hot reservoir and drives a small electric motor.
(a) Why does the temperature differential produce elec-
trical energy in this demonstration? (b) In what sense
does this intriguing experiment demonstrate the second
law of thermodynamics?

21. A classmate tells you that it is just as likely for all the air
molecules in the room you are both in to be concentrated
in one corner (with the rest of the room being a vacuum)
as it is for the air molecules to be distributed uniformly
about the room in their current state. Is this true? Why
doesn’t the situation he describes actually happen?

Figure Q22.20 (Courtesy of PASCO Scientific Company)

Figure Q22.9

Compressed
air in

Hot air + 60°C

Ranque-Hilsch vortex tube

Cold air  –20°C
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PROBLEMS

cal maximum efficiency of the engine, using an intake
steam temperature of 100°C. (b) If superheated steam
at 200°C were used instead, what would be the maxi-
mum possible efficiency?

11. An ideal gas is taken through a Carnot cycle. The
isothermal expansion occurs at 250°C, and the isother-
mal compression takes place at 50.0°C. Assuming that
the gas absorbs 1 200 J of energy from the hot reservoir
during the isothermal expansion, find (a) the energy
expelled to the cold reservoir in each cycle and 
(b) the net work done by the gas in each cycle.

12. The exhaust temperature of a Carnot heat engine is
300°C. What is the intake temperature if the efficiency
of the engine is 30.0%?

13. A power plant operates at 32.0% efficiency during the
summer when the sea water for cooling is at 20.0°C.
The plant uses 350°C steam to drive turbines. Assuming
that the plant’s efficiency changes in the same propor-
tion as the ideal efficiency, what would be the plant’s ef-
ficiency in the winter, when the sea water is at 10.0°C?

14. Argon enters a turbine at a rate of 80.0 kg/min, a tem-
perature of 800°C, and a pressure of 1.50 MPa. It ex-
pands adiabatically as it pushes on the turbine blades
and exits at a pressure of 300 kPa. (a) Calculate its tem-
perature at the time of exit. (b) Calculate the (maxi-
mum) power output of the turning turbine. (c) The tur-
bine is one component of a model closed-cycle gas
turbine engine. Calculate the maximum efficiency of
the engine.

15. A power plant that would make use of the temperature
gradient in the ocean has been proposed. The system is
to operate between 5.00°C (water temperature at a
depth of about 1 km) and 20.0°C (surface water temper-
ature). (a) What is the maximum efficiency of such a sys-
tem? (b) If the power output of the plant is 75.0 MW,
how much energy is absorbed per hour? (c) In view of
your answer to part (a), do you think such a system is
worthwhile (considering that there is no charge for
fuel)?

16. A 20.0%-efficient real engine is used to speed up a train
from rest to 5.00 m/s. It is known that an ideal (Carnot)
engine having the same cold and hot reservoirs would
accelerate the same train from rest to a speed of 
6.50 m/s using the same amount of fuel. Assuming that
the engines use air at 300 K as a cold reservoir, find the
temperature of the steam serving as the hot reservoir.

17. A firebox is at 750 K, and the ambient temperature is
300 K. The efficiency of a Carnot engine doing 150 J of
work as it transports energy between these constant-
temperature baths is 60.0%. The Carnot engine must
absorb energy 150 J/0.600 � 250 J from the hot reser-

Section 22.1 Heat Engines and the Second Law of
Thermodynamics
Section 22.2 Reversible and Irreversible Processes

1. A heat engine absorbs 360 J of energy and performs
25.0 J of work in each cycle. Find (a) the efficiency of
the engine and (b) the energy expelled to the cold
reservoir in each cycle.

2. The energy absorbed by an engine is three times
greater than the work it performs. (a) What is its ther-
mal efficiency? (b) What fraction of the energy ab-
sorbed is expelled to the cold reservoir?

3. A particular engine has a power output of 5.00 kW and
an efficiency of 25.0%. Assuming that the engine expels
8 000 J of energy in each cycle, find (a) the energy ab-
sorbed in each cycle and (b) the time for each cycle.

4. A heat engine performs 200 J of work in each cycle and
has an efficiency of 30.0%. For each cycle, how much
energy is (a) absorbed and (b) expelled?

5. An ideal gas is compressed to half its original volume
while its temperature is held constant. (a) If 1 000 J of
energy is removed from the gas during the compres-
sion, how much work is done on the gas? (b) What is
the change in the internal energy of the gas during the
compression?

6. Suppose that a heat engine is connected to two energy
reservoirs, one a pool of molten aluminum (660°C) and
the other a block of solid mercury (� 38.9°C). The en-
gine runs by freezing 1.00 g of aluminum and melting
15.0 g of mercury during each cycle. The heat of fusion
of aluminum is 3.97 � 105 J/kg; the heat of fusion of
mercury is 1.18 � 104 J/kg. What is the efficiency of this
engine?

Section 22.3 The Carnot Engine
7. One of the most efficient engines ever built (actual effi-

ciency 42.0%) operates between 430°C and 1 870°C. 
(a) What is its maximum theoretical efficiency? 
(b) How much power does the engine deliver if it ab-
sorbs 1.40 � 105 J of energy each second from the hot
reservoir?

8. A heat engine operating between 80.0°C and 200°C
achieves 20.0% of the maximum possible efficiency.
What energy input will enable the engine to perform
10.0 kJ of work?

9. A Carnot engine has a power output of 150 kW. The en-
gine operates between two reservoirs at 20.0°C and
500°C. (a) How much energy does it absorb per hour?
(b) How much energy is lost per hour in its exhaust?

10. A steam engine is operated in a cold climate where the
exhaust temperature is 0°C. (a) Calculate the theoreti-

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB
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voir and release 100 J of energy into the environment.
To follow Carnot’s reasoning, suppose that some other
heat engine S could have an efficiency of 70.0%. 
(a) Find the energy input and energy output of engine
S as it does 150 J of work. (b) Let engine S operate as in
part (a) and run the Carnot engine in reverse. Find the
total energy the firebox puts out as both engines oper-
ate together and the total energy absorbed by the envi-
ronment. Show that the Clausius statement of the sec-
ond law of thermodynamics is violated. (c) Find the
energy input and work output of engine S as it exhausts
100 J of energy. (d) Let engine S operate as in (c) and
contribute 150 J of its work output to running the
Carnot engine in reverse. Find the total energy that the
firebox puts out as both engines operate together, the
total work output, and the total energy absorbed by the
environment. Show that the Kelvin–Planck statement
of the second law is violated. Thus, our assumption
about the efficiency of engine S must be false. (e) Let
the engines operate together through one cycle as in
part (d). Find the change in entropy of the Universe.
Show that the entropy statement of the second law is 
violated.

18. At point A in a Carnot cycle, 2.34 mol of a monatomic
ideal gas has a pressure of 1 400 kPa, a volume of 
10.0 L, and a temperature of 720 K. It expands isother-
mally to point B, and then expands adiabatically to
point C, where its volume is 24.0 L. An isothermal com-
pression brings it to point D, where its new volume is
15.0 L. An adiabatic process returns the gas to point A.
(a) Determine all the unknown pressures, volumes, and
temperatures as you fill in the following table:

(c) Identify the energy input Q h , the energy exhaust
Q c , and the net output work W. (d) Calculate the ther-
mal efficiency. (e) Find the number of revolutions per
minute that the crankshaft must complete for a one-
cylinder engine to have an output power of 1.00 kW �
1.34 hp. (Hint: The thermodynamic cycle involves four
piston strokes.)

Section 22.5 Heat Pumps and Refrigerators
23. What is the coefficient of performance of a refrigerator

that operates with Carnot efficiency between the tem-
peratures � 3.00°C and 
 27.0°C?

24. What is the maximum possible coefficient of perfor-
mance of a heat pump that brings energy from out-
doors at � 3.00°C into a 22.0°C house? (Hint: The heat
pump does work W, which is also available to warm up
the house.)

(b) Fill in the following table to track the processes:

(b) Find the energy added by heat, the work done, and
the change in internal energy for each of the following
steps: A : B, B : C, C : D, and D : A. (c) Show that

the Carnot efficiency.

Section 22.4 Gasoline and Diesel Engines
19. In a cylinder of an automobile engine just after combus-

tion, the gas is confined to a volume of 50.0 cm3 and
has an initial pressure of 3.00 � 106 Pa. The piston
moves outward to a final volume of 300 cm3, and the
gas expands without energy loss by heat. (a) If � � 1.40
for the gas, what is the final pressure? (b) How much
work is done by the gas in expanding?

20. A gasoline engine has a compression ratio of 6.00 and
uses a gas for which � � 1.40. (a) What is the efficiency
of the engine if it operates in an idealized Otto cycle? 

Wnet /Q in � 1 � TC /TA ,

(b) If the actual efficiency is 15.0%, what fraction of the
fuel is wasted as a result of friction and energy losses by
heat that could by avoided in a reversible engine? 
(Assume complete combustion of the air– fuel 
mixture.)

21. A 1.60-L gasoline engine with a compression ratio of
6.20 has a power output of 102 hp. Assuming that the
engine operates in an idealized Otto cycle, find the en-
ergy absorbed and exhausted each second. Assume that
the fuel–air mixture behaves like an ideal gas, with 
� � 1.40.

22. The compression ratio of an Otto cycle, as shown in Fig-
ure 22.12, is At the beginning A of the
compression process, 500 cm3 of gas is at 100 kPa and
20.0°C. At the beginning of the adiabatic expansion,
the temperature is 750°C. Model the working
fluid as an ideal gas, with and 
� � 1.40. (a) Fill in the following table to track the
states of the gas:

E int � nCVT � 2.50nRT
TC �

VA/VB � 8.00.

P V T

A 1 400 kPa 10.0 L 720 K
B
C 24.0 L
D 15.0 L

Q W �E int

A : B
B : C
C : D
D : A
ABCDA

T (K) P (kPa) V (cm3) E int

A 293 100 500
B
C 1 023
D
A
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25. An ideal refrigerator or ideal heat pump is equivalent to
a Carnot engine running in reverse. That is, energy Q c
is absorbed from a cold reservoir, and energy Q h is re-
jected to a hot reservoir. (a) Show that the work that
must be supplied to run the refrigerator or heat pump is

(b) Show that the coefficient of performance (COP) of
the ideal refrigerator is

26. A heat pump (Fig. P22.26) is essentially a heat engine
run backward. It extracts energy from colder air outside
and deposits it in a warmer room. Suppose that the ra-
tio of the actual energy entering the room to the work
done by the device’s motor is 10.0% of the theoretical
maximum ratio. Determine the energy entering the
room per joule of work done by the motor when the in-
side temperature is 20.0°C and the outside temperature
is � 5.00°C.

COP �
Tc

Th � Tc

W �  
Th � Tc

Tc
 Q c

to operate the refrigerator? (b) At what rate does the
refrigerator exhaust energy into the room?

Section 22.6 Entropy
31. An ice tray contains 500 g of water at 0°C. Calculate the

change in entropy of the water as it freezes slowly and
completely at 0°C.

32. At a pressure of 1 atm, liquid helium boils at 4.20 K.
The latent heat of vaporization is 20.5 kJ/kg. Determine
the entropy change (per kilogram) of the helium result-
ing from vaporization.

33. Calculate the change in entropy of 250 g of water
heated slowly from 20.0°C to 80.0°C. (Hint: Note that

34. An airtight freezer holds 2.50 mol of air at 25.0°C and
1.00 atm. The air is then cooled to � 18.0°C. (a) What is
the change in entropy of the air if the volume is held
constant? (b) What would the change be if the pressure
were maintained at 1 atm during the cooling?

Section 22.7 Entropy Changes in Irreversible Processes
35. The temperature at the surface of the Sun is approxi-

mately 5 700 K, and the temperature at the surface of
the Earth is approximately 290 K. What entropy change
occurs when 1 000 J of energy is transferred by radia-
tion from the Sun to the Earth?

36. A 1.00-kg iron horseshoe is taken from a furnace at
900°C and dropped into 4.00 kg of water at 10.0°C.
Assuming that no energy is lost by heat to the surround-
ings, determine the total entropy change of the system
(horseshoe and water).

37. A 1 500-kg car is moving at 20.0 m/s. The driver brakes
to a stop. The brakes cool off to the temperature of the
surrounding air, which is nearly constant at 20.0°C.
What is the total entropy change?

38. How fast are you personally making the entropy of the
Universe increase right now? Make an order-of-magni-
tude estimate, stating what quantities you take as data
and the values you measure or estimate for them.

39. One mole of H2 gas is contained in the left-hand side of
the container shown in Figure P22.39, which has equal
volumes left and right. The right-hand side is evacuated.
When the valve is opened, the gas streams into the
right-hand side. What is the final entropy change of the
gas? Does the temperature of the gas change?

dQ � mc dT.)

WEB

WEB 27. How much work does an ideal Carnot refrigerator re-
quire to remove 1.00 J of energy from helium at 4.00 K
and reject this energy to a room-temperature (293-K)
environment?

28. How much work does an ideal Carnot refrigerator re-
quire to remove energy Q from helium at Tc and reject
this energy to a room-temperature environment at Th ?

29. A refrigerator has a coefficient of performance equal to
5.00. Assuming that the refrigerator absorbs 120 J of en-
ergy from a cold reservoir in each cycle, find (a) the
work required in each cycle and (b) the energy ex-
pelled to the hot reservoir.

30. A refrigerator maintains a temperature of 0°C in the
cold compartment with a room temperature of 25.0°C.
It removes energy from the cold compartment at the
rate 8 000 kJ/h. (a) What minimum power is required

Figure P22.26

Figure P22.39

Q h

Inside
Th

Outside
Tc

Q c
Heat
pump

Valve

VacuumH2

40. A rigid tank of small mass contains 40.0 g of argon, ini-
tially at 200°C and 100 kPa. The tank is placed into a
reservoir at 0°C and is allowed to cool to thermal equi-
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librium. Calculate (a) the volume of the tank, (b) the
change in internal energy of the argon, (c) the energy
transferred by heat, (d) the change in entropy of the ar-
gon, and (e) the change in entropy of the constant-tem-
perature bath.

41. A 2.00-L container has a center partition that divides it
into two equal parts, as shown in Figure P22.41. The
left-hand side contains H2 gas, and the right-hand side
contains O2 gas. Both gases are at room temperature
and at atmospheric pressure. The partition is removed,
and the gases are allowed to mix. What is the entropy
increase of the system?

ADDITIONAL PROBLEMS

48. Every second at Niagara Falls, some 5 000 m3 of water
falls a distance of 50.0 m (Fig. P22.48). What is the in-
crease in entropy per second due to the falling water?
(Assume that the mass of the surroundings is so great
that its temperature and that of the water stay nearly
constant at 20.0°C. Suppose that a negligible amount of
water evaporates.)

49. If a 35.0%-efficient Carnot heat engine is run in reverse
so that it functions as a refrigerator, what would be the
engine’s (that is, the refrigerator’s) coefficient of per-
formance (COP)?

50. How much work does an ideal Carnot refrigerator use
to change 0.500 kg of tap water at 10.0°C into ice at
� 20.0°C? Assume that the freezer compartment is held
at � 20.0°C and that the refrigerator exhausts energy
into a room at 20.0°C.

51. A house loses energy through the exterior walls and roof
at a rate of 5 000 J/s � 5.00 kW when the interior temper-
ature is 22.0°C and the outside temperature is � 5.00°C.
Calculate the electric power required to maintain the in-
terior temperature at 22.0°C for the following two cases:
(a) The electric power is used in electric resistance
heaters (which convert all of the electricity supplied into
internal energy). (b) The electric power is used to drive
an electric motor that operates the compressor of a heat
pump (which has a coefficient of performance [COP]
equal to 60.0% of the Carnot-cycle value).

52. A heat engine operates between two reservoirs at T2 �
600 K and T1 � 350 K. It absorbs 1 000 J of energy from
the higher-temperature reservoir and performs 250 J of
work. Find (a) the entropy change of the Universe �SU
for this process and (b) the work W that could have
been done by an ideal Carnot engine operating be-
tween these two reservoirs. (c) Show that the difference
between the work done in parts (a) and (b) is T1�SU .

53. Figure P22.53 represents n mol of an ideal monatomic
gas being taken through a cycle that consists of two
isothermal processes at temperatures 3Ti and Ti and two
constant-volume processes. For each cycle, determine,

42. A 100 000-kg iceberg at � 5.00°C breaks away from the
polar ice shelf and floats away into the ocean, at 5.00°C.
What is the final change in the entropy of the system af-
ter the iceberg has completely melted? (The specific
heat of ice is 2010 J/kg � °C.)

43. One mole of an ideal monatomic gas, initially at a pres-
sure of 1.00 atm and a volume of 0.025 0 m3, is heated
to a final state with a pressure of 2.00 atm and a volume
of 0.040 0 m3. Determine the change in entropy of the
gas for this process.

44. One mole of a diatomic ideal gas, initially having pres-
sure P and volume V, expands so as to have pressure 2P
and volume 2V. Determine the entropy change of the
gas in the process.

(Optional)
Section 22.8 Entropy on a Microscopic Scale

45. If you toss two dice, what is the total number of ways in
which you can obtain (a) a 12 and (b) a 7?

46. Prepare a table like Table 22.1 for the following occur-
rence. You toss four coins into the air simultaneously
and then record the results of your tosses in terms of
the numbers of heads and tails that result. For example,
HHTH and HTHH are two possible ways in which three
heads and one tail can be achieved. (a) On the basis of
your table, what is the most probable result of a toss? In
terms of entropy, (b) what is the most ordered state,
and (c) what is the most disordered?

47. Repeat the procedure used to construct Table 22.1 
(a) for the case in which you draw three marbles from
your bag rather than four and (b) for the case in which
you draw five rather than four.

Figure P22.41 Figure P22.48 Niagara Falls. ( Jan Kopec/Tony Stone Images)

0.044 mol
O2

0.044 mol
H2

WEB

WEB
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59. An athlete whose mass is 70.0 kg drinks 16 oz (453.6 g)
of refrigerated water. The water is at a temperature of
35.0°F. (a) Neglecting the temperature change of her
body that results from the water intake (that is, the body
is regarded as a reservoir that is always at 98.6°F), find
the entropy increase of the entire system. (b) Assume
that the entire body is cooled by the drink and that the
average specific heat of a human is equal to the specific
heat of liquid water. Neglecting any other energy trans-
fers by heat and any metabolic energy release, find the
athlete’s temperature after she drinks the cold water,
given an initial body temperature of 98.6°F. Under these
assumptions, what is the entropy increase of the entire
system? Compare this result with the one you obtained
in part (a).

60. One mole of an ideal monatomic gas is taken through
the cycle shown in Figure P22.60. The process A : B is
a reversible isothermal expansion. Calculate (a) the net
work done by the gas, (b) the energy added to the gas,
(c) the energy expelled by the gas, and (d) the effi-
ciency of the cycle.

61. Calculate the increase in entropy of the Universe when
you add 20.0 g of 5.00°C cream to 200 g of 60.0°C cof-
fee. Assume that the specific heats of cream and coffee
are both 4.20 J/g � °C.

62. In 1993 the federal government instituted a require-
ment that all room air conditioners sold in the
United States must have an energy efficiency ratio
(EER) of 10 or higher. The EER is defined as the ra-
tio of the cooling capacity of the air conditioner,
measured in Btu/h, to its electrical power require-
ment in watts. (a) Convert the EER of 10.0 to dimen-
sionless form, using the conversion 1 Btu � 1 055 J.
(b) What is the appropriate name for this dimension-
less quantity? (c) In the 1970s it was common to find
room air conditioners with EERs of 5 or lower. Com-
pare the operating costs for 10 000-Btu/h air condi-
tioners with EERs of 5.00 and 10.0 if each air condi-
tioner were to operate for 1 500 h during the
summer in a city where electricity costs 10.0¢ per 
kilowatt-hour.

in terms of n, R, and Ti , (a) the net energy transferred
by heat to the gas and (b) the efficiency of an engine
operating in this cycle.

54. A refrigerator has a coefficient of performance (COP)
of 3.00. The ice tray compartment is at � 20.0°C, and
the room temperature is 22.0°C. The refrigerator can
convert 30.0 g of water at 22.0°C to 30.0 g of ice at
� 20.0°C each minute. What input power is required?
Give your answer in watts.

55. An ideal (Carnot) freezer in a kitchen has a constant
temperature of 260 K, while the air in the kitchen has a
constant temperature of 300 K. Suppose that the insula-
tion for the freezer is not perfect, such that some en-
ergy flows into the freezer at a rate of 0.150 W. Deter-
mine the average power that the freezer’s motor needs
to maintain the constant temperature in the freezer.

56. An electric power plant has an overall efficiency of
15.0%. The plant is to deliver 150 MW of power to a
city, and its turbines use coal as the fuel. The burning
coal produces steam, which drives the turbines. The
steam is then condensed to water at 25.0°C as it passes
through cooling coils in contact with river water. 
(a) How many metric tons of coal does the plant con-
sume each day (1 metric ton � 103 kg)? (b) What is the
total cost of the fuel per year if the delivered price is
$8.00/metric ton? (c) If the river water is delivered at
20.0°C, at what minimum rate must it flow over the
cooling coils in order that its temperature not exceed
25.0°C? (Note: The heat of combustion of coal is 
33.0 kJ/g.)

57. A power plant, having a Carnot efficiency, produces 
1 000 MW of electrical power from turbines that take in
steam at 500 K and reject water at 300 K into a flowing
river. Assuming that the water downstream is 6.00 K
warmer due to the output of the power plant, deter-
mine the flow rate of the river.

58. A power plant, having a Carnot efficiency, produces
electric power from turbines that take in energy from
steam at temperature Th and discharge energy at tem-
perature Tc through a heat exchanger into a flowing
river. Assuming that the water downstream is warmer by
�T due to the output of the power plant, determine the
flow rate of the river.

�

Figure P22.53

Figure P22.60
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63. One mole of a monatomic ideal gas is taken through
the cycle shown in Figure P22.63. At point A, the pres-
sure, volume, and temperature are Pi , Vi , and Ti , re-
spectively. In terms of R and Ti , find (a) the total energy
entering the system by heat per cycle, (b) the total en-
ergy leaving the system by heat per cycle, (c) the effi-
ciency of an engine operating in this cycle, and 
(d) the efficiency of an engine operating in a Carnot
cycle between the same temperature extremes.

thermodynamic efficiency of 0.61. She explains that it
operates between energy reservoirs at 4°C and 0°C. It is
a very complicated device, with many pistons, gears, and
pulleys, and the cycle involves freezing and melting.
Does her claim that e � 0.61 warrant serious considera-
tion? Explain.

67. An idealized diesel engine operates in a cycle known as
the air-standard diesel cycle, as shown in Figure 22.13.
Fuel is sprayed into the cylinder at the point of maxi-
mum compression B. Combustion occurs during the ex-
pansion B : C, which is approximated as an isobaric
process. Show that the efficiency of an engine operating
in this idealized diesel cycle is

68. One mole of an ideal gas (� � 1.40) is carried through
the Carnot cycle described in Figure 22.10. At point A,
the pressure is 25.0 atm and the temperature is 600 K.
At point C, the pressure is 1.00 atm and the tempera-
ture is 400 K. (a) Determine the pressures and volumes
at points A, B, C, and D. (b) Calculate the net work
done per cycle. (c) Determine the efficiency of an en-
gine operating in this cycle.

69. A typical human has a mass of 70.0 kg and produces
about 2 000 kcal (2.00 � 106 cal) of metabolic energy
per day. (a) Find the rate of metabolic energy produc-
tion in watts and in calories per hour. (b) If none of the
metabolic energy were transferred out of the body, and
the specific heat of the human body is 1.00 cal/g � °C,
what is the rate at which body temperature would rise?
Give your answer in degrees Celsius per hour and in de-
grees Fahrenheit per hour.

70. Suppose that 1.00 kg of water at 10.0°C is mixed with
1.00 kg of water at 30.0°C at constant pressure. When
the mixture has reached equilibrium, (a) what is the fi-
nal temperature? (b) Take kJ/kg � K for water.
Show that the entropy of the system increases by

(c) Verify numerically that �S � 0. (d) Is the mixing an
irreversible process?

�S � 4.19 ln�� 293
283 � � 293

303 �� kJ/K

cP � 4.19

e � 1 �
1
�

 � TD � TA

TC � TB
�

64. One mole of an ideal gas expands isothermally. (a) If
the gas doubles its volume, show that the work of expan-
sion is W � RT ln 2. (b) Because the internal energy E int
of an ideal gas depends solely on its temperature, no
change in E int occurs during the expansion. It follows
from the first law that the heat input to the gas during
the expansion is equal to the energy output by work.
Why does this conversion not violate the second law?

65. A system consisting of n mol of an ideal gas undergoes a
reversible, isobaric process from a volume Vi to a volume
3Vi . Calculate the change in entropy of the gas. (Hint:
Imagine that the system goes from the initial state to
the final state first along an isotherm and then along an
adiabatic path—no change in entropy occurs along the
adiabatic path.)

66. Suppose you are working in a patent office, and an in-
ventor comes to you with the claim that her heat en-
gine, which employs water as a working substance, has a

Figure P22.63
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ANSWERS TO QUICK QUIZZES

22.3 False. The second law states that the entropy of the Uni-
verse increases in real processes. Although the organiza-
tion of molecules into ordered leaves and branches rep-
resents a decrease in entropy of the tree, this organization
takes place because of a number of processes in which
the tree interacts with its surroundings. If we include the
entropy changes associated with all these processes, the
entropy change of the Universe during the growth of a
tree is still positive.

22.1 The cost of heating your home decreases to 25% of the
original cost. With electric heating, you receive the same
amount of energy for heating your home as enters it by
electricity. The COP of 4 for the heat pump means that
you are receiving four times as much energy as the en-
ergy entering by electricity. With four times as much en-
ergy per unit of energy from electricity, you need only
one-fourth as much electricity.

22.2 (b) Because the process is reversible and adiabatic,
Q r � 0; therefore, �S � 0.
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wearer. Some types of makeup exploit
this same attractive force to adhere to
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23.1 Properties of Electric Charges 709

he electromagnetic force between charged particles is one of the fundamen-
tal forces of nature. We begin this chapter by describing some of the basic
properties of electric forces. We then discuss Coulomb’s law, which is the fun-

damental law governing the force between any two charged particles. Next, we in-
troduce the concept of an electric field associated with a charge distribution and
describe its effect on other charged particles. We then show how to use
Coulomb’s law to calculate the electric field for a given charge distribution. We
conclude the chapter with a discussion of the motion of a charged particle in a
uniform electric field.

PROPERTIES OF ELECTRIC CHARGES
A number of simple experiments demonstrate the existence of electric forces and
charges. For example, after running a comb through your hair on a dry day, you
will find that the comb attracts bits of paper. The attractive force is often strong
enough to suspend the paper. The same effect occurs when materials such as glass
or rubber are rubbed with silk or fur.

Another simple experiment is to rub an inflated balloon with wool. The bal-
loon then adheres to a wall, often for hours. When materials behave in this way,
they are said to be electrified, or to have become electrically charged. You can eas-
ily electrify your body by vigorously rubbing your shoes on a wool rug. The electric
charge on your body can be felt and removed by lightly touching (and startling) a
friend. Under the right conditions, you will see a spark when you touch, and both
of you will feel a slight tingle. (Experiments such as these work best on a dry day
because an excessive amount of moisture in the air can cause any charge you build
up to “leak” from your body to the Earth.)

In a series of simple experiments, it is found that there are two kinds of elec-
tric charges, which were given the names positive and negative by Benjamin
Franklin (1706–1790). To verify that this is true, consider a hard rubber rod that
has been rubbed with fur and then suspended by a nonmetallic thread, as shown
in Figure 23.1. When a glass rod that has been rubbed with silk is brought near the
rubber rod, the two attract each other (Fig. 23.1a). On the other hand, if two
charged rubber rods (or two charged glass rods) are brought near each other, as
shown in Figure 23.1b, the two repel each other. This observation shows that the
rubber and glass are in two different states of electrification. On the basis of these
observations, we conclude that like charges repel one another and unlike
charges attract one another.

Using the convention suggested by Franklin, the electric charge on the glass
rod is called positive and that on the rubber rod is called negative. Therefore, any
charged object attracted to a charged rubber rod (or repelled by a charged glass
rod) must have a positive charge, and any charged object repelled by a charged
rubber rod (or attracted to a charged glass rod) must have a negative charge.

Attractive electric forces are responsible for the behavior of a wide variety of
commercial products. For example, the plastic in many contact lenses, etafilcon, is
made up of molecules that electrically attract the protein molecules in human
tears. These protein molecules are absorbed and held by the plastic so that the
lens ends up being primarily composed of the wearer’s tears. Because of this, the
wearer’s eye does not treat the lens as a foreign object, and it can be worn com-
fortably. Many cosmetics also take advantage of electric forces by incorporating
materials that are electrically attracted to skin or hair, causing the pigments or
other chemicals to stay put once they are applied.

23.1

T

11.2

QuickLab
Rub an inflated balloon against your
hair and then hold the balloon near a
thin stream of water running from a
faucet. What happens? (A rubbed
plastic pen or comb will also work.)
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Another important aspect of Franklin’s model of electricity is the implication
that electric charge is always conserved. That is, when one object is rubbed
against another, charge is not created in the process. The electrified state is due to
a transfer of charge from one object to the other. One object gains some amount of
negative charge while the other gains an equal amount of positive charge. For ex-
ample, when a glass rod is rubbed with silk, the silk obtains a negative charge that
is equal in magnitude to the positive charge on the glass rod. We now know from
our understanding of atomic structure that negatively charged electrons are trans-
ferred from the glass to the silk in the rubbing process. Similarly, when rubber is
rubbed with fur, electrons are transferred from the fur to the rubber, giving the
rubber a net negative charge and the fur a net positive charge. This process is con-
sistent with the fact that neutral, uncharged matter contains as many positive
charges (protons within atomic nuclei) as negative charges (electrons).

If you rub an inflated balloon against your hair, the two materials attract each other, as
shown in Figure 23.2. Is the amount of charge present in the balloon and your hair after
rubbing (a) less than, (b) the same as, or (c) more than the amount of charge present be-
fore rubbing?

In 1909, Robert Millikan (1868–1953) discovered that electric charge always
occurs as some integral multiple of a fundamental amount of charge e. In modern
terms, the electric charge q is said to be quantized, where q is the standard symbol
used for charge. That is, electric charge exists as discrete “packets,” and we can
write where N is some integer. Other experiments in the same period
showed that the electron has a charge �e and the proton has a charge of equal
magnitude but opposite sign �e. Some particles, such as the neutron, have no
charge. A neutral atom must contain as many protons as electrons.

Because charge is a conserved quantity, the net charge in a closed region re-
mains the same. If charged particles are created in some process, they are always
created in pairs whose members have equal-magnitude charges of opposite sign.

q � Ne,

Quick Quiz 23.1

Rubber
Rubber

(a)

F F

(b)

F

F

Rubber

– – – – –

– – – – –
–

–

– – – –

+ + + +
+ +

Glass

–

+

Figure 23.1 (a) A negatively charged rubber rod suspended by a thread is attracted to a posi-
tively charged glass rod. (b) A negatively charged rubber rod is repelled by another negatively
charged rubber rod.

Figure 23.2 Rubbing a balloon
against your hair on a dry day
causes the balloon and your hair 
to become charged.

Charge is conserved

Charge is quantized

23.2 Insulators and Conductors 711

From our discussion thus far, we conclude that electric charge has the follow-
ing important properties:

• Two kinds of charges occur in nature, with the property that unlike charges
attract one another and like charges repel one another.

• Charge is conserved.
• Charge is quantized.

Properties of electric charge

INSULATORS AND CONDUCTORS
It is convenient to classify substances in terms of their ability to conduct electric
charge:

23.2

Electrical conductors are materials in which electric charges move freely,
whereas electrical insulators are materials in which electric charges cannot
move freely.

Materials such as glass, rubber, and wood fall into the category of electrical insula-
tors. When such materials are charged by rubbing, only the area rubbed becomes
charged, and the charge is unable to move to other regions of the material.

In contrast, materials such as copper, aluminum, and silver are good electrical
conductors. When such materials are charged in some small region, the charge
readily distributes itself over the entire surface of the material. If you hold a cop-
per rod in your hand and rub it with wool or fur, it will not attract a small piece of
paper. This might suggest that a metal cannot be charged. However, if you attach a
wooden handle to the rod and then hold it by that handle as you rub the rod, the
rod will remain charged and attract the piece of paper. The explanation for this is
as follows: Without the insulating wood, the electric charges produced by rubbing
readily move from the copper through your body and into the Earth. The insulat-
ing wooden handle prevents the flow of charge into your hand.

Semiconductors are a third class of materials, and their electrical properties
are somewhere between those of insulators and those of conductors. Silicon and
germanium are well-known examples of semiconductors commonly used in the
fabrication of a variety of electronic devices, such as transistors and light-emitting
diodes. The electrical properties of semiconductors can be changed over many or-
ders of magnitude by the addition of controlled amounts of certain atoms to the
materials.

When a conductor is connected to the Earth by means of a conducting wire or
pipe, it is said to be grounded. The Earth can then be considered an infinite
“sink” to which electric charges can easily migrate. With this in mind, we can un-
derstand how to charge a conductor by a process known as induction.

To understand induction, consider a neutral (uncharged) conducting sphere
insulated from ground, as shown in Figure 23.3a. When a negatively charged rub-
ber rod is brought near the sphere, the region of the sphere nearest the rod ob-
tains an excess of positive charge while the region farthest from the rod obtains an
equal excess of negative charge, as shown in Figure 23.3b. (That is, electrons in
the region nearest the rod migrate to the opposite side of the sphere. This occurs
even if the rod never actually touches the sphere.) If the same experiment is per-
formed with a conducting wire connected from the sphere to ground (Fig. 23.3c),
some of the electrons in the conductor are so strongly repelled by the presence of

11.3

Metals are good conductors

Charging by induction
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Figure 23.3 Charging a metallic object by induction (that is, the two objects never touch each
other). (a) A neutral metallic sphere, with equal numbers of positive and negative charges. 
(b) The charge on the neutral sphere is redistributed when a charged rubber rod is placed near
the sphere. (c) When the sphere is grounded, some of its electrons leave through the ground
wire. (d) When the ground connection is removed, the sphere has excess positive charge that is
nonuniformly distributed. (e) When the rod is removed, the excess positive charge becomes uni-
formly distributed over the surface of the sphere.
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the negative charge in the rod that they move out of the sphere through the
ground wire and into the Earth. If the wire to ground is then removed (Fig.
23.3d), the conducting sphere contains an excess of induced positive charge. When
the rubber rod is removed from the vicinity of the sphere (Fig. 23.3e), this in-
duced positive charge remains on the ungrounded sphere. Note that the charge
remaining on the sphere is uniformly distributed over its surface because of the re-
pulsive forces among the like charges. Also note that the rubber rod loses none of
its negative charge during this process.

Charging an object by induction requires no contact with the body inducing
the charge. This is in contrast to charging an object by rubbing (that is, by conduc-
tion), which does require contact between the two objects.

A process similar to induction in conductors takes place in insulators. In most
neutral molecules, the center of positive charge coincides with the center of nega-
tive charge. However, in the presence of a charged object, these centers inside
each molecule in an insulator may shift slightly, resulting in more positive charge
on one side of the molecule than on the other. This realignment of charge within
individual molecules produces an induced charge on the surface of the insulator,
as shown in Figure 23.4. Knowing about induction in insulators, you should be
able to explain why a comb that has been rubbed through hair attracts bits of elec-
trically neutral paper and why a balloon that has been rubbed against your cloth-
ing is able to stick to an electrically neutral wall.

Object A is attracted to object B. If object B is known to be positively charged, what can we
say about object A? (a) It is positively charged. (b) It is negatively charged. (c) It is electri-
cally neutral. (d) Not enough information to answer.

COULOMB’S LAW
Charles Coulomb (1736–1806) measured the magnitudes of the electric forces be-
tween charged objects using the torsion balance, which he invented (Fig. 23.5).

23.3

Quick Quiz 23.2

QuickLab
Tear some paper into very small
pieces. Comb your hair and then
bring the comb close to the paper
pieces. Notice that they are acceler-
ated toward the comb. How does the
magnitude of the electric force com-
pare with the magnitude of the gravi-
tational force exerted on the paper?
Keep watching and you might see a
few pieces jump away from the comb.
They don’t just fall away; they are re-
pelled. What causes this?

+

+

+

+

+

+

+–

+–

+–

+–

+–

+–

Insulator

Induced
charges

Charged
object

(a)

Figure 23.4 (a) The charged object on the left induces charges on the surface of an insulator.
(b) A charged comb attracts bits of paper because charges are displaced in the paper.

(b)

11.4

Charles Coulomb (1736 – 1806)
Coulomb's major contribution to sci-
ence was in the field of electrostatics
and magnetism. During his lifetime, he
also investigated the strengths of ma-
terials and determined the forces that
affect objects on beams, thereby con-
tributing to the field of structural me-
chanics. In the field of ergonomics,
his research provided a fundamental
understanding of the ways in which
people and animals can best do work.
(Photo courtesy of AIP Niels Bohr
Library/E. Scott Barr Collection)
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Coulomb confirmed that the electric force between two small charged spheres is
proportional to the inverse square of their separation distance r—that is,

The operating principle of the torsion balance is the same as that of the
apparatus used by Cavendish to measure the gravitational constant (see Section
14.2), with the electrically neutral spheres replaced by charged ones. The electric
force between charged spheres A and B in Figure 23.5 causes the spheres to either
attract or repel each other, and the resulting motion causes the suspended fiber to
twist. Because the restoring torque of the twisted fiber is proportional to the angle
through which the fiber rotates, a measurement of this angle provides a quantita-
tive measure of the electric force of attraction or repulsion. Once the spheres are
charged by rubbing, the electric force between them is very large compared with
the gravitational attraction, and so the gravitational force can be neglected.

Coulomb’s experiments showed that the electric force between two stationary
charged particles

• is inversely proportional to the square of the separation r between the particles
and directed along the line joining them;

• is proportional to the product of the charges q1 and q2 on the two particles;
• is attractive if the charges are of opposite sign and repulsive if the charges have

the same sign.

From these observations, we can express Coulomb’s law as an equation giving
the magnitude of the electric force (sometimes called the Coulomb force) between
two point charges:

(23.1)

where ke is a constant called the Coulomb constant. In his experiments, Coulomb
was able to show that the value of the exponent of r was 2 to within an uncertainty
of a few percent. Modern experiments have shown that the exponent is 2 to within
an uncertainty of a few parts in 1016.

The value of the Coulomb constant depends on the choice of units. The SI
unit of charge is the coulomb (C). The Coulomb constant ke in SI units has the
value

This constant is also written in the form

where the constant �0 (lowercase Greek epsilon) is known as the permittivity of free
space and has the value 

The smallest unit of charge known in nature is the charge on an electron or
proton,1 which has an absolute value of

Therefore, 1 C of charge is approximately equal to the charge of 6.24 � 1018 elec-
trons or protons. This number is very small when compared with the number of

� e � � 1.602 19 � 10�19 C

8.854 2 � 10�12 C2/N�m2.

ke �
1

4��0

ke � 8.987 5 � 109 N�m2/C2

Fe � ke 
� q1 �� q2 �

r 2

Fe � 1/r 2.

Coulomb constant

Charge on an electron or proton

1 No unit of charge smaller than e has been detected as a free charge; however, recent theories propose
the existence of particles called quarks having charges e/3 and 2e/3. Although there is considerable ex-
perimental evidence for such particles inside nuclear matter, free quarks have never been detected. We
discuss other properties of quarks in Chapter 46 of the extended version of this text.

Suspension
head

Fiber

B

A

Figure 23.5 Coulomb’s torsion
balance, used to establish the in-
verse-square law for the electric
force between two charges.
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free electrons2 in 1 cm3 of copper, which is of the order of 1023. Still, 1 C is a sub-
stantial amount of charge. In typical experiments in which a rubber or glass rod is
charged by friction, a net charge of the order of 10�6 C is obtained. In other
words, only a very small fraction of the total available charge is transferred be-
tween the rod and the rubbing material.

The charges and masses of the electron, proton, and neutron are given in
Table 23.1.

The Hydrogen AtomEXAMPLE 23.1

The ratio Thus, the gravitational force be-
tween charged atomic particles is negligible when compared
with the electric force. Note the similarity of form of New-
ton’s law of gravitation and Coulomb’s law of electric forces.
Other than magnitude, what is a fundamental difference be-
tween the two forces?

Fe /Fg � 2 � 1039.

3.6 � 10�47 N �

 � �
(9.11 � 10�31 kg)(1.67 � 10�27 kg)

(5.3 � 10�11 m)2

 � �6.7 � 10�11 
N�m2

kg2 � 

Fg � G 
memp

r 2  The electron and proton of a hydrogen atom are separated
(on the average) by a distance of approximately 5.3 �
10�11 m. Find the magnitudes of the electric force and the
gravitational force between the two particles.

Solution From Coulomb’s law, we find that the attractive
electric force has the magnitude

Using Newton’s law of gravitation and Table 23.1 for the
particle masses, we find that the gravitational force has the
magnitude

8.2 � 10�8 N�

Fe � ke 
� e �2

r 2 � �8.99 � 109 
N�m2

C2 � 
(1.60 � 10�19 C)2

(5.3 � 10�11 m)2

When dealing with Coulomb’s law, you must remember that force is a vector
quantity and must be treated accordingly. Thus, the law expressed in vector form
for the electric force exerted by a charge q1 on a second charge q2 , written F12 , is

(23.2)

where is a unit vector directed from q1 to q2 , as shown in Figure 23.6a. Because
the electric force obeys Newton’s third law, the electric force exerted by q2 on q1 is

r̂

F12 � ke 
q 1q 2

r 2  r̂

2 A metal atom, such as copper, contains one or more outer electrons, which are weakly bound to the
nucleus. When many atoms combine to form a metal, the so-called free electrons are these outer elec-
trons, which are not bound to any one atom. These electrons move about the metal in a manner simi-
lar to that of gas molecules moving in a container.

TABLE 23.1 Charge and Mass of the Electron, Proton, and
Neutron

Particle Charge (C) Mass (kg)

Electron (e) � 1.602 191 7 � 10�19 9.109 5 � 10�31

Proton (p) � 1.602 191 7 � 10�19 1.672 61 � 10�27

Neutron (n) 0 1.674 92 � 10�27
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equal in magnitude to the force exerted by q1 on q2 and in the opposite direction;
that is, Finally, from Equation 23.2, we see that if q1 and q2 have the
same sign, as in Figure 23.6a, the product q1q2 is positive and the force is repulsive.
If q1 and q2 are of opposite sign, as shown in Figure 23.6b, the product q1q2 is neg-
ative and the force is attractive. Noting the sign of the product q1q2 is an easy way
of determining the direction of forces acting on the charges.

Object A has a charge of � 2 	C, and object B has a charge of � 6 	C. Which statement is
true?

(a) . (b) . (c) .

When more than two charges are present, the force between any pair of them
is given by Equation 23.2. Therefore, the resultant force on any one of them
equals the vector sum of the forces exerted by the various individual charges. For
example, if four charges are present, then the resultant force exerted by particles
2, 3, and 4 on particle 1 is

F1 � F21 � F31 � F41

3FAB � �FBAFAB � �FBAFAB � �3FBA

Quick Quiz 23.3

F21 � � F12 .

–

+
r

(a)F21

F12

q1

q2

(b)

F21

F12

q1

q2

r̂

+

+

Figure 23.6 Two point charges separated by a distance r ex-
ert a force on each other that is given by Coulomb’s law. The
force F21 exerted by q2 on q1 is equal in magnitude and oppo-
site in direction to the force F12 exerted by q1 on q2 . (a) When
the charges are of the same sign, the force is repulsive. 
(b) When the charges are of opposite signs, the force is
attractive.

Find the Resultant ForceEXAMPLE 23.2
The magnitude of F23 is

Note that because q3 and q2 have opposite signs, F23 is to the
left, as shown in Figure 23.7.

 � 9.0 N 

 � �8.99 � 109 
N�m2

C2 � 
(2.0 � 10�6 C)(5.0 � 10�6 C)

(0.10 m)2

F23 � ke 
� q2 �� q3 �

a2  

Consider three point charges located at the corners of a right
triangle as shown in Figure 23.7, where 

and Find the resultant force ex-
erted on q3 .

Solution First, note the direction of the individual forces
exerted by q1 and q2 on q3 . The force F23 exerted by q2 on q3
is attractive because q2 and q3 have opposite signs. The force
F13 exerted by q1 on q3 is repulsive because both charges are
positive.

a � 0.10 m. q2 � �2.0 	C,
q1 � q3 � 5.0 	C,

23.3 Coulomb’s Law 717

F13

q3

q1

q2

a

a

y

x

–

+

+
F23

2a√

The magnitude of the force exerted by q1 on q3 is

F13 � ke 
� q1 �� q3 �
(!2a)2  

The force F13 is repulsive and makes an angle of 45° with the
x axis. Therefore, the x and y components of F13 are equal,
with magnitude given by F13 cos 45° � 7.9 N.

The force F23 is in the negative x direction. Hence, the x
and y components of the resultant force acting on q3 are

We can also express the resultant force acting on q3 in unit -
vector form as

Exercise Find the magnitude and direction of the resultant
force F3 .

Answer 8.0 N at an angle of 98° with the x axis.

(�1.1i � 7.9j) NF3 �

F3y � F13y � 7.9 N 

F3x � F13x � F23 � 7.9 N � 9.0 N � �1.1 N

 � 11 N 

 � �8.99 � 109 
N�m2

C2 � 
(5.0 � 10�6 C)(5.0 � 10�6 C)

2(0.10 m)2

Figure 23.7 The force exerted by q1 on q3 is F13 . The force ex-
erted by q2 on q3 is F23 . The resultant force F3 exerted on q3 is the
vector sum F13 � F23 .

Where Is the Resultant Force Zero?EXAMPLE 23.3

Solving this quadratic equation for x, we find that 

Why is the negative root not acceptable?x � 0.775 m.

(4.00 � 4.00x � x2)(6.00 � 10�6 C) � x2(15.0 � 10�6 C)

 (2.00 � x)2� q2 � � x2� q1 � Three point charges lie along the x axis as shown in Figure
23.8. The positive charge q1 � 15.0 	C is at x � 2.00 m, the
positive charge q2 � 6.00 	C is at the origin, and the resul-
tant force acting on q3 is zero. What is the x coordinate of q3?

Solution Because q3 is negative and q1 and q2 are positive,
the forces F13 and F23 are both attractive, as indicated in Fig-
ure 23.8. From Coulomb’s law, F13 and F23 have magnitudes

For the resultant force on q3 to be zero, F23 must be equal in
magnitude and opposite in direction to F13 , or

Noting that ke and q3 are common to both sides and so can be
dropped, we solve for x and find that

ke 
� q2 �� q3 �

x2 � ke 
� q1 �� q3 �

(2.00 � x)2

F13 � ke 
� q1 �� q3 �

(2.00 � x)2   F23 � ke 
� q2 �� q3 �

x2

2.00 m

x

q1

x
q3

–
q2

F13F23

2.00 – x

+ +

Figure 23.8 Three point charges are placed along the x axis. If
the net force acting on q3 is zero, then the force F13 exerted by q1 on
q3 must be equal in magnitude and opposite in direction to the force
F23 exerted by q2 on q3 .

Find the Charge on the SpheresEXAMPLE 23.4
we see that sin 
 � a/L . Therefore,

The separation of the spheres is 
The forces acting on the left sphere are shown in Figure

23.9b. Because the sphere is in equilibrium, the forces in the

2a � 0.026 m.

a � L sin 
 � (0.15 m)sin 5.0� � 0.013 m

Two identical small charged spheres, each having a mass of
3.0 � 10�2 kg, hang in equilibrium as shown in Figure 23.9a.
The length of each string is 0.15 m, and the angle 
 is 5.0°.
Find the magnitude of the charge on each sphere.

Solution From the right triangle shown in Figure 23.9a,
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QuickLab
For this experiment you need two 20-cm strips of transparent tape (mass of each � 65 mg). Fold about
1 cm of tape over at one end of each strip to create a handle. Press both pieces of tape side by side onto
a table top, rubbing your finger back and forth across the strips. Quickly pull the strips off the surface
so that they become charged. Hold the tape handles together and the strips will repel each other, form-
ing an inverted “V” shape. Measure the angle between the pieces, and estimate the excess charge on
each strip. Assume that the charges act as if they were located at the center of mass of each strip.

Figure 23.9 (a) Two identical spheres, each carrying the same
charge q , suspended in equilibrium. (b) The free-body diagram for
the sphere on the left.

(a) (b)

mg

LL

θ θ

L = 0.15 m
θ = 5.0°

q
a

q

θT
T cos θ

T sin θ

θ

Fe

θ

θ

θ

THE ELECTRIC FIELD
Two field forces have been introduced into our discussions so far—the gravita-
tional force and the electric force. As pointed out earlier, field forces can act
through space, producing an effect even when no physical contact between the ob-
jects occurs. The gravitational field g at a point in space was defined in Section
14.6 to be equal to the gravitational force Fg acting on a test particle of mass m di-
vided by that mass: A similar approach to electric forces was developed
by Michael Faraday and is of such practical value that we shall devote much atten-
tion to it in the next several chapters. In this approach, an electric field is said to
exist in the region of space around a charged object. When another charged ob-
ject enters this electric field, an electric force acts on it. As an example, consider
Figure 23.10, which shows a small positive test charge q0 placed near a second ob-
ject carrying a much greater positive charge Q. We define the strength (in other
words, the magnitude) of the electric field at the location of the test charge to be
the electric force per unit charge, or to be more specific

g � Fg/m .

23.4

horizontal and vertical directions must separately add up to
zero:

(1)

(2)

From Equation (2), we see that 
; thus, T can beT � mg /cos

�Fy � T cos 
 � mg � 0

�Fx � T sin 
 � Fe � 0

eliminated from Equation (1) if we make this substitution.
This gives a value for the magnitude of the electric force Fe :

(3)

From Coulomb’s law (Eq. 23.1), the magnitude of the elec-
tric force is

where r � 2a � 0.026 m and is the magnitude of the
charge on each sphere. (Note that the term arises here
because the charge is the same on both spheres.) This equa-
tion can be solved for to give

Exercise If the charge on the spheres were negative, how
many electrons would have to be added to them to yield a net
charge of � 4.4 � 10�8 C?

Answer 2.7 � 1011 electrons.

4.4 � 10�8 C � q � �

� q �2 �
Fe r 2

ke
�

(2.6 � 10�2 N)(0.026 m)2

8.99 � 109 N�m2/C2

� q �2

� q �2
� q �

Fe � ke 
� q �2

r 2

 � 2.6 � 10�2 N 

 � (3.0 � 10�2 kg)(9.80 m/s2)tan 5.0�

Fe � mg tan 
 

+

+ +
+ +
+ +

+ +

+ +
+

++

+

Q

q0

E

Figure 23.10 A small positive
test charge q0 placed near an object
carrying a much larger positive
charge Q experiences an electric
field E directed as shown. 
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This dramatic photograph captures a lightning bolt striking a tree near some rural homes.

the electric field E at a point in space is defined as the electric force Fe acting
on a positive test charge q0 placed at that point divided by the magnitude of the
test charge:

(23.3)E �
Fe

q0

Note that E is the field produced by some charge external to the test charge—it is
not the field produced by the test charge itself. Also, note that the existence of an
electric field is a property of its source. For example, every electron comes with its
own electric field. 

The vector E has the SI units of newtons per coulomb (N/C), and, as Figure
23.10 shows, its direction is the direction of the force a positive test charge experi-
ences when placed in the field. We say that an electric field exists at a point if a
test charge at rest at that point experiences an electric force. Once the mag-
nitude and direction of the electric field are known at some point, the electric
force exerted on any charged particle placed at that point can be calculated from

Definition of electric field
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Equation 23.3. Furthermore, the electric field is said to exist at some point (even
empty space) regardless of whether a test charge is located at that point.
(This is analogous to the gravitational field set up by any object, which is said to
exist at a given point regardless of whether some other object is present at that
point to “feel” the field.) The electric field magnitudes for various field sources
are given in Table 23.2.

When using Equation 23.3, we must assume that the test charge q0 is small
enough that it does not disturb the charge distribution responsible for the electric
field. If a vanishingly small test charge q0 is placed near a uniformly charged metal-
lic sphere, as shown in Figure 23.11a, the charge on the metallic sphere, which
produces the electric field, remains uniformly distributed. If the test charge is
great enough , as shown in Figure 23.11b, the charge on the metallic
sphere is redistributed and the ratio of the force to the test charge is different:

. That is, because of this redistribution of charge on the metallic
sphere, the electric field it sets up is different from the field it sets up in the pres-
ence of the much smaller q0.

To determine the direction of an electric field, consider a point charge q lo-
cated a distance r from a test charge q0 located at a point P, as shown in Figure
23.12. According to Coulomb’s law, the force exerted by q on the test charge is

where is a unit vector directed from q toward q0. Because the electric field at P,
the position of the test charge, is defined by we find that at P, the elec-
tric field created by q is

(23.4)

If q is positive, as it is in Figure 23.12a, the electric field is directed radially outward
from it. If q is negative, as it is in Figure 23.12b, the field is directed toward it.

To calculate the electric field at a point P due to a group of point charges, we
first calculate the electric field vectors at P individually using Equation 23.4 and
then add them vectorially. In other words,

E � ke 
q
r 2  r̂

E � Fe/q0 ,
r̂

Fe � ke 
qq0

r 2  r̂

(F 
e /q 
0 � Fe /q0)

(q 
0 W q0)

at any point P, the total electric field due to a group of charges equals the vec-
tor sum of the electric fields of the individual charges.

TABLE 23.2 Typical Electric Field Values

Source E (N/C)

Fluorescent lighting tube 10
Atmosphere (fair weather) 100
Balloon rubbed on hair 1 000
Atmosphere (under thundercloud) 10 000
Photocopier 100 000
Spark in air � 3 000 000
Near electron in hydrogen atom 5 � 1011

(a) (b)

q0+ q′0>>q0+

–
– –

–

–

––

–
–

–

–
–

– – –
–

–
––

–
–

–
–

–

Figure 23.11 (a) For a small
enough test charge q0 , the charge
distribution on the sphere is undis-
turbed. (b) When the test charge

is greater, the charge distribu-
tion on the sphere is disturbed as
the result of the proximity of q 
0 .

q 
0

Figure 23.12 A test charge q0 at
point P is a distance r from a point
charge q . (a) If q is positive, then
the electric field at P points radially
outward from q . (b) If q is nega-
tive, then the electric field at P
points radially inward toward q.

(a)

E

q

q0

r
P

r

–
(b)

Eq

q0

P

r̂

ˆ

+

This superposition principle applied to fields follows directly from the superposi-
tion property of electric forces. Thus, the electric field of a group of charges can
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be expressed as

(23.5)

where ri is the distance from the ith charge qi to the point P (the location of the
test charge) and is a unit vector directed from qi toward P.

A charge of � 3 	C is at a point P where the electric field is directed to the right and has a
magnitude of 4 � 106 N/C. If the charge is replaced with a � 3-	C charge, what happens to
the electric field at P ?

Quick Quiz 23.4

r̂i

E � ke �
i

 
qi

ri 

2  r̂i

This metallic sphere is charged by a
generator so that it carries a net elec-
tric charge. The high concentration of
charge on the sphere creates a strong
electric field around the sphere. The
charges then leak through the gas sur-
rounding the sphere, producing a
pink glow.

Electric Field Due to Two ChargesEXAMPLE 23.5
A charge q1 � 7.0 	C is located at the origin, and a second
charge q2 � � 5.0 	C is located on the x axis, 0.30 m from
the origin (Fig. 23.13). Find the electric field at the point P,
which has coordinates (0, 0.40) m.

Solution First, let us find the magnitude of the electric
field at P due to each charge. The fields E1 due to the 7.0-	C
charge and E2 due to the � 5.0-	C charge are shown in Fig-
ure 23.13. Their magnitudes are

The vector E1 has only a y component. The vector E2 has an
x component given by and a negative y compo-
nent given by Hence, we can express the
vectors as

�E2 sin 
 � �4
5E2 .

E2 cos 
 � 3
5E2

 � 1.8 � 105 N/C

E2 � ke 
� q2 �
r2 

2 � �8.99 � 109 
N�m2

C2 � 
(5.0 � 10�6 C)

(0.50 m)2

 � 3.9 � 105 N/C

E1 � ke 
� q1 �
r1 

2 � �8.99 � 109 
N�m2

C2 � 
(7.0 � 10�6 C)

(0.40 m)2
0.40 m

P
θ

E

E2

0.50 m

E1

y

θ
x

q2q1

0.30 m
–

φ

+

Figure 23.13 The total electric field E at P equals the vector sum
where E1 is the field due to the positive charge q 1 and E2 is

the field due to the negative charge q 2 .
E1 � E2 ,
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Electric Field of a DipoleEXAMPLE 23.6
variation in E for the dipole also is obtained for a distant
point along the x axis (see Problem 21) and for any general
distant point.

The electric dipole is a good model of many molecules,
such as hydrochloric acid (HCl). As we shall see in later
chapters, neutral atoms and molecules behave as dipoles
when placed in an external electric field. Furthermore, many
molecules, such as HCl, are permanent dipoles. The effect of
such dipoles on the behavior of materials subjected to elec-
tric fields is discussed in Chapter 26.

An electric dipole is defined as a positive charge q and a
negative charge � q separated by some distance. For the di-
pole shown in Figure 23.14, find the electric field E at P due
to the charges, where P is a distance from the origin.

Solution At P, the fields E1 and E2 due to the two charges
are equal in magnitude because P is equidistant from the
charges. The total field is where

The y components of E1 and E2 cancel each other, and the 
x components add because they are both in the positive 
x direction. Therefore, E is parallel to the x axis and has a
magnitude equal to 2E1 cos 
. From Figure 23.14 we see that 
cos Therefore,

Because we can neglect a2 and write

Thus, we see that, at distances far from a dipole but along the
perpendicular bisector of the line joining the two charges,
the magnitude of the electric field created by the dipole
varies as 1/r 3, whereas the more slowly varying field of a
point charge varies as 1/r 2 (see Eq. 23.4). This is because at
distant points, the fields of the two charges of equal magni-
tude and opposite sign almost cancel each other. The 1/r 3

E � ke 
2qa
y3

y W a,

 � ke 
2qa

(y2 � a2)3/2  

E � 2E1 cos 
 � 2ke 
q

(y2 � a2)
 

a
(y2 � a2)1/2


 � a/r � a/(y2 � a2)1/2.

E1 � E2 � ke 
q
r 2 � ke 

q
y2 � a2

E � E1 � E2 ,

y W a

The resultant field E at P is the superposition of E1 and E2 :

(1.1 � 105 i � 2.5 � 105 j) N/CE � E1 � E2 �

E2 � (1.1 � 105 i � 1.4 � 105 j) N/C

E1 � 3.9 � 105 j N/C From this result, we find that E has a magnitude of 2.7 �
105 N/C and makes an angle � of 66° with the positive x axis.

Exercise Find the electric force exerted on a charge of 
2.0 � 10�8 C located at P.

Answer 5.4 � 10�3 N in the same direction as E.

P E
θ

θ

y

E1

E2
y

r

θ

a
q

θ

a
–q
– x+

Figure 23.14 The total electric field E at P due to two charges of
equal magnitude and opposite sign (an electric dipole) equals the
vector sum The field E1 is due to the positive charge q ,
and E2 is the field due to the negative charge �q .

E1 � E2 .

ELECTRIC FIELD OF A CONTINUOUS
CHARGE DISTRIBUTION

Very often the distances between charges in a group of charges are much smaller
than the distance from the group to some point of interest (for example, a point
where the electric field is to be calculated). In such situations, the system of

23.5
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charges is smeared out, or continuous. That is, the system of closely spaced charges
is equivalent to a total charge that is continuously distributed along some line,
over some surface, or throughout some volume.

To evaluate the electric field created by a continuous charge distribution, we
use the following procedure: First, we divide the charge distribution into small ele-
ments, each of which contains a small charge �q, as shown in Figure 23.15. Next,
we use Equation 23.4 to calculate the electric field due to one of these elements at
a point P. Finally, we evaluate the total field at P due to the charge distribution by
summing the contributions of all the charge elements (that is, by applying the su-
perposition principle).

The electric field at P due to one element carrying charge �q is

where r is the distance from the element to point P and is a unit vector directed
from the charge element toward P. The total electric field at P due to all elements
in the charge distribution is approximately

where the index i refers to the ith element in the distribution. Because the charge
distribution is approximately continuous, the total field at P in the limit is

(23.6)

where the integration is over the entire charge distribution. This is a vector opera-
tion and must be treated appropriately.

We illustrate this type of calculation with several examples, in which we assume
the charge is uniformly distributed on a line, on a surface, or throughout a vol-
ume. When performing such calculations, it is convenient to use the concept of a
charge density along with the following notations:

• If a charge Q is uniformly distributed throughout a volume V, the volume
charge density � is defined by

where � has units of coulombs per cubic meter (C/m3).

• If a charge Q is uniformly distributed on a surface of area A, the surface charge
density � (lowercase Greek sigma) is defined by

where � has units of coulombs per square meter (C/m2).

• If a charge Q is uniformly distributed along a line of length , the linear charge
density � is defined by

where � has units of coulombs per meter (C/m).

� �
Q
�

�

� �
Q
A

� �
Q
V

E � ke lim
�q

i
:0

 �
i

 
�qi

ri 

2  r̂i � ke � 
dq
r 2  r̂

�qi : 0

E � ke �
i

 
�qi

ri 

2  r̂i

r̂

�E � ke 
�q
r 2  r̂

A continuous charge distribution

Electric field of a continuous
charge distribution

Volume charge density

Surface charge density

r

∆q
r̂

P

∆E

Figure 23.15 The electric field
at P due to a continuous charge dis-
tribution is the vector sum of the
fields �E due to all the elements
�q of the charge distribution.

Linear charge density
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• If the charge is nonuniformly distributed over a volume, surface, or line, we
have to express the charge densities as

where dQ is the amount of charge in a small volume, surface, or length element.

� �
dQ
dV

  � �
dQ
dA

  � �
dQ
d�

The Electric Field Due to a Charged RodEXAMPLE 23.7

where we have used the fact that the total charge Q � � .
If P is far from the rod then the in the denomi-

nator can be neglected, and This is just the form
you would expect for a point charge. Therefore, at large val-
ues of a/ , the charge distribution appears to be a point
charge of magnitude Q . The use of the limiting technique

often is a good method for checking a theoretical
formula.
(a/� : �)

�

E � keQ /a2.
�(a W �),

�

keQ
a(� � a)

 � ke � � 1
a

�
1

� � a � �

E � ke � ���a

a
 
dx
x2 � ke ���

1
x 	

��a

a
 

A rod of length � has a uniform positive charge per unit
length � and a total charge Q . Calculate the electric field at a
point P that is located along the long axis of the rod and a
distance a from one end (Fig. 23.16).

Solution Let us assume that the rod is lying along the x
axis, that dx is the length of one small segment, and that dq is
the charge on that segment. Because the rod has a charge
per unit length �, the charge dq on the small segment is

The field d E due to this segment at P is in the negative x
direction (because the source of the field carries a positive
charge Q ), and its magnitude is

Because every other element also produces a field in the neg-
ative x direction, the problem of summing their contribu-
tions is particularly simple in this case. The total field at P
due to all segments of the rod, which are at different dis-
tances from P, is given by Equation 23.6, which in this case
becomes3

where the limits on the integral extend from one end of the
rod to the other The constants ke and �
can be removed from the integral to yield

(x � � � a).(x � a)

E � ���a

a
k e � 

dx
x2

dE � ke 
dq
x2 � ke � 

 dx
x2

dq � � dx.

The Electric Field of a Uniform Ring of ChargeEXAMPLE 23.8

This field has an x component cos 
 along the axis
and a component dE� perpendicular to the axis. As we see in
Figure 23.17b, however, the resultant field at P must lie along
the x axis because the perpendicular components of all the

dEx � dE

dE � ke 
dq
r 2

A ring of radius a carries a uniformly distributed positive total
charge Q . Calculate the electric field due to the ring at a
point P lying a distance x from its center along the central
axis perpendicular to the plane of the ring (Fig. 23.17a).

Solution The magnitude of the electric field at P due to
the segment of charge dq is

3 It is important that you understand how to carry out integrations such as this. First, express the
charge element dq in terms of the other variables in the integral (in this example, there is one variable,
x, and so we made the change The integral must be over scalar quantities; therefore, you
must express the electric field in terms of components, if necessary. (In this example the field has only
an x component, so we do not bother with this detail.) Then, reduce your expression to an integral
over a single variable (or to multiple integrals, each over a single variable). In examples that have
spherical or cylindrical symmetry, the single variable will be a radial coordinate.

dq � � dx).

x

y

�
a

P
x

dx
dq = λdx

dE

λ

Figure 23.16 The electric field at P due to a uniformly charged
rod lying along the x axis. The magnitude of the field at P due to the
segment of charge dq is kedq/x2. The total field at P is the vector sum
over all segments of the rod.
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The Electric Field of a Uniformly Charged DiskEXAMPLE 23.9
butions of all rings making up the disk. By symmetry, the field
at an axial point must be along the central axis.

The ring of radius r and width dr shown in Figure 23.18
has a surface area equal to 2�r dr. The charge dq on this ring
is equal to the area of the ring multiplied by the surface
charge density: Using this result in the equa-
tion given for Ex in Example 23.8 (with a replaced by r), we
have for the field due to the ring

To obtain the total field at P, we integrate this expression
over the limits r � 0 to r � R, noting that x is a constant. This
gives

 � 2�ke � � x
� x �

�
x

(x2 � R2)1/2 �
 � kex�� � (x2 � r 2)�1/2

�1/2 	
R

0
 

 � kex�� �R

0
 (x2 � r 2)�3/2 d(r 2)

E � kex�� �R

0
 

2r dr
(x2 � r 2)3/2  

dE �
kex

(x2 � r 2)3/2  (2��r dr)

dq � 2��r dr.

A disk of radius R has a uniform surface charge density �.
Calculate the electric field at a point P that lies along the cen-
tral perpendicular axis of the disk and a distance x from the
center of the disk (Fig. 23.18).

Solution If we consider the disk as a set of concentric
rings, we can use our result from Example 23.8—which gives
the field created by a ring of radius a—and sum the contri-

various charge segments sum to zero. That is, the perpen-
dicular component of the field created by any charge ele-
ment is canceled by the perpendicular component created by
an element on the opposite side of the ring. Because

and cos 
 � x/r, we find that

All segments of the ring make the same contribution to the
field at P because they are all equidistant from this point.
Thus, we can integrate to obtain the total field at P :

dEx � dE cos 
 � �ke 
dq
r 2 � x

r
�

kex
(x2 � a2)3/2  dq

r � (x2 � a2)1/2

This result shows that the field is zero at x � 0. Does this find-
ing surprise you?

Exercise Show that at great distances from the ring 
the electric field along the axis shown in Figure 23.17 ap-
proaches that of a point charge of magnitude Q .

(x W a)

kex
(x2 � a2)3/2  Q�

Ex � � 
kex

(x2 � a2)3/2  dq �
kex

(x2 � a2)3/2  � dq

(a)

+ +

+

+

+
+

+

+
+ +
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θ P dEx

dEdE⊥

x

r

dq

a

(b)

+ +

+

+
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+

+

+
+

+
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θ

dE2

1

dE1

2

Figure 23.17 A uniformly charged ring of radius a. (a) The field at P on the x axis due to an ele-
ment of charge dq. (b) The total electric field at P is along the x axis. The perpendicular component of
the field at P due to segment 1 is canceled by the perpendicular component due to segment 2.

Figure 23.18 A uniformly charged disk of radius R . The electric
field at an axial point P is directed along the central axis, perpendic-
ular to the plane of the disk.

P
x

r

R

dq

dr
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ELECTRIC FIELD LINES
A convenient way of visualizing electric field patterns is to draw lines that follow
the same direction as the electric field vector at any point. These lines, called elec-
tric field lines, are related to the electric field in any region of space in the fol-
lowing manner:

• The electric field vector E is tangent to the electric field line at each point.
• The number of lines per unit area through a surface perpendicular to the lines

is proportional to the magnitude of the electric field in that region. Thus, E is
great when the field lines are close together and small when they are far apart.

These properties are illustrated in Figure 23.19. The density of lines through
surface A is greater than the density of lines through surface B. Therefore, the
electric field is more intense on surface A than on surface B. Furthermore, the fact
that the lines at different locations point in different directions indicates that the
field is nonuniform.

Representative electric field lines for the field due to a single positive point
charge are shown in Figure 23.20a. Note that in this two-dimensional drawing we
show only the field lines that lie in the plane containing the point charge. The
lines are actually directed radially outward from the charge in all directions; thus,
instead of the flat “wheel” of lines shown, you should picture an entire sphere of
lines. Because a positive test charge placed in this field would be repelled by the
positive point charge, the lines are directed radially away from the positive point

23.6

11.5

This result is valid for all values of x. We can calculate the
field close to the disk along the axis by assuming that ;
thus, the expression in parentheses reduces to unity:

�

2� 0
E � 2�ke � �

R W x
where is the permittivity of free space. As we
shall find in the next chapter, we obtain the same result for
the field created by a uniformly charged infinite sheet.

� 0 � 1/(4�ke)

B
A

Figure 23.19 Electric field lines
penetrating two surfaces. The mag-
nitude of the field is greater on sur-
face A than on surface B.

Figure 23.20 The electric field lines for a point charge. (a) For a positive point charge, the
lines are directed radially outward. (b) For a negative point charge, the lines are directed radially
inward. Note that the figures show only those field lines that lie in the plane containing the
charge. (c) The dark areas are small pieces of thread suspended in oil, which align with the elec-
tric field produced by a small charged conductor at the center.

(a)

+
q

(b)

–
–q

(c)
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Is this visualization of the electric field in terms of field lines consistent with
Equation 23.4, the expression we obtained for E using Coulomb’s law? To answer
this question, consider an imaginary spherical surface of radius r concentric with a
point charge. From symmetry, we see that the magnitude of the electric field is the
same everywhere on the surface of the sphere. The number of lines N that emerge
from the charge is equal to the number that penetrate the spherical surface.
Hence, the number of lines per unit area on the sphere is N/4�r 2 (where the sur-
face area of the sphere is 4�r 2). Because E is proportional to the number of lines
per unit area, we see that E varies as 1/r 2; this finding is consistent with Equation
23.4.

As we have seen, we use electric field lines to qualitatively describe the electric
field. One problem with this model is that we always draw a finite number of lines
from (or to) each charge. Thus, it appears as if the field acts only in certain direc-
tions; this is not true. Instead, the field is continuous—that is, it exists at every
point. Another problem associated with this model is the danger of gaining the
wrong impression from a two-dimensional drawing of field lines being used to de-
scribe a three-dimensional situation. Be aware of these shortcomings every time
you either draw or look at a diagram showing electric field lines.

We choose the number of field lines starting from any positively charged ob-
ject to be C
q and the number of lines ending on any negatively charged object to
be where C
 is an arbitrary proportionality constant. Once C
 is chosen, the
number of lines is fixed. For example, if object 1 has charge Q 1 and object 2 has
charge Q 2 , then the ratio of number of lines is 

The electric field lines for two point charges of equal magnitude but opposite
signs (an electric dipole) are shown in Figure 23.21. Because the charges are of
equal magnitude, the number of lines that begin at the positive charge must equal
the number that terminate at the negative charge. At points very near the charges,
the lines are nearly radial. The high density of lines between the charges indicates
a region of strong electric field.

Figure 23.22 shows the electric field lines in the vicinity of two equal positive
point charges. Again, the lines are nearly radial at points close to either charge,
and the same number of lines emerge from each charge because the charges are
equal in magnitude. At great distances from the charges, the field is approximately
equal to that of a single point charge of magnitude 2q.

Finally, in Figure 23.23 we sketch the electric field lines associated with a posi-
tive charge � 2q and a negative charge �q. In this case, the number of lines leav-
ing � 2q is twice the number terminating at �q. Hence, only half of the lines that
leave the positive charge reach the negative charge. The remaining half terminate

N2/N1 � Q 2/Q 1 .

C
� q �,

• The lines must begin on a positive charge and terminate on a negative
charge.

• The number of lines drawn leaving a positive charge or approaching a nega-
tive charge is proportional to the magnitude of the charge.

• No two field lines can cross.

charge. The electric field lines representing the field due to a single negative point
charge are directed toward the charge (Fig. 23.20b). In either case, the lines are
along the radial direction and extend all the way to infinity. Note that the lines be-
come closer together as they approach the charge; this indicates that the strength
of the field increases as we move toward the source charge.

The rules for drawing electric field lines are as follows:

Rules for drawing electric field
lines

(a)

–+

Figure 23.21 (a) The electric
field lines for two point charges of
equal magnitude and opposite sign
(an electric dipole). The number
of lines leaving the positive charge
equals the number terminating at
the negative charge. (b) The dark
lines are small pieces of thread sus-
pended in oil, which align with the
electric field of a dipole.

(b)
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on a negative charge we assume to be at infinity. At distances that are much
greater than the charge separation, the electric field lines are equivalent to those
of a single charge �q.

Rank the magnitude of the electric field at points A, B, and C shown in Figure 23.22a
(greatest magnitude first).

MOTION OF CHARGED PARTICLES IN A
UNIFORM ELECTRIC FIELD

When a particle of charge q and mass m is placed in an electric field E, the electric
force exerted on the charge is qE. If this is the only force exerted on the particle,
it must be the net force and so must cause the particle to accelerate. In this case,
Newton’s second law applied to the particle gives

The acceleration of the particle is therefore

(23.7)

If E is uniform (that is, constant in magnitude and direction), then the accelera-
tion is constant. If the particle has a positive charge, then its acceleration is in the
direction of the electric field. If the particle has a negative charge, then its acceler-
ation is in the direction opposite the electric field.

a �
qE
m

Fe � qE � ma

23.7

Quick Quiz 23.5

(a)

+ +
C

A

B

Figure 23.22 (a) The electric field lines for two positive point charges. (The locations A, B,
and C are discussed in Quick Quiz 23.5.) (b) Pieces of thread suspended in oil, which align with
the electric field created by two equal-magnitude positive charges.

Figure 23.23 The electric field
lines for a point charge � 2q and a
second point charge �q . Note that
two lines leave � 2q for every one
that terminates on �q .

+2q + – –q

(b)

An Accelerating Positive ChargeEXAMPLE 23.10
Solution The acceleration is constant and is given by
qE/m. The motion is simple linear motion along the x axis.
Therefore, we can apply the equations of kinematics in one

A positive point charge q of mass m is released from rest in a
uniform electric field E directed along the x axis, as shown in
Figure 23.24. Describe its motion.

23.7 Motion of Charged Particles in a Uniform Electric Field 729

The electric field in the region between two oppositely charged flat metallic
plates is approximately uniform (Fig. 23.25). Suppose an electron of charge �e is
projected horizontally into this field with an initial velocity vi i. Because the electric
field E in Figure 23.25 is in the positive y direction, the acceleration of the elec-
tron is in the negative y direction. That is,

(23.8)

Because the acceleration is constant, we can apply the equations of kinematics in
two dimensions (see Chapter 4) with and After the electron has
been in the electric field for a time t, the components of its velocity are

(23.9)

(23.10)vy � ayt � �
eE
m

 t

vx � vi � constant

vyi � 0.vxi � vi

a � �
eE
m

 j

–

–

–

–

–

–

+

+

+

+

+

+

E

vv = 0

q

x

+ +

Figure 23.24 A positive point charge q in a uniform electric field
E undergoes constant acceleration in the direction of the field.
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vi i

Figure 23.25 An electron is pro-
jected horizontally into a uniform
electric field produced by two
charged plates. The electron under-
goes a downward acceleration (op-
posite E), and its motion is para-
bolic while it is between the plates.

theorem because the work done by the electric force is
and W � �K .Fex � qEx

dimension (see Chapter 2):

Taking and , we have

The kinetic energy of the charge after it has moved a distance
is

We can also obtain this result from the work–kinetic energy

K � 1
2mv2 � 1

2m � 2qE
m �x � qEx

x � x f � x i

vx f 

2 � 2axx f � � 2qE
m �x f

 vx f � axt �
qE
m

 t 

 x f � 1
2axt2 �

qE
2m

 t2 

vx i � 0x i � 0

vx f 

2
 � vxi 

2 � 2ax(x f � x i)

 vx f � vxi � axt 

 x f � x i � vxit � 1
2axt2 
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Its coordinates after a time t in the field are

(23.11)

(23.12)

Substituting the value from Equation 23.11 into Equation 23.12, we see
that y is proportional to x2. Hence, the trajectory is a parabola. After the electron
leaves the field, it continues to move in a straight line in the direction of v in Fig-
ure 23.25, obeying Newton’s first law, with a speed 

Note that we have neglected the gravitational force acting on the electron.
This is a good approximation when we are dealing with atomic particles. For an
electric field of 104 N/C, the ratio of the magnitude of the electric force eE to the
magnitude of the gravitational force mg is of the order of 1014 for an electron and
of the order of 1011 for a proton.

v � vi .

t � x/vi

 y � 1
2ayt2 � �1

2 
eE
m

 t2

x � vit

An Accelerated ElectronEXAMPLE 23.11

(c) What is the vertical displacement y of the electron
while it is in the field?

Solution Using Equation 23.12 and the results from parts
(a) and (b), we find that

If the separation between the plates is less than this, the elec-
tron will strike the positive plate.

Exercise Find the speed of the electron as it emerges from
the field.

Answer 3.22 � 106 m/s.

�1.95 cm� �0.019 5 m �

y � 1
2ay t2 � 1

2(�3.51 � 1013 m/s2)(3.33 � 10�8 s)2

3.33 � 10�8 st �
�

vi
�

0.100 m
3.00 � 106 m/s

�
An electron enters the region of a uniform electric field as
shown in Figure 23.25, with and

N/C. The horizontal length of the plates is �
0.100 m. (a) Find the acceleration of the electron while it is
in the electric field.

Solution The charge on the electron has an absolute
value of 1.60 � 10�19 C, and There-
fore, Equation 23.8 gives

(b) Find the time it takes the electron to travel through
the field.

Solution The horizontal distance across the field is �
0.100 m. Using Equation 23.11 with x � , we find that the
time spent in the electric field is

�
�

�3.51 � 1013 j m/s2�

a � �
eE
m

 j � �
(1.60 � 10�19 C)(200 N/C)

9.11 � 10�31 kg
 j

m � 9.11 � 10�31 kg.

�E � 200
vi � 3.00 � 106 m/s

The Cathode Ray Tube

The example we just worked describes a portion of a cathode ray tube (CRT). This
tube, illustrated in Figure 23.26, is commonly used to obtain a visual display of
electronic information in oscilloscopes, radar systems, television receivers, and
computer monitors. The CRT is a vacuum tube in which a beam of electrons is ac-
celerated and deflected under the influence of electric or magnetic fields. The
electron beam is produced by an assembly called an electron gun located in the
neck of the tube. These electrons, if left undisturbed, travel in a straight-line path
until they strike the front of the CRT, the “screen,” which is coated with a material
that emits visible light when bombarded with electrons.

In an oscilloscope, the electrons are deflected in various directions by two sets
of plates placed at right angles to each other in the neck of the tube. (A television
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CRT steers the beam with a magnetic field, as discussed in Chapter 29.) An exter-
nal electric circuit is used to control the amount of charge present on the plates.
The placing of positive charge on one horizontal plate and negative charge on the
other creates an electric field between the plates and allows the beam to be
steered from side to side. The vertical deflection plates act in the same way, except
that changing the charge on them deflects the beam vertically.

SUMMARY

Electric charges have the following important properties:

• Unlike charges attract one another, and like charges repel one another.
• Charge is conserved.
• Charge is quantized—that is, it exists in discrete packets that are some integral

multiple of the electronic charge.
Conductors are materials in which charges move freely. Insulators are mate-

rials in which charges do not move freely.
Coulomb’s law states that the electric force exerted by a charge q1 on a sec-

ond charge q2 is

(23.2)

where r is the distance between the two charges and is a unit vector directed
from q1 to q2 . The constant ke , called the Coulomb constant, has the value

The smallest unit of charge known to exist in nature is the charge on an elec-
tron or proton, 

The electric field E at some point in space is defined as the electric force Fe
that acts on a small positive test charge placed at that point divided by the magni-
tude of the test charge q0 :

(23.3)

At a distance r from a point charge q, the electric field due to the charge is given
by

(23.4)

where is a unit vector directed from the charge to the point in question. Ther̂

E � ke 
q
r 2  r̂

E �
Fe

q0

� e � � 1.602 19 � 10�19 C.

ke � 8.99 � 109 N�m2/C2.

r̂

F12 � ke 
q1q2

r 2  r̂

Electron
gun

Vertical
deflection

plates

Horizontal
deflection

plates

Electron
beam

Fluorescent
screen

Horizontal
input

Vertical
input

C A
Figure 23.26 Schematic diagram of a
cathode ray tube. Electrons leaving the
hot cathode C are accelerated to the an-
ode A. In addition to accelerating elec-
trons, the electron gun is also used to fo-
cus the beam of electrons, and the plates
deflect the beam.
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electric field is directed radially outward from a positive charge and radially in-
ward toward a negative charge.

The electric field due to a group of point charges can be obtained by using
the superposition principle. That is, the total electric field at some point equals
the vector sum of the electric fields of all the charges:

(23.5)

The electric field at some point of a continuous charge distribution is

(23.6)

where dq is the charge on one element of the charge distribution and r is the dis-
tance from the element to the point in question.

Electric field lines describe an electric field in any region of space. The num-
ber of lines per unit area through a surface perpendicular to the lines is propor-
tional to the magnitude of E in that region.

A charged particle of mass m and charge q moving in an electric field E has an
acceleration

(23.7)a �
qE
m

E � ke � 
dq
r 2  r̂

E � ke �
i

 
qi

r i 

2 
 r̂i

Problem-Solving Hints
Finding the Electric Field

• Units: In calculations using the Coulomb constant charges
must be expressed in coulombs and distances in meters.

• Calculating the electric field of point charges: To find the total electric
field at a given point, first calculate the electric field at the point due to
each individual charge. The resultant field at the point is the vector sum of
the fields due to the individual charges.

• Continuous charge distributions: When you are confronted with prob-
lems that involve a continuous distribution of charge, the vector sums for
evaluating the total electric field at some point must be replaced by vector
integrals. Divide the charge distribution into infinitesimal pieces, and calcu-
late the vector sum by integrating over the entire charge distribution. You
should review Examples 23.7 through 23.9.

• Symmetry: With both distributions of point charges and continuous
charge distributions, take advantage of any symmetry in the system to sim-
plify your calculations.

ke (�1/4��0),

QUESTIONS

clings to a wall. Does this mean that the wall is positively
charged? Why does the balloon eventually fall?

4. A light, uncharged metallic sphere suspended from a
thread is attracted to a charged rubber rod. After touch-
ing the rod, the sphere is repelled by the rod. Explain.

1. Sparks are often observed (or heard) on a dry day when
clothes are removed in the dark. Explain.

2. Explain from an atomic viewpoint why charge is usually
transferred by electrons.

3. A balloon is negatively charged by rubbing and then
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5. Explain what is meant by the term “a neutral atom.”
6. Why do some clothes cling together and to your body af-

ter they are removed from a dryer?
7. A large metallic sphere insulated from ground is charged

with an electrostatic generator while a person standing on
an insulating stool holds the sphere. Why is it safe to do
this? Why wouldn’t it be safe for another person to touch
the sphere after it has been charged?

8. What are the similarities and differences between New-
ton’s law of gravitation, and Coulomb’s
law, 

9. Assume that someone proposes a theory that states 
that people are bound to the Earth by electric forces
rather than by gravity. How could you prove this theory
wrong?

10. How would you experimentally distinguish an electric
field from a gravitational field?

11. Would life be different if the electron were positively
charged and the proton were negatively charged? Does
the choice of signs have any bearing on physical and
chemical interactions? Explain.

12. When defining the electric field, why is it necessary to
specify that the magnitude of the test charge be very
small (that is, why is it necessary to take the limit of Fe /q
as 

13. Two charged conducting spheres, each of radius a, are
separated by a distance r � 2a. Is the force on either
sphere given by Coulomb’s law? Explain. (Hint: Refer to
Chapter 14 on gravitation.)

14. When is it valid to approximate a charge distribution by a
point charge?

15. Is it possible for an electric field to exist in empty space?
Explain.

16. Explain why electric field lines never cross. (Hint: E must
have a unique direction at all points.)

17. A free electron and free proton are placed in an identical

q : 0)?

Fe � keq1q2/r 2?
Fg � Gm1m2/r 2,

electric field. Compare the electric forces on each parti-
cle. Compare their accelerations.

18. Explain what happens to the magnitude of the electric
field of a point charge as r approaches zero.

19. A negative charge is placed in a region of space where the
electric field is directed vertically upward. What is the di-
rection of the electric force experienced by this charge?

20. A charge 4q is a distance r from a charge �q. Compare
the number of electric field lines leaving the charge 4q
with the number entering the charge �q.

21. In Figure 23.23, where do the extra lines leaving the
charge �2q end?

22. Consider two equal point charges separated by some dis-
tance d. At what point (other than �) would a third test
charge experience no net force?

23. A negative point charge �q is placed at the point P near
the positively charged ring shown in Figure 23.17. If

describe the motion of the point charge if it is re-
leased from rest.

24. Explain the differences between linear, surface, and vol-
ume charge densities, and give examples of when each
would be used.

25. If the electron in Figure 23.25 is projected into the elec-
tric field with an arbitrary velocity vi (at an angle to E),
will its trajectory still be parabolic? Explain.

26. It has been reported that in some instances people near
where a lightning bolt strikes the Earth have had their
clothes thrown off. Explain why this might happen.

27. Why should a ground wire be connected to the metallic
support rod for a television antenna?

28. A light strip of aluminum foil is draped over a wooden
rod. When a rod carrying a positive charge is brought
close to the foil, the two parts of the foil stand apart.
Why? What kind of charge is on the foil?

29. Why is it more difficult to charge an object by rubbing on
a humid day than on a dry day?

x V a,

PROBLEMS

force compare with the magnitude of the gravitational
force between the two protons? (c) What must be the
charge-to-mass ratio of a particle if the magnitude of the
gravitational force between two of these particles equals
the magnitude of the electric force between them?

3. Richard Feynman once said that if two persons stood at
arm’s length from each other and each person had 1%
more electrons than protons, the force of repulsion be-
tween them would be enough to lift a “weight” equal 
to that of the entire Earth. Carry out an order-of-
magnitude calculation to substantiate this assertion.

4. Two small silver spheres, each with a mass of 10.0 g, are
separated by 1.00 m. Calculate the fraction of the elec-

Section 23.1 Properties of Electric Charges
Section 23.2 Insulators and Conductors
Section 23.3 Coulomb’s Law

1. (a) Calculate the number of electrons in a small, electri-
cally neutral silver pin that has a mass of 10.0 g. Silver
has 47 electrons per atom, and its molar mass is 
107.87 g/mol. (b) Electrons are added to the pin until
the net negative charge is 1.00 mC. How many electrons
are added for every 109 electrons already present?

2. (a) Two protons in a molecule are separated by a distance
of 3.80 � 10�10 m. Find the electric force exerted by one
proton on the other. (b) How does the magnitude of this

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB
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trons in one sphere that must be transferred to the
other to produce an attractive force of 1.00 � 104 N
(about 1 ton) between the spheres. (The number of
electrons per atom of silver is 47, and the number of
atoms per gram is Avogadro’s number divided by the
molar mass of silver, 107.87 g/mol.)

5. Suppose that 1.00 g of hydrogen is separated into elec-
trons and protons. Suppose also that the protons are
placed at the Earth’s north pole and the electrons are
placed at the south pole. What is the resulting compres-
sional force on the Earth?

6. Two identical conducting small spheres are placed
with their centers 0.300 m apart. One is given a 
charge of 12.0 nC, and the other is given a charge of
� 18.0 nC. (a) Find the electric force exerted on one
sphere by the other. (b) The spheres are connected by
a conducting wire. Find the electric force between the
two after equilibrium has occurred.

7. Three point charges are located at the corners of an
equilateral triangle, as shown in Figure P23.7. Calculate
the net electric force on the 7.00-	C charge.

14. An airplane is flying through a thundercloud at a
height of 2 000 m. (This is a very dangerous thing to do
because of updrafts, turbulence, and the possibility of
electric discharge.) If there are charge concentrations
of � 40.0 C at a height of 3 000 m within the cloud and
of � 40.0 C at a height of 1 000 m, what is the electric
field E at the aircraft?

Section 23.4 The Electric Field
11. What are the magnitude and direction of the electric

field that will balance the weight of (a) an electron and
(b) a proton? (Use the data in Table 23.1.)

12. An object having a net charge of 24.0 	C is placed in a
uniform electric field of 610 N/C that is directed verti-
cally. What is the mass of this object if it “floats” in the
field?

13. In Figure P23.13, determine the point (other than in-
finity) at which the electric field is zero.

10. Review Problem. Two identical point charges each
having charge �q are fixed in space and separated by a
distance d. A third point charge �Q of mass m is free to
move and lies initially at rest on a perpendicular bisec-
tor of the two fixed charges a distance x from the mid-
point of the two fixed charges (Fig. P23.10). (a) Show
that if x is small compared with d, the motion of �Q is
simple harmonic along the perpendicular bisector. De-
termine the period of that motion. (b) How fast will the
charge �Q be moving when it is at the midpoint be-
tween the two fixed charges, if initially it is released at a
distance from the midpoint?x � a V d

9. Review Problem. In the Bohr theory of the hydrogen
atom, an electron moves in a circular orbit about a pro-
ton, where the radius of the orbit is 0.529 � 10�10 m.
(a) Find the electric force between the two. (b) If this
force causes the centripetal acceleration of the electron,
what is the speed of the electron?

8. Two small beads having positive charges 3q and q are
fixed at the opposite ends of a horizontal insulating rod
extending from the origin to the point x � d. As shown
in Figure P23.8, a third small charged bead is free to
slide on the rod. At what position is the third bead in
equilibrium? Can it be in stable equilibrium?

0.500 m

7.00 µC

2.00 µC –4.00 µC

60.0°
x

y µ

µµ

–+

+

Figure P23.7 Problems 7 and 15.

Figure P23.8

Figure P23.10

d

+3q +q

+q

+q

–Q
x

y

d/2

d/2
x

1.00 m

–2.50 µC 6.00 µCµ µ

Figure P23.13
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15. Three charges are at the corners of an equilateral trian-
gle, as shown in Figure P23.7. (a) Calculate the electric
field at the position of the 2.00-	C charge due to the
7.00-	C and � 4.00-	C charges. (b) Use your answer to
part (a) to determine the force on the 2.00-	C charge.

16. Three point charges are arranged as shown in Figure
P23.16. (a) Find the vector electric field that the 
6.00-nC and � 3.00-nC charges together create at the
origin. (b) Find the vector force on the 5.00-nC charge.

22. Consider n equal positive point charges each of magni-
tude Q /n placed symmetrically around a circle of ra-
dius R . (a) Calculate the magnitude of the electric field
E at a point a distance x on the line passing through the
center of the circle and perpendicular to the plane of
the circle. (b) Explain why this result is identical to the
one obtained in Example 23.8.

23. Consider an infinite number of identical charges (each
of charge q) placed along the x axis at distances a, 2a,
3a, 4a, . . . from the origin. What is the electric field
at the origin due to this distribution? Hint: Use the fact
that

Section 23.5 Electric Field of a Continuous 
Charge Distribution

24. A rod 14.0 cm long is uniformly charged and has a total
charge of � 22.0 	C. Determine the magnitude and di-
rection of the electric field along the axis of the rod at a
point 36.0 cm from its center.

1 �
1
22 �

1
32 �

1
42 � ��� �

�2

6

nents of the electric field at point (x, y) due to this
charge q are

21. Consider the electric dipole shown in Figure P23.21.
Show that the electric field at a distant point along the 
x axis is Ex 
 4keqa/x3.

Ey �
keq(y � y0)

[(x � x0)2 � (y � y0)2]3/2

Ex �
keq(x � x0)

[(x � x0)2 � (y � y0)2]3/2

18. Two 2.00-	C point charges are located on the x axis.
One is at x � 1.00 m, and the other is at x � � 1.00 m.
(a) Determine the electric field on the y axis at y �
0.500 m. (b) Calculate the electric force on a � 3.00-	C
charge placed on the y axis at y � 0.500 m.

19. Four point charges are at the corners of a square of side
a, as shown in Figure P23.19. (a) Determine the magni-
tude and direction of the electric field at the location of
charge q. (b) What is the resultant force on q?

20. A point particle having charge q is located at point 
(x0 , y0) in the xy plane. Show that the x and y compo-

17. Three equal positive charges q are at the corners of an
equilateral triangle of side a, as shown in Figure P23.17.
(a) Assume that the three charges together create an
electric field. Find the location of a point (other than
�) where the electric field is zero. (Hint: Sketch the
field lines in the plane of the charges.) (b) What are
the magnitude and direction of the electric field at P
due to the two charges at the base?

Figure P23.17

Figure P23.19

Figure P23.21

Figure P23.16
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25. A continuous line of charge lies along the x axis, extend-
ing from x � �x0 to positive infinity. The line carries a
uniform linear charge density �0 . What are the magni-
tude and direction of the electric field at the origin?

26. A line of charge starts at x � �x0 and extends to posi-
tive infinity. If the linear charge density is � � �0x0 /x,
determine the electric field at the origin.

27. A uniformly charged ring of radius 10.0 cm has a total
charge of 75.0 	C. Find the electric field on the axis of
the ring at (a) 1.00 cm, (b) 5.00 cm, (c) 30.0 cm, and
(d) 100 cm from the center of the ring.

28. Show that the maximum field strength Emax along the
axis of a uniformly charged ring occurs at 
(see Fig. 23.17) and has the value 

29. A uniformly charged disk of radius 35.0 cm carries a
charge density of 7.90 � 10�3 C/m2. Calculate the
electric field on the axis of the disk at (a) 5.00 cm, 
(b) 10.0 cm, (c) 50.0 cm, and (d) 200 cm from the cen-
ter of the disk.

30. Example 23.9 derives the exact expression for the elec-
tric field at a point on the axis of a uniformly charged
disk. Consider a disk of radius cm having a
uniformly distributed charge of � 5.20 	C. (a) Using
the result of Example 23.9, compute the electric field at
a point on the axis and 3.00 mm from the center. Com-
pare this answer with the field computed from the near-
field approximation (b) Using the result of
Example 23.9, compute the electric field at a point on
the axis and 30.0 cm from the center of the disk. Com-
pare this result with the electric field obtained by treat-
ing the disk as a � 5.20-	C point charge at a distance of
30.0 cm.

31. The electric field along the axis of a uniformly charged
disk of radius R and total charge Q was calculated in Ex-
ample 23.9. Show that the electric field at distances x
that are great compared with R approaches that of a
point charge (Hint: First show that

and use the bino-
mial expansion when 

32. A piece of Styrofoam having a mass m carries a net
charge of �q and floats above the center of a very large
horizontal sheet of plastic that has a uniform charge
density on its surface. What is the charge per unit area
on the plastic sheet?

33. A uniformly charged insulating rod of length 14.0 cm is
bent into the shape of a semicircle, as shown in Figure
P23.33. The rod has a total charge of � 7.50 	C. Find
the magnitude and direction of the electric field at O,
the center of the semicircle.

34. (a) Consider a uniformly charged right circular cylin-
drical shell having total charge Q , radius R, and height
h. Determine the electric field at a point a distance d
from the right side of the cylinder, as shown in Figure
P23.34. (Hint: Use the result of Example 23.8 and treat
the cylinder as a collection of ring charges.) (b) Con-
sider now a solid cylinder with the same dimensions and

� V 1.)(1 � �)n � 1 � n�
x/(x2 � R 2)1/2 � (1 � R 2/x2)�1/2,

Q � ��R 2.

E � �/2�0 .

R � 3.00

Q /(6!3��0a2).
x � a/!2

WEB

36. Three solid plastic cylinders all have a radius of 2.50 cm
and a length of 6.00 cm. One (a) carries charge with

carrying the same charge, which is uniformly distrib-
uted through its volume. Use the result of Example 23.9
to find the field it creates at the same point.

35. A thin rod of length and uniform charge per unit
length � lies along the x axis, as shown in Figure P23.35.
(a) Show that the electric field at P, a distance y from
the rod, along the perpendicular bisector has no x com-
ponent and is given by (b) Using
your result to part (a), show that the field of a rod of in-
finite length is (Hint: First calculate the
field at P due to an element of length dx, which has a
charge � dx. Then change variables from x to 
, using
the facts that x � y tan 
 and sec2 
 d
, and inte-
grate over 
.)

dx � y

E � 2ke �/y.

E � 2ke � sin 
0/y.

�

O

Figure P23.33

Figure P23.34

Figure P23.35
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y
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uniform density 15.0 nC/m2 everywhere on its surface.
Another (b) carries charge with the same uniform den-
sity on its curved lateral surface only. The third (c) car-
ries charge with uniform density 500 nC/m3 through-
out the plastic. Find the charge of each cylinder.

37. Eight solid plastic cubes, each 3.00 cm on each edge,
are glued together to form each one of the objects (i, ii,
iii, and iv) shown in Figure P23.37. (a) If each object
carries charge with a uniform density of 400 nC/m3

throughout its volume, what is the charge of each ob-
ject? (b) If each object is given charge with a uniform
density of 15.0 nC/m2 everywhere on its exposed sur-
face, what is the charge on each object? (c) If charge is
placed only on the edges where perpendicular surfaces
meet, with a uniform density of 80.0 pC/m, what is the
charge of each object?

Section 23.7 Motion of Charged Particles 
in a Uniform Electric Field

41. An electron and a proton are each placed at rest in an
electric field of 520 N/C. Calculate the speed of each
particle 48.0 ns after being released.

42. A proton is projected in the positive x direction into a 
region of uniform electric field N/C.
The proton travels 7.00 cm before coming to rest. Deter-
mine (a) the acceleration of the proton, (b) its initial
speed, and (c) the time it takes the proton to come to
rest.

43. A proton accelerates from rest in a uniform electric
field of 640 N/C. At some later time, its speed has
reached 1.20 � 106 m/s (nonrelativistic, since v is
much less than the speed of light). (a) Find the acceler-
ation of the proton. (b) How long does it take the pro-
ton to reach this speed? (c) How far has it moved in this
time? (d) What is its kinetic energy at this time?

44. The electrons in a particle beam each have a kinetic en-
ergy of 1.60 � 10�17 J. What are the magnitude and di-
rection of the electric field that stops these electrons in
a distance of 10.0 cm?

45. The electrons in a particle beam each have a kinetic en-
ergy K . What are the magnitude and direction of the
electric field that stops these electrons in a distance d ?

46. A positively charged bead having a mass of 1.00 g falls
from rest in a vacuum from a height of 5.00 m in a
uniform vertical electric field with a magnitude of 
1.00 � 104 N/C. The bead hits the ground at a 
speed of 21.0 m/s. Determine (a) the direction of the
electric field (up or down) and (b) the charge on the
bead.

47. A proton moves at 4.50 � 105 m/s in the horizontal
direction. It enters a uniform vertical electric field with
a magnitude of 9.60 � 103 N/C. Ignoring any gravita-
tional effects, find (a) the time it takes the proton to
travel 5.00 cm horizontally, (b) its vertical displacement
after it has traveled 5.00 cm horizontally, and (c) the
horizontal and vertical components of its velocity after
it has traveled 5.00 cm horizontally.

48. An electron is projected at an angle of 30.0° above the
horizontal at a speed of 8.20 � 105 m/s in a region
where the electric field is N/C. Neglecting
the effects of gravity, find (a) the time it takes the elec-
tron to return to its initial height, (b) the maximum
height it reaches, and (c) its horizontal displacement
when it reaches its maximum height.

49. Protons are projected with an initial speed
m/s into a region where a uniform

electric field N/C is present, as shown in
Figure P23.49. The protons are to hit a target that lies at
a horizontal distance of 1.27 mm from the point where
the protons are launched. Find (a) the two projection
angles 
 that result in a hit and (b) the total time of
flight for each trajectory.

E � (�720 j)
vi � 9.55 � 103

E � 390 j

E � �6.00 � 105 i

WEB

Section 23.6 Electric Field Lines
38. A positively charged disk has a uniform charge per unit

area as described in Example 23.9. Sketch the electric
field lines in a plane perpendicular to the plane of the
disk passing through its center.

39. A negatively charged rod of finite length has a uniform
charge per unit length. Sketch the electric field lines in
a plane containing the rod.

40. Figure P23.40 shows the electric field lines for two point
charges separated by a small distance. (a) Determine
the ratio q1/q2 . (b) What are the signs of q1 and q2 ?

Figure P23.37

Figure P23.40

(i) (ii) (iii) (iv)

q2

q1
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ADDITIONAL PROBLEMS

50. Three point charges are aligned along the x axis as
shown in Figure P23.50. Find the electric field at (a) the
position (2.00, 0) and (b) the position (0, 2.00).

makes a 15.0° angle with the vertical, what is the net
charge on the ball?

53. A charged cork ball of mass 1.00 g is suspended 
on a light string in the presence of a uniform electric
field, as shown in Figure P23.53. When 

N/C, the ball is in equilibrium at 

 � 37.0°. Find (a) the charge on the ball and 
(b) the tension in the string.

54. A charged cork ball of mass m is suspended on a light
string in the presence of a uniform electric field, as
shown in Figure P23.53. When N/C,
where A and B are positive numbers, the ball is in equi-
librium at the angle 
 . Find (a) the charge on the ball
and (b) the tension in the string.

B j)E � (A i �

5.00 j) � 105
E � (3.00 i �

WEB

56. Three identical small Styrofoam balls are
suspended from a fixed point by three nonconducting
threads, each with a length of 50.0 cm and with negligi-

(m � 2.00 g)

55. Four identical point charges are
located on the corners of a rectangle, as shown in
Figure P23.55. The dimensions of the rectangle are

cm and cm. Calculate the magni-
tude and direction of the net electric force exerted on
the charge at the lower left corner by the other three
charges.

W � 15.0L � 60.0

(q � �10.0 	C)

51. A uniform electric field of magnitude 640 N/C exists
between two parallel plates that are 4.00 cm apart. A
proton is released from the positive plate at the same in-
stant that an electron is released from the negative
plate. (a) Determine the distance from the positive
plate at which the two pass each other. (Ignore the elec-
trical attraction between the proton and electron.) 
(b) Repeat part (a) for a sodium ion (Na�) and a chlo-
rine ion (Cl�).

52. A small, 2.00-g plastic ball is suspended by a 20.0-cm-
long string in a uniform electric field, as shown in Fig-
ure P23.52. If the ball is in equilibrium when the string

θvi

1.27 mm

Target

E = (–720 j) N/C

×

Proton
beam

Figure P23.49

Figure P23.50

Figure P23.52

Figure P23.53 Problems 53 and 54.

Figure P23.55

0.800 m

y

3.00 nC5.00 nC

0.500 m

– 4.00 nC
x

y

x

15.0°

20.0 cm

m = 2.00 g

E = 1.00 × 103i N/C

x

y

E

q

θ

q q

q
q

y

x
L

W

Problems 739

ble mass. At equilibrium the three balls form an equilat-
eral triangle with sides of 30.0 cm. What is the common
charge q carried by each ball?

57. Two identical metallic blocks resting on a frictionless
horizontal surface are connected by a light metallic
spring having the spring constant N/m and an
unstretched length of 0.300 m, as shown in Figure
P23.57a. A total charge of Q is slowly placed on the sys-
tem, causing the spring to stretch to an equilibrium
length of 0.400 m, as shown in Figure P23.57b. Deter-
mine the value of Q , assuming that all the charge re-
sides on the blocks and that the blocks are like point
charges.

58. Two identical metallic blocks resting on a frictionless
horizontal surface are connected by a light metallic
spring having a spring constant k and an unstretched
length Li , as shown in Figure P23.57a. A total charge of
Q is slowly placed on the system, causing the spring to
stretch to an equilibrium length L , as shown in Figure
P23.57b. Determine the value of Q , assuming that all
the charge resides on the blocks and that the blocks are
like point charges.

k � 100

1 N/C. Will the charged particle remain nonrelativistic
for a shorter or a longer time in a much larger electric
field?

61. A line of positive charge is formed into a semicircle of
radius cm, as shown in Figure P23.61. The
charge per unit length along the semicircle is described
by the expression The total charge on the
semicircle is 12.0 	C. Calculate the total force on a
charge of 3.00 	C placed at the center of curvature.

� � �0 cos 
.

R � 60.0

62. Two small spheres, each of mass 2.00 g, are suspended
by light strings 10.0 cm in length (Fig. P23.62). A uni-
form electric field is applied in the x direction. The
spheres have charges equal to � 5.00 � 10�8 C and
� 5.00 � 10�8 C. Determine the electric field that en-
ables the spheres to be in equilibrium at an angle of

 � 10.0�.

59. Identical thin rods of length 2a carry equal charges,
�Q , uniformly distributed along their lengths. The
rods lie along the x axis with their centers separated by
a distance of (Fig. P23.59). Show that the magni-
tude of the force exerted by the left rod on the right
one is given by

60. A particle is said to be nonrelativistic as long as its speed
is less than one-tenth the speed of light, or less than
3.00 � 107 m/s. (a) How long will an electron remain
nonrelativistic if it starts from rest in a region of an
electric field of 1.00 N/C? (b) How long will a proton
remain nonrelativistic in the same electric field? 
(c) Electric fields are commonly much larger than 

F � � keQ2

4a2 � ln� b2

b2 � 4a2 �

b � 2a

Figure P23.57 Problems 57 and 58.

(a)

(b)

m mk

m mk

b

y

a–a b – a b + a
x

Figure P23.59

Figure P23.61

Figure P23.62

y

R

x

θ

θ

E

θ

– +
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63. Two small spheres of mass m are suspended from strings
of length that are connected at a common point. One
sphere has charge Q ; the other has charge 2Q . Assume
that the angles 
1 and 
2 that the strings make with the
vertical are small. (a) How are 
1 and 
2 related? 
(b) Show that the distance r between the spheres is

64. Three charges of equal magnitude q are fixed in posi-
tion at the vertices of an equilateral triangle (Fig.
P23.64). A fourth charge Q is free to move along the
positive x axis under the influence of the forces exerted
by the three fixed charges. Find a value for s for which
Q is in equilibrium. You will need to solve a transcen-
dental equation.

r 
 � 4keQ 2�

mg �
1/3

�

66. Review Problem. A 1.00-g cork ball with a charge of
2.00 	C is suspended vertically on a 0.500-m-long light
string in the presence of a uniform, downward-directed
electric field of magnitude N/C. If the
ball is displaced slightly from the vertical, it oscillates
like a simple pendulum. (a) Determine the period of
this oscillation. (b) Should gravity be included in the
calculation for part (a)? Explain.

67. Three charges of equal magnitude q reside at the cor-
ners of an equilateral triangle of side length a (Fig.
P23.67). (a) Find the magnitude and direction of the
electric field at point P, midway between the negative
charges, in terms of ke , q, and a. (b) Where must a � 4q
charge be placed so that any charge located at P experi-
ences no net electric force? In part (b), let P be the ori-
gin and let the distance between the �q charge and P
be 1.00 m.

E � 1.00 � 105

68. Two identical beads each have a mass m and charge q.
When placed in a hemispherical bowl of radius R with
frictionless, nonconducting walls, the beads move, and
at equilibrium they are a distance R apart (Fig. P23.68).
Determine the charge on each bead.

65. Review Problem. Four identical point charges, each
having charge �q, are fixed at the corners of a square
of side L. A fifth point charge �Q lies a distance z along
the line perpendicular to the plane of the square and
passing through the center of the square (Fig. P23.65).
(a) Show that the force exerted on �Q by the other
four charges is

Note that this force is directed toward the center of the
square whether z is positive (� Q above the square) or
negative (�Q below the square). (b) If z is small com-
pared with L, the above expression reduces to

Why does this imply that the mo-
tion of �Q is simple harmonic, and what would be the
period of this motion if the mass of �Q were m?

F � �(constant) zk.

F � �
4keqQ z

�z2 �
L2

2 �
3/2

 k

Figure P23.64

Figure P23.65

Figure P23.67
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Problems 741

This charge distribution, which is essentially that of two
electric dipoles, is called an electric quadrupole. Note that
E varies as r�4 for the quadrupole, compared with varia-
tions of r�3 for the dipole and r�2 for the monopole (a
single charge).

73. Review Problem. A negatively charged particle �q
is placed at the center of a uniformly charged ring,
where the ring has a total positive charge Q , as shown
in Example 23.8. The particle, confined to move along
the x axis, is displaced a small distance x along the axis
(where and released. Show that the particle os-
cillates with simple harmonic motion with a frequency

74. Review Problem. An electric dipole in a uniform elec-
tric field is displaced slightly from its equilibrium posi-
tion, as shown in Figure P23.74, where 
 is small and
the charges are separated by a distance 2a. The moment
of inertia of the dipole is I. If the dipole is released from
this position, show that its angular orientation exhibits
simple harmonic motion with a frequency

f �
1

2�
 ! 2qaE

I

f �
1

2�
 � keqQ

ma3 �
1/2

x V a)

70. Consider the charge distribution shown in Figure
P23.69. (a) Show that the magnitude of the electric
field at the center of any face of the cube has a value of
2.18ke q /s2. (b) What is the direction of the electric
field at the center of the top face of the cube?

71. A line of charge with a uniform density of 35.0 nC/m
lies along the line y � � 15.0 cm, between the points
with coordinates x � 0 and x � 40.0 cm. Find the elec-
tric field it creates at the origin.

72. Three point charges q, � 2q, and q are located along the
x axis, as shown in Figure P23.72. Show that the electric
field at P along the y axis is

E � �ke 
3qa2

y4  j

(y W a)

69. Eight point charges, each of magnitude q, are located
on the corners of a cube of side s, as shown in Figure
P23.69. (a) Determine the x, y, and z components of the
resultant force exerted on the charge located at point A
by the other charges. (b) What are the magnitude and
direction of this resultant force?

Figure P23.68

Figure P23.69 Problems 69 and 70.

Figure P23.72

Figure P23.74
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ANSWERS TO QUICK QUIZZES

23.3 (b). From Newton’s third law, the electric force exerted
by object B on object A is equal in magnitude to the
force exerted by object A on object B and in the oppo-
site direction—that is, 

23.4 Nothing, if we assume that the source charge producing
the field is not disturbed by our actions. Remember that
the electric field is created not by the � 3-	C charge or
by the � 3-	C charge but by the source charge (unseen
in this case).

23.5 A, B, and C . The field is greatest at point A because this
is where the field lines are closest together. The absence
of lines at point C indicates that the electric field there is
zero.

FAB � � FBA .

23.1 (b). The amount of charge present after rubbing is the
same as that before; it is just distributed differently.

23.2 (d). Object A might be negatively charged, but it also
might be electrically neutral with an induced charge
separation, as shown in the following figure:

+

+

+
+

+
+

+
+

+
+

B

A
+

+
+

–

–
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c h a p t e r

Gauss’s Law

P U Z Z L E R

Some railway companies are planning to
coat the windows of their commuter
trains with a very thin layer of metal.
(The coating is so thin you can see
through it.) They are doing this in re-
sponse to rider complaints about other
passengers’ talking loudly on cellular
telephones. How can a metallic coating
that is only a few hundred nanometers
thick overcome this problem? (Arthur

Tilley/FPG International)

C h a p t e r  O u t l i n e

24.1 Electric Flux

24.2 Gauss’s Law

24.3 Application of Gauss’s Law to
Charged Insulators

24.4 Conductors in Electrostatic
Equilibrium

24.5 (Optional) Experimental
Verification of Gauss’s Law and
Coulomb’s Law

24.6 (Optional) Formal Derivation of
Gauss’s Law

P U Z Z L E R

743

744 C H A P T E R  2 4 Gauss’s Law

n the preceding chapter we showed how to use Coulomb’s law to calculate the
electric field generated by a given charge distribution. In this chapter, we de-
scribe Gauss’s law and an alternative procedure for calculating electric fields.

The law is based on the fact that the fundamental electrostatic force between point
charges exhibits an inverse-square behavior. Although a consequence of
Coulomb’s law, Gauss’s law is more convenient for calculating the electric fields of
highly symmetric charge distributions and makes possible useful qualitative rea-
soning when we are dealing with complicated problems.

ELECTRIC FLUX
The concept of electric field lines is described qualitatively in Chapter 23. We now
use the concept of electric flux to treat electric field lines in a more quantitative
way.

Consider an electric field that is uniform in both magnitude and direction, as
shown in Figure 24.1. The field lines penetrate a rectangular surface of area A,
which is perpendicular to the field. Recall from Section 23.6 that the number of
lines per unit area (in other words, the line density) is proportional to the magni-
tude of the electric field. Therefore, the total number of lines penetrating the sur-
face is proportional to the product EA. This product of the magnitude of the elec-
tric field E and surface area A perpendicular to the field is called the electric flux
�E (uppercase Greek phi):

(24.1)

From the SI units of E and A, we see that �E has units of newton–meters squared
per coulomb Electric flux is proportional to the number of elec-
tric field lines penetrating some surface.

(N�m2/C).

�E � EA

24.1

Flux Through a SphereEXAMPLE 24.1
perpendicular to the surface of the sphere. The flux through
the sphere (whose surface area is thus

Exercise What would be the (a) electric field and (b) flux
through the sphere if it had a radius of 0.500 m?

Answer (a) N/C; (b) 1.13 � 105 N�m2/C.3.60 � 104

1.13 � 105 N�m2/C�

�E � EA � (8.99 � 103 N/C)(12.6 m2)

A � 4�r 2 � 12.6 m2)
What is the electric flux through a sphere that has a radius of
1.00 m and carries a charge of � 1.00 �C at its center?

Solution The magnitude of the electric field 1.00 m from
this charge is given by Equation 23.4,

The field points radially outward and is therefore everywhere

 � 8.99 � 103 N/C

E � ke 
q
r 2 � (8.99 � 109 N�m2/C2) 

1.00 � 10�6 C
(1.00 m)2

I

11.6

Area = A

E

Figure 24.1 Field lines repre-
senting a uniform electric field
penetrating a plane of area A per-
pendicular to the field. The electric
flux �E through this area is equal
to EA.

If the surface under consideration is not perpendicular to the field, the flux
through it must be less than that given by Equation 24.1. We can understand this
by considering Figure 24.2, in which the normal to the surface of area A is at an
angle 	 to the uniform electric field. Note that the number of lines that cross this
area A is equal to the number that cross the area A
, which is a projection of area A
aligned perpendicular to the field. From Figure 24.2 we see that the two areas are
related by cos 	. Because the flux through A equals the flux through A
, weA
 � A


