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65. An object of mass m is suspended from a post on top of
a cart by a string of length L as in Figure P8.65a. The
cart and object are initially moving to the right at con-
stant speed vi . The cart comes to rest after colliding and
sticking to a bumper as in Figure P8.65b, and the sus-
pended object swings through an angle �. (a) Show that 
the speed is (b) If L � 1.20 m
and � � 35.0°, find the initial speed of the cart. (Hint:
The force exerted by the string on the object does no
work on the object.)

vi � √2gL(1 � cos �).

Figure P8.68

Figure P8.67

Figure P8.66

Figure P8.65

Figure P8.63
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69. A ball at the end of a string whirls around in a vertical
circle. If the ball’s total energy remains constant, show
that the tension in the string at the bottom is greater

68. A ball is tied to one end of a string. The other end of
the string is fixed. The ball is set in motion around a
vertical circle without friction. At the top of the circle,
the ball has a speed of as shown in Figure
P8.68. At what angle � should the string be cut so that
the ball will travel through the center of the circle?

vi � √Rg,

67. A ball having mass m is connected by a strong string of
length L to a pivot point and held in place in a vertical
position. A wind exerting constant force of magnitude F
is blowing from left to right as in Figure P8.67a. (a) If
the ball is released from rest, show that the maximum
height H it reaches, as measured from its initial height,
is

Check that the above formula is valid both when 
0 � H � L and when L � H � 2L. (Hint: First deter-
mine the potential energy associated with the constant
wind force.) (b) Compute the value of H using the val-
ues m � 2.00 kg, L � 2.00 m, and F � 14.7 N. (c) Using
these same values, determine the equilibrium height of
the ball. (d) Could the equilibrium height ever be
greater than L? Explain.

H �
2L

1 � (mg/F )2

66. A child slides without friction from a height h along a
curved water slide (Fig. P8.66). She is launched from a
height h/5 into the pool. Determine her maximum air-
borne height y in terms of h and �.

(a)

vi
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m

(b)
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vi =     Rg
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Figure P8.74

Figure P8.72

Figure P8.71

Figure P8.70

73. A 5.00-kg block free to move on a horizontal, friction-
less surface is attached to one end of a light horizontal
spring. The other end of the spring is fixed. The spring
is compressed 0.100 m from equilibrium and is then re-
leased. The speed of the block is 1.20 m/s when it
passes the equilibrium position of the spring. The same
experiment is now repeated with the frictionless surface
replaced by a surface for which �k � 0.300. Determine
the speed of the block at the equilibrium position of the
spring.

74. A 50.0-kg block and a 100-kg block are connected by a
string as in Figure P8.74. The pulley is frictionless and
of negligible mass. The coefficient of kinetic friction be-
tween the 50.0-kg block and the incline is �k � 0.250.
Determine the change in the kinetic energy of the 
50.0-kg block as it moves from � to �, a distance of
20.0 m.

the other side? (Hint: First determine the potential en-
ergy associated with the wind force.) (b) Once the res-
cue is complete, Tarzan and Jane must swing back
across the river. With what minimum speed must they
begin their swing? Assume that Tarzan has a mass of
80.0 kg.

72. A child starts from rest and slides down the frictionless
slide shown in Figure P8.72. In terms of R and H, at what
height h will he lose contact with the section of radius R?

71. Jane, whose mass is 50.0 kg, needs to swing across a
river (having width D) filled with man-eating crocodiles
to save Tarzan from danger. However, she must swing
into a wind exerting constant horizontal force F on a
vine having length L and initially making an angle �
with the vertical (Fig. P8.71). Taking D � 50.0 m, F �
110 N, L � 40.0 m, and � � 50.0°, (a) with what mini-
mum speed must Jane begin her swing to just make it to

than the tension at the top by a value six times the
weight of the ball.

70. A pendulum comprising a string of length L and a
sphere swings in the vertical plane. The string hits a peg
located a distance d below the point of suspension (Fig.
P8.70). (a) Show that if the sphere is released from a
height below that of the peg, it will return to this height
after striking the peg. (b) Show that if the pendulum is
released from the horizontal position (� � 90°) and is
to swing in a complete circle centered on the peg, then
the minimum value of d must be 3L/5.
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ANSWERS TO QUICK QUIZZES

Wapp � 0, then the system energy increases. If Wapp � 0,
then the system energy decreases. The effect of friction
is to decrease the total system energy. Equation 8.15
then becomes

You may find it easier to think of this equation with its
terms in a different order, saying

total initial energy � net change � total final energy

8.5 The slope of a U(x)-versus-x graph is by definition
dU(x)/dx. From Equation 8.16, we see that this expres-
sion is equal to the negative of the x component of the
conservative force acting on an object that is part of the
system.

K 1f � K 2f � Ug1f � Ug 2f � Usf

K 1i � K 2i � Ug1i � Ug2i � Usi � Wapp � fkd �

   � [(Ug1f � Ug 2f � Usf) � (Ug1i � Ug 2i � Usi)]

  � [K 1f � K 2f) � (K 1i � K 2i)] 

 � �K � �U 

�E � Wapp � �Efriction 

8.1 Yes, because we are free to choose any point whatsoever
as our origin of coordinates, which is the Ug � 0 point.
If the object is below the origin of coordinates that we
choose, then Ug � 0 for the object–Earth system.

8.2 Yes, the total mechanical energy of the system is con-
served because the only forces acting are conservative:
the force of gravity and the spring force. There are two
forms of potential energy: (1) gravitational potential en-
ergy and (2) elastic potential energy stored in the spring. 

8.3 The first and third balls speed up after they are thrown,
while the second ball initially slows down but then
speeds up after reaching its peak. The paths of all three
balls are parabolas, and the balls take different times to
reach the ground because they have different initial ve-
locities. However, all three balls have the same speed at
the moment they hit the ground because all start with
the same kinetic energy and undergo the same change
in gravitational potential energy. In other words,

is the same for all three balls at the
start of the motion.

8.4 Designate one object as No. 1 and the other as No. 2.
The external force does work Wapp on the system. If 

Etotal � 1
2mv2 � mgh



c h a p t e r

Linear Momentum and Collisions

P U Z Z L E R

Airbags have saved countless lives by
reducing the forces exerted on vehicle
occupants during collisions. How can
airbags change the force needed to
bring a person from a high speed to a
complete stop? Why are they usually
safer than seat belts alone? (Courtesy 

of Saab)
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onsider what happens when a golf ball is struck by a club. The ball is given a
very large initial velocity as a result of the collision; consequently, it is able to
travel more than 100 m through the air. The ball experiences a large accelera-

tion. Furthermore, because the ball experiences this acceleration over a very short
time interval, the average force exerted on it during the collision is very great. Ac-
cording to Newton’s third law, the ball exerts on the club a reaction force that is
equal in magnitude to and opposite in direction to the force exerted by the club
on the ball. This reaction force causes the club to accelerate. Because the club is
much more massive than the ball, however, the acceleration of the club is much
less than the acceleration of the ball.

One of the main objectives of this chapter is to enable you to understand and
analyze such events. As a first step, we introduce the concept of momentum, which is
useful for describing objects in motion and as an alternate and more general
means of applying Newton’s laws. For example, a very massive football player is of-
ten said to have a great deal of momentum as he runs down the field. A much less
massive player, such as a halfback, can have equal or greater momentum if his
speed is greater than that of the more massive player. This follows from the fact
that momentum is defined as the product of mass and velocity. The concept of
momentum leads us to a second conservation law, that of conservation of momen-
tum. This law is especially useful for treating problems that involve collisions be-
tween objects and for analyzing rocket propulsion. The concept of the center of
mass of a system of particles also is introduced, and we shall see that the motion of
a system of particles can be described by the motion of one representative particle
located at the center of mass.

LINEAR MOMENTUM AND ITS CONSERVATION
In the preceding two chapters we studied situations too complex to analyze easily
with Newton’s laws. In fact, Newton himself used a form of his second law slightly
different from (Eq. 5.2)—a form that is considerably easier to apply in
complicated circumstances. Physicists use this form to study everything from sub-
atomic particles to rocket propulsion. In studying situations such as these, it is of-
ten useful to know both something about the object and something about its mo-
tion. We start by defining a new term that incorporates this information:

�F � ma

9.1

The linear momentum of a particle of mass m moving with a velocity v is de-
fined to be the product of the mass and velocity:

(9.1)p � mv

C

Linear momentum is a vector quantity because it equals the product of a scalar
quantity m and a vector quantity v. Its direction is along v, it has dimensions
ML/T, and its SI unit is kg � m/s.

If a particle is moving in an arbitrary direction, p must have three compo-
nents, and Equation 9.1 is equivalent to the component equations

(9.2)

As you can see from its definition, the concept of momentum provides a quantita-
tive distinction between heavy and light particles moving at the same velocity. For
example, the momentum of a bowling ball moving at 10 m/s is much greater than
that of a tennis ball moving at the same speed. Newton called the product mv

px � mvx  py � mvy  pz � mvz

Definition of linear momentum of
a particle

6.2
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quantity of motion; this is perhaps a more graphic description than our present-day
word momentum, which comes from the Latin word for movement.

Two objects have equal kinetic energies. How do the magnitudes of their momenta com-
pare? (a) (b) (c) (d) not enough information to tell.

Using Newton’s second law of motion, we can relate the linear momentum of a
particle to the resultant force acting on the particle: The time rate of change of the
linear momentum of a particle is equal to the net force acting on the particle:

(9.3)

In addition to situations in which the velocity vector varies with time, we can
use Equation 9.3 to study phenomena in which the mass changes. The real value
of Equation 9.3 as a tool for analysis, however, stems from the fact that when the
net force acting on a particle is zero, the time derivative of the momentum of the
particle is zero, and therefore its linear momentum1 is constant. Of course, if 
the particle is isolated, then by necessity and p remains unchanged. This
means that p is conserved. Just as the law of conservation of energy is useful in
solving complex motion problems, the law of conservation of momentum can
greatly simplify the analysis of other types of complicated motion.

Conservation of Momentum for a Two-Particle System

Consider two particles 1 and 2 that can interact with each other but are isolated
from their surroundings (Fig. 9.1). That is, the particles may exert a force on each
other, but no external forces are present. It is important to note the impact of
Newton’s third law on this analysis. If an internal force from particle 1 (for exam-
ple, a gravitational force) acts on particle 2, then there must be a second internal
force—equal in magnitude but opposite in direction—that particle 2 exerts on
particle 1.

Suppose that at some instant, the momentum of particle 1 is p1 and that of
particle 2 is p2 . Applying Newton’s second law to each particle, we can write

where F21 is the force exerted by particle 2 on particle 1 and F12 is the force ex-
erted by particle 1 on particle 2. Newton’s third law tells us that F12 and F21 are
equal in magnitude and opposite in direction. That is, they form an action–reac-
tion pair F12 � � F21 . We can express this condition as

or as

dp1

dt
�

dp2

dt
�

d
dt

 (p1 � p2) � 0

F21 � F12 � 0

  F21 �
dp1

dt
        and         F12 �

dp2

dt

�F � 0

�F �
dp
dt

�
d(mv)

dt

p1 � p 2 ,p1 � p 2 ,p1 � p 2 ,

Quick Quiz 9.1

1In this chapter, the terms momentum and linear momentum have the same meaning. Later, in Chapter
11, we shall use the term angular momentum when dealing with rotational motion.

6.2

Newton’s second law for a particle

p2 = m2v2

m2

m1

F21

F12

p1 = m1v1

Figure 9.1 At some instant, the
momentum of particle 1 is p1 �
m1v1 and the momentum of parti-
cle 2 is p2 � m 2v2 . Note that F12 �
� F21 . The total momentum of the
system ptot is equal to the vector
sum p1 � p2 .
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Because the time derivative of the total momentum ptot � p1 � p2 is zero, we con-
clude that the total momentum of the system must remain constant:

(9.4)

or, equivalently,

(9.5)

where pli and p2i are the initial values and p1f and p2f the final values of the mo-
mentum during the time interval dt over which the reaction pair interacts. Equa-
tion 9.5 in component form demonstrates that the total momenta in the x, y, and z
directions are all independently conserved:

(9.6)

This result, known as the law of conservation of linear momentum, can be ex-
tended to any number of particles in an isolated system. It is considered one of the
most important laws of mechanics. We can state it as follows:

�
system

 pix � �
system

 pf x  �
system

 piy � �
system

 pf y  �
system

 piz � �
system

 pf z

p1i � p2i � p1f � p2f

ptot � �
system

 p � p1 � p2 � constant

Whenever two or more particles in an isolated system interact, the total momen-
tum of the system remains constant.

This law tells us that the total momentum of an isolated system at all times
equals its initial momentum.

Notice that we have made no statement concerning the nature of the forces
acting on the particles of the system. The only requirement is that the forces must
be internal to the system.

Your physical education teacher throws a baseball to you at a certain speed, and you catch
it. The teacher is next going to throw you a medicine ball whose mass is ten times the mass
of the baseball. You are given the following choices: You can have the medicine ball thrown
with (a) the same speed as the baseball, (b) the same momentum, or (c) the same kinetic
energy. Rank these choices from easiest to hardest to catch.

Quick Quiz 9.2

The Floating AstronautEXAMPLE 9.1
A SkyLab astronaut discovered that while concentrating on
writing some notes, he had gradually floated to the middle of
an open area in the spacecraft. Not wanting to wait until he
floated to the opposite side, he asked his colleagues for a
push. Laughing at his predicament, they decided not to help,
and so he had to take off his uniform and throw it in one di-
rection so that he would be propelled in the opposite direc-
tion. Estimate his resulting velocity.

Solution We begin by making some reasonable guesses of
relevant data. Let us assume we have a 70-kg astronaut who
threw his 1-kg uniform at a speed of 20 m/s. For conve-

Conservation of momentum

Figure 9.2 A hapless astronaut has discarded his uniform to get
somewhere.

v2fv1f
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IMPULSE AND MOMENTUM
As we have seen, the momentum of a particle changes if a net force acts on the
particle. Knowing the change in momentum caused by a force is useful in solving
some types of problems. To begin building a better understanding of this impor-
tant concept, let us assume that a single force F acts on a particle and that this
force may vary with time. According to Newton’s second law, or

(9.7)

We can integrate2 this expression to find the change in the momentum of a parti-
cle when the force acts over some time interval. If the momentum of the particle

dp � F dt

F � dp/dt,

9.2

Breakup of a Kaon at RestEXAMPLE 9.2
The important point behind this problem is that even though
it deals with objects that are very different from those in the
preceding example, the physics is identical: Linear momen-
tum is conserved in an isolated system.

One type of nuclear particle, called the neutral kaon (K0),
breaks up into a pair of other particles called pions (�� and
��) that are oppositely charged but equal in mass, as illus-
trated in Figure 9.3. Assuming the kaon is initially at rest,
prove that the two pions must have momenta that are equal
in magnitude and opposite in direction.

Solution The breakup of the kaon can be written

If we let p� be the momentum of the positive pion and p�

the momentum of the negative pion, the final momentum of
the system consisting of the two pions can be written

Because the kaon is at rest before the breakup, we know that
pi � 0. Because momentum is conserved, so that

or
p� � �p�

p� � p� � 0,
pi � pf � 0,

pf � p� � p�

K0 9: �� � ��

6.3
&
6.4

Figure 9.3 A kaon at rest breaks up spontaneously into a pair of
oppositely charged pions. The pions move apart with momenta that
are equal in magnitude but opposite in direction.

nience, we set the positive direction of the x axis to be the di-
rection of the throw (Fig. 9.2). Let us also assume that the x
axis is tangent to the circular path of the spacecraft.

We take the system to consist of the astronaut and the uni-
form. Because of the gravitational force (which keeps the as-
tronaut, his uniform, and the entire spacecraft in orbit), the
system is not really isolated. However, this force is directed
perpendicular to the motion of the system. Therefore, mo-
mentum is constant in the x direction because there are no
external forces in this direction.

The total momentum of the system before the throw is
zero Therefore, the total momentum af-
ter the throw must be zero; that is,

m1v1f � m2v2f � 0

(m1v1i � m2v2i � 0).

With m/s, and kg, solving for
v1f , we find the recoil velocity of the astronaut to be

The negative sign for v1f indicates that the astronaut is mov-
ing to the left after the throw, in the direction opposite the
direction of motion of the uniform, in accordance with New-
ton’s third law. Because the astronaut is much more massive
than his uniform, his acceleration and consequent velocity
are much smaller than the acceleration and velocity of the
uniform.

�0.3i m/sv1f � �
m2

m1
 v2f � �� 1 kg

70 kg �(20i m/s) �

m2 � 1v2f � 20im1 � 70 kg,

Κ
Before
decay

(at rest)

p+p–

π– π+

After decay

π π

0

2Note that here we are integrating force with respect to time. Compare this with our efforts in Chapter 7,
where we integrated force with respect to position to express the work done by the force.
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changes from pi at time ti to pf at time tf , integrating Equation 9.7 gives

(9.8)

To evaluate the integral, we need to know how the force varies with time. The
quantity on the right side of this equation is called the impulse of the force F act-
ing on a particle over the time interval Impulse is a vector defined by

(9.9)I � �tf

ti

 F dt � 	p

	t � tf � ti .

	p � pf � pi � �tf

ti
 F dt

The impulse of the force F acting on a particle equals the change in the mo-
mentum of the particle caused by that force.

This statement, known as the impulse–momentum theorem,3 is equivalent to
Newton’s second law. From this definition, we see that impulse is a vector quantity
having a magnitude equal to the area under the force–time curve, as described in
Figure 9.4a. In this figure, it is assumed that the force varies in time in the general
manner shown and is nonzero in the time interval The direction of
the impulse vector is the same as the direction of the change in momentum. Im-
pulse has the dimensions of momentum—that is, ML/T. Note that impulse is not
a property of a particle; rather, it is a measure of the degree to which an external
force changes the momentum of the particle. Therefore, when we say that an im-
pulse is given to a particle, we mean that momentum is transferred from an exter-
nal agent to that particle.

Because the force imparting an impulse can generally vary in time, it is conve-
nient to define a time-averaged force

(9.10)

where (This is an application of the mean value theorem of calculus.)
Therefore, we can express Equation 9.9 as

(9.11)

This time-averaged force, described in Figure 9.4b, can be thought of as the con-
stant force that would give to the particle in the time interval 	t the same impulse
that the time-varying force gives over this same interval.

In principle, if F is known as a function of time, the impulse can be calculated
from Equation 9.9. The calculation becomes especially simple if the force acting
on the particle is constant. In this case, and Equation 9.11 becomes

(9.12)

In many physical situations, we shall use what is called the impulse approxi-
mation, in which we assume that one of the forces exerted on a particle acts
for a short time but is much greater than any other force present. This ap-
proximation is especially useful in treating collisions in which the duration of the

I � F 	t

F � F

I � F 	t

	t � tf � ti .

F �
1
	t
�tf

ti

 F dt

	t � tf � ti .

Impulse–momentum theorem

Impulse of a force

3Although we assumed that only a single force acts on the particle, the impulse–momentum theorem is
valid when several forces act; in this case, we replace F in Equation 9.9 with �F.

t i t f

t i

F

(a)

t f
t

F

(b)

t

F

Area = F∆t

Figure 9.4 (a) A force acting on
a particle may vary in time. The im-
pulse imparted to the particle by
the force is the area under the
force versus time curve. (b) In the
time interval 	t, the time-averaged
force (horizontal dashed line)
gives the same impulse to a particle
as does the time-varying force de-
scribed in part (a).
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collision is very short. When this approximation is made, we refer to the force as
an impulsive force. For example, when a baseball is struck with a bat, the time of the
collision is about 0.01 s and the average force that the bat exerts on the ball in this
time is typically several thousand newtons. Because this is much greater than the
magnitude of the gravitational force, the impulse approximation justifies our ig-
noring the weight of the ball and bat. When we use this approximation, it is impor-
tant to remember that pi and pf represent the momenta immediately before and af-
ter the collision, respectively. Therefore, in any situation in which it is proper to
use the impulse approximation, the particle moves very little during the collision.

Two objects are at rest on a frictionless surface. Object 1 has a greater mass than object 2.
When a force is applied to object 1, it accelerates through a distance d. The force is re-
moved from object 1 and is applied to object 2. At the moment when object 2 has acceler-
ated through the same distance d, which statements are true? (a) (b) 
(c) (d) (e) (f) K1 � K2 .K1 � K2 ,K1 � K2 ,p 1 � p 2 ,

p 1 � p 2 ,p 1 � p 2 ,

Quick Quiz 9.3

During the brief time the club is in contact with the ball, the ball gains momentum as a result of
the collision, and the club loses the same amount of momentum.

QuickLab
If you can find someone willing, play
catch with an egg. What is the best
way to move your hands so that the
egg does not break when you change
its momentum to zero?

Teeing OffEXAMPLE 9.3
the club loses contact with the ball as the ball starts on its tra-
jectory, and � to denote its landing. Neglecting air resis-
tance, we can use Equation 4.14 for the range of a projectile:

Let us assume that the launch angle 
B is 45°, the angle that
provides the maximum range for any given launch velocity.
This assumption gives sin 2
B � 1, and the launch velocity of

R � xC �
v B 

2

g
 sin 2
 B

A golf ball of mass 50 g is struck with a club (Fig. 9.5). The
force exerted on the ball by the club varies from zero, at the in-
stant before contact, up to some maximum value (at which the
ball is deformed) and then back to zero when the ball leaves
the club. Thus, the force–time curve is qualitatively described
by Figure 9.4. Assuming that the ball travels 200 m, estimate the
magnitude of the impulse caused by the collision.

Solution Let us use � to denote the moment when the
club first contacts the ball, � to denote the moment when
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How Good Are the Bumpers?EXAMPLE 9.4
The initial and final momenta of the automobile are

Hence, the impulse is

The average force exerted on the automobile is

1.76 � 105i NF �
	p
	t

�
2.64 � 104 i kg�m/s

0.150 s
�

2.64 � 104i kg�m/s I �

  � (�2.25 � 104i kg�m/s) 

I � 	p � pf � pi � 0.39 � 104i kg�m/s

pf � mvf � (1 500 kg)(2.60 i m/s) � 0.39 � 104i kg�m/s 

pi � mvi � (1 500 kg)(�15.0i m/s) � �2.25 � 104i kg�m/s

In a particular crash test, an automobile of mass 1 500 kg col-
lides with a wall, as shown in Figure 9.6. The initial and final
velocities of the automobile are m/s and

m/s, respectively. If the collision lasts for 0.150 s,
find the impulse caused by the collision and the average
force exerted on the automobile.

Solution Let us assume that the force exerted on the car
by the wall is large compared with other forces on the car so
that we can apply the impulse approximation. Furthermore,
we note that the force of gravity and the normal force ex-
erted by the road on the car are perpendicular to the motion
and therefore do not affect the horizontal momentum.

vf � 2.60i
vi � �15.0i

Figure 9.6 (a) This car’s momentum
changes as a result of its collision with
the wall. (b) In a crash test, much of the
car’s initial kinetic energy is transformed
into energy used to damage the car.

Figure 9.5 A golf ball being struck by a club. (© Harold E. Edgerton/
Courtesy of Palm Press, Inc.)

the ball is

Considering the time interval for the collision, 
and for the ball. Hence, the magnitude of the im-
pulse imparted to the ball is

Exercise If the club is in contact with the ball for a time of
4.5 � 10�4 s, estimate the magnitude of the average force ex-
erted by the club on the ball.

Answer 4.9 � 103 N, a value that is extremely large when
compared with the weight of the ball, 0.49 N.

2.2 kg�m/s�

I � 	p � mv B � mvA � (50 � 10�3 kg)(44 m/s) � 0

vf � v B

vi � vA � 0

v B � √xCg � √(200 m)(9.80 m/s2) � 44 m/s

Before

After

2.60 m/s

–15.0 m/s

(a) (b)
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Rank an automobile dashboard, seatbelt, and airbag in terms of (a) the impulse and 
(b) the average force they deliver to a front-seat passenger during a collision.

COLLISIONS
In this section we use the law of conservation of linear momentum to describe
what happens when two particles collide. We use the term collision to represent
the event of two particles’ coming together for a short time and thereby producing
impulsive forces on each other. These forces are assumed to be much greater
than any external forces present.

A collision may entail physical contact between two macroscopic objects, as de-
scribed in Figure 9.7a, but the notion of what we mean by collision must be gener-
alized because “physical contact” on a submicroscopic scale is ill-defined and
hence meaningless. To understand this, consider a collision on an atomic scale
(Fig. 9.7b), such as the collision of a proton with an alpha particle (the nucleus of
a helium atom). Because the particles are both positively charged, they never
come into physical contact with each other; instead, they repel each other because
of the strong electrostatic force between them at close separations. When two par-
ticles 1 and 2 of masses m1 and m2 collide as shown in Figure 9.7, the impulsive
forces may vary in time in complicated ways, one of which is described in Figure
9.8. If F21 is the force exerted by particle 2 on particle 1, and if we assume that no
external forces act on the particles, then the change in momentum of particle 1
due to the collision is given by Equation 9.8:

Likewise, if F12 is the force exerted by particle 1 on particle 2, then the change in
momentum of particle 2 is

From Newton’s third law, we conclude that

Because the total momentum of the system is we conclude that
the change in the momentum of the system due to the collision is zero:

This is precisely what we expect because no external forces are acting on the sys-
tem (see Section 9.2). Because the impulsive forces are internal, they do not
change the total momentum of the system (only external forces can do that).

psystem � p1 � p2 � constant

psystem � p1 � p2 ,

	p1 � 	p2 � 0 

 	p1 � �	p2

	p2 � �tf

ti
 F12 dt

	p1 � �tf

ti
 F21 dt

9.3

Quick Quiz 9.4

signs of the velocities indicated the reversal of directions.
What would the mathematics be describing if both the initial
and final velocities had the same sign?

Note that the magnitude of this force is large compared with
the weight of the car ( N), which justifies
our initial assumption. Of note in this problem is how the

mg � 1.47 � 104

p

+

+ +

He

(b)

m2
m1

(a)

F12F21

4

t

F12

F21

F

Figure 9.8 The impulse force as
a function of time for the two col-
liding particles described in Figure
9.7a. Note that F12 � � F21.

Figure 9.7 (a) The collision be-
tween two objects as the result of
direct contact. (b) The “collision”
between two charged particles.

6.5
&
6.6

As a ball falls toward the Earth, the ball’s momentum increases because its speed increases.
Does this mean that momentum is not conserved in this situation?

A skater is using very low-friction rollerblades. A friend throws a Frisbee straight at her. In
which case does the Frisbee impart the greatest impulse to the skater: (a) she catches the
Frisbee and holds it, (b) she catches it momentarily but drops it, (c) she catches it and at
once throws it back to her friend?

ELASTIC AND INELASTIC COLLISIONS
IN ONE DIMENSION

As we have seen, momentum is conserved in any collision in which external forces
are negligible. In contrast, kinetic energy may or may not be constant, depend-
ing on the type of collision. In fact, whether or not kinetic energy is the same before
and after the collision is used to classify collisions as being either elastic or inelastic.

An elastic collision between two objects is one in which total kinetic energy (as
well as total momentum) is the same before and after the collision. Billiard-ball collisions
and the collisions of air molecules with the walls of a container at ordinary temper-
atures are approximately elastic. Truly elastic collisions do occur, however, between
atomic and subatomic particles. Collisions between certain objects in the macro-
scopic world, such as billiard-ball collisions, are only approximately elastic because
some deformation and loss of kinetic energy take place.

9.4

Quick Quiz 9.6

Quick Quiz 9.5
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Therefore, we conclude that the total momentum of an isolated system just
before a collision equals the total momentum of the system just after the
collision.

Carry Collision Insurance!EXAMPLE 9.5
the entangled cars is

Equating the momentum before to the momentum after
and solving for vf , the final velocity of the entangled cars, we
have

The direction of the final velocity is the same as the velocity
of the initially moving car.

Exercise What would be the final speed if the two cars each
had a mass of 900 kg?

Answer 10.0 m/s.

6.67 m/svf �
pi

m1 � m2
�

1.80 � 104 kg�m/s
2 700 kg

�

pf � (m1 � m2)vf � (2 700 kg)vf

A car of mass 1800 kg stopped at a traffic light is struck from
the rear by a 900-kg car, and the two become entangled. If
the smaller car was moving at 20.0 m/s before the collision,
what is the velocity of the entangled cars after the collision?

Solution We can guess that the final speed is less than
20.0 m/s, the initial speed of the smaller car. The total mo-
mentum of the system (the two cars) before the collision
must equal the total momentum immediately after the colli-
sion because momentum is conserved in any type of collision.
The magnitude of the total momentum before the collision is
equal to that of the smaller car because the larger car is ini-
tially at rest:

After the collision, the magnitude of the momentum of

pi � m1v1i � (900 kg)(20.0 m/s) � 1.80 � 104 kg�m/s

Elastic collision

Momentum is conserved for any
collision

When the bowling ball and pin col-
lide, part of the ball’s momentum
is transferred to the pin. Conse-
quently, the pin acquires momen-
tum and kinetic energy, and the
ball loses momentum and kinetic
energy. However, the total momen-
tum of the system (ball and pin) re-
mains constant.



9.4 Elastic and Inelastic Collisions in One Dimension 261

Inelastic collision

Figure 9.9 Schematic representa-
tion of a perfectly inelastic head-on
collision between two particles: 
(a) before collision and (b) after
collision.

An inelastic collision is one in which total kinetic energy is not the same before and
after the collision (even though momentum is constant). Inelastic collisions are of two
types. When the colliding objects stick together after the collision, as happens
when a meteorite collides with the Earth, the collision is called perfectly inelastic.
When the colliding objects do not stick together, but some kinetic energy is lost, as
in the case of a rubber ball colliding with a hard surface, the collision is called in-
elastic (with no modifying adverb). For example, when a rubber ball collides with
a hard surface, the collision is inelastic because some of the kinetic energy of the
ball is lost when the ball is deformed while it is in contact with the surface.

In most collisions, kinetic energy is not the same before and after the collision
because some of it is converted to internal energy, to elastic potential energy when
the objects are deformed, and to rotational energy. Elastic and perfectly inelastic
collisions are limiting cases; most collisions fall somewhere between them.

In the remainder of this section, we treat collisions in one dimension and con-
sider the two extreme cases—perfectly inelastic and elastic collisions. The impor-
tant distinction between these two types of collisions is that momentum is con-
stant in all collisions, but kinetic energy is constant only in elastic
collisions.

Perfectly Inelastic Collisions

Consider two particles of masses m1 and m2 moving with initial velocities v1i and v2i
along a straight line, as shown in Figure 9.9. The two particles collide head-on, 
stick together, and then move with some common velocity vf after the collision. 
Because momentum is conserved in any collision, we can say that the total momen-
tum before the collision equals the total momentum of the composite system after
the collision:

(9.13)

(9.14)

Which is worse, crashing into a brick wall at 40 mi/h or crashing head-on into an oncoming
car that is identical to yours and also moving at 40 mi/h?

Elastic Collisions

Now consider two particles that undergo an elastic head-on collision (Fig. 9.10).
In this case, both momentum and kinetic energy are conserved; therefore, we have

(9.15)

(9.16)

Because all velocities in Figure 9.10 are either to the left or the right, they can be
represented by the corresponding speeds along with algebraic signs indicating di-
rection. We shall indicate v as positive if a particle moves to the right and negative

1
2m1v1i 

2 � 1
2m2v2i 

2 � 1
2m1v1f 

2 � 1
2m2v2f 

2

m1v1i � m2v2i � m1v1f � m2v2f 

Quick Quiz 9.7

 vf �
m1v1i � m2v2i

m1 � m2

m1v1i � m2v2i � (m1 � m2)vf Before collision

(a)

m1 m2
v1i v2i

After collision

(b)

vf
m1 + m2

6.6

QuickLab
Hold a Ping-Pong ball or tennis ball
on top of a basketball. Drop them
both at the same time so that the bas-
ketball hits the floor, bounces up, and
hits the smaller falling ball. What
happens and why?
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if it moves to the left. As has been seen in earlier chapters, it is common practice
to call these values “speed” even though this term technically refers to the magni-
tude of the velocity vector, which does not have an algebraic sign.

In a typical problem involving elastic collisions, there are two unknown quanti-
ties, and Equations 9.15 and 9.16 can be solved simultaneously to find these. An al-
ternative approach, however—one that involves a little mathematical manipula-
tion of Equation 9.16—often simplifies this process. To see how, let us cancel the
factor in Equation 9.16 and rewrite it as

and then factor both sides:

(9.17)

Next, let us separate the terms containing m1 and m2 in Equation 9.15 to get

(9.18)

To obtain our final result, we divide Equation 9.17 by Equation 9.18 and get

(9.19)

This equation, in combination with Equation 9.15, can be used to solve problems
dealing with elastic collisions. According to Equation 9.19, the relative speed of
the two particles before the collision equals the negative of their relative
speed after the collision, 

Suppose that the masses and initial velocities of both particles are known.
Equations 9.15 and 9.19 can be solved for the final speeds in terms of the initial
speeds because there are two equations and two unknowns:

(9.20)

(9.21)

It is important to remember that the appropriate signs for v1i and v2i must be in-
cluded in Equations 9.20 and 9.21. For example, if particle 2 is moving to the left
initially, then v2i is negative.

Let us consider some special cases: If m1 � m2 , then  and 
That is, the particles exchange speeds if they have equal masses. This is approxi-
mately what one observes in head-on billiard ball collisions—the cue ball stops,
and the struck ball moves away from the collision with the same speed that the cue
ball had.

If particle 2 is initially at rest, then and Equations 9.20 and 9.21 be-
come

(9.22)

(9.23)

If m1 is much greater than m2 and , we see from Equations 9.22 and
9.23 that and That is, when a very heavy particle collides head-
on with a very light one that is initially at rest, the heavy particle continues its mo-

v2f � 2v1i .v1f � v1i

v2i � 0

v2f � � 2m1

m1 � m2
�v1i

v1f � � m1 � m2

m1 � m2
�v1i

v2i � 0

v2f � v1i .v1f � v2i

v2f � � 2m1

m1 � m2
�v1i � � m2 � m1

m1 � m2
�v2i

v1f � � m1 � m2

m1 � m2
�v1i � � 2m2

m1 � m2
�v2i

�(v1f � v2f ).
v1i � v2i

v1i � v2i � �(v1f � v2f)

v1i � v1f � v2f � v2i 

m1(v1i � v1f) � m2(v2f � v2i)

m1(v1i � v1f)(v1i � v1f) � m2(v2f � v2i)(v2f � v2i)

m1(v1i 

2 � v1f 

2) � m2(v2f 

2 � v2i 

2)

1
2

Elastic collision: particle 2 initially
at rest

Elastic collision: relationships
between final and initial velocities

Figure 9.10 Schematic represen-
tation of an elastic head-on colli-
sion between two particles: (a) be-
fore collision and (b) after
collision.

m1 m2
v1i

Before collision

v2i

v1f v2f

After collision

(a)

(b)
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tion unaltered after the collision, and the light particle rebounds with a speed
equal to about twice the initial speed of the heavy particle. An example of such a
collision would be that of a moving heavy atom, such as uranium, with a light
atom, such as hydrogen.

If m2 is much greater than m1 and particle 2 is initially at rest, then 
and That is, when a very light particle collides head-on with a very
heavy particle that is initially at rest, the light particle has its velocity reversed and
the heavy one remains approximately at rest.

v2f � v2i � 0.
v1f � �v1i

The Ballistic PendulumEXAMPLE 9.6
Exercise In a ballistic pendulum experiment, suppose that
h � 5.00 cm, m1 � 5.00 g, and m2 � 1.00 kg. Find (a) the
initial speed of the bullet and (b) the loss in mechanical en-
ergy due to the collision.

Answer 199 m/s; 98.5 J.

The ballistic pendulum (Fig. 9.11) is a system used to mea-
sure the speed of a fast-moving projectile, such as a bullet.
The bullet is fired into a large block of wood suspended from
some light wires. The bullet embeds in the block, and the en-
tire system swings through a height h. The collision is per-
fectly inelastic, and because momentum is conserved, Equa-
tion 9.14 gives the speed of the system right after the
collision, when we assume the impulse approximation. If we
call the bullet particle 1 and the block particle 2, the total ki-
netic energy right after the collision is

(1)

With Equation 9.14 becomes

(2)

Substituting this value of vf into (1) gives

Note that this kinetic energy immediately after the collision is
less than the initial kinetic energy of the bullet. In all the en-
ergy changes that take place after the collision, however, the
total amount of mechanical energy remains constant; thus,
we can say that after the collision, the kinetic energy of the
block and bullet at the bottom is transformed to potential en-
ergy at the height h:

Solving for v1i , we obtain

This expression tells us that it is possible to obtain the initial
speed of the bullet by measuring h and the two masses.

Because the collision is perfectly inelastic, some mechani-
cal energy is converted to internal energy and it would be in-
correct to equate the initial kinetic energy of the incoming 
bullet to the final gravitational potential energy of the
bullet–block combination.

v1i � � m1 � m2

m1
�√2gh

m1 

2v1i 

2

2(m1 � m2)
� (m1 � m2)gh

Kf �
m1 

2v1i 

2

2(m1 � m2)

vf �
m1v1i

m1 � m2

v2i � 0,

Kf � 1
2(m1 � m2)vf 

2

m1
v1i vf

m1 + m2

m2 h

(a)

Figure 9.11 (a) Diagram of a ballistic pendulum. Note that v1i is
the velocity of the bullet just before the collision and vf � v1f � v2f
is the velocity of the bullet � block system just after the perfectly in-
elastic collision. (b) Multiflash photograph of a ballistic pendulum
used in the laboratory.

(b)
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A Two-Body Collision with a SpringEXAMPLE 9.7
Solution To determine the distance that the spring is
compressed, shown as x in Figure 9.12b, we can use the con-
cept of conservation of mechanical energy because no fric-
tion or other nonconservative forces are acting on the system.
Thus, we have

Substituting the given values and the result to part (a) into
this expression gives

It is important to note that we needed to use the principles of
both conservation of momentum and conservation of me-
chanical energy to solve the two parts of this problem.

Exercise Find the velocity of block 1 and the compression
in the spring at the instant that block 2 is at rest.

Answer 0.719 m/s to the right; 0.251 m.

0.173 mx �

1
2m1v1i 

2 � 1
2m2v2i 

2 � 1
2m1v1f 

2 � 1
2m2v2f 

2 � 1
2kx2

A block of mass m1 � 1.60 kg initially moving to the right with
a speed of 4.00 m/s on a frictionless horizontal track collides
with a spring attached to a second block of mass m2 � 2.10 kg
initially moving to the left with a speed of 2.50 m/s, as shown
in Figure 9.12a. The spring constant is 600 N/m. (a) At the in-
stant block 1 is moving to the right with a speed of 3.00 m/s, 
as in Figure 9.12b, determine the velocity of block 2.

Solution First, note that the initial velocity of block 2 is
� 2.50 m/s because its direction is to the left. Because mo-
mentum is conserved for the system of two blocks, we have

The negative value for v2f means that block 2 is still moving to
the left at the instant we are considering.

(b) Determine the distance the spring is compressed at
that instant.

�1.74 m/s  v2f �

 � (1.60 kg)(3.00 m/s) � (2.10 kg)v2f

(1.60 kg)(4.00 m/s) � (2.10 kg)(�2.50 m/s) 

 m1v1i � m2v2i � m1v1f � m2v2f 

Slowing Down Neutrons by CollisionsEXAMPLE 9.8
Solution Let us assume that the moderator nucleus of
mass mm is at rest initially and that a neutron of mass mn and
initial speed vni collides with it head-on. 

Because these are elastic collisions, the first thing we do is
recognize that both momentum and kinetic energy are con-
stant. Therefore, Equations 9.22 and 9.23 can be applied to
the head-on collision of a neutron with a moderator nucleus.
We can represent this process by a drawing such as Figure
9.10.

The initial kinetic energy of the neutron is

In a nuclear reactor, neutrons are produced when a 
atom splits in a process called fission. These neutrons are
moving at about 107 m/s and must be slowed down to about
103 m/s before they take part in another fission event. They
are slowed down by being passed through a solid or liquid
material called a moderator. The slowing-down process involves
elastic collisions. Let us show that a neutron can lose most of
its kinetic energy if it collides elastically with a moderator
containing light nuclei, such as deuterium (in “heavy water,”
D2O) or carbon (in graphite).

 92
235U

x

k

v1f = (3.00i) m/s v2f

m1
m2m1

m2

k

v1i = (4.00i) m/s v2i = (–2.50i) m/s

(a)

(b)

Figure 9.12
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An ingenious device that illustrates conservation of momentum and kinetic energy is shown
in Figure 9.13a. It consists of five identical hard balls supported by strings of equal lengths.
When ball 1 is pulled out and released, after the almost-elastic collision between it and ball
2, ball 5 moves out, as shown in Figure 9.13b. If balls 1 and 2 are pulled out and released,
balls 4 and 5 swing out, and so forth. Is it ever possible that, when ball 1 is released, balls 4
and 5 will swing out on the opposite side and travel with half the speed of ball 1, as in Fig-
ure 9.13c?

Quick Quiz 9.8

Figure 9.13 An executive stress reliever.

Hence, the fraction fm of the initial kinetic energy transferred
to the moderator nucleus is

(2)

Because the total kinetic energy of the system is conserved,
(2) can also be obtained from (1) with the condition that

so that 
Suppose that heavy water is used for the moderator. For

collisions of the neutrons with deuterium nuclei in D2O
and That is, 89% of the

neutron’s kinetic energy is transferred to the deuterium nu-
cleus. In practice, the moderator efficiency is reduced be-
cause head-on collisions are very unlikely.

How do the results differ when graphite (12C, as found in
pencil lead) is used as the moderator?

fm � 8/9.fn � 1/9(mm � 2mn),

fm � 1 � fn .fn � fm � 1,

fm �
Kmf

Kni
�

4mnmm

(mn � mm)2

Kmf � 1
2 mmvmf 

2 �
2mn 

2mm

(mn � mm)2  vni 

2

After the collision, the neutron has kinetic energy 
and we can substitute into this the value for vnf given by 
Equation 9.22:

Therefore, the fraction fn of the initial kinetic energy pos-
sessed by the neutron after the collision is

(1)

From this result, we see that the final kinetic energy of the
neutron is small when mm is close to mn and zero when mn �
mm .

We can use Equation 9.23, which gives the final speed of
the particle that was initially at rest, to calculate the kinetic
energy of the moderator nucleus after the collision:

fn �
Knf

Kni
� � mn � mm

mn � mm
�

2

Knf � 1
2 mnvnf 

2 �
mn

2
 � mn � mm

mn � mm
�

2
vni 

2

1
2 mnvnf 

2,

Kni � 1
2 mnvni 

2

This can happen.

(b)

vv

4 5

2 3 4 5 1 2 3 4

1 5

2 3 4 5 1 2 3

1

v/2v
Can this happen?

(c)

(a)
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TWO-DIMENSIONAL COLLISIONS
In Sections 9.1 and 9.3, we showed that the momentum of a system of two particles
is constant when the system is isolated. For any collision of two particles, this result
implies that the momentum in each of the directions x, y, and z is constant. How-
ever, an important subset of collisions takes place in a plane. The game of billiards
is a familiar example involving multiple collisions of objects moving on a two-
dimensional surface. For such two-dimensional collisions, we obtain two compo-
nent equations for conservation of momentum:

Let us consider a two-dimensional problem in which particle 1 of mass m1 col-
lides with particle 2 of mass m2 , where particle 2 is initially at rest, as shown in Fig-
ure 9.14. After the collision, particle 1 moves at an angle 
 with respect to the hori-
zontal and particle 2 moves at an angle � with respect to the horizontal. This is
called a glancing collision. Applying the law of conservation of momentum in com-
ponent form, and noting that the initial y component of the momentum of the
two-particle system is zero, we obtain

(9.24)

(9.25)

where the minus sign in Equation 9.25 comes from the fact that after the collision,
particle 2 has a y component of velocity that is downward. We now have two inde-
pendent equations. As long as no more than two of the seven quantities in Equa-
tions 9.24 and 9.25 are unknown, we can solve the problem.

If the collision is elastic, we can also use Equation 9.16 (conservation of kinetic
energy), with to give

(9.26)

Knowing the initial speed of particle 1 and both masses, we are left with four un-
knowns . Because we have only three equations, one of the four re-
maining quantities must be given if we are to determine the motion after the colli-
sion from conservation principles alone.

If the collision is inelastic, kinetic energy is not conserved and Equation 9.26
does not apply.

(v1f , v2f , 
, �)

1
2 m1v1i 

2 � 1
2 m1v1f 

2 � 1
2 m2v2f 

2

v2i � 0,

 0 � m1v1f sin 
 � m2v2f sin �

m1v1i � m1v1f cos 
 � m2v2f cos �

m1v1iy � m2v2iy � m1v1fy � m2v2fy

m1v1ix � m2v2ix � m1v1fx � m2v2 fx

9.5

(a) Before the collision

v1i

(b) After the collision

θ

φ
v2f cos

v1f cos

v1f sin

v1f

v2f
–v2f sin

φ

φ

θ

θ

Figure 9.14 An elastic glancing collision between two particles.
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Problem-Solving Hints
Collisions
The following procedure is recommended when dealing with problems involv-
ing collisions between two objects:

• Set up a coordinate system and define your velocities with respect to that sys-
tem. It is usually convenient to have the x axis coincide with one of the ini-
tial velocities.

• In your sketch of the coordinate system, draw and label all velocity vectors
and include all the given information.

• Write expressions for the x and y components of the momentum of each ob-
ject before and after the collision. Remember to include the appropriate
signs for the components of the velocity vectors.

• Write expressions for the total momentum in the x direction before and af-
ter the collision and equate the two. Repeat this procedure for the total mo-
mentum in the y direction. These steps follow from the fact that, because
the momentum of the system is conserved in any collision, the total momen-
tum along any direction must also be constant. Remember, it is the momen-
tum of the system that is constant, not the momenta of the individual objects.

• If the collision is inelastic, kinetic energy is not conserved, and additional in-
formation is probably required. If the collision is perfectly inelastic, the final
velocities of the two objects are equal. Solve the momentum equations for
the unknown quantities.

• If the collision is elastic, kinetic energy is conserved, and you can equate the
total kinetic energy before the collision to the total kinetic energy after the
collision to get an additional relationship between the velocities.

Collision at an IntersectionEXAMPLE 9.9

Similarly, the total initial momentum of the system in the
y direction is that of the van, and the magnitude of this mo-
mentum is (2 500 kg)(20.0 m/s). Applying conservation of

A 1 500-kg car traveling east with a speed of 25.0 m/s collides
at an intersection with a 2 500-kg van traveling north at a
speed of 20.0 m/s, as shown in Figure 9.15. Find the direc-
tion and magnitude of the velocity of the wreckage after the
collision, assuming that the vehicles undergo a perfectly in-
elastic collision (that is, they stick together).

Solution Let us choose east to be along the positive x di-
rection and north to be along the positive y direction. Before
the collision, the only object having momentum in the x di-
rection is the car. Thus, the magnitude of the total initial mo-
mentum of the system (car plus van) in the x direction is

Let us assume that the wreckage moves at an angle 
 and
speed vf after the collision. The magnitude of the total mo-
mentum in the x direction after the collision is

Because the total momentum in the x direction is constant,
we can equate these two equations to obtain

(1) 3.75 � 104 kg�m/s � (4 000 kg)vf cos 


�pxf � (4 000 kg)vf cos 


�pxi � (1 500 kg)(25.0 m/s) � 3.75 � 104 kg�m/s

θ
(25.0i) m/s

y

x

vf

(20.0j) m/s

Figure 9.15 An eastbound car colliding with a northbound van.
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Proton – Proton CollisionEXAMPLE 9.10
Solving these three equations with three unknowns simulta-
neously gives

Note that 
 � � � 90°. This result is not accidental. When-
ever two equal masses collide elastically in a glancing
collision and one of them is initially at rest, their final
velocities are always at right angles to each other. The
next example illustrates this point in more detail.

53.0°  � �

2.11 � 105 m/sv2f �

2.80 � 105 m/sv1f �

Proton 1 collides elastically with proton 2 that is initially at
rest. Proton 1 has an initial speed of 3.50 � 105 m/s and
makes a glancing collision with proton 2, as was shown in Fig-
ure 9.14. After the collision, proton 1 moves at an angle of
37.0° to the horizontal axis, and proton 2 deflects at an angle
� to the same axis. Find the final speeds of the two protons
and the angle �.

Solution Because both particles are protons, we know that
m1 � m2 . We also know that 
 � 37.0° and 

m/s. Equations 9.24, 9.25, and 9.26 become

 v1f 

2 � v2f 

2 � (3.50 � 105 m/s)2

 v1f  sin 37.0° � v2f  sin � � 0 

v1f  cos 37.0° � v2f  cos � � 3.50 � 105 m/s 

105
v1i � 3.50 �

When this angle is substituted into (2), the value of vf is

It might be instructive for you to draw the momentum vectors
of each vehicle before the collision and the two vehicles to-
gether after the collision.

15.6 m/svf �
5.00 � 104 kg�m/s
(4 000 kg)sin 53.1°

�

53.1°  
 �
momentum to the y direction, we have

(2)

If we divide (2) by (1), we get

sin 
 

cos 
 
 �  tan 
 �

5.00 � 104

3.75 � 104 � 1.33 

5.00 � 104 kg�m/s � (4 000 kg)vf sin 


 (2 500 kg)(20.0 m/s) � (4 000 kg)vf sin 


 �pyi � �pyf 

Billiard Ball CollisionEXAMPLE 9.11
In a game of billiards, a player wishes to sink a target ball 2 in
the corner pocket, as shown in Figure 9.16. If the angle to the
corner pocket is 35°, at what angle 
 is the cue ball 1 de-
flected? Assume that friction and rotational motion are unim-
portant and that the collision is elastic.

Solution Because the target ball is initially at rest, conser-
vation of energy (Eq. 9.16) gives

But m1 � m2 , so that

(1)

Applying conservation of momentum to the two-dimensional
collision gives

(2)

Note that because m1 � m2 , the masses also cancel in (2). If
we square both sides of (2) and use the definition of the dot

v1i � v1f � v2f

v1i 

2 � v1f 

2 � v2f 

2

1
2 m1v1i 

2 � 1
2 m1v1f 

2 � 1
2 m2v2f 

2

Cue ball

v2f

v1f

v1i

θ

y

x
35°

Figure 9.16
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THE CENTER OF MASS
In this section we describe the overall motion of a mechanical system in terms of a
special point called the center of mass of the system. The mechanical system can
be either a system of particles, such as a collection of atoms in a container, or an
extended object, such as a gymnast leaping through the air. We shall see that the
center of mass of the system moves as if all the mass of the system were concen-
trated at that point. Furthermore, if the resultant external force on the system is
�Fext and the total mass of the system is M, the center of mass moves with an accel-
eration given by a � �Fext /M. That is, the system moves as if the resultant exter-
nal force were applied to a single particle of mass M located at the center of mass.
This behavior is independent of other motion, such as rotation or vibration of the
system. This result was implicitly assumed in earlier chapters because many exam-
ples referred to the motion of extended objects that were treated as particles.

Consider a mechanical system consisting of a pair of particles that have differ-
ent masses and are connected by a light, rigid rod (Fig. 9.17). One can describe the
position of the center of mass of a system as being the average position of the system’s
mass. The center of mass of the system is located somewhere on the line joining the

9.6

This result shows that whenever two equal masses undergo a
glancing elastic collision and one of them is initially at rest,
they move at right angles to each other after the collision.
The same physics describes two very different situations, pro-
tons in Example 9.10 and billiard balls in this example.

55°
 � 35° � 90°  or  
 �

 0 � cos(
 � 35°) product of two vectors from Section 7.2, we get

Because the angle between v1f and v2f is 
 � 35°,
cos(
 � 35°), and so

(3)

Subtracting (1) from (3) gives

 0 � 2v1f v2f cos(
 � 35°) 

v1i 

2 � v1f 

2 � v2f 

2 � 2v1f v2f cos(
 � 35°)

v1f � v2f � v1f v2f

v1i 

2 � (v1f � v2f) � (v1f � v2f) � v1f 

2 � v2f 

2 � 2v1f � v2f

Figure 9.17 Two particles of un-
equal mass are connected by a
light, rigid rod. (a) The system ro-
tates clockwise when a force is ap-
plied between the less massive par-
ticle and the center of mass. 
(b) The system rotates counter-
clockwise when a force is applied
between the more massive particle
and the center of mass. (c) The sys-
tem moves in the direction of the
force without rotating when a force
is applied at the center of mass.

CM

(a)

(b)

(c)

CM

CM

This multiflash photograph shows that as the acrobat executes a somersault, his center of mass
follows a parabolic path, the same path that a particle would follow.
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particles and is closer to the particle having the larger mass. If a single force is ap-
plied at some point on the rod somewhere between the center of mass and the less
massive particle, the system rotates clockwise (see Fig. 9.17a). If the force is applied
at a point on the rod somewhere between the center of mass and the more massive
particle, the system rotates counterclockwise (see Fig. 9.17b). If the force is applied
at the center of mass, the system moves in the direction of F without rotating (see
Fig. 9.17c). Thus, the center of mass can be easily located.

The center of mass of the pair of particles described in Figure 9.18 is located
on the x axis and lies somewhere between the particles. Its x coordinate is

(9.27)

For example, if and we find that That is, the
center of mass lies closer to the more massive particle. If the two masses are equal,
the center of mass lies midway between the particles.

We can extend this concept to a system of many particles in three dimensions.
The x coordinate of the center of mass of n particles is defined to be

(9.28)

where xi is the x coordinate of the ith particle. For convenience, we express the to-
tal mass as where the sum runs over all n particles. The y and z coordi-
nates of the center of mass are similarly defined by the equations

(9.29)

The center of mass can also be located by its position vector, rCM . The carte-
sian coordinates of this vector are xCM , yCM , and zC M , defined in Equations 9.28
and 9.29. Therefore,

(9.30)

where ri is the position vector of the ith particle, defined by

Although locating the center of mass for an extended object is somewhat
more cumbersome than locating the center of mass of a system of particles, the ba-
sic ideas we have discussed still apply. We can think of an extended object as a sys-
tem containing a large number of particles (Fig. 9.19). The particle separation is
very small, and so the object can be considered to have a continuous mass distribu-
tion. By dividing the object into elements of mass 	mi , with coordinates xi , yi , zi ,
we see that the x coordinate of the center of mass is approximately

with similar expressions for yCM and zCM . If we let the number of elements n ap-
proach infinity, then xCM is given precisely. In this limit, we replace the sum by an

xCM �
�
i
xi 	mi

M

ri � xi i � yi j � zik

rCM �
�
i
miri

M
 

  �
�
i
mixi i � �

i
miyi j � �

i
mizik

M

rCM � xCMi � yCM j � zCMk 

yCM �
�
i
 miyi

M
  and  zCM �

�
i
 mizi

M

M � �
i
mi ,

xCM �
m1x1 � m2x2 � m3x3 � ��� � mnxn

m1 � m2 � m3 � ��� � mn
�

�
i
mixi

�
i
mi

xCM � 2
3d.m2 � 2m1 ,x2 � d,x1 � 0,

xCM �
m1x1 � m2x2

m1 � m2

Vector position of the center of
mass for a system of particles

Figure 9.18 The center of mass
of two particles of unequal mass on
the x axis is located at xCM , a point
between the particles, closer to the
one having the larger mass.

Figure 9.19 An extended object
can be considered a distribution of
small elements of mass 	mi . The
center of mass is located at the vec-
tor position rCM , which has coordi-
nates xCM , yCM , and zCM .

y

m1

x1

x 2

CM

m 2

x

x CM

y

x

z

ri

∆mi

rCM

CM
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integral and 	mi by the differential element dm:

(9.31)

Likewise, for yCM and zCM we obtain

(9.32)

We can express the vector position of the center of mass of an extended object
in the form

(9.33)

which is equivalent to the three expressions given by Equations 9.31 and 9.32.
The center of mass of any symmetric object lies on an axis of symmetry

and on any plane of symmetry.4 For example, the center of mass of a rod lies in
the rod, midway between its ends. The center of mass of a sphere or a cube lies at
its geometric center.

One can determine the center of mass of an irregularly shaped object by sus-
pending the object first from one point and then from another. In Figure 9.20, a
wrench is hung from point A, and a vertical line AB (which can be established with
a plumb bob) is drawn when the wrench has stopped swinging. The wrench is then
hung from point C, and a second vertical line CD is drawn. The center of mass is
halfway through the thickness of the wrench, under the intersection of these two
lines. In general, if the wrench is hung freely from any point, the vertical line
through this point must pass through the center of mass.

Because an extended object is a continuous distribution of mass, each small
mass element is acted upon by the force of gravity. The net effect of all these
forces is equivalent to the effect of a single force, Mg, acting through a special
point, called the center of gravity. If g is constant over the mass distribution,
then the center of gravity coincides with the center of mass. If an extended object
is pivoted at its center of gravity, it balances in any orientation.

If a baseball bat is cut at the location of its center of mass as shown in Figure 9.21, do the
two pieces have the same mass?

Quick Quiz 9.9

rCM �
1
M

 � r dm

yCM �
1
M

 �y dm  and  zCM �
1
M

 �z dm

xCM � lim
	mi:0

 
�
i
xi 	mi

M
�

1
M

 �x dm

4This statement is valid only for objects that have a uniform mass per unit volume.

A

B

C

A
B

C

D

Center of
mass

Figure 9.20 An experimental
technique for determining the cen-
ter of mass of a wrench. The
wrench is hung freely first from
point A and then from point C.
The intersection of the two lines
AB and CD locates the center of
mass.

Figure 9.21 A baseball bat cut at the location of its center of mass.

QuickLab
Cut a triangle from a piece of card-
board and draw a set of adjacent
strips inside it, parallel to one of the
sides. Put a dot at the approximate lo-
cation of the center of mass of each
strip and then draw a straight line
through the dots and into the angle
opposite your starting side. The cen-
ter of mass for the triangle must lie
on this bisector of the angle. Repeat
these steps for the other two sides.
The three angle bisectors you have
drawn will intersect at the center of
mass of the triangle. If you poke a
hole anywhere in the triangle and
hang the cardboard from a string at-
tached at that hole, the center of
mass will be vertically aligned with the
hole.
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The Center of Mass of Three ParticlesEXAMPLE 9.12
A system consists of three particles located as shown in Figure
9.22a. Find the center of mass of the system.

Solution We set up the problem by labeling the masses of
the particles as shown in the figure, with 
and Using the basic defining equations for the
coordinates of the center of mass and noting that 
we obtain

The position vector to the center of mass measured from the
origin is therefore

We can verify this result graphically by adding together
and dividing the vector sum by M, the

total mass. This is shown in Figure 9.22b.
m1r1 � m2r2 � m3r3

0.75i m � 1.0 j mrCM � xCMi � yCM j �

 �
4.0 kg�m

4.0 kg
� 1.0 m 

 �
(1.0 kg)(0) � (1.0 kg)(0) � (2.0 kg)(2.0 m)

4.0 kg
 

yCM �
�
i
 miyi

M
�

m1y1 � m2y2 � m3y3

m1 � m2 � m3
  

 �
3.0 kg�m

4.0 kg
� 0.75 m 

  �
(1.0 kg)(1.0 m) � (1.0 kg)(2.0 m) � (2.0 kg)(0 m)

1.0 kg � 1.0 kg � 2.0 kg

xCM �
�
i
 mixi

M
�

m1x1 � m2x2 � m3x3

m1 � m2 � m3
  

zCM � 0,
m3 � 2.0 kg.

m1 � m2 � 1.0 kg

The Center of Mass of a RodEXAMPLE 9.13
Because this reduces to

One can also use symmetry arguments to obtain the same re-
sult.

(b) Suppose a rod is nonuniform such that its mass per unit
length varies linearly with x according to the expression � �
�x, where � is a constant. Find the x coordinate of the center
of mass as a fraction of L.

Solution In this case, we replace dm by �dx where � is not
constant. Therefore, xCM is

L
2

xCM �
L2

2M
 � M

L � �

� � M/L,(a) Show that the center of mass of a rod of mass M and
length L lies midway between its ends, assuming the rod has a
uniform mass per unit length.

Solution The rod is shown aligned along the x axis in Fig-
ure 9.23, so that Furthermore, if we call the
mass per unit length � (this quantity is called the linear mass
density), then � � M/L for the uniform rod we assume here.
If we divide the rod into elements of length dx, then the mass
of each element is dm � � dx. For an arbitrary element lo-
cated a distance x from the origin, Equation 9.31 gives

xCM �
1
M

 � x dm �
1
M

 �L

0
 x� dx �

�

M
 
x2

2 �L

0
�

�L2

2M

yCM � zCM � 0.

Figure 9.22 (a) Two 1-kg masses and a single 2-kg mass are lo-
cated as shown. The vector indicates the location of the system’s cen-
ter of mass. (b) The vector sum of m iri .

2

0 21

1

3

y(m)

x(m)3

m1 m2

m3

(a)

rCMm3r3

MrCM

m1r1 m2r2

(b)

rCM
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MOTION OF A SYSTEM OF PARTICLES
We can begin to understand the physical significance and utility of the center of
mass concept by taking the time derivative of the position vector given by Equation
9.30. From Section 4.1 we know that the time derivative of a position vector is by

9.7

The Center of Mass of a Right TriangleEXAMPLE 9.14
With this substitution, xCM becomes

By a similar calculation, we get for the y coordinate of the
center of mass

These values fit our original estimates.

1
3

 byCM �

2
3

 a�

xCM �
2
ab

 �a

0
 x � b

a
 x�dx �

2
a2  �a

0
 x2 dx �

2
a2 � x3

3 �
a

0

An object of mass M is in the shape of a right triangle whose
dimensions are shown in Figure 9.24. Locate the coordinates
of the center of mass, assuming the object has a uniform mass
per unit area.

Solution By inspection we can estimate that the x coordi-
nate of the center of mass must be past the center of the
base, that is, greater than a/2, because the largest part of the
triangle lies beyond that point. A similar argument indicates
that its y coordinate must be less than b/2. To evaluate the x
coordinate, we divide the triangle into narrow strips of width
dx and height y as in Figure 9.24. The mass dm of each strip is

Therefore, the x coordinate of the center of mass is

To evaluate this integral, we must express y in terms of x.
From similar triangles in Figure 9.24, we see that

y
x

�
b
a
  or  y �

b
a

 x

xCM �
1
M

 �x dm �
1
M

 �a

0
 x � 2M

ab �y dx �
2
ab

 �a

0
 xy dx

 �
M

1/2ab
(y dx) � � 2M

ab �y dx

dm �
total mass of object
total area of object

� area of strip

We can eliminate � by noting that the total mass of the rod is
related to � through the relationship

Substituting this into the expression for xCM gives

2
3

LxCM �
�L3

3�L2/2
�

M � �dm � �L

0
 � dx � �L

0
 �x dx �

�L2

2

 �
�

M
 �L

0
 x2 dx �

�L3

3M
 

xCM �
1
M

 � x dm �
1
M

 �L

0
 x� dx �

1
M

 �L

0
 x�x dx

L

x

dm = λdx
y

dx

O
x

λ

Figure 9.24

Figure 9.23 The center of mass of a uniform rod of length L is lo-
cated at xCM � L/2.

a

x
xO

y

c b
y

dx

dm

6.8
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definition a velocity. Assuming M remains constant for a system of particles, that is,
no particles enter or leave the system, we get the following expression for the ve-
locity of the center of mass of the system:

(9.34)

where vi is the velocity of the ith particle. Rearranging Equation 9.34 gives

(9.35)

Therefore, we conclude that the total linear momentum of the system equals
the total mass multiplied by the velocity of the center of mass. In other words, the
total linear momentum of the system is equal to that of a single particle of mass M
moving with a velocity vCM .

If we now differentiate Equation 9.34 with respect to time, we get the acceler-
ation of the center of mass of the system:

(9.36)

Rearranging this expression and using Newton’s second law, we obtain

(9.37)

where Fi is the net force on particle i.
The forces on any particle in the system may include both external forces

(from outside the system) and internal forces (from within the system). However,
by Newton’s third law, the internal force exerted by particle 1 on particle 2, for ex-
ample, is equal in magnitude and opposite in direction to the internal force ex-
erted by particle 2 on particle 1. Thus, when we sum over all internal forces in
Equation 9.37, they cancel in pairs and the net force on the system is caused only
by external forces. Thus, we can write Equation 9.37 in the form

(9.38)

That is, the resultant external force on a system of particles equals the total mass
of the system multiplied by the acceleration of the center of mass. If we compare
this with Newton’s second law for a single particle, we see that

�Fext � MaCM �
dptot

dt

MaCM � �
i

miai � �
i

Fi

aCM �
dvCM

dt
�

1
M

 �
i

mi 
dvi

dt
�

1
M

 �
i

 miai

MvCM � �
i

mivi � �
i

pi � ptot

vCM �
drCM

dt
�

1
M

 �
i

mi 
dri

dt
�

�
i
mivi

M

The center of mass of a system of particles of combined mass M moves like an
equivalent particle of mass M would move under the influence of the resultant
external force on the system.

Newton’s second law for a system
of particles

Acceleration of the center of mass

Total momentum of a system of
particles

Velocity of the center of mass

Finally, we see that if the resultant external force is zero, then from Equation
9.38 it follows that

dptot

dt
� MaCM � 0
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so that

(9.39)

That is, the total linear momentum of a system of particles is conserved if no net
external force is acting on the system. It follows that for an isolated system of parti-
cles, both the total momentum and the velocity of the center of mass are constant
in time, as shown in Figure 9.25. This is a generalization to a many-particle system
of the law of conservation of momentum discussed in Section 9.1 for a two-particle
system.

Suppose an isolated system consisting of two or more members is at rest. The
center of mass of such a system remains at rest unless acted upon by an external
force. For example, consider a system made up of a swimmer standing on a raft,
with the system initially at rest. When the swimmer dives horizontally off the raft,
the center of mass of the system remains at rest (if we neglect friction between raft
and water). Furthermore, the linear momentum of the diver is equal in magnitude
to that of the raft but opposite in direction.

As another example, suppose an unstable atom initially at rest suddenly breaks
up into two fragments of masses MA and MB , with velocities vA and vB , respectively.
Because the total momentum of the system before the breakup is zero, the total
momentum of the system after the breakup must also be zero. Therefore,

If the velocity of one of the fragments is known, the recoil ve-
locity of the other fragment can be calculated.
MAvA � MBvB � 0.

ptot � MvCM � constant  (when �Fext � 0)

The Sliding BearEXAMPLE 9.15
noting your location. Take off your spiked shoes and pull on
the rope hand over hand. Both you and the bear will slide
over the ice until you meet. From the tape, observe how far
you have slid, xp , and how far the bear has slid, xb . The point
where you meet the bear is the constant location of the cen-
ter of mass of the system (bear plus you), and so you can de-
termine the mass of the bear from (Unfortu-
nately, you cannot get back to your spiked shoes and so are in
big trouble if the bear wakes up!)

mbxb � mpxp .

Suppose you tranquilize a polar bear on a smooth glacier as
part of a research effort. How might you estimate the bear’s
mass using a measuring tape, a rope, and knowledge of your
own mass?

Solution Tie one end of the rope around the bear, and
then lay out the tape measure on the ice with one end at the
bear’s original position, as shown in Figure 9.26. Grab hold
of the free end of the rope and position yourself as shown,

Figure 9.25 Multiflash photograph showing an overhead view of a wrench moving on a hori-
zontal surface. The center of mass of the wrench moves in a straight line as the wrench rotates
about this point, shown by the white dots.
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Figure 9.26 The center of mass of an isolated system remains at rest unless acted on by an external
force. How can you determine the mass of the polar bear?

xp xb

CM

Exploding ProjectileCONCEPTUAL EXAMPLE 9.16
A projectile fired into the air suddenly explodes into several
fragments (Fig. 9.27). What can be said about the motion of

Motion
of center
of mass

the center of mass of the system made up of all the fragments
after the explosion?

Solution Neglecting air resistance, the only external force
on the projectile is the gravitational force. Thus, if the projec-
tile did not explode, it would continue to move along the
parabolic path indicated by the broken line in Figure 9.27.
Because the forces caused by the explosion are internal, they
do not affect the motion of the center of mass. Thus, after
the explosion the center of mass of the system (the frag-
ments) follows the same parabolic path the projectile would
have followed if there had been no explosion.

Figure 9.27 When a projectile explodes into several fragments,
the center of mass of the system made up of all the fragments follows
the same parabolic path the projectile would have taken had there
been no explosion.

The Exploding RocketEXAMPLE 9.17
Solution Let us call the total mass of the rocket M; hence,
the mass of each fragment is M/3. Because the forces of the
explosion are internal to the system and cannot affect its total
momentum, the total momentum pi of the rocket just before
the explosion must equal the total momentum pf of the frag-
ments right after the explosion.

A rocket is fired vertically upward. At the instant it reaches an
altitude of 1 000 m and a speed of 300 m/s, it explodes into
three equal fragments. One fragment continues to move up-
ward with a speed of 450 m/s following the explosion. The
second fragment has a speed of 240 m/s and is moving east
right after the explosion. What is the velocity of the third
fragment right after the explosion?
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Optional Section

ROCKET PROPULSION
When ordinary vehicles, such as automobiles and locomotives, are propelled, the
driving force for the motion is friction. In the case of the automobile, the driving
force is the force exerted by the road on the car. A locomotive “pushes” against the
tracks; hence, the driving force is the force exerted by the tracks on the locomo-
tive. However, a rocket moving in space has no road or tracks to push against.
Therefore, the source of the propulsion of a rocket must be something other than
friction. Figure 9.28 is a dramatic photograph of a spacecraft at liftoff. The opera-
tion of a rocket depends upon the law of conservation of linear momentum
as applied to a system of particles, where the system is the rocket plus its
ejected fuel.

Rocket propulsion can be understood by first considering the mechanical sys-
tem consisting of a machine gun mounted on a cart on wheels. As the gun is fired,

9.8

What does the sum of the momentum vectors for all the frag-
ments look like?

Exercise Find the position of the center of mass of the sys-
tem of fragments relative to the ground 3.00 s after the explo-
sion. Assume the rocket engine is nonoperative after the ex-
plosion.

Answer The x coordinate does not change; yCM � 1.86 km.

(�240i � 450j) m/svf �
Before the explosion:

After the explosion:

where vf is the unknown velocity of the third fragment.
Equating these two expressions (because pi � pf) gives

M
3

 vf � M(80 i) m/s � M(150 j) m/s � M(300 j) m/s

pf �
M
3

 (240 i) m/s �
M
3

 (450 j) m/s �
M
3

 vf

pi � Mvi � M(300 j) m/s

Figure 9.28 Liftoff of the space shuttle
Columbia. Enormous thrust is generated
by the shuttle’s liquid-fuel engines, aided
by the two solid-fuel boosters. Many physi-
cal principles from mechanics, thermody-
namics, and electricity and magnetism are
involved in such a launch.
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each bullet receives a momentum mv in some direction, where v is measured with
respect to a stationary Earth frame. The momentum of the system made up of cart,
gun, and bullets must be conserved. Hence, for each bullet fired, the gun and cart
must receive a compensating momentum in the opposite direction. That is, the re-
action force exerted by the bullet on the gun accelerates the cart and gun, and the
cart moves in the direction opposite that of the bullets. If n is the number of bul-
lets fired each second, then the average force exerted on the gun is Fav � nmv.

In a similar manner, as a rocket moves in free space, its linear momentum
changes when some of its mass is released in the form of ejected gases. Because
the gases are given momentum when they are ejected out of the engine, the
rocket receives a compensating momentum in the opposite direction. There-
fore, the rocket is accelerated as a result of the “push,” or thrust, from the exhaust
gases. In free space, the center of mass of the system (rocket plus expelled gases)
moves uniformly, independent of the propulsion process.5

Suppose that at some time t, the magnitude of the momentum of a rocket plus
its fuel is (M � 	m)v, where v is the speed of the rocket relative to the Earth (Fig.
9.29a). Over a short time interval 	t, the rocket ejects fuel of mass 	m, and so at
the end of this interval the rocket’s speed is where 	v is the change in
speed of the rocket (Fig. 9.29b). If the fuel is ejected with a speed ve relative to the
rocket (the subscript “e” stands for exhaust, and ve is usually called the exhaust
speed), the velocity of the fuel relative to a stationary frame of reference is 
Thus, if we equate the total initial momentum of the system to the total final mo-
mentum, we obtain

where M represents the mass of the rocket and its remaining fuel after an amount
of fuel having mass 	m has been ejected. Simplifying this expression gives

We also could have arrived at this result by considering the system in the cen-
ter-of-mass frame of reference, which is a frame having the same velocity as the
center of mass of the system. In this frame, the total momentum of the system is
zero; therefore, if the rocket gains a momentum M 	v by ejecting some fuel, the
exhausted fuel obtains a momentum ve 	m in the opposite direction, so that M 	v �
ve If we now take the limit as goes to zero, we get and

Futhermore, the increase in the exhaust mass dm corresponds to an
equal decrease in the rocket mass, so that Note that dM is given a neg-
ative sign because it represents a decrease in mass. Using this fact, we obtain

(9.40)

Integrating this equation and taking the initial mass of the rocket plus fuel to be
Mi and the final mass of the rocket plus its remaining fuel to be Mf , we obtain

(9.41)vf � vi � ve ln� Mi

Mf
�

�vf

vi

 dv � �ve �Mf

Mi

 
dM
M

M dv � ve dm � �ve dM

dm � �dM.
	m : dm.

	v : dv	t	m � 0.

M 	v � ve 	m

(M � 	m)v � M(v � 	v) � 	m(v � ve)

v � ve .

v � 	v,

Expression for rocket propulsion

5It is interesting to note that the rocket and machine gun represent cases of the reverse of a perfectly
inelastic collision: Momentum is conserved, but the kinetic energy of the system increases (at the ex-
pense of chemical potential energy in the fuel).

The force from a nitrogen-pro-
pelled, hand-controlled device al-
lows an astronaut to move about
freely in space without restrictive
tethers.

Figure 9.29 Rocket propulsion.
(a) The initial mass of the rocket
plus all its fuel is M � 	m at a time
t, and its speed is v. (b) At a time t
� 	t, the rocket’s mass has been re-
duced to M and an amount of fuel
	m has been ejected. The rocket’s
speed increases by an amount 	v.

(a)

(b)

M + ∆m

pi = (M + ∆m)v

M
∆m

v

v + ∆v
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This is the basic expression of rocket propulsion. First, it tells us that the increase in
rocket speed is proportional to the exhaust speed of the ejected gases, ve . Therefore,
the exhaust speed should be very high. Second, the increase in rocket speed is pro-
portional to the natural logarithm of the ratio Mi/Mf . Therefore, this ratio should
be as large as possible, which means that the mass of the rocket without its fuel
should be as small as possible and the rocket should carry as much fuel as possible.

The thrust on the rocket is the force exerted on it by the ejected exhaust
gases. We can obtain an expression for the thrust from Equation 9.40:

(9.42)

This expression shows us that the thrust increases as the exhaust speed increases
and as the rate of change of mass (called the burn rate) increases.

Thrust � M 
dv
dt

� �ve 
dM
dt �

Firefighters attack a burning house with a hose line.

A Rocket in SpaceEXAMPLE 9.18

(b) What is the thrust on the rocket if it burns fuel at the rate
of 50 kg/s?

Solution

2.5 � 105 N�

Thrust � �ve 
dM
dt � � (5.0 � 103 m/s)(50 kg/s)

6.5 � 103 m/s  �

 � 3.0 � 103 m/s � (5.0 � 103 m/s)ln� Mi

0.5 Mi
�A rocket moving in free space has a speed of 3.0 � 103 m/s

relative to the Earth. Its engines are turned on, and fuel is
ejected in a direction opposite the rocket’s motion at a speed
of 5.0 � 103 m/s relative to the rocket. (a) What is the speed
of the rocket relative to the Earth once the rocket’s mass is re-
duced to one-half its mass before ignition?

Solution We can guess that the speed we are looking for
must be greater than the original speed because the rocket is
accelerating. Applying Equation 9.41, we obtain

vf � vi � ve ln� Mi

Mf
� 

Fighting a FireEXAMPLE 9.19
their hands, the movement of the hose due to the thrust it re-
ceives from the rapidly exiting water could injure the fire-
fighters.

Two firefighters must apply a total force of 600 N to steady a
hose that is discharging water at 3 600 L/min. Estimate the
speed of the water as it exits the nozzle.

Solution The water is exiting at 3 600 L/min, which is 
60 L/s. Knowing that 1 L of water has a mass of 1 kg, we can
say that about 60 kg of water leaves the nozzle every second.
As the water leaves the hose, it exerts on the hose a thrust
that must be counteracted by the 600-N force exerted on the
hose by the firefighters. So, applying Equation 9.42 gives

Firefighting is dangerous work. If the nozzle should slip from

10 m/s  ve �

 600 N � � ve(60 kg/s) �

Thrust � �ve 
dM
dt � 
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SUMMARY

The linear momentum p of a particle of mass m moving with a velocity v is

(9.1)

The law of conservation of linear momentum indicates that the total mo-
mentum of an isolated system is conserved. If two particles form an isolated sys-
tem, their total momentum is conserved regardless of the nature of the force be-
tween them. Therefore, the total momentum of the system at all times equals its
initial total momentum, or

(9.5)

The impulse imparted to a particle by a force F is equal to the change in the
momentum of the particle:

(9.9)

This is known as the impulse–momentum theorem.
Impulsive forces are often very strong compared with other forces on the sys-

tem and usually act for a very short time, as in the case of collisions.
When two particles collide, the total momentum of the system before the colli-

sion always equals the total momentum after the collision, regardless of the nature
of the collision. An inelastic collision is one for which the total kinetic energy is
not conserved. A perfectly inelastic collision is one in which the colliding bodies
stick together after the collision. An elastic collision is one in which kinetic en-
ergy is constant.

In a two- or three-dimensional collision, the components of momentum in
each of the three directions (x, y, and z) are conserved independently.

The position vector of the center of mass of a system of particles is defined as

(9.30)

where is the total mass of the system and ri is the position vector of the
ith particle.

The position vector of the center of mass of a rigid body can be obtained from
the integral expression

(9.33)

The velocity of the center of mass for a system of particles is

(9.34)

The total momentum of a system of particles equals the total mass multiplied
by the velocity of the center of mass.

Newton’s second law applied to a system of particles is

(9.38)

where aCM is the acceleration of the center of mass and the sum is over all external
forces. The center of mass moves like an imaginary particle of mass M under the

�Fext � MaCM �
dptot

dt

vCM �
�
i
mi vi

M

rCM �
1
M

 �r dm

M � �
i
mi

rCM �
�
i
miri

M

I � �tf

ti
 F dt � 	p

p1i � p2i � p1f � p2f

p � mv
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influence of the resultant external force on the system. It follows from Equation
9.38 that the total momentum of the system is conserved if there are no external
forces acting on it.

QUESTIONS

17. Early in this century, Robert Goddard proposed sending a
rocket to the Moon. Critics took the position that in a vac-
uum, such as exists between the Earth and the Moon, the
gases emitted by the rocket would have nothing to push
against to propel the rocket. According to Scientific Ameri-
can ( January 1975), Goddard placed a gun in a vacuum
and fired a blank cartridge from it. (A blank cartridge
fires only the wadding and hot gases of the burning gun-
powder.) What happened when the gun was fired?

18. A pole-vaulter falls from a height of 6.0 m onto a foam
rubber pad. Can you calculate his speed just before he
reaches the pad? Can you estimate the force exerted on
him due to the collision? Explain.

19. Explain how you would use a balloon to demonstrate the
mechanism responsible for rocket propulsion.

20. Does the center of mass of a rocket in free space acceler-
ate? Explain. Can the speed of a rocket exceed the ex-
haust speed of the fuel? Explain.

21. A ball is dropped from a tall building. Identify the system
for which linear momentum is conserved.

22. A bomb, initially at rest, explodes into several pieces. 
(a) Is linear momentum conserved? (b) Is kinetic energy
conserved? Explain.

23. NASA often uses the gravity of a planet to “slingshot” a
probe on its way to a more distant planet. This is actually
a collision where the two objects do not touch. How can
the probe have its speed increased in this manner?

24. The Moon revolves around the Earth. Is the Moon’s lin-
ear momentum conserved? Is its kinetic energy con-
served? Assume that the Moon’s orbit is circular.

25. A raw egg dropped to the floor breaks apart upon impact.
However, a raw egg dropped onto a thick foam rubber
cushion from a height of about 1 m rebounds without
breaking. Why is this possible? (If you try this experi-
ment, be sure to catch the egg after the first bounce.)

26. On the subject of the following positions, state your own
view and argue to support it: (a) The best theory of mo-
tion is that force causes acceleration. (b) The true mea-
sure of a force’s effectiveness is the work it does, and the
best theory of motion is that work on an object changes
its energy. (c) The true measure of a force’s effect is im-
pulse, and the best theory of motion is that impulse 
injected into an object changes its momentum.

1. If the kinetic energy of a particle is zero, what is its linear
momentum? 

2. If the speed of a particle is doubled, by what factor is its
momentum changed? By what factor is its kinetic energy
changed?

3. If two particles have equal kinetic energies, are their mo-
menta necessarily equal? Explain.

4. If two particles have equal momenta, are their kinetic en-
ergies necessarily equal? Explain.

5. An isolated system is initially at rest. Is it possible for parts
of the system to be in motion at some later time? If so, ex-
plain how this might occur.

6. If two objects collide and one is initially at rest, is it possi-
ble for both to be at rest after the collision? Is it possible
for one to be at rest after the collision? Explain.

7. Explain how linear momentum is conserved when a ball
bounces from a floor.

8. Is it possible to have a collision in which all of the kinetic
energy is lost? If so, cite an example.

9. In a perfectly elastic collision between two particles, does
the kinetic energy of each particle change as a result of
the collision?

10. When a ball rolls down an incline, its linear momentum
increases. Does this imply that momentum is not con-
served? Explain.

11. Consider a perfectly inelastic collision between a car and
a large truck. Which vehicle loses more kinetic energy as
a result of the collision?

12. Can the center of mass of a body lie outside the body? If
so, give examples.

13. Three balls are thrown into the air simultaneously. What
is the acceleration of their center of mass while they are
in motion?

14. A meter stick is balanced in a horizontal position with the
index fingers of the right and left hands. If the two fin-
gers are slowly brought together, the stick remains bal-
anced and the two fingers always meet at the 50-cm mark
regardless of their original positions (try it!). Explain.

15. A sharpshooter fires a rifle while standing with the butt of
the gun against his shoulder. If the forward momentum
of a bullet is the same as the backward momentum of the
gun, why is it not as dangerous to be hit by the gun as by
the bullet?

16. A piece of mud is thrown against a brick wall and sticks to
the wall. What happens to the momentum of the mud? Is
momentum conserved? Explain.
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PROBLEMS

7. (a) A particle of mass m moves with momentum p. Show
that the kinetic energy of the particle is given by K �
p2/2m. (b) Express the magnitude of the particle’s mo-
mentum in terms of its kinetic energy and mass.

Section 9.2 Impulse and Momentum
8. A car is stopped for a traffic signal. When the light turns

green, the car accelerates, increasing its speed from
zero to 5.20 m/s in 0.832 s. What linear impulse and av-
erage force does a 70.0-kg passenger in the car experi-
ence?

9. An estimated force–time curve for a baseball struck by
a bat is shown in Figure P9.9. From this curve, deter-
mine (a) the impulse delivered to the ball, (b) the aver-
age force exerted on the ball, and (c) the peak force ex-
erted on the ball.

Section 9.1 Linear Momentum and Its Conservation
1. A 3.00-kg particle has a velocity of (3.00i � 4.00j) m/s.

(a) Find its x and y components of momentum. 
(b) Find the magnitude and direction of its momentum.

2. A 0.100-kg ball is thrown straight up into the air with an
initial speed of 15.0 m/s. Find the momentum of the
ball (a) at its maximum height and (b) halfway up to its
maximum height.

3. A 40.0-kg child standing on a frozen pond throws a
0.500-kg stone to the east with a speed of 5.00 m/s. Ne-
glecting friction between child and ice, find the recoil
velocity of the child.

4. A pitcher claims he can throw a baseball with as much
momentum as a 3.00-g bullet moving with a speed of 
1 500 m/s. A baseball has a mass of 0.145 kg. What must
be its speed if the pitcher’s claim is valid?

5. How fast can you set the Earth moving? In particular,
when you jump straight up as high as you can, you give
the Earth a maximum recoil speed of what order of
magnitude? Model the Earth as a perfectly solid object.
In your solution, state the physical quantities you take as
data and the values you measure or estimate for them.

6. Two blocks of masses M and 3M are placed on a hori-
zontal, frictionless surface. A light spring is attached to
one of them, and the blocks are pushed together with
the spring between them (Fig. P9.6). A cord initially
holding the blocks together is burned; after this, the
block of mass 3M moves to the right with a speed of
2.00 m/s. (a) What is the speed of the block of mass M ?
(b) Find the original elastic energy in the spring if M �
0.350 kg.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

10. A tennis player receives a shot with the ball (0.060 0 kg)
traveling horizontally at 50.0 m/s and returns the shot
with the ball traveling horizontally at 40.0 m/s in the
opposite direction. (a) What is the impulse delivered to
the ball by the racket? (b) What work does the racket
do on the ball?

11. A 3.00-kg steel ball strikes a wall with a speed of 
10.0 m/s at an angle of 60.0° with the surface. It
bounces off with the same speed and angle (Fig. P9.11).
If the ball is in contact with the wall for 0.200 s, what is
the average force exerted on the ball by the wall?

12. In a slow-pitch softball game, a 0.200-kg softball crossed
the plate at 15.0 m/s at an angle of 45.0° below the hor-
izontal. The ball was hit at 40.0 m/s, 30.0° above the
horizontal. (a) Determine the impulse delivered to the
ball. (b) If the force on the ball increased linearly for
4.00 ms, held constant for 20.0 ms, and then decreased
to zero linearly in another 4.00 ms, what was the maxi-
mum force on the ball?

Before

(a)

After

(b)

M

v 2.00 m/s

M 3M

3M

Figure P9.9

Figure P9.6

20 000

15 000

10 000

5 000

0 1 2 3
t(ms)

F(N)
F  =  18 000 N

WEB
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19. A 45.0-kg girl is standing on a plank that has a mass of
150 kg. The plank, originally at rest, is free to slide on a
frozen lake, which is a flat, frictionless supporting sur-
face. The girl begins to walk along the plank at a con-
stant speed of 1.50 m/s relative to the plank. (a) What
is her speed relative to the ice surface? (b) What is the
speed of the plank relative to the ice surface?

20. Gayle runs at a speed of 4.00 m/s and dives on a sled,
which is initially at rest on the top of a frictionless snow-
covered hill. After she has descended a vertical distance
of 5.00 m, her brother, who is initially at rest, hops on
her back and together they continue down the hill.
What is their speed at the bottom of the hill if the total
vertical drop is 15.0 m? Gayle’s mass is 50.0 kg, the sled
has a mass of 5.00 kg and her brother has a mass of 
30.0 kg.

21. A 1 200-kg car traveling initially with a speed of 
25.0 m/s in an easterly direction crashes into the rear
end of a 9 000-kg truck moving in the same direction at
20.0 m/s (Fig. P9.21). The velocity of the car right after
the collision is 18.0 m/s to the east. (a) What is the ve-
locity of the truck right after the collision? (b) How
much mechanical energy is lost in the collision? Ac-
count for this loss in energy.

22. A railroad car of mass 2.50 � 104 kg is moving with a
speed of 4.00 m/s. It collides and couples with three
other coupled railroad cars, each of the same mass as
the single car and moving in the same direction with an
initial speed of 2.00 m/s. (a) What is the speed of the
four cars after the collision? (b) How much energy is
lost in the collision?

inside the block. The speed of the bullet-plus-wood
combination immediately after the collision is measured
as 0.600 m/s. What was the original speed of the bullet?

18. As shown in Figure P9.18, a bullet of mass m and speed
v passes completely through a pendulum bob of mass
M. The bullet emerges with a speed of v/2. The pendu-
lum bob is suspended by a stiff rod of length � and neg-
ligible mass. What is the minimum value of v such that
the pendulum bob will barely swing through a complete
vertical circle?

14. A professional diver performs a dive from a platform 
10 m above the water surface. Estimate the order of
magnitude of the average impact force she experiences
in her collision with the water. State the quantities you
take as data and their values.

Section 9.3 Collisions
Section 9.4 Elastic and Inelastic Collisions 
in One Dimension

15. High-speed stroboscopic photographs show that the
head of a golf club of mass 200 g is traveling at 55.0 m/s
just before it strikes a 46.0-g golf ball at rest on a tee. Af-
ter the collision, the club head travels (in the same di-
rection) at 40.0 m/s. Find the speed of the golf ball just
after impact.

16. A 75.0-kg ice skater, moving at 10.0 m/s, crashes into a
stationary skater of equal mass. After the collision, the
two skaters move as a unit at 5.00 m/s. Suppose the av-
erage force a skater can experience without breaking a
bone is 4 500 N. If the impact time is 0.100 s, does a
bone break?

17. A 10.0-g bullet is fired into a stationary block of wood
(m � 5.00 kg). The relative motion of the bullet stops

13. A garden hose is held in the manner shown in Figure
P9.13. The hose is initially full of motionless water.
What additional force is necessary to hold the nozzle
stationary after the water is turned on if the discharge
rate is 0.600 kg/s with a speed of 25.0 m/s?

Figure P9.18

Figure P9.13

Figure P9.11

60.0˚

x

y

60.0˚

M

�

m

v v/2
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23. Four railroad cars, each of mass 2.50 � 104 kg, are cou-
pled together and coasting along horizontal tracks at a
speed of vi toward the south. A very strong but foolish
movie actor, riding on the second car, uncouples the
front car and gives it a big push, increasing its speed to
4.00 m/s southward. The remaining three cars continue
moving toward the south, now at 2.00 m/s. (a) Find the
initial speed of the cars. (b) How much work did the ac-
tor do? (c) State the relationship between the process
described here and the process in Problem 22.

24. A 7.00-kg bowling ball collides head-on with a 2.00-kg
bowling pin. The pin flies forward with a speed of 
3.00 m/s. If the ball continues forward with a speed of
1.80 m/s, what was the initial speed of the ball? Ignore
rotation of the ball.

25. A neutron in a reactor makes an elastic head-on colli-
sion with the nucleus of a carbon atom initially at rest.
(a) What fraction of the neutron’s kinetic energy is
transferred to the carbon nucleus? (b) If the initial ki-
netic energy of the neutron is 1.60 � 10�13 J, find its fi-
nal kinetic energy and the kinetic energy of the carbon
nucleus after the collision. (The mass of the carbon nu-
cleus is about 12.0 times greater than the mass of the
neutron.)

26. Consider a frictionless track ABC as shown in Figure
P9.26. A block of mass m1 � 5.00 kg is released from A.
It makes a head-on elastic collision at B with a block of
mass m 2 � 10.0 kg that is initially at rest. Calculate the
maximum height to which m 1 rises after the collision.

0.650, what was the speed of the bullet immediately be-
fore impact?

28. A 7.00-g bullet, when fired from a gun into a 1.00-kg
block of wood held in a vise, would penetrate the block
to a depth of 8.00 cm. This block of wood is placed on a
frictionless horizontal surface, and a 7.00-g bullet is
fired from the gun into the block. To what depth will
the bullet penetrate the block in this case?

Section 9.5 Two-Dimensional Collisions
29. A 90.0-kg fullback running east with a speed of 5.00 m/s

is tackled by a 95.0-kg opponent running north with a
speed of 3.00 m/s. If the collision is perfectly inelastic,
(a) calculate the speed and direction of the players just
after the tackle and (b) determine the energy lost as a
result of the collision. Account for the missing energy.

30. The mass of the blue puck in Figure P9.30 is 20.0%
greater than the mass of the green one. Before collid-
ing, the pucks approach each other with equal and op-
posite momenta, and the green puck has an initial
speed of 10.0 m/s. Find the speeds of the pucks after
the collision if half the kinetic energy is lost during the
collision.

WEB

31. Two automobiles of equal mass approach an intersec-
tion. One vehicle is traveling with velocity 13.0 m/s to-
ward the east and the other is traveling north with a
speed of v2i . Neither driver sees the other. The vehicles
collide in the intersection and stick together, leaving
parallel skid marks at an angle of 55.0° north of east.
The speed limit for both roads is 35 mi/h, and the dri-
ver of the northward-moving vehicle claims he was
within the speed limit when the collision occurred. Is
he telling the truth?

27. A 12.0-g bullet is fired into a 100-g wooden block ini-
tially at rest on a horizontal surface. After impact, the
block slides 7.50 m before coming to rest. If the coeffi-
cient of friction between the block and the surface is

Figure P9.30

Figure P9.26

Figure P9.21
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32. A proton, moving with a velocity of vii, collides elasti-
cally with another proton that is initially at rest. If the
two protons have equal speeds after the collision, find
(a) the speed of each proton after the collision in terms
of vi and (b) the direction of the velocity vectors after
the collision.

33. A billiard ball moving at 5.00 m/s strikes a stationary
ball of the same mass. After the collision, the first ball
moves at 4.33 m/s and at an angle of 30.0° with respect
to the original line of motion. Assuming an elastic colli-
sion (and ignoring friction and rotational motion), find
the struck ball’s velocity.

34. A 0.300-kg puck, initially at rest on a horizontal, fric-
tionless surface, is struck by a 0.200-kg puck moving ini-
tially along the x axis with a speed of 2.00 m/s. After the
collision, the 0.200-kg puck has a speed of 1.00 m/s at
an angle of 
 � 53.0° to the positive x axis (see Fig.
9.14). (a) Determine the velocity of the 0.300-kg puck
after the collision. (b) Find the fraction of kinetic en-
ergy lost in the collision.

35. A 3.00-kg mass with an initial velocity of 5.00i m/s col-
lides with and sticks to a 2.00-kg mass with an initial ve-
locity of � 3.00j m/s. Find the final velocity of the com-
posite mass.

36. Two shuffleboard disks of equal mass, one orange and
the other yellow, are involved in an elastic, glancing col-
lision. The yellow disk is initially at rest and is struck by
the orange disk moving with a speed of 5.00 m/s. After
the collision, the orange disk moves along a direction
that makes an angle of 37.0° with its initial direction of
motion, and the velocity of the yellow disk is perpendic-
ular to that of the orange disk (after the collision). De-
termine the final speed of each disk.

37. Two shuffleboard disks of equal mass, one orange and
the other yellow, are involved in an elastic, glancing col-
lision. The yellow disk is initially at rest and is struck by
the orange disk moving with a speed vi . After the colli-
sion, the orange disk moves along a direction that
makes an angle 
 with its initial direction of motion,
and the velocity of the yellow disk is perpendicular to
that of the orange disk (after the collision). Determine
the final speed of each disk.

38. During the battle of Gettysburg, the gunfire was so in-
tense that several bullets collided in midair and fused
together. Assume a 5.00-g Union musket ball was mov-
ing to the right at a speed of 250 m/s, 20.0° above the
horizontal, and that a 3.00-g Confederate ball was mov-
ing to the left at a speed of 280 m/s, 15.0° above the
horizontal. Immediately after they fuse together, what is
their velocity?

39. An unstable nucleus of mass 17.0 � 10�27 kg initially at
rest disintegrates into three particles. One of the parti-
cles, of mass 5.00 � 10�27 kg, moves along the y axis
with a velocity of 6.00 � 106 m/s. Another particle, of
mass 8.40 � 10�27 kg, moves along the x axis with a
speed of 4.00 � 106 m/s. Find (a) the velocity of the

third particle and (b) the total kinetic energy increase
in the process.

Section 9.6 The Center of Mass
40. Four objects are situated along the y axis as follows: A

2.00-kg object is at � 3.00 m, a 3.00-kg object is at
� 2.50 m, a 2.50-kg object is at the origin, and a 4.00-kg
object is at � 0.500 m. Where is the center of mass of
these objects?

41. A uniform piece of sheet steel is shaped as shown in Fig-
ure P9.41. Compute the x and y coordinates of the cen-
ter of mass of the piece.

WEB

42. The mass of the Earth is 5.98 � 1024 kg, and the mass of
the Moon is 7.36 � 1022 kg. The distance of separation,
measured between their centers, is 3.84 � 108 m. Lo-
cate the center of mass of the Earth–Moon system as
measured from the center of the Earth.

43. A water molecule consists of an oxygen atom with two
hydrogen atoms bound to it (Fig. P9.43). The angle be-
tween the two bonds is 106°. If the bonds are 0.100 nm
long, where is the center of mass of the molecule?

Figure P9.43

Figure P9.41
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44. A 0.400-kg mass m1 has position r1 � 12.0j cm. A 0.800-
kg mass m2 has position r2 � � 12.0i cm. Another
0.800-kg mass m3 has position r3 � (12.0i � 12.0j) cm.
Make a drawing of the masses. Start from the origin
and, to the scale 1 cm � 1 kg� cm, construct the vector
m1r1 , then the vector m1r1 � m2r2 , then the vector m1r1
� m2r2 � m3r3 , and at last rCM � (m1r1 � m2r2 �
m3r3)/(m1 � m2 � m3). Observe that the head of the
vector rCM indicates the position of the center of mass.

45. A rod of length 30.0 cm has linear density (mass-per-
length) given by

where x is the distance from one end, measured in me-
ters. (a) What is the mass of the rod? (b) How far from
the x � 0 end is its center of mass?

Section 9.7 Motion of a System of Particles
46. Consider a system of two particles in the xy plane: 

m1 � 2.00 kg is at r1 � (1.00i � 2.00j) m and has ve-
locity (3.00i � 0.500j) m/s; m2 � 3.00 kg is at r2 �
(� 4.00i � 3.00j) m and has velocity (3.00i � 2.00j) m/s.
(a) Plot these particles on a grid or graph paper. Draw
their position vectors and show their velocities. (b) Find
the position of the center of mass of the system and mark
it on the grid. (c) Determine the velocity of the center of
mass and also show it on the diagram. (d) What is the to-
tal linear momentum of the system?

47. Romeo (77.0 kg) entertains Juliet (55.0 kg) by playing
his guitar from the rear of their boat at rest in still wa-
ter, 2.70 m away from Juliet who is in the front of the
boat. After the serenade, Juliet carefully moves to the
rear of the boat (away from shore) to plant a kiss on
Romeo’s cheek. How far does the 80.0-kg boat move to-
ward the shore it is facing?

48. Two masses, 0.600 kg and 0.300 kg, begin uniform mo-
tion at the same speed, 0.800 m/s, from the origin at 
t � 0 and travel in the directions shown in Figure P9.48.
(a) Find the velocity of the center of mass in unit–
vector notation. (b) Find the magnitude and direction

� � 50.0 g/m � 20.0x g/m2

of the velocity of the center of mass. (c) Write the posi-
tion vector of the center of mass as a function of time.

49. A 2.00-kg particle has a velocity of (2.00i � 3.00j) m/s,
and a 3.00-kg particle has a velocity of (1.00i � 6.00j)
m/s. Find (a) the velocity of the center of mass and 
(b) the total momentum of the system.

50. A ball of mass 0.200 kg has a velocity of 1.50i m/s; a ball
of mass 0.300 kg has a velocity of � 0.400i m/s. They
meet in a head-on elastic collision. (a) Find their veloci-
ties after the collision. (b) Find the velocity of their cen-
ter of mass before and after the collision.

(Optional)
Section 9.8 Rocket Propulsion

51. The first stage of a Saturn V space vehicle consumes
fuel and oxidizer at the rate of 1.50 � 104 kg/s, with an
exhaust speed of 2.60 � 103 m/s. (a) Calculate the
thrust produced by these engines. (b) Find the initial
acceleration of the vehicle on the launch pad if its ini-
tial mass is 3.00 � 106 kg. [Hint: You must include the
force of gravity to solve part (b).]

52. A large rocket with an exhaust speed of ve � 3 000 m/s
develops a thrust of 24.0 million newtons. (a) How
much mass is being blasted out of the rocket exhaust
per second? (b) What is the maximum speed the rocket
can attain if it starts from rest in a force-free environ-
ment with ve � 3.00 km/s and if 90.0% of its initial mass
is fuel and oxidizer?

53. A rocket for use in deep space is to have the capability
of boosting a total load (payload plus rocket frame and
engine) of 3.00 metric tons to a speed of 10 000 m/s.
(a) It has an engine and fuel designed to produce an
exhaust speed of 2 000 m/s. How much fuel plus oxi-
dizer is required? (b) If a different fuel and engine de-
sign could give an exhaust speed of 5 000 m/s, what
amount of fuel and oxidizer would be required for the
same task?

54. A rocket car has a mass of 2 000 kg unfueled and a mass
of 5 000 kg when completely fueled. The exhaust veloc-
ity is 2 500 m/s. (a) Calculate the amount of fuel used
to accelerate the completely fueled car from rest to 
225 m/s (about 500 mi/h). (b) If the burn rate is con-
stant at 30.0 kg/s, calculate the time it takes the car to
reach this speed. Neglect friction and air resistance.

ADDITIONAL PROBLEMS

55. Review Problem. A 60.0-kg person running at an ini-
tial speed of 4.00 m/s jumps onto a 120-kg cart initially
at rest (Fig. P9.55). The person slides on the cart’s top
surface and finally comes to rest relative to the cart. The
coefficient of kinetic friction between the person and
the cart is 0.400. Friction between the cart and ground
can be neglected. (a) Find the final velocity of the per-
son and cart relative to the ground. (b) Find the fric-
tional force acting on the person while he is slidingFigure P9.48

0.600 kg 0.300 kg

45.0° 45.0°

y

x

WEB
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across the top surface of the cart. (c) How long does
the frictional force act on the person? (d) Find the
change in momentum of the person and the change in
momentum of the cart. (e) Determine the displace-
ment of the person relative to the ground while he is
sliding on the cart. (f) Determine the displacement of
the cart relative to the ground while the person is slid-
ing. (g) Find the change in kinetic energy of the per-
son. (h) Find the change in kinetic energy of the cart.
(i) Explain why the answers to parts (g) and (h) differ.
(What kind of collision is this, and what accounts for
the loss of mechanical energy?)

58. A bullet of mass m is fired into a block of mass M that is
initially at rest at the edge of a frictionless table of
height h (see Fig. P9.57). The bullet remains in the
block, and after impact the block lands a distance d
from the bottom of the table. Determine the initial
speed of the bullet.

59. An 80.0-kg astronaut is working on the engines of his
ship, which is drifting through space with a constant ve-
locity. The astronaut, wishing to get a better view of the
Universe, pushes against the ship and much later finds
himself 30.0 m behind the ship and at rest with respect
to it. Without a thruster, the only way to return to the
ship is to throw his 0.500-kg wrench directly away from
the ship. If he throws the wrench with a speed of 
20.0 m/s relative to the ship, how long does it take the
astronaut to reach the ship?

60. A small block of mass m1 � 0.500 kg is released from
rest at the top of a curve-shaped frictionless wedge of
mass m2 � 3.00 kg, which sits on a frictionless horizon-
tal surface, as shown in Figure P9.60a. When the block
leaves the wedge, its velocity is measured to be 4.00 m/s
to the right, as in Figure P9.60b. (a) What is the velocity
of the wedge after the block reaches the horizontal sur-
face? (b) What is the height h of the wedge?

56. A golf ball (m � 46.0 g) is struck a blow that makes an
angle of 45.0° with the horizontal. The ball lands 200 m
away on a flat fairway. If the golf club and ball are in
contact for 7.00 ms, what is the average force of impact?
(Neglect air resistance.)

57. An 8.00-g bullet is fired into a 2.50-kg block that is ini-
tially at rest at the edge of a frictionless table of height
1.00 m (Fig. P9.57). The bullet remains in the block,
and after impact the block lands 2.00 m from the bot-
tom of the table. Determine the initial speed of the
bullet. Figure P9.60

Figure P9.57 Problems 57 and 58.

Figure P9.55

60.0 kg 4.00 m/s

120 kg

1.00 m

8.00 g
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2.00 m
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(a)
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61. Tarzan, whose mass is 80.0 kg, swings from a 3.00-m vine
that is horizontal when he starts. At the bottom of his
arc, he picks up 60.0-kg Jane in a perfectly inelastic col-
lision. What is the height of the highest tree limb they
can reach on their upward swing?

62. A jet aircraft is traveling at 500 mi/h (223 m/s) in hori-
zontal flight. The engine takes in air at a rate of 
80.0 kg/s and burns fuel at a rate of 3.00 kg/s. If the ex-
haust gases are ejected at 600 m/s relative to the air-
craft, find the thrust of the jet engine and the delivered
horsepower.

63. A 75.0-kg firefighter slides down a pole while a constant
frictional force of 300 N retards her motion. A horizon-
tal 20.0-kg platform is supported by a spring at the bot-
tom of the pole to cushion the fall. The firefighter starts
from rest 4.00 m above the platform, and the spring
constant is 4 000 N/m. Find (a) the firefighter’s speed
just before she collides with the platform and (b) the
maximum distance the spring is compressed. (Assume
the frictional force acts during the entire motion.)

64. A cannon is rigidly attached to a carriage, which can
move along horizontal rails but is connected to a post
by a large spring, initially unstretched and with force
constant , as shown in Figure
P9.64. The cannon fires a 200-kg projectile at a velocity
of 125 m/s directed 45.0° above the horizontal. (a) If
the mass of the cannon and its carriage is 5 000 kg, find
the recoil speed of the cannon. (b) Determine the max-
imum extension of the spring. (c) Find the maximum
force the spring exerts on the carriage. (d) Consider
the system consisting of the cannon, carriage, and shell.
Is the momentum of this system conserved during the
firing? Why or why not?

k � 2.00 � 104 N/m

66. Two gliders are set in motion on an air track. A spring
of force constant k is attached to the near side of one
glider. The first glider of mass m1 has a velocity of v1 ,
and the second glider of mass m2 has a velocity of v2 , as
shown in Figure P9.66 (v1 � v2). When m1 collides with
the spring attached to m2 and compresses the spring to
its maximum compression xm , the velocity of the gliders
is v. In terms of v1 , v2 , m1 , m2 , and k, find (a) the veloc-
ity v at maximum compression, (b) the maximum com-
pression xm , and (c) the velocities of each glider after
m1 has lost contact with the spring.

Figure P9.66

Figure P9.65

Figure P9.64

67. Sand from a stationary hopper falls onto a moving con-
veyor belt at the rate of 5.00 kg/s, as shown in Figure
P9.67. The conveyor belt is supported by frictionless
rollers and moves at a constant speed of 0.750 m/s un-
der the action of a constant horizontal external force
Fext supplied by the motor that drives the belt. Find 
(a) the sand’s rate of change of momentum in the hori-
zontal direction, (b) the force of friction exerted by the
belt on the sand, (c) the external force Fext, (d) the
work done by Fext in 1 s, and (e) the kinetic energy ac-
quired by the falling sand each second due to the
change in its horizontal motion. (f) Why are the an-
swers to parts (d) and (e) different?

65. A chain of length L and total mass M is released from
rest with its lower end just touching the top of a table,
as shown in Figure P9.65a. Find the force exerted by the
table on the chain after the chain has fallen through a
distance x, as shown in Figure P9.65b. (Assume each
link comes to rest the instant it reaches the table.)

45.0°

L – x

x

L

(a) (b)

v 1

v 2

m 1

m 2
k
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tween the boat and the water, (a) describe the subse-
quent motion of the system (child plus boat). (b) Where
is the child relative to the pier when he reaches the far end
of the boat? (c) Will he catch the turtle? (Assume he can
reach out 1.00 m from the end of the boat.)

70. A student performs a ballistic pendulum experiment,
using an apparatus similar to that shown in Figure
9.11b. She obtains the following average data: h �
8.68 cm, m1 � 68.8 g, and m2 � 263 g. The symbols re-
fer to the quantities in Figure 9.11a. (a) Determine the
initial speed v1i of the projectile. (b) In the second part
of her experiment she is to obtain v1i by firing the same
projectile horizontally (with the pendulum removed
from the path) and measuring its horizontal displace-
ment x and vertical displacement y (Fig. P9.70). Show
that the initial speed of the projectile is related to x and
y through the relationship

What numerical value does she obtain for v1i on the ba-
sis of her measured values of x � 257 cm and y �
85.3 cm? What factors might account for the difference
in this value compared with that obtained in part (a)?

v1i �
x

√2y/g

68. A rocket has total mass Mi � 360 kg, including 330 kg
of fuel and oxidizer. In interstellar space it starts from
rest, turns on its engine at time t � 0, and puts out ex-
haust with a relative speed of ve � 1 500 m/s at the con-
stant rate k � 2.50 kg/s. Although the fuel will last for
an actual burn time of 330 kg/(2.5 kg/s) � 132 s, de-
fine a “projected depletion time” as Tp � Mi/k �
360 kg/(2.5 kg/s) � 144 s. (This would be the burn
time if the rocket could use its payload, fuel tanks, and
even the walls of the combustion chamber as fuel.) 
(a) Show that during the burn the velocity of the rocket
is given as a function of time by

(b) Make a graph of the velocity of the rocket as a func-
tion of time for times running from 0 to 132 s. (c) Show
that the acceleration of the rocket is

(d) Graph the acceleration as a function of time. 
(e) Show that the displacement of the rocket from its
initial position at t  � 0 is

(f) Graph the displacement during the burn.
69. A 40.0-kg child stands at one end of a 70.0-kg boat that

is 4.00 m in length (Fig. P9.69). The boat is initially
3.00 m from the pier. The child notices a turtle on a
rock near the far end of the boat and proceeds to walk
to that end to catch the turtle. Neglecting friction be-

x(t) � ve(Tp � t)ln(1 � t/Tp) � ve t

a(t) � ve/(Tp � t)

v(t) � �ve ln(1 � t/Tp)

Figure P9.70

Figure P9.69

Figure P9.67

0.750 m/s

Fext

4.00 m
3.00 m

y

v1i

x

71. A 5.00-g bullet moving with an initial speed of 400 m/s
is fired into and passes through a 1.00-kg block, as
shown in Figure P9.71. The block, initially at rest on a
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ANSWERS TO QUICK QUIZZES

ball is hardest to catch when it has the same speed as the
baseball.

9.3 (c) and (e). Object 2 has a greater acceleration because
of its smaller mass. Therefore, it takes less time to travel
the distance d. Thus, even though the force applied to
objects 1 and 2 is the same, the change in momentum is
less for object 2 because 	t is smaller. Therefore, be-
cause the initial momenta were the same (both zero), 
p 1 � p 2 . The work W � Fd done on both objects is the
same because both F and d are the same in the two
cases. Therefore, K1 � K2 .

9.4 Because the passenger is brought from the car’s initial
speed to a full stop, the change in momentum (the im-
pulse) is the same regardless of whether the passenger is
stopped by dashboard, seatbelt, or airbag. However, the
dashboard stops the passenger very quickly in a front-
end collision. The seatbelt takes somewhat more time.
Used along with the seatbelt, the airbag can extend the
passenger’s stopping time further, notably for his head,
which would otherwise snap forward. Therefore, the

9.1 (d). Two identical objects (m1 � m2) traveling in the
same direction at the same speed (v1 � v2) have the
same kinetic energies and the same momenta. However,
this is not true if the two objects are moving at the same
speed but in different directions. In the latter case, K1 �
K2 , but the differing velocity directions indicate that

because momentum is a vector quantity.
It also is possible for particular combinations of

masses and velocities to satisfy K1 � K2 but not p 1 � p 2 .
For example, a 1-kg object moving at 2 m/s has the
same kinetic energy as a 4-kg object moving at 1 m/s,
but the two clearly do not have the same momenta.

9.2 (b), (c), (a). The slower the ball, the easier it is to catch.
If the momentum of the medicine ball is the same as the
momentum of the baseball, the speed of the medicine
ball must be 1/10 the speed of the baseball because the
medicine ball has 10 times the mass. If the kinetic ener-
gies are the same, the speed of the medicine ball must
be the speed of the baseball because of the
squared speed term in the formula for K. The medicine

1/√10

p1 � p 2

Figure P9.71

72. Two masses m and 3m are moving toward each other
along the x axis with the same initial speeds vi . Mass m is
traveling to the left, while mass 3m is traveling to the
right. They undergo a head-on elastic collision and
each rebounds along the same line as it approached.
Find the final speeds of the masses.

73. Two masses m and 3m are moving toward each other
along the x axis with the same initial speeds vi . Mass m is
traveling to the left, while mass 3m is traveling to the
right. They undergo an elastic glancing collision such

frictionless, horizontal surface, is connected to a spring
of force constant 900 N/m. If the block moves 5.00 cm
to the right after impact, find (a) the speed at which the
bullet emerges from the block and (b) the energy lost
in the collision.

v5.00 cm

400 m/s

that mass m is moving downward after the collision at
right angles from its initial direction. (a) Find the final
speeds of the two masses. (b) What is the angle 
 at
which the mass 3m is scattered?

74. Review Problem. There are (one can say) three co-
equal theories of motion: Newton’s second law, stating
that the total force on an object causes its acceleration;
the work–kinetic energy theorem, stating that the total
work on an object causes its change in kinetic energy;
and the impulse–momentum theorem, stating that the
total impulse on an object causes its change in momen-
tum. In this problem, you compare predictions of the
three theories in one particular case. A 3.00-kg object
has a velocity of 7.00j m/s. Then, a total force 12.0i N
acts on the object for 5.00 s. (a) Calculate the object’s fi-
nal velocity, using the impulse–momentum theorem.
(b) Calculate its acceleration from a � (vf � vi)/t. 
(c) Calculate its acceleration from a � �F/m. (d) Find
the object’s vector displacement from 
(e) Find the work done on the object from W � F � r.
(f) Find the final kinetic energy from 
(g) Find the final kinetic energy from 

75. A rocket has a total mass of Mi � 360 kg, including 
330 kg of fuel and oxidizer. In interstellar space it starts
from rest. Its engine is turned on at time t � 0, and it
puts out exhaust with a relative speed of ve � 1 500 m/s
at the constant rate 2.50 kg/s. The burn lasts until the
fuel runs out at time 330 kg/(2.5 kg/s) � 132 s. Set up
and carry out a computer analysis of the motion accord-
ing to Euler’s method. Find (a) the final velocity of the
rocket and (b) the distance it travels during the burn.

1
2 mvi 

2 � W.

1
2 mvf 

2 � 1
2 mvf � vf .

r � vit � 1
2a t2.
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dashboard applies the greatest force, the seatbelt an in-
termediate force, and the airbag the least force. Airbags
are designed to work in conjunction with seatbelts.
Make sure you wear your seatbelt at all times while in a
moving vehicle.

9.5 If we define the ball as our system, momentum is not
conserved. The ball’s speed—and hence its momen-
tum—continually increase. This is consistent with the
fact that the gravitational force is external to this cho-
sen system. However, if we define our system as the ball
and the Earth, momentum is conserved, for the Earth
also has momentum because the ball exerts a gravita-
tional force on it. As the ball falls, the Earth moves up
to meet it (although the Earth’s speed is on the order
of 1025 times less than that of the ball!). This upward
movement changes the Earth’s momentum. The
change in the Earth’s momentum is numerically equal
to the change in the ball’s momentum but is in the op-
posite direction. Therefore, the total momentum of the
Earth–ball system is conserved. Because the Earth’s
mass is so great, its upward motion is negligibly small.

9.6 (c). The greatest impulse (greatest change in momen-
tum) is imparted to the Frisbee when the skater reverses
its momentum vector by catching it and throwing it
back. Since this is when the skater imparts the greatest
impulse to the Frisbee, then this also is when the Frisbee
imparts the greatest impulse to her.

9.7 Both are equally bad. Imagine watching the collision
from a safer location alongside the road. As the “crush
zones” of the two cars are compressed, you will see that

the actual point of contact is stationary. You would see
the same thing if your car were to collide with a solid
wall.

9.8 No, such movement can never occur if we assume the
collisions are elastic. The momentum of the system be-
fore the collision is mv, where m is the mass of ball 1 and
v is its speed just before the collision. After the collision,
we would have two balls, each of mass m and moving
with a speed of v/2. Thus, the total momentum of the
system after the collision would be m(v/2) � m(v/2) �
mv. Thus, momentum is conserved. However, the kinetic
energy just before the collision is and that 

after the collision is 
Thus, kinetic energy is not conserved. Both momentum
and kinetic energy are conserved only when one ball
moves out when one ball is released, two balls move out
when two are released, and so on.

9.9 No they will not! The piece with the handle will have less
mass than the piece made up of the end of the bat. To
see why this is so, take the origin of coordinates as the
center of mass before the bat was cut. Replace each cut
piece by a small sphere located at the center of mass for
each piece. The sphere representing the handle piece is
farther from the origin, but the product of lesser mass
and greater distance balances the product of greater
mass and lesser distance for the end piece:

K f � 1
2 m(v/2)2 � 1

2 m(v/2)2 � 1
4mv2.

K i � 1
2 mv2,
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Rotation of a Rigid Object
About a Fixed Axis

10.1 Angular Displacement, Velocity,
and Acceleration

10.2 Rotational Kinematics: Rotational
Motion with Constant Angular
Acceleration

10.3 Angular and Linear Quantities

10.4 Rotational Energy

10.5 Calculation of Moments of 
Inertia

10.6 Torque

10.7 Relationship Between Torque
and Angular Acceleration

10.8 Work, Power, and Energy in
Rotational Motion

Did you know that the CD inside this
player spins at different speeds, depend-
ing on which song is playing? Why would
such a strange characteristic be incor-
porated into the design of every CD
player? (George Semple)
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10.1 Angular Displacement, Velocity, and Acceleration 293

hen an extended object, such as a wheel, rotates about its axis, the motion
cannot be analyzed by treating the object as a particle because at any given

time different parts of the object have different linear velocities and linear
accelerations. For this reason, it is convenient to consider an extended object as a
large number of particles, each of which has its own linear velocity and linear
acceleration.

In dealing with a rotating object, analysis is greatly simplified by assuming that
the object is rigid. A rigid object is one that is nondeformable—that is, it is an
object in which the separations between all pairs of particles remain constant. All
real bodies are deformable to some extent; however, our rigid-object model is use-
ful in many situations in which deformation is negligible.

In this chapter, we treat the rotation of a rigid object about a fixed axis, which
is commonly referred to as pure rotational motion.

ANGULAR DISPLACEMENT, VELOCITY,
AND ACCELERATION

Figure 10.1 illustrates a planar (flat), rigid object of arbitrary shape confined to
the xy plane and rotating about a fixed axis through O. The axis is perpendicular
to the plane of the figure, and O is the origin of an xy coordinate system. Let us
look at the motion of only one of the millions of “particles” making up this object.
A particle at P is at a fixed distance r from the origin and rotates about it in a circle
of radius r. (In fact, every particle on the object undergoes circular motion about
O.) It is convenient to represent the position of P with its polar coordinates (r, �),
where r is the distance from the origin to P and � is measured counterclockwise from
some preferred direction—in this case, the positive x axis. In this representation,
the only coordinate that changes in time is the angle �; r remains constant. (In
cartesian coordinates, both x and y vary in time.) As the particle moves along the
circle from the positive x axis (� � 0) to P, it moves through an arc of length s,
which is related to the angular position � through the relationship

(10.1a)

(10.1b)

It is important to note the units of � in Equation 10.1b. Because � is the ratio
of an arc length and the radius of the circle, it is a pure number. However, we com-
monly give � the artificial unit radian (rad), where

� �
s
r

s � r�

10.1

one radian is the angle subtended by an arc length equal to the radius of the
arc.

W

Because the circumference of a circle is 2�r, it follows from Equation 10.1b that
360° corresponds to an angle of 2�r/r rad � 2� rad (one revolution). Hence, 
1 rad � 360°/2� � 57.3°. To convert an angle in degrees to an angle in radians,
we use the fact that 2� rad � 360°:

For example, 60° equals �/3 rad, and 45° equals �/4 rad.

� (rad) �
�

180°
 � (deg)

Radian

Rigid object

Figure 10.1 A rigid object rotat-
ing about a fixed axis through O
perpendicular to the plane of the
figure. (In other words, the axis of
rotation is the z axis.) A particle at
P rotates in a circle of radius r cen-
tered at O.

y

x

P
r

O

θ
s
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As the particle in question on our rigid object travels from position P to position
Q in a time �t as shown in Figure 10.2, the radius vector sweeps out an angle �� � �f
� �i . This quantity �� is defined as the angular displacement of the particle:

(10.2)

We define the average angular speed (omega) as the ratio of this angular dis-
placement to the time interval �t:

(10.3)

In analogy to linear speed, the instantaneous angular speed � is defined as
the limit of the ratio ��/�t as �t approaches zero:

(10.4)

Angular speed has units of radians per second (rad/s), or rather second�1

(s�1) because radians are not dimensional. We take � to be positive when � is in-
creasing (counterclockwise motion) and negative when � is decreasing (clockwise
motion).

If the instantaneous angular speed of an object changes from �i to �f in the
time interval �t, the object has an angular acceleration. The average angular ac-
celeration (alpha) of a rotating object is defined as the ratio of the change in
the angular speed to the time interval �t :

(10.5)� �
�f � �i

tf � ti
�

��

�t

�

� � lim
�t:0

 
��

�t
�

d�

dt

� �
�f � �i

tf � ti
�

��

�t

�

�� � �f � �i

Average angular acceleration

Instantaneous angular speed

Average angular speed

In a short track event, such as a 200-m or
400-m sprint, the runners begin from stag-
gered positions on the track. Why don’t
they all begin from the same line?

x

y

Q ,t f

P, ti
r

θf

θi

O

θ

θ

Figure 10.2 A particle on a rotat-
ing rigid object moves from P to Q
along the arc of a circle. In the
time interval the ra-
dius vector sweeps out an angle
�� � �f � �i .

�t � tf � ti ,
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In analogy to linear acceleration, the instantaneous angular acceleration is
defined as the limit of the ratio ��/�t as �t approaches zero:

(10.6)

Angular acceleration has units of radians per second squared (rad/s2), or just sec-
ond�2 (s�2). Note that � is positive when the rate of counterclockwise rotation is
increasing or when the rate of clockwise rotation is decreasing.

When rotating about a fixed axis, every particle on a rigid object rotates
through the same angle and has the same angular speed and the same an-
gular acceleration. That is, the quantities �, �, and � characterize the rotational
motion of the entire rigid object. Using these quantities, we can greatly simplify
the analysis of rigid-body rotation.

Angular position (�), angular speed (�), and angular acceleration (�) are
analogous to linear position (x), linear speed (v), and linear acceleration (a). The
variables �, �, and � differ dimensionally from the variables x, v, and a only by a
factor having the unit of length.

We have not specified any direction for � and �. Strictly speaking, these
variables are the magnitudes of the angular velocity and the angular accelera-
tion vectors � and �, respectively, and they should always be positive. Because
we are considering rotation about a fixed axis, however, we can indicate the di-
rections of the vectors by assigning a positive or negative sign to � and �, as dis-
cussed earlier with regard to Equations 10.4 and 10.6. For rotation about a fixed
axis, the only direction that uniquely specifies the rotational motion is the di-
rection along the axis of rotation. Therefore, the directions of � and � are
along this axis. If an object rotates in the xy plane as in Figure 10.1, the direc-
tion of � is out of the plane of the diagram when the rotation is counterclock-
wise and into the plane of the diagram when the rotation is clockwise. To illus-
trate this convention, it is convenient to use the right-hand rule demonstrated in
Figure 10.3. When the four fingers of the right hand are wrapped in the direc-
tion of rotation, the extended right thumb points in the direction of �. The di-
rection of � follows from its definition d�/dt. It is the same as the direction of
� if the angular speed is increasing in time, and it is antiparallel to � if the an-
gular speed is decreasing in time.

� � lim
�t:0

 
��

�t
�

d�

dt
Instantaneous angular
acceleration

ω

ω

Figure 10.3 The right-hand rule for deter-
mining the direction of the angular velocity
vector.
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Describe a situation in which � � 0 and � and � are antiparallel.

ROTATIONAL KINEMATICS: ROTATIONAL MOTION
WITH CONSTANT ANGULAR ACCELERATION

In our study of linear motion, we found that the simplest form of accelerated mo-
tion to analyze is motion under constant linear acceleration. Likewise, for rota-
tional motion about a fixed axis, the simplest accelerated motion to analyze is mo-
tion under constant angular acceleration. Therefore, we next develop kinematic
relationships for this type of motion. If we write Equation 10.6 in the form d� �
� dt, and let ti � 0 and tf � t, we can integrate this expression directly:

(for constant �) (10.7)

Substituting Equation 10.7 into Equation 10.4 and integrating once more we
obtain

(for constant �) (10.8)

If we eliminate t from Equations 10.7 and 10.8, we obtain

(for constant �) (10.9)

Notice that these kinematic expressions for rotational motion under constant an-
gular acceleration are of the same form as those for linear motion under constant
linear acceleration with the substitutions x : �, v : �, and a : �. Table 10.1
compares the kinematic equations for rotational and linear motion.

�f 

2 � �i 

2 	 2�(�f � �i)

�f � �i 	 �it 	 1
2�t2

�f � �i 	 �t

10.2

Quick Quiz 10.1

Rotating WheelEXAMPLE 10.1
Solution Because the angular acceleration and the angu-
lar speed are both positive, we can be sure our answer must
be greater than 2.00 rad/s.

We could also obtain this result using Equation 10.9 and the
results of part (a). Try it! You also may want to see if you can
formulate the linear motion analog to this problem.

Exercise Find the angle through which the wheel rotates
between t � 2.00 s and t � 3.00 s.

Answer 10.8 rad.

9.00 rad/s�

�f � �i 	 �t � 2.00 rad/s 	 (3.50 rad/s2)(2.00 s)

A wheel rotates with a constant angular acceleration of 
3.50 rad/s2. If the angular speed of the wheel is 2.00 rad/s at
ti � 0, (a) through what angle does the wheel rotate in 2.00 s?

Solution We can use Figure 10.2 to represent the wheel,
and so we do not need a new drawing. This is a straightfor-
ward application of an equation from Table 10.1:

(b) What is the angular speed at t � 2.00 s?

1.75 rev    �
630°

360°/rev
�

630°   � 11.0 rad � (11.0 rad)(57.3°/rad) �

	 1
2 (3.50 rad/s2)(2.00 s)2

�f � �i � �it 	 1
2�t2 � (2.00 rad/s)(2.00 s)

Rotational kinematic equations

7.2
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ANGULAR AND LINEAR QUANTITIES
In this section we derive some useful relationships between the angular speed and
acceleration of a rotating rigid object and the linear speed and acceleration of an
arbitrary point in the object. To do so, we must keep in mind that when a rigid ob-
ject rotates about a fixed axis, as in Figure 10.4, every particle of the object moves
in a circle whose center is the axis of rotation.

We can relate the angular speed of the rotating object to the tangential speed
of a point P on the object. Because point P moves in a circle, the linear velocity
vector v is always tangent to the circular path and hence is called tangential velocity.
The magnitude of the tangential velocity of the point P is by definition the tangen-
tial speed v � ds/dt, where s is the distance traveled by this point measured along
the circular path. Recalling that s � r� (Eq. 10.1a) and noting that r is constant,
we obtain

Because d�/dt � � (see Eq. 10.4), we can say

(10.10)

That is, the tangential speed of a point on a rotating rigid object equals the per-
pendicular distance of that point from the axis of rotation multiplied by the angu-
lar speed. Therefore, although every point on the rigid object has the same angu-
lar speed, not every point has the same linear speed because r is not the same for
all points on the object. Equation 10.10 shows that the linear speed of a point on
the rotating object increases as one moves outward from the center of rotation, as
we would intuitively expect. The outer end of a swinging baseball bat moves much
faster than the handle.

We can relate the angular acceleration of the rotating rigid object to the tan-
gential acceleration of the point P by taking the time derivative of v:

(10.11)

That is, the tangential component of the linear acceleration of a point on a rotat-
ing rigid object equals the point’s distance from the axis of rotation multiplied by
the angular acceleration.

at � r�

at �
dv
dt

� r  
d�

dt

v � r�

v �
ds
dt

� r  
d�

dt

10.3

Relationship between linear and
angular speed

TABLE 10.1 Kinematic Equations for Rotational and Linear Motion
Under Constant Acceleration

Rotational Motion About a Fixed Axis Linear Motion

�f � �i 	 �t vf � vi 	 at
�f � �i 	 �it 	 �t2 xf � xi 	 vit 	 at2

�f
2 � �i

2 	 2�(�f � �i) vf
2 � vi

2 	 2a(xf � xi)

1
2

1
2

Relationship between linear and
angular acceleration

y

x

v

P

r

θ

O

Figure 10.4 As a rigid object ro-
tates about the fixed axis through
O, the point P has a linear velocity
v that is always tangent to the circu-
lar path of radius r.

QuickLab
Spin a tennis ball or basketball and
watch it gradually slow down and
stop. Estimate � and at as accurately
as you can.
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In Section 4.4 we found that a point rotating in a circular path undergoes a
centripetal, or radial, acceleration ar of magnitude v2/r directed toward the center
of rotation (Fig. 10.5). Because v � r� for a point P on a rotating object, we can
express the radial acceleration of that point as

(10.12)

The total linear acceleration vector of the point is a � at 	 ar . (at describes
the change in how fast the point is moving, and ar represents the change in its di-
rection of travel.) Because a is a vector having a radial and a tangential compo-
nent, the magnitude of a for the point P on the rotating rigid object is

(10.13)

When a wheel of radius R rotates about a fixed axis, do all points on the wheel have (a) the
same angular speed and (b) the same linear speed? If the angular speed is constant and
equal to �, describe the linear speeds and linear accelerations of the points located at 
(c) r � 0, (d) r � R/2, and (e) r � R, all measured from the center of the wheel.

Quick Quiz 10.2

a � √at 2 	 ar 

2 � √r 2�2 	 r 2�4 � r √�2 	 �4

ar �
v2

r
� r�2

CD PlayerEXAMPLE 10.2

�  5.4 
 102 rev/min

  � (56.5 rad/s)� 1
2�  rev/rad�(60 s/min)

On a compact disc, audio information is stored in a series of
pits and flat areas on the surface of the disc. The information
is stored digitally, and the alternations between pits and flat
areas on the surface represent binary ones and zeroes to be
read by the compact disc player and converted back to sound
waves. The pits and flat areas are detected by a system consist-
ing of a laser and lenses. The length of a certain number of
ones and zeroes is the same everywhere on the disc, whether
the information is near the center of the disc or near its
outer edge. In order that this length of ones and zeroes al-
ways passes by the laser– lens system in the same time period,
the linear speed of the disc surface at the location of the lens
must be constant. This requires, according to Equation 10.10,
that the angular speed vary as the laser– lens system moves ra-
dially along the disc. In a typical compact disc player, the disc
spins counterclockwise (Fig. 10.6), and the constant speed of
the surface at the point of the laser– lens system is 1.3 m/s.
(a) Find the angular speed of the disc in revolutions per
minute when information is being read from the innermost
first track (r � 23 mm) and the outermost final track (r �
58 mm).

Solution Using Equation 10.10, we can find the angular
speed; this will give us the required linear speed at the posi-
tion of the inner track,

�i �
v
ri

�
1.3 m/s

2.3 
 10�2 m
� 56.5 rad/s  

x

y

O

ar

at

P
a

Figure 10.5 As a rigid object ro-
tates about a fixed axis through O,
the point P experiences a tangen-
tial component of linear accelera-
tion at and a radial component of
linear acceleration ar . The total lin-
ear acceleration of this point is a �
at 	 ar .

23 mm

58 mm

Figure 10.6 A compact disc.
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For the outer track,

The player adjusts the angular speed � of the disc within this
range so that information moves past the objective lens at a
constant rate. These angular velocity values are positive be-
cause the direction of rotation is counterclockwise.

(b) The maximum playing time of a standard music CD
is 74 minutes and 33 seconds. How many revolutions does the
disc make during that time?

Solution We know that the angular speed is always de-
creasing, and we assume that it is decreasing steadily, with �
constant. The time interval t is (74 min)(60 s/min) 	
33 s � 4 473 s. We are looking for the angular position �f ,
where we set the initial angular position �i � 0. We can use
Equation 10.3, replacing the average angular speed with its
mathematical equivalent (�i 	 � f )/2:

2.8 
 104 rev  �

    (1 min/60 s)(4 473 s)  

  � 0 	 1
2 (540 rev/min 	 210 rev/min)

�f � �i 	 1
2 (�i 	 �f)t  

�

�  2.1 
 102 rev/min

�f �
v
rf

�
1.3 m/s

5.8 
 10�2 m
� 22.4 rad/s

(c) What total length of track moves past the objective
lens during this time?

Solution Because we know the (constant) linear velocity
and the time interval, this is a straightforward calculation:

More than 3.6 miles of track spins past the objective lens!

(d) What is the angular acceleration of the CD over the 
4 473-s time interval? Assume that � is constant.

Solution We have several choices for approaching this
problem. Let us use the most direct approach by utilizing
Equation 10.5, which is based on the definition of the term
we are seeking. We should obtain a negative number for the
angular acceleration because the disc spins more and more
slowly in the positive direction as time goes on. Our answer
should also be fairly small because it takes such a long time—
more than an hour—for the change in angular speed to be
accomplished:

The disc experiences a very gradual decrease in its rotation
rate, as expected.

�7.6 
 10�3 rad/s2�

� �
�f � �i

t
�

22.4 rad/s � 56.5 rad/s
4 473 s

5.8 
 103 mx f � vit � (1.3 m/s)(4 473 s) �

ROTATIONAL ENERGY
Let us now look at the kinetic energy of a rotating rigid object, considering the ob-
ject as a collection of particles and assuming it rotates about a fixed z axis with an
angular speed � (Fig. 10.7). Each particle has kinetic energy determined by its
mass and linear speed. If the mass of the ith particle is mi and its linear speed is vi ,
its kinetic energy is

To proceed further, we must recall that although every particle in the rigid object
has the same angular speed �, the individual linear speeds depend on the distance
ri from the axis of rotation according to the expression vi � ri� (see Eq. 10.10).
The total kinetic energy of the rotating rigid object is the sum of the kinetic ener-
gies of the individual particles:

We can write this expression in the form

(10.14)

where we have factored �2 from the sum because it is common to every particle.

KR � 1
2��

i
miri 2��2

K R � �
i

K i � �
i

1
2mivi 

2 � 1
2 �

i
miri 

2�2

Ki � 1
2mivi 

2

10.4

7.3

web
If you want to learn more about the physics
of CD players, visit the Special Interest
Group on CD Applications and Technology
at www.sigcat.org

y

x

vi

mi

ri

θ
O

Figure 10.7 A rigid object rotat-
ing about a z axis with angular
speed �. The kinetic energy of 
the particle of mass mi is 
The total kinetic energy of the ob-
ject is called its rotational 
kinetic energy.

1
2m iv i  

2.
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We simplify this expression by defining the quantity in parentheses as the moment
of inertia I:

(10.15)

From the definition of moment of inertia, we see that it has dimensions of ML2

(kg� m2 in SI units).1 With this notation, Equation 10.14 becomes

(10.16)

Although we commonly refer to the quantity I�2 as rotational kinetic energy,
it is not a new form of energy. It is ordinary kinetic energy because it is derived
from a sum over individual kinetic energies of the particles contained in the rigid
object. However, the mathematical form of the kinetic energy given by Equation
10.16 is a convenient one when we are dealing with rotational motion, provided
we know how to calculate I. 

It is important that you recognize the analogy between kinetic energy associ-
ated with linear motion and rotational kinetic energy The quantities I
and � in rotational motion are analogous to m and v in linear motion, respectively.
(In fact, I takes the place of m every time we compare a linear-motion equation
with its rotational counterpart.) The moment of inertia is a measure of the resis-
tance of an object to changes in its rotational motion, just as mass is a measure of
the tendency of an object to resist changes in its linear motion. Note, however,
that mass is an intrinsic property of an object, whereas I depends on the physical
arrangement of that mass. Can you think of a situation in which an object’s mo-
ment of inertia changes even though its mass does not?

1
2 I�2.1

2mv2

1
2

KR � 1
2I�2

I � �
i

miri 2

1 Civil engineers use moment of inertia to characterize the elastic properties (rigidity) of such struc-
tures as loaded beams. Hence, it is often useful even in a nonrotational context.

Rotational kinetic energy

Moment of inertia

The Oxygen MoleculeEXAMPLE 10.3

This is a very small number, consistent with the minuscule
masses and distances involved.

(b) If the angular speed of the molecule about the z axis is
4.60 
 1012 rad/s, what is its rotational kinetic energy?

Solution We apply the result we just calculated for the mo-
ment of inertia in the formula for KR :

2.06 
 10�21 J �

  � 1
2(1.95 
 10�46 kg�m2)(4.60 
 1012 rad/s)2

KR � 1
2 I�2  

1.95 
 10�46 kg�m2 �
Consider an oxygen molecule (O2) rotating in the xy plane
about the z axis. The axis passes through the center of the
molecule, perpendicular to its length. The mass of each oxy-
gen atom is 2.66 
 10�26 kg, and at room temperature the
average separation between the two atoms is d � 1.21 

10�10 m (the atoms are treated as point masses). (a) Calcu-
late the moment of inertia of the molecule about the z axis.

Solution This is a straightforward application of the def-
inition of I. Because each atom is a distance d/2 from the z
axis, the moment of inertia about the axis is

  � 1
2(2.66 
 10�26 kg)(1.21 
 10�10 m)2

I � �
i

mi ri 

2 � m � d
2 �

2
	 m � d

2 �
2

� 1
2md 2
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CALCULATION OF MOMENTS OF INERTIA
We can evaluate the moment of inertia of an extended rigid object by imagining
the object divided into many small volume elements, each of which has mass �m. 
We use the definition and take the limit of this sum as �m : 0. In 

this limit, the sum becomes an integral over the whole object:

(10.17)

It is usually easier to calculate moments of inertia in terms of the volume of
the elements rather than their mass, and we can easily make that change by using
Equation 1.1, 
 � m/V, where 
 is the density of the object and V is its volume. We
want this expression in its differential form 
 � dm/dV because the volumes we
are dealing with are very small. Solving for dm � 
 dV and substituting the result

I � lim
�mi :0

 �
i

ri 

2 �mi � �r 2 dm

I � �
i

r i 

2 �mi

10.5

Four Rotating MassesEXAMPLE 10.4
Therefore, the rotational kinetic energy about the y axis is

The fact that the two spheres of mass m do not enter into this
result makes sense because they have no motion about the
axis of rotation; hence, they have no rotational kinetic en-
ergy. By similar logic, we expect the moment of inertia about
the x axis to be Ix � 2mb2 with a rotational kinetic energy
about that axis of KR � mb2�2.

(b) Suppose the system rotates in the xy plane about an
axis through O (the z axis). Calculate the moment of inertia
and rotational kinetic energy about this axis.

Solution Because ri in Equation 10.15 is the perpendicular
distance to the axis of rotation, we obtain

Comparing the results for parts (a) and (b), we conclude
that the moment of inertia and therefore the rotational ki-
netic energy associated with a given angular speed depend on
the axis of rotation. In part (b), we expect the result to in-
clude all four spheres and distances because all four spheres
are rotating in the xy plane. Furthermore, the fact that the ro-
tational kinetic energy in part (a) is smaller than that in part
(b) indicates that it would take less effort (work) to set the
system into rotation about the y axis than about the z axis.

(Ma2 	 mb2)�2  KR � 1
2Iz�

2 � 1
2(2Ma2 	 2mb2)� 2 �

2Ma2 	 2mb 2I z � �
i
mi ri 

2 � Ma2 	 Ma2 	 mb2 	 mb2 �

Ma2�2KR � 1
2Iy�

2 � 1
2(2Ma2)�2 �

Four tiny spheres are fastened to the corners of a frame of
negligible mass lying in the xy plane (Fig. 10.8). We shall as-
sume that the spheres’ radii are small compared with the di-
mensions of the frame. (a) If the system rotates about the y
axis with an angular speed �, find the moment of inertia and
the rotational kinetic energy about this axis.

Solution First, note that the two spheres of mass m, which
lie on the y axis, do not contribute to Iy (that is, ri � 0 for
these spheres about this axis). Applying Equation 10.15, we
obtain

2Ma2Iy � �
i

mi ri
2 � Ma2 	 Ma2 �

O

a a

b

b

m

m

M
x

y

M

Figure 10.8 The four spheres are at a fixed separation as shown.
The moment of inertia of the system depends on the axis about
which it is evaluated.

7.5
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into Equation 10.17 gives

If the object is homogeneous, then 
 is constant and the integral can be evaluated
for a known geometry. If 
 is not constant, then its variation with position must be
known to complete the integration.

The density given by 
 � m/V sometimes is referred to as volume density for the
obvious reason that it relates to volume. Often we use other ways of expressing
density. For instance, when dealing with a sheet of uniform thickness t, we can de-
fine a surface density � � 
t, which signifies mass per unit area. Finally, when mass is
distributed along a uniform rod of cross-sectional area A, we sometimes use linear
density � � M/L � 
A, which is the mass per unit length.

I � �
r 2 dV

Uniform HoopEXAMPLE 10.5
Find the moment of inertia of a uniform hoop of mass M and
radius R about an axis perpendicular to the plane of the
hoop and passing through its center (Fig. 10.9).

Solution All mass elements dm are the same distance r �
R from the axis, and so, applying Equation 10.17, we obtain
for the moment of inertia about the z axis through O:

Note that this moment of inertia is the same as that of a sin-
gle particle of mass M located a distance R from the axis of
rotation.

MR 2I z � � r 2 dm � R 2 � dm �

y

x

R
O

dm

Figure 10.9 The mass elements dm of a uniform hoop are all the
same distance from O.

Uniform Rigid RodEXAMPLE 10.6
Substituting this expression for dm into Equation 10.17, with
r � x, we obtain

1
12ML2   �

M
L

 � x3

3 �
L/2

�L/2
�

Iy � � r 2 dm � �L/2

�L/2
 x2 

M
L

 dx �
M
L

 �L/2

�L/2
 x2 dx

Calculate the moment of inertia of a uniform rigid rod of
length L and mass M (Fig. 10.10) about an axis perpendicu-
lar to the rod (the y axis) and passing through its center of
mass.

Solution The shaded length element dx has a mass dm
equal to the mass per unit length � multiplied by dx :

dm � � dx �
M
L

dx

(a) Based on what you have learned from Example 10.5, what do you expect to find for the
moment of inertia of two particles, each of mass M/2, located anywhere on a circle of ra-
dius R around the axis of rotation? (b) How about the moment of inertia of four particles,
each of mass M/4, again located a distance R from the rotation axis?

Quick Quiz 10.3
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Table 10.2 gives the moments of inertia for a number of bodies about specific
axes. The moments of inertia of rigid bodies with simple geometry (high symme-
try) are relatively easy to calculate provided the rotation axis coincides with an axis
of symmetry. The calculation of moments of inertia about an arbitrary axis can be
cumbersome, however, even for a highly symmetric object. Fortunately, use of an
important theorem, called the parallel-axis theorem, often simplifies the calcula-
tion. Suppose the moment of inertia about an axis through the center of mass of
an object is ICM . The parallel-axis theorem states that the moment of inertia about
any axis parallel to and a distance D away from this axis is

(10.18)I � ICM 	 MD2

Uniform Solid CylinderEXAMPLE 10.7
cylindrical shells, each of which has radius r, thickness dr, and
length L, as shown in Figure 10.11. The volume dV of each
shell is its cross-sectional area multiplied by its length: dV �
dA� L � (2�r dr)L. If the mass per unit volume is 
, then the
mass of this differential volume element is dm � 
dV �

2�rL dr. Substituting this expression for dm into Equation
10.17, we obtain

Because the total volume of the cylinder is �R 2L, we see that

 � M/V � M/�R 2L. Substituting this value for 
 into the
above result gives

(1)

Note that this result does not depend on L, the length of the
cylinder. In other words, it applies equally well to a long cylin-
der and a flat disc. Also note that this is exactly half the value
we would expect were all the mass concentrated at the outer
edge of the cylinder or disc. (See Example 10.5.)

1
2MR 2Iz �

I z � � r 2 dm � 2�
L �R

0
 r 3 dr � 1

2�
LR4

A uniform solid cylinder has a radius R, mass M, and length
L. Calculate its moment of inertia about its central axis (the z
axis in Fig. 10.11).

Solution It is convenient to divide the cylinder into many

L

x

O
x

dx

y′ y

Figure 10.10 A uniform rigid rod of length L. The moment of in-
ertia about the y axis is less than that about the y� axis. The latter axis
is examined in Example 10.8.

L

dr

z

r

R

Figure 10.11 Calculating I about the z axis for a uniform solid
cylinder.

Parallel-axis theorem
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Proof of the Parallel-Axis Theorem (Optional). Suppose that an object rotates
in the xy plane about the z axis, as shown in Figure 10.12, and that the coordinates
of the center of mass are xCM , yCM . Let the mass element dm have coordinates x, y.
Because this element is a distance from the z axis, the moment of in-
ertia about the z axis is

However, we can relate the coordinates x, y of the mass element dm to the coordi-
nates of this same element located in a coordinate system having the object’s cen-
ter of mass as its origin. If the coordinates of the center of mass are xCM , yCM in
the original coordinate system centered on O, then from Figure 10.12a we see that
the relationships between the unprimed and primed coordinates are x � x� 	 xCM

I � � r 2 dm � � (x2 	 y2) dm

r � √x2 	 y2

Hoop or
cylindrical shell
I CM = MR2 R

Solid cylinder
or disk

R
I CM = 1

2
MR2

Long thin rod
with rotation axis
through center

I CM = 1
12

ML2 L

R

Solid sphere

I CM = 2
5

MR 2

Hollow cylinder

R2

Long thin
rod with
rotation axis
through end

L

Thin spherical
shell

I CM = 2
3

MR 

2

R1I CM = 1
2

M(R1
2 + R2

2)

R

Rectangular plate

I CM = 1
12

M(a2 + b2)

b

a

I = 1
3

ML2

TABLE 10.2 Moments of Inertia of Homogeneous Rigid Bodies 
with Different Geometries
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and y � y� 	 yCM . Therefore,

The first integral is, by definition, the moment of inertia about an axis that is par-
allel to the z axis and passes through the center of mass. The second two integrals
are zero because, by definition of the center of mass, The
last integral is simply MD2 because and Therefore,
we conclude that

I � ICM 	 MD2

D2 � xCM 

2 	 yCM 

2.� dm � M
� x� dm � � y� dm � 0.

  � � [(x�)2 	 (y�)2] dm 	 2xCM � x� dm 	 2yCM � y� dm 	 (xCM 

2 	 yCM 

 

2) � dm

I � � [(x� 	 xCM)2 	 (y� 	 yCM)2] dm  

Applying the Parallel-Axis TheoremEXAMPLE 10.8

So, it is four times more difficult to change the rotation of a
rod spinning about its end than it is to change the motion of
one spinning about its center.

Exercise Calculate the moment of inertia of the rod about
a perpendicular axis through the point x � L/4.

Answer I � 7
48 ML2.

1
3 ML2I � ICM 	 MD2 � 1

12 ML2 	 M � L
2 �

2
�

Consider once again the uniform rigid rod of mass M and
length L shown in Figure 10.10. Find the moment of inertia
of the rod about an axis perpendicular to the rod through
one end (the y�axis in Fig. 10.10).

Solution Intuitively, we expect the moment of inertia to
be greater than because it should be more diffi-
cult to change the rotational motion of a rod spinning about
an axis at one end than one that is spinning about its center.
Because the distance between the center-of-mass axis and the
y� axis is D � L/2, the parallel-axis theorem gives

ICM � 1
12ML2

(a)

y

x, y
dm

y′

yCM

O

D

r

y

xCM

x

xCM, yCM

x′

x

CM

(b)

Axis
through
CM

x

y

z

Rotation
axis

O CM

Figure 10.12 (a) The parallel-axis theorem: If the moment of inertia about an axis perpendic-
ular to the figure through the center of mass is ICM , then the moment of inertia about the z axis
is Iz � ICM 	 MD 2. (b) Perspective drawing showing the z axis (the axis of rotation) and the par-
allel axis through the CM.
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TORQUE
Why are a door’s doorknob and hinges placed near opposite edges of the door?
This question actually has an answer based on common sense ideas. The harder
we push against the door and the farther we are from the hinges, the more likely
we are to open or close the door. When a force is exerted on a rigid object pivoted
about an axis, the object tends to rotate about that axis. The tendency of a force to
rotate an object about some axis is measured by a vector quantity called torque �
(tau).

Consider the wrench pivoted on the axis through O in Figure 10.13. The ap-
plied force F acts at an angle � to the horizontal. We define the magnitude of the
torque associated with the force F by the expression

(10.19)

where r is the distance between the pivot point and the point of application of F
and d is the perpendicular distance from the pivot point to the line of action of F.
(The line of action of a force is an imaginary line extending out both ends of the
vector representing the force. The dashed line extending from the tail of F in Fig-
ure 10.13 is part of the line of action of F.) From the right triangle in Figure 10.13
that has the wrench as its hypotenuse, we see that d � r sin �. This quantity d is
called the moment arm (or lever arm) of F.

It is very important that you recognize that torque is defined only when a reference
axis is specified. Torque is the product of a force and the moment arm of that force,
and moment arm is defined only in terms of an axis of rotation.

In Figure 10.13, the only component of F that tends to cause rotation is F sin �,
the component perpendicular to r. The horizontal component F cos �, because it
passes through O, has no tendency to produce rotation. From the definition of
torque, we see that the rotating tendency increases as F increases and as d in-
creases. This explains the observation that it is easier to close a door if we push at
the doorknob rather than at a point close to the hinge. We also want to apply our
push as close to perpendicular to the door as we can. Pushing sideways on the
doorknob will not cause the door to rotate.

If two or more forces are acting on a rigid object, as shown in Figure 10.14,
each tends to produce rotation about the pivot at O. In this example, F2 tends to

� � r F sin � � Fd

10.6

Moment arm

Definition of torque

7.6

r

F sin φ
F

F cos φ

d

O
Line of
action

φ

φ

φ

φ O

d2

d1

F2

F1

Figure 10.13 The force F has a
greater rotating tendency about O
as F increases and as the moment
arm d increases. It is the compo-
nent F sin � that tends to rotate the
wrench about O.

Figure 10.14 The force F1 tends
to rotate the object counterclock-
wise about O, and F2 tends to ro-
tate it clockwise.
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rotate the object clockwise, and F1 tends to rotate it counterclockwise. We use the
convention that the sign of the torque resulting from a force is positive if the turn-
ing tendency of the force is counterclockwise and is negative if the turning ten-
dency is clockwise. For example, in Figure 10.14, the torque resulting from F1 ,
which has a moment arm d1 , is positive and equal to 	 F1d1 ; the torque from F2 is
negative and equal to � F2d2 . Hence, the net torque about O is

Torque should not be confused with force. Forces can cause a change in lin-
ear motion, as described by Newton’s second law. Forces can also cause a change
in rotational motion, but the effectiveness of the forces in causing this change de-
pends on both the forces and the moment arms of the forces, in the combination
that we call torque. Torque has units of force times length—newton � meters in SI
units—and should be reported in these units. Do not confuse torque and work,
which have the same units but are very different concepts.

�� � �1 	 �2 � F1d1 � F2d2

The Net Torque on a CylinderEXAMPLE 10.9
Solution The torque due to F1 is � R1F1 (the sign is nega-
tive because the torque tends to produce clockwise rotation).
The torque due to F2 is 	 R2F2 (the sign is positive because
the torque tends to produce counterclockwise rotation).
Therefore, the net torque about the rotation axis is

We can make a quick check by noting that if the two forces
are of equal magnitude, the net torque is negative because 
R1 � R2 . Starting from rest with both forces acting on it, the
cylinder would rotate clockwise because F1 would be more ef-
fective at turning it than would F2 .

(b) Suppose F1 � 5.0 N, R1 � 1.0 m, F2 � 15.0 N, and 
R2 � 0.50 m. What is the net torque about the rotation axis,
and which way does the cylinder rotate from rest?

Because the net torque is positive, if the cylinder starts from
rest, it will commence rotating counterclockwise with increas-
ing angular velocity. (If the cylinder’s initial rotation is clock-
wise, it will slow to a stop and then rotate counterclockwise
with increasing angular speed.)

2.5 N�m�� � �(5.0 N)(1.0 m) 	 (15.0 N)(0.50 m) �

�R 1F1 	 R 2F2�� � �1 	 �2 �

A one-piece cylinder is shaped as shown in Figure 10.15, with
a core section protruding from the larger drum. The cylinder
is free to rotate around the central axis shown in the drawing.
A rope wrapped around the drum, which has radius R1 , ex-
erts a force F1 to the right on the cylinder. A rope wrapped
around the core, which has radius R2 , exerts a force F2 down-
ward on the cylinder. (a) What is the net torque acting on the
cylinder about the rotation axis (which is the z axis in Figure
10.15)?

7.6

RELATIONSHIP BETWEEN TORQUE AND
ANGULAR ACCELERATION

In this section we show that the angular acceleration of a rigid object rotating
about a fixed axis is proportional to the net torque acting about that axis. Before
discussing the more complex case of rigid-body rotation, however, it is instructive

10.7

z

x

y

R 1

R 2

O

F1

F2

Figure 10.15 A solid cylinder pivoted about the z axis through O.
The moment arm of F1 is R1 , and the moment arm of F2 is R2 .
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first to discuss the case of a particle rotating about some fixed point under the in-
fluence of an external force.

Consider a particle of mass m rotating in a circle of radius r under the influ-
ence of a tangential force Ft and a radial force Fr , as shown in Figure 10.16. (As we
learned in Chapter 6, the radial force must be present to keep the particle moving
in its circular path.) The tangential force provides a tangential acceleration at , and

The torque about the center of the circle due to Ft is

Because the tangential acceleration is related to the angular acceleration through
the relationship at � r� (see Eq. 10.11), the torque can be expressed as

Recall from Equation 10.15 that mr 2 is the moment of inertia of the rotating parti-
cle about the z axis passing through the origin, so that

(10.20)

That is, the torque acting on the particle is proportional to its angular accel-
eration, and the proportionality constant is the moment of inertia. It is important
to note that is the rotational analog of Newton’s second law of motion, 
F � ma.

Now let us extend this discussion to a rigid object of arbitrary shape rotating
about a fixed axis, as shown in Figure 10.17. The object can be regarded as an infi-
nite number of mass elements dm of infinitesimal size. If we impose a cartesian co-
ordinate system on the object, then each mass element rotates in a circle about the
origin, and each has a tangential acceleration at produced by an external tangen-
tial force dFt . For any given element, we know from Newton’s second law that

The torque d� associated with the force dFt acts about the origin and is given by

Because at � r�, the expression for d� becomes

It is important to recognize that although each mass element of the rigid ob-
ject may have a different linear acceleration at , they all have the same angular ac-
celeration �. With this in mind, we can integrate the above expression to obtain
the net torque about O due to the external forces:

where � can be taken outside the integral because it is common to all mass ele-
ments. From Equation 10.17, we know that is the moment of inertia of the
object about the rotation axis through O, and so the expression for �� becomes

(10.21)

Note that this is the same relationship we found for a particle rotating in a circle
(see Eq. 10.20). So, again we see that the net torque about the rotation axis is pro-

�� � I�

� r 2 dm

�� � � (r 2 dm)� � � � r 2 dm

d� � (r dm)r� � (r 2 dm)�

d� � r dFt � (r dm)at

dFt � (dm)at

� � I�

� � I�

� � (mr�)r � (mr 2)�

� � Ft r � (mat)r

Ft � mat

Torque is proportional to angular
acceleration

Relationship between torque and
angular acceleration

y

x

d Ft

O

r

dm

Figure 10.17 A rigid object ro-
tating about an axis through O.
Each mass element dm rotates
about O with the same angular ac-
celeration �, and the net torque on
the object is proportional to �.

Figure 10.16 A particle rotating
in a circle under the influence of a
tangential force Ft . A force Fr in
the radial direction also must be
present to maintain the circular
motion.
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Although each point on a rigid object rotating about a fixed axis may not expe-
rience the same force, linear acceleration, or linear speed, each point experi-
ences the same angular acceleration and angular speed at any instant. There-
fore, at any instant the rotating rigid object as a whole is characterized by
specific values for angular acceleration, net torque, and angular speed.

compute the torque on the rod, we can assume that the gravi-
tational force acts at the center of mass of the rod, as shown
in Figure 10.18. The torque due to this force about an axis
through the pivot is

With �� � I�, and I � for this axis of rotation (see
Table 10.2), we obtain

All points on the rod have this angular acceleration.
To find the linear acceleration of the right end of the rod,

we use the relationship (Eq. 10.11), with r � L:

This result—that at � g for the free end of the rod—is
rather interesting. It means that if we place a coin at the tip
of the rod, hold the rod in the horizontal position, and then
release the rod, the tip of the rod falls faster than the coin
does!

Other points on the rod have a linear acceleration that 
is less than For example, the middle of the rod has 
an acceleration of 3

4  g.

3
2  g.

3
2 gat � L� �

at � r�

3g
2L

� �
�

I
�

�g  (L/2)

1�3 �L2
�

1
3   ML2

� � �g � L
2 �

A uniform rod of length L and mass M is attached at one end
to a frictionless pivot and is free to rotate about the pivot in
the vertical plane, as shown in Figure 10.18. The rod is re-
leased from rest in the horizontal position. What is the initial
angular acceleration of the rod and the initial linear accelera-
tion of its right end?

Solution We cannot use our kinematic equations to find �
or a because the torque exerted on the rod varies with its po-
sition, and so neither acceleration is constant. We have
enough information to find the torque, however, which we
can then use in the torque–angular acceleration relationship
(Eq. 10.21) to find � and then a.

The only force contributing to torque about an axis
through the pivot is the gravitational force Mg exerted on
the rod. (The force exerted by the pivot on the rod has zero
torque about the pivot because its moment arm is zero.) To

Every point has the same � and �

QuickLab
Tip over a child’s tall tower of blocks.
Try this several times. Does the tower
“break” at the same place each time?
What affects where the tower comes
apart as it tips? If the tower were
made of toy bricks that snap together,
what would happen? (Refer to Con-
ceptual Example 10.11.)

portional to the angular acceleration of the object, with the proportionality factor
being I, a quantity that depends upon the axis of rotation and upon the size and
shape of the object. In view of the complex nature of the system, it is interesting to
note that the relationship �� � I� is strikingly simple and in complete agreement
with experimental observations. The simplicity of the result lies in the manner in
which the motion is described.

Finally, note that the result �� � I� also applies when the forces acting on the
mass elements have radial components as well as tangential components. This is
because the line of action of all radial components must pass through the axis of
rotation, and hence all radial components produce zero torque about that axis.

Pivot

L/2

Mg

Figure 10.18 The uniform rod is pivoted at the left end.

Rotating RodEXAMPLE 10.10
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Angular Acceleration of a WheelEXAMPLE 10.12
A wheel of radius R, mass M, and moment of inertia I is
mounted on a frictionless, horizontal axle, as shown in Figure
10.20. A light cord wrapped around the wheel supports an
object of mass m. Calculate the angular acceleration of the
wheel, the linear acceleration of the object, and the tension
in the cord.

Solution The torque acting on the wheel about its axis
of rotation is � � TR, where T is the force exerted by the
cord on the rim of the wheel. (The gravitational force ex-
erted by the Earth on the wheel and the normal force ex-
erted by the axle on the wheel both pass through the axis
of rotation and thus produce no torque.) Because �� � I�,
we obtain

(1)

Now let us apply Newton’s second law to the motion of the
object, taking the downward direction to be positive:

(2)

Equations (1) and (2) have three unknowns, �, a,  and T. Be-
cause the object and wheel are connected by a string that
does not slip, the linear acceleration of the suspended object
is equal to the linear acceleration of a point on the rim of the

a �
mg � T

m
  

  �Fy � mg � T � ma

� �
TR
I

  

  �� � I� � TR

Falling Smokestacks and Tumbling BlocksCONCEPTUAL EXAMPLE 10.11 
When a tall smokestack falls over, it often breaks somewhere
along its length before it hits the ground, as shown in Figure
10.19. The same thing happens with a tall tower of children’s
toy blocks. Why does this happen?

Solution As the smokestack rotates around its base, each
higher portion of the smokestack falls with an increasing
tangential acceleration. (The tangential acceleration of a
given point on the smokestack is proportional to the dis-
tance of that portion from the base.) As the acceleration in-
creases, higher portions of the smokestack experience an
acceleration greater than that which could result from 
gravity alone; this is similar to the situation described in 
Example 10.10. This can happen only if these portions are
being pulled downward by a force in addition to the gravi-
tational force. The force that causes this to occur is the
shear force from lower portions of the smokestack. Eventu-
ally the shear force that provides this acceleration is greater
than the smokestack can withstand, and the smokestack
breaks.

M

O

R

T

m g

m

T

Figure 10.19 A falling smokestack.

Figure 10.20 The tension in the cord produces a torque about
the axle passing through O.
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Atwood’s Machine RevisitedEXAMPLE 10.13
Substituting Equation (6) into Equation (5), we have

Because � � a/R, this expression can be simplified to

(7)

This value of a can then be substituted into Equations (1)

(m1 � m2)g

m1 	 m2 	 2 
I

R 2

a �

  (m1 � m2)g � (m1 	 m2)a � 2I 
a

R 2   

[(m1 � m2)g � (m1 	 m2)a]R � 2I�

Two blocks having masses m1 and m2 are connected to each
other by a light cord that passes over two identical, friction-
less pulleys, each having a moment of inertia I and radius R,
as shown in Figure 10.21a. Find the acceleration of each
block and the tensions T1 , T2 , and T3 in the cord. (Assume
no slipping between cord and pulleys.)

Solution We shall define the downward direction as posi-
tive for m1 and upward as the positive direction for m2 . This
allows us to represent the acceleration of both masses by a
single variable a and also enables us to relate a positive a to a
positive (counterclockwise) angular acceleration �. Let us
write Newton’s second law of motion for each block, using
the free-body diagrams for the two blocks as shown in Figure
10.21b:

(1)

(2)

Next, we must include the effect of the pulleys on the mo-
tion. Free-body diagrams for the pulleys are shown in Figure
10.21c. The net torque about the axle for the pulley on the
left is (T1 � T2)R, while the net torque for the pulley on the
right is (T2 � T3)R. Using the relation �� � I� for each pul-
ley and noting that each pulley has the same angular acceler-
ation �, we obtain

(3)

(4)

We now have four equations with four unknowns: a, T1 ,
T2 , and T3 . These can be solved simultaneously. Adding
Equations (3) and (4) gives

(5)

Adding Equations (1) and (2) gives

(6) T1 � T3 � (m1 � m2)g � (m1 	 m2)a

  T3 � T1 	 m1g � m2g � (m1 	 m2)a

(T1 � T3)R � 2I�

(T2 � T3)R � I�

(T1 � T2)R � I�

T3 � m2g � m2a

m1g � T1 � m1a

wheel. Therefore, the angular acceleration of the wheel and
this linear acceleration are related by a � R�. Using this fact
together with Equations (1) and (2), we obtain

(3)

(4)

Substituting Equation (4) into Equation (2), and solving for
a and �, we find that

mg

1 	
mR 2

I

  T �

a � R� �
TR2

I
�

mg � �

m

Exercise The wheel in Figure 10.20 is a solid disk of M �
2.00 kg, R � 30.0 cm, and I � 0.090 0 kg� m2. The suspended
object has a mass of m � 0.500 kg. Find the tension in the
cord and the angular acceleration of the wheel.

Answer 3.27 N; 10.9 rad/s2.

g
R 	 I/mR

� �
a
R

�

g
1 	 I/mR 2a �

T2 T2

T1 T3

T2

T1 T3

m1g

(a)

m2g

(b)

n1

T1 mpg

n2

T3
mpg

(c)

m1

m1

m2

m2

+

+

Figure 10.21 (a) Another look at Atwood’s machine. 
(b) Free-body diagrams for the blocks. (c) Free-body diagrams for
the pulleys, where mpg represents the force of gravity acting on each
pulley.
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WORK, POWER, AND ENERGY
IN ROTATIONAL MOTION

In this section, we consider the relationship between the torque acting on a rigid
object and its resulting rotational motion in order to generate expressions for the
power and a rotational analog to the work–kinetic energy theorem. Consider the
rigid object pivoted at O in Figure 10.22. Suppose a single external force F is ap-
plied at P, where F lies in the plane of the page. The work done by F as the object
rotates through an infinitesimal distance ds � r d� in a time dt is

where F sin � is the tangential component of F, or, in other words, the component
of the force along the displacement. Note that the radial component of F does no work
because it is perpendicular to the displacement.

Because the magnitude of the torque due to F about O is defined as rF sin �
by Equation 10.19, we can write the work done for the infinitesimal rotation as

(10.22)

The rate at which work is being done by F as the object rotates about the fixed axis is

Because dW/dt is the instantaneous power � (see Section 7.5) delivered by the
force, and because d�/dt � �, this expression reduces to

(10.23)

This expression is analogous to in the case of linear motion, and the ex-
pression dW � � d� is analogous to dW � Fx dx.

Work and Energy in Rotational Motion

In studying linear motion, we found the energy concept—and, in particular, the
work–kinetic energy theorem—extremely useful in describing the motion of a
system. The energy concept can be equally useful in describing rotational motion.
From what we learned of linear motion, we expect that when a symmetric object
rotates about a fixed axis, the work done by external forces equals the change in
the rotational energy.

To show that this is in fact the case, let us begin with �� � I�. Using the chain
rule from the calculus, we can express the resultant torque as

�� � I� � I 
d�

dt
� I 

d�

d�
 
d�

dt
� I 

d�

d�
 �

� � Fv

� �
dW
dt

� ��

dW
dt

� � 
d�

dt

dW � � d�

dW � F�ds � (F sin �)r d�

10.8

Power delivered to a rigid object

Figure 10.22 A rigid object ro-
tates about an axis through O un-
der the action of an external force
F applied at P.

and (2) to give T1 and T3 . Finally, T2 can be found from
Equation (3) or Equation (4). Note that if m1 � m 2 , the ac-
celeration is positive; this means that the left block acceler-
ates downward, the right block accelerates upward, and both

pulleys accelerate counterclockwise. If m1 � m 2 , then all the
values are negative and the motions are reversed. If m1 � m 2 ,
then no acceleration occurs at all. You should compare these
results with those found in Example 5.9 on page 129.

O

P

r
d

ds

φ

F

θ
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Rearranging this expression and noting that �� d� � dW, we obtain

Integrating this expression, we get for the total work done by the net external
force acting on a rotating system

(10.24)

where the angular speed changes from �i to �f as the angular position changes
from �i to �f . That is,

�W � ��f

�i

 �� d� � ��f

�i

 I� d� � 1
2I�f 

2 � 1
2I�i 

2

�� d� � dW � I� d�

the net work done by external forces in rotating a symmetric rigid object about
a fixed axis equals the change in the object’s rotational energy.

Work–kinetic energy theorem for
rotational motion

Table 10.3 lists the various equations we have discussed pertaining to rota-
tional motion, together with the analogous expressions for linear motion. The last
two equations in Table 10.3, involving angular momentum L, are discussed in
Chapter 11 and are included here only for the sake of completeness.

For a hoop lying in the xy plane, which of the following requires that more work be done by
an external agent to accelerate the hoop from rest to an angular speed �: (a) rotation
about the z axis through the center of the hoop, or (b) rotation about an axis parallel to z
passing through a point P on the hoop rim?

Quick Quiz 10.4

	 	

TABLE 10.3 Useful Equations in Rotational and Linear Motion

Rotational Motion
About a Fixed Axis Linear Motion

Angular speed � � d�/dt Linear speed v � dx/dt
Angular acceleration � � d�/dt Linear acceleration a � dv/dt
Resultant torque � � I� Resultant force F � ma

If �f � �i 	 �t If vf � vi 	 at
� � constant �f � �i � �it 	 �t2 a � constant xf � xi � vit 	 at2

�f
2 � �i

2 	 2�(�f � �i) vf
2 � vi

2 	 2a(xf � xi)

Work Work 

Rotational kinetic energy Kinetic energy 
Power Power 
Angular momentum L � I� Linear momentum p � mv
Resultant torque � � dL/dt Resultant force F � dp/dt��

� � Fv� � ��
K � 1

2mv2KR � 1
2I�2

W � �xf

xi 
 Fx dxW � ��f

�i

 � d�

1
2

1
2

��



314 C H A P T E R  1 0 Rotation of a Rigid Object About a Fixed Axis

Connected CylindersEXAMPLE 10.15
inertia I about its axis of rotation. The string does not slip
on the pulley, and the system is released from rest. Find the
linear speeds of the cylinders after cylinder 2 descends
through a distance h, and the angular speed of the pulley at
this time.

Solution We are now able to account for the effect of a
massive pulley. Because the string does not slip, the pulley ro-
tates. We neglect friction in the axle about which the pulley
rotates for the following reason: Because the axle’s radius is
small relative to that of the pulley, the frictional torque is
much smaller than the torque applied by the two cylinders,
provided that their masses are quite different. Mechanical en-
ergy is constant; hence, the increase in the system’s kinetic en-
ergy (the system being the two cylinders, the pulley, and the
Earth) equals the decrease in its potential energy. Because 
Ki � 0 (the system is initially at rest), we have

where vf is the same for both blocks. Because vf � R�f , this
expression becomes

�K � 1
2�m1 	 m2 	

I
R 2 �vf 

2

�K � K f � K i � (1
2m1vf 

2 	 1
2m2vf 

2 	 1
2I�f 

2) � 0

Consider two cylinders having masses m1 and m2 , where m1 �
m2 , connected by a string passing over a pulley, as shown in
Figure 10.24. The pulley has a radius R and moment of 

Rotating Rod RevisitedEXAMPLE 10.14
energy is entirely rotational energy, where I is the mo-
ment of inertia about the pivot. Because (see Table
10.2) and because mechanical energy is constant, we have 
Ei � Ef or

(b) Determine the linear speed of the center of mass and
the linear speed of the lowest point on the rod when it is in
the vertical position.

Solution These two values can be determined from the re-
lationship between linear and angular speeds. We know �
from part (a), and so the linear speed of the center of mass is

Because r for the lowest point on the rod is twice what it is for
the center of mass, the lowest point has a linear speed equal
to

√3gL2vCM �

1
2 √3gLvCM � r� �

L
2

 � �

√ 3g
L

  � �

1
2  MgL � 1

2  I�2 � 1
2  (1

3  ML2)�2

I � 1
3  ML2

1
2  I�2,A uniform rod of length L and mass M is free to rotate on a

frictionless pin passing through one end (Fig 10.23). The rod
is released from rest in the horizontal position. (a) What is its
angular speed when it reaches its lowest position?

Solution The question can be answered by considering
the mechanical energy of the system. When the rod is hori-
zontal, it has no rotational energy. The potential energy rela-
tive to the lowest position of the center of mass of the rod
(O �) is MgL/2. When the rod reaches its lowest position, the

O ′

O

L/2

Ei = U = MgL/2

Ef  = KR = –1
2

Iω2ω

h

h

m2

m1

R

Figure 10.23 A uniform rigid rod pivoted at O rotates in a vertical
plane under the action of gravity.

Figure 10.24
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SUMMARY

If a particle rotates in a circle of radius r through an angle � (measured in radi-
ans), the arc length it moves through is s � r�.

The angular displacement of a particle rotating in a circle or of a rigid ob-
ject rotating about a fixed axis is

(10.2)

The instantaneous angular speed of a particle rotating in a circle or of a
rigid object rotating about a fixed axis is

(10.4)

The instantaneous angular acceleration of a rotating object is

(10.6)

When a rigid object rotates about a fixed axis, every part of the object has the
same angular speed and the same angular acceleration.

If a particle or object rotates about a fixed axis under constant angular accel-
eration, one can apply equations of kinematics that are analogous to those for lin-
ear motion under constant linear acceleration:

(10.7)

(10.8)

(10.9)

A useful technique in solving problems dealing with rotation is to visualize a linear
version of the same problem.

When a rigid object rotates about a fixed axis, the angular position, angular
speed, and angular acceleration are related to the linear position, linear speed,
and linear acceleration through the relationships

(10.1a)

(10.10)

(10.11)at � r�

  v � r�

  s � r u

�f 

2 � �i 

2 	 2�(�f � �i)

  �f � �i 	 �it 	 1
2�t2  

  �f � �i 	 �t  

� �
d�

dt

� �
d�

dt

�� � �f � �i

From Figure 10.24, we see that the system loses potential en-
ergy as cylinder 2 descends and gains potential energy as
cylinder 1 rises. That is, and Ap-
plying the principle of conservation of energy in the form

gives

vf � �
2(m2 � m1)gh

�m1 	 m2 	
I

R 2 � �
1/2

1
2�m1 	 m2 	

I
R 2 �vf 

2 	 m1gh � m2gh � 0

�K 	 �U1 	 �U 2 � 0

�U1 � m1gh.�U 2 � �m2gh

Because the angular speed of the pulley at this in-
stant is

Exercise Repeat the calculation of vf , using �� � I� ap-
plied to the pulley and Newton’s second law applied to the
two cylinders. Use the procedures presented in Examples
10.12 and 10.13.

1
R

 �
2(m2 � m1)gh

�m1 	 m2 	
I

R 2 � �
1/2

�f �
vf

R
�

vf � R�f ,
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You must be able to easily alternate between the linear and rotational variables
that describe a given situation.

The moment of inertia of a system of particles is

(10.15)

If a rigid object rotates about a fixed axis with angular speed �, its rotational
energy can be written

(10.16)

where I is the moment of inertia about the axis of rotation.
The moment of inertia of a rigid object is

(10.17)

where r is the distance from the mass element dm to the axis of rotation. 
The magnitude of the torque associated with a force F acting on an object is

(10.19)

where d is the moment arm of the force, which is the perpendicular distance from
some origin to the line of action of the force. Torque is a measure of the tendency
of the force to change the rotation of the object about some axis. 

If a rigid object free to rotate about a fixed axis has a net external torque act-
ing on it, the object undergoes an angular acceleration �, where

(10.21)

The rate at which work is done by an external force in rotating a rigid object
about a fixed axis, or the power delivered, is

(10.23)

The net work done by external forces in rotating a rigid object about a fixed
axis equals the change in the rotational kinetic energy of the object:

(10.24)�W � 1
2I�f 

2 � 1
2I�i 

2

� � ��

�� � I�

� � Fd

I � �r 2 dm

KR � 1
2I�2

I  � �
i

miri 

2

QUESTIONS

the moment of inertia have the smallest value? the largest
value?

6. Suppose the rod in Figure 10.10 has a nonuniform mass
distribution. In general, would the moment of inertia
about the y axis still equal ML2/12? If not, could the mo-
ment of inertia be calculated without knowledge of the
manner in which the mass is distributed?

7. Suppose that only two external forces act on a rigid body,
and the two forces are equal in magnitude but opposite
in direction. Under what condition does the body rotate?

8. Explain how you might use the apparatus described in
Example 10.12 to determine the moment of inertia of the
wheel. (If the wheel does not have a uniform mass den-
sity, the moment of inertia is not necessarily equal to

.)1
2MR 2

1. What is the angular speed of the second hand of a clock?
What is the direction of � as you view a clock hanging
vertically? What is the magnitude of the angular accelera-
tion vector � of the second hand?

2. A wheel rotates counterclockwise in the xy plane. What is
the direction of �? What is the direction of � if the angu-
lar velocity is decreasing in time?

3. Are the kinematic expressions for �, �, and � valid when
the angular displacement is measured in degrees instead
of in radians?

4. A turntable rotates at a constant rate of 45 rev/min. What
is its angular speed in radians per second? What is the
magnitude of its angular acceleration?

5. Suppose a � b and M � m for the system of particles de-
scribed in Figure 10.8. About what axis (x, y, or z) does
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9. Using the results from Example 10.12, how would you cal-
culate the angular speed of the wheel and the linear
speed of the suspended mass at t � 2 s, if the system is re-
leased from rest at t � 0? Is the expression v � R� valid
in this situation?

10. If a small sphere of mass M were placed at the end of the
rod in Figure 10.23, would the result for � be greater
than, less than, or equal to the value obtained in Example
10.14?

11. Explain why changing the axis of rotation of an object
changes its moment of inertia.

12. Is it possible to change the translational kinetic energy of
an object without changing its rotational energy?

13. Two cylinders having the same dimensions are set into ro-
tation about their long axes with the same angular speed.

One is hollow, and the other is filled with water. Which
cylinder will be easier to stop rotating? Explain your 
answer.

14. Must an object be rotating to have a nonzero moment of
inertia?

15. If you see an object rotating, is there necessarily a net
torque acting on it?

16. Can a (momentarily) stationary object have a nonzero an-
gular acceleration?

17. The polar diameter of the Earth is slightly less than the
equatorial diameter. How would the moment of inertia of
the Earth change if some mass from near the equator
were removed and transferred to the polar regions to
make the Earth a perfect sphere?

PROBLEMS

7. The angular position of a swinging door is described by
� � 5.00 	 10.0t 	 2.00t 2 rad. Determine the angular
position, angular speed, and angular acceleration of the
door (a) at t � 0 and (b) at t � 3.00 s.

8. The tub of a washer goes into its spin cycle, starting
from rest and gaining angular speed steadily for 8.00 s,
when it is turning at 5.00 rev/s. At this point the person
doing the laundry opens the lid, and a safety switch
turns off the washer. The tub smoothly slows to rest in
12.0 s. Through how many revolutions does the tub
turn while it is in motion?

9. A rotating wheel requires 3.00 s to complete 37.0 revo-
lutions. Its angular speed at the end of the 3.00-s inter-
val is 98.0 rad/s. What is the constant angular accelera-
tion of the wheel?

10. (a) Find the angular speed of the Earth’s rotation on its
axis. As the Earth turns toward the east, we see the sky
turning toward the west at this same rate.
(b) The rainy Pleiads wester

And seek beyond the sea
The head that I shall dream of

That shall not dream of me.

A. E. Housman (© Robert E. Symons)

Cambridge, England, is at longitude 0°, and Saskatoon,
Saskatchewan, is at longitude 107° west. How much
time elapses after the Pleiades set in Cambridge until
these stars fall below the western horizon in Saskatoon?

Section 10.3 Angular and Linear Quantities
11. Make an order-of-magnitude estimate of the number of

revolutions through which a typical automobile tire

Section 10.2 Rotational Kinematics: Rotational 
Motion with Constant Angular Acceleration

1. A wheel starts from rest and rotates with constant angu-
lar acceleration and reaches an angular speed of 
12.0 rad/s in 3.00 s. Find (a) the magnitude of the an-
gular acceleration of the wheel and (b) the angle (in
radians) through which it rotates in this time.

2. What is the angular speed in radians per second of 
(a) the Earth in its orbit about the Sun and (b) the
Moon in its orbit about the Earth?

3. An airliner arrives at the terminal, and its engines are
shut off. The rotor of one of the engines has an initial
clockwise angular speed of 2 000 rad/s. The engine’s
rotation slows with an angular acceleration of magni-
tude 80.0 rad/s2. (a) Determine the angular speed after
10.0 s. (b) How long does it take for the rotor to come
to rest?

4. (a) The positions of the hour and minute hand on a
clock face coincide at 12 o’clock. Determine all other
times (up to the second) at which the positions of the
hands coincide. (b) If the clock also has a second hand,
determine all times at which the positions of 
all three hands coincide, given that they all coincide 
at 12 o’clock.

5. An electric motor rotating a grinding wheel at 
100 rev/min is switched off. Assuming constant negative
acceleration of magnitude 2.00 rad/s2, (a) how long
does it take the wheel to stop? (b) Through how many
radians does it turn during the time found in part (a)?

6. A centrifuge in a medical laboratory rotates at a rota-
tional speed of 3 600 rev/min. When switched off, it ro-
tates 50.0 times before coming to rest. Find the constant
angular acceleration of the centrifuge.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB
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turns in 1 yr. State the quantities you measure or esti-
mate and their values.

12. The diameters of the main rotor and tail rotor of a sin-
gle-engine helicopter are 7.60 m and 1.02 m, respec-
tively. The respective rotational speeds are 450 rev/min
and 4 138 rev/min. Calculate the speeds of the tips of
both rotors. Compare these speeds with the speed of
sound, 343 m/s.

sume the discus moves on the arc of a circle 1.00 m in
radius. (a) Calculate the final angular speed of the dis-
cus. (b) Determine the magnitude of the angular accel-
eration of the discus, assuming it to be constant. 
(c) Calculate the acceleration time.

17. A car accelerates uniformly from rest and reaches a
speed of 22.0 m/s in 9.00 s. If the diameter of a tire is
58.0 cm, find (a) the number of revolutions the tire
makes during this motion, assuming that no slipping oc-
curs. (b) What is the final rotational speed of a tire in
revolutions per second?

18. A 6.00-kg block is released from A on the frictionless
track shown in Figure P10.18. Determine the radial and
tangential components of acceleration for the block 
at P.

WEB

Figure P10.12 (Ross Harrrison Koty/Tony Stone Images)

Figure P10.16 (Bruce Ayers/Tony Stone Images)

Figure P10.18

13. A racing car travels on a circular track with a radius of
250 m. If the car moves with a constant linear speed of
45.0 m/s, find (a) its angular speed and (b) the magni-
tude and direction of its acceleration.

14. A car is traveling at 36.0 km/h on a straight road. The
radius of its tires is 25.0 cm. Find the angular speed of
one of the tires, with its axle taken as the axis of rota-
tion.

15. A wheel 2.00 m in diameter lies in a vertical plane 
and rotates with a constant angular acceleration of 
4.00 rad/s2. The wheel starts at rest at t � 0, and the
radius vector of point P on the rim makes an angle of
57.3° with the horizontal at this time. At t � 2.00 s, find
(a) the angular speed of the wheel, (b) the linear speed
and acceleration of the point P, and (c) the angular
position of the point P.

16. A discus thrower accelerates a discus from rest to a
speed of 25.0 m/s by whirling it through 1.25 rev. As-

19. A disc 8.00 cm in radius rotates at a constant rate of 
1 200 rev/min about its central axis. Determine (a) its
angular speed, (b) the linear speed at a point 3.00 cm
from its center, (c) the radial acceleration of a point on
the rim, and (d) the total distance a point on the rim
moves in 2.00 s.

20. A car traveling on a flat (unbanked) circular track accel-
erates uniformly from rest with a tangential acceleration
of 1.70 m/s2. The car makes it one quarter of the way
around the circle before it skids off the track. Deter-
mine the coefficient of static friction between the car
and track from these data.

21. A small object with mass 4.00 kg moves counterclock-
wise with constant speed 4.50 m/s in a circle of radius
3.00 m centered at the origin. (a) It started at the point
with cartesian coordinates (3 m, 0). When its angular
displacement is 9.00 rad, what is its position vector, in
cartesian unit-vector notation? (b) In what quadrant is
the particle located, and what angle does its position
vector make with the positive x axis? (c) What is its ve-
locity vector, in unit–vector notation? (d) In what direc-
tion is it moving? Make a sketch of the position and ve-
locity vectors. (e) What is its acceleration, expressed in
unit–vector notation? (f) What total force acts on the
object? (Express your answer in unit vector notation.)

R  =  2.00 m

P

A

h  =  5.00 m
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Figure P10.23

Section 10.5 Calculation of Moments of Inertia
28. Three identical thin rods, each of length L and mass m,

are welded perpendicular to each other, as shown in
Figure P10.28. The entire setup is rotated about an axis

27. Two masses M and m are connected by a rigid rod of
length L and of negligible mass, as shown in Figure
P10.27. For an axis perpendicular to the rod, show 
that the system has the minimum moment of inertia
when the axis passes through the center of mass. Show
that this moment of inertia is I � �L2, where � �
mM/(m 	 M).

24. The center of mass of a pitched baseball (3.80-cm ra-
dius) moves at 38.0 m/s. The ball spins about an axis
through its center of mass with an angular speed of 
125 rad/s. Calculate the ratio of the rotational energy
to the translational kinetic energy. Treat the ball as a
uniform sphere.

25. The four particles in Figure P10.25 are connected by
rigid rods of negligible mass. The origin is at the center
of the rectangle. If the system rotates in the xy plane
about the z axis with an angular speed of 6.00 rad/s, cal-
culate (a) the moment of inertia of the system about
the z axis and (b) the rotational energy of the system.

26. The hour hand and the minute hand of Big Ben, the fa-
mous Parliament tower clock in London, are 2.70 m
long and 4.50 m long and have masses of 60.0 kg and
100 kg, respectively. Calculate the total rotational ki-
netic energy of the two hands about the axis of rotation.
(You may model the hands as long thin rods.)

22. A standard cassette tape is placed in a standard cassette
player. Each side plays for 30 min. The two tape wheels
of the cassette fit onto two spindles in the player. Sup-
pose that a motor drives one spindle at a constant angu-
lar speed of 
 1 rad/s and that the other spindle is free
to rotate at any angular speed. Estimate the order of
magnitude of the thickness of the tape.

Section 10.4 Rotational Energy
23. Three small particles are connected by rigid rods of

negligible mass lying along the y axis (Fig. P10.23). If
the system rotates about the x axis with an angular
speed of 2.00 rad/s, find (a) the moment of inertia
about the x axis and the total rotational kinetic energy
evaluated from and (b) the linear speed of each
particle and the total kinetic energy evaluated from 

.�1
2mivi 

2
 

1
2I�2

3.00 kg 2.00 kg

4.00 kg2.00 kg

6.00 m

4.00 m

y(m)

x(m)
O

x
O

y  =  3.00 m4.00 kg

3.00 kg

2.00 kg

y

y  =  –2.00 m

y  =  –4.00 m

Figure P10.25

Figure P10.26 Problems 26 and 74. ( John Lawrence/Tony Stone Images)

Figure P10.27

L

L – xx
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that passes through the end of one rod and is parallel to
another. Determine the moment of inertia of this
arrangement.

29. Figure P10.29 shows a side view of a car tire and its ra-
dial dimensions. The rubber tire has two sidewalls of
uniform thickness 0.635 cm and a tread wall of uniform
thickness 2.50 cm and width 20.0 cm. Suppose its den-
sity is uniform, with the value 1.10 
 103 kg/m3. Find
its moment of inertia about an axis through its center
perpendicular to the plane of the sidewalls.

31. Attention! About face! Compute an order-of-magnitude es-
timate for the moment of inertia of your body as you
stand tall and turn around a vertical axis passing
through the top of your head and the point halfway be-
tween your ankles. In your solution state the quantities
you measure or estimate and their values.

Section 10.6 Torque
32. Find the mass m needed to balance the 1 500-kg truck

on the incline shown in Figure P10.32. Assume all pul-
leys are frictionless and massless.

WEB

34. The fishing pole in Figure P10.34 makes an angle of
20.0° with the horizontal. What is the torque exerted by

33. Find the net torque on the wheel in Figure P10.33
about the axle through O if a � 10.0 cm and b �
25.0 cm.

30. Use the parallel-axis theorem and Table 10.2 to find the
moments of inertia of (a) a solid cylinder about an axis
parallel to the center-of-mass axis and passing through
the edge of the cylinder and (b) a solid sphere about an
axis tangent to its surface.

Figure P10.28

10.0 N

30.0° a

O

b
12.0 N

9.00 N

r

3r

θ = 45°

1500 kg
m

θ

Sidewall

Tread

33.0 cm

30.5 cm

16.5 cm

Axis of
rotation

Figure P10.29

Figure P10.32

Figure P10.33
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the fish about an axis perpendicular to the page and
passing through the fisher’s hand?

35. The tires of a 1 500-kg car are 0.600 m in diameter, and
the coefficients of friction with the road surface are 
�s � 0.800 and �k � 0.600. Assuming that the weight is
evenly distributed on the four wheels, calculate the
maximum torque that can be exerted by the engine on
a driving wheel such that the wheel does not spin. If you
wish, you may suppose that the car is at rest.

36. Suppose that the car in Problem 35 has a disk brake sys-
tem. Each wheel is slowed by the frictional force be-
tween a single brake pad and the disk-shaped rotor. On
this particular car, the brake pad comes into contact
with the rotor at an average distance of 22.0 cm from
the axis. The coefficients of friction between the brake
pad and the disk are �s � 0.600 and �k � 0.500. Calcu-
late the normal force that must be applied to the rotor
such that the car slows as quickly as possible.

Section 10.7 Relationship Between 
Torque and Angular Acceleration

37. A model airplane having a mass of 0.750 kg is tethered
by a wire so that it flies in a circle 30.0 m in radius. The
airplane engine provides a net thrust of 0.800 N per-
pendicular to the tethering wire. (a) Find the torque
the net thrust produces about the center of the circle.
(b) Find the angular acceleration of the airplane when
it is in level flight. (c) Find the linear acceleration of
the airplane tangent to its flight path.

38. The combination of an applied force and a frictional
force produces a constant total torque of 36.0 N� m on a
wheel rotating about a fixed axis. The applied force acts
for 6.00 s; during this time the angular speed of the
wheel increases from 0 to 10.0 rad/s. The applied force
is then removed, and the wheel comes to rest in 60.0 s.
Find (a) the moment of inertia of the wheel, (b) the
magnitude of the frictional torque, and (c) the total
number of revolutions of the wheel.

39. A block of mass m1 � 2.00 kg and a block of mass m2 �
6.00 kg are connected by a massless string over a pulley

in the shape of a disk having radius R � 0.250 m and
mass M � 10.0 kg. These blocks are allowed to move on
a fixed block–wedge of angle � � 30.0°, as shown in
Figure P10.39. The coefficient of kinetic friction for
both blocks is 0.360. Draw free-body diagrams of both
blocks and of the pulley. Determine (a) the acceleration
of the two blocks and (b) the tensions in the string on
both sides of the pulley.

40. A potter’s wheel—a thick stone disk with a radius of
0.500 m and a mass of 100 kg—is freely rotating at 
50.0 rev/min. The potter can stop the wheel in 6.00 s by
pressing a wet rag against the rim and exerting a radi-
ally inward force of 70.0 N. Find the effective coefficient
of kinetic friction between the wheel and the rag.

41. A bicycle wheel has a diameter of 64.0 cm and a mass of
1.80 kg. Assume that the wheel is a hoop with all of its
mass concentrated on the outside radius. The bicycle is
placed on a stationary stand on rollers, and a resistive
force of 120 N is applied tangent to the rim of the tire.
(a) What force must be applied by a chain passing over
a 9.00-cm-diameter sprocket if the wheel is to attain an
acceleration of 4.50 rad/s2? (b) What force is required
if the chain shifts to a 5.60-cm-diameter sprocket?

Section 10.8 Work , Power, and 
Energy in Rotational Motion

42. A cylindrical rod 24.0 cm long with a mass of 1.20 kg
and a radius of 1.50 cm has a ball with a diameter of
8.00 cm and a mass of 2.00 kg attached to one end. The
arrangement is originally vertical and stationary, with
the ball at the top. The apparatus is free to pivot about
the bottom end of the rod. (a) After it falls through 90°,
what is its rotational kinetic energy? (b) What is the an-
gular speed of the rod and ball? (c) What is the linear
speed of the ball? (d) How does this compare with the
speed if the ball had fallen freely through the same dis-
tance of 28 cm?

43. A 15.0-kg mass and a 10.0-kg mass are suspended by a
pulley that has a radius of 10.0 cm and a mass of 3.00 kg
(Fig. P10.43). The cord has a negligible mass and
causes the pulley to rotate without slipping. The pulley

WEB

m1

m2

I, R

θ

100 N

2.00 m

20.0°

20.0°
37.0°

Figure P10.34

Figure P10.39
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rotates without friction. The masses start from rest 
3.00 m apart. Treating the pulley as a uniform disk, de-
termine the speeds of the two masses as they pass each
other.

44. A mass m1 and a mass m2 are suspended by a pulley that
has a radius R and a mass M (see Fig. P10.43). The cord
has a negligible mass and causes the pulley to rotate
without slipping. The pulley rotates without friction.
The masses start from rest a distance d apart. Treating
the pulley as a uniform disk, determine the speeds of
the two masses as they pass each other.

v. Show that the moment of inertia I of the equipment
(including the turntable) is mr 2(2gh/v2 � 1).

48. A bus is designed to draw its power from a rotating
flywheel that is brought up to its maximum rate of rota-
tion (3 000 rev/min) by an electric motor. The flywheel
is a solid cylinder with a mass of 1 000 kg and a diame-
ter of 1.00 m. If the bus requires an average power of 
10.0 kW, how long does the flywheel rotate?

49. (a) A uniform, solid disk of radius R and mass M is free
to rotate on a frictionless pivot through a point on its
rim (Fig. P10.49). If the disk is released from rest in the
position shown by the blue circle, what is the speed of
its center of mass when the disk reaches the position in-
dicated by the dashed circle? (b) What is the speed of
the lowest point on the disk in the dashed position? 
(c) Repeat part (a), using a uniform hoop.

50. A horizontal 800-N merry-go-round is a solid disk of ra-
dius 1.50 m and is started from rest by a constant horizon-
tal force of 50.0 N applied tangentially to the cylinder.
Find the kinetic energy of the solid cylinder after 3.00 s.

ADDITIONAL PROBLEMS

51. Toppling chimneys often break apart in mid-fall (Fig.
P10.51) because the mortar between the bricks cannot

45. A weight of 50.0 N is attached to the free end of a light
string wrapped around a reel with a radius of 0.250 m
and a mass of 3.00 kg. The reel is a solid disk, free to ro-
tate in a vertical plane about the horizontal axis passing
through its center. The weight is released 6.00 m above
the floor. (a) Determine the tension in the string, the
acceleration of the mass, and the speed with which the
weight hits the floor. (b) Find the speed calculated in
part (a), using the principle of conservation of energy.

46. A constant torque of 25.0 N� m is applied to a grind-
stone whose moment of inertia is 0.130 kg� m2. Using
energy principles, find the angular speed after the
grindstone has made 15.0 revolutions. (Neglect fric-
tion.)

47. This problem describes one experimental method of
determining the moment of inertia of an irregularly
shaped object such as the payload for a satellite. Figure
P10.47 shows a mass m suspended by a cord wound
around a spool of radius r, forming part of a turntable
supporting the object. When the mass is released from
rest, it descends through a distance h, acquiring a speed

Pivot R

g

m

M = 3.00 kg
R = 10.0 cm
m1 = 15.0 kg
m2 = 10.0 kg

3.00 m

m1

M
R

m2

Figure P10.43 Problems 43 and 44.

Figure P10.47

Figure P10.49
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withstand much shear stress. As the chimney begins to
fall, shear forces must act on the topmost sections to ac-
celerate them tangentially so that they can keep up with
the rotation of the lower part of the stack. For simplic-
ity, let us model the chimney as a uniform rod of length
� pivoted at the lower end. The rod starts at rest in a
vertical position (with the frictionless pivot at the bot-
tom) and falls over under the influence of gravity. What
fraction of the length of the rod has a tangential accel-
eration greater than g sin �, where � is the angle the
chimney makes with the vertical?

exerts on the wheel. (a) How long does the wheel take
to reach its final rotational speed of 1 200 rev/min? 
(b) Through how many revolutions does it turn while
accelerating?

54. The density of the Earth, at any distance r from its cen-
ter, is approximately

where R is the radius of the Earth. Show that this density
leads to a moment of inertia I � 0.330MR2 about an axis
through the center, where M is the mass of the Earth.

55. A 4.00-m length of light nylon cord is wound around a
uniform cylindrical spool of radius 0.500 m and mass
1.00 kg. The spool is mounted on a frictionless axle and
is initially at rest. The cord is pulled from the spool with
a constant acceleration of magnitude 2.50 m/s2. 
(a) How much work has been done on the spool when
it reaches an angular speed of 8.00 rad/s? (b) Assuming
that there is enough cord on the spool, how long does it
take the spool to reach this angular speed? (c) Is there
enough cord on the spool?

56. A flywheel in the form of a heavy circular disk of diame-
ter 0.600 m and mass 200 kg is mounted on a friction-
less bearing. A motor connected to the flywheel acceler-
ates it from rest to 1 000 rev/min. (a) What is the
moment of inertia of the flywheel? (b) How much work
is done on it during this acceleration? (c) When the an-
gular speed reaches 1 000 rev/min, the motor is disen-
gaged. A friction brake is used to slow the rotational
rate to 500 rev/min. How much energy is dissipated as
internal energy in the friction brake?

57. A shaft is turning at 65.0 rad/s at time zero. Thereafter,
its angular acceleration is given by

where t is the elapsed time. (a) Find its angular speed at
t � 3.00 s. (b) How far does it turn in these 3 s?

58. For any given rotational axis, the radius of gyration K of a
rigid body is defined by the expression K 2 � I/M,
where M is the total mass of the body and I is its mo-
ment of inertia. Thus, the radius of gyration is equal to
the distance between an imaginary point mass M and
the axis of rotation such that I for the point mass about
that axis is the same as that for the rigid body. Find the
radius of gyration of (a) a solid disk of radius R, (b) a
uniform rod of length L, and (c) a solid sphere of ra-
dius R, all three of which are rotating about a central
axis.

59. A long, uniform rod of length L and mass M is pivoted
about a horizontal, frictionless pin passing through one
end. The rod is released from rest in a vertical position,
as shown in Figure P10.59. At the instant the rod is hori-
zontal, find (a) its angular speed, (b) the magnitude of
its angular acceleration, (c) the x and y components of
the acceleration of its center of mass, and (d) the com-
ponents of the reaction force at the pivot.

� � �10 rad/s2 � 5t rad/s3


 � [14.2 � 11.6 r/R] 
 103 kg/m3

52. Review Problem. A mixing beater consists of three
thin rods: Each is 10.0 cm long, diverges from a central
hub, and is separated from the others by 120°. All turn
in the same plane. A ball is attached to the end of each
rod. Each ball has a cross-sectional area of 4.00 cm2 and
is shaped so that it has a drag coefficient of 0.600. Cal-
culate the power input required to spin the beater at 
1 000 rev/min (a) in air and (b) in water.

53. A grinding wheel is in the form of a uniform solid disk
having a radius of 7.00 cm and a mass of 2.00 kg. It
starts from rest and accelerates uniformly under the ac-
tion of the constant torque of 0.600 N� m that the motor

Figure P10.51 A building demolition site in Baltimore,
MD. At the left is a chimney, mostly concealed by the building,
that has broken apart on its way down. Compare with Figure
10.19. ( Jerry Wachter/Photo Researchers, Inc.)
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60. A bicycle is turned upside down while its owner repairs
a flat tire. A friend spins the other wheel, of radius
0.381 m, and observes that drops of water fly off tangen-
tially. She measures the height reached by drops moving
vertically (Fig. P10.60). A drop that breaks loose from
the tire on one turn rises h � 54.0 cm above the tan-
gent point. A drop that breaks loose on the next turn
rises 51.0 cm above the tangent point. The height to
which the drops rise decreases because the angular
speed of the wheel decreases. From this information,
determine the magnitude of the average angular accel-
eration of the wheel.

61. A bicycle is turned upside down while its owner repairs
a flat tire. A friend spins the other wheel of radius R
and observes that drops of water fly off tangentially. She
measures the height reached by drops moving vertically
(see Fig. P10.60). A drop that breaks loose from the tire
on one turn rises a distance h1 above the tangent point.

A drop that breaks loose on the next turn rises a dis-
tance h2 � h1 above the tangent point. The height to
which the drops rise decreases because the angular
speed of the wheel decreases. From this information,
determine the magnitude of the average angular accel-
eration of the wheel.

62. The top shown in Figure P10.62 has a moment of inertia
of 4.00 
 10�4 kg� m2 and is initially at rest. It is free to
rotate about the stationary axis AA�. A string, wrapped
around a peg along the axis of the top, is pulled in such
a manner that a constant tension of 5.57 N is main-
tained. If the string does not slip while it is unwound
from the peg, what is the angular speed of the top after
80.0 cm of string has been pulled off the peg?

63. A cord is wrapped around a pulley of mass m and of ra-
dius r. The free end of the cord is connected to a block
of mass M. The block starts from rest and then slides
down an incline that makes an angle � with the horizon-
tal. The coefficient of kinetic friction between block
and incline is �. (a) Use energy methods to show that
the block’s speed as a function of displacement d down
the incline is

(b) Find the magnitude of the acceleration of the block
in terms of �, m, M, g, and �.

64. (a) What is the rotational energy of the Earth about its
spin axis? The radius of the Earth is 6 370 km, and its
mass is 5.98 
 1024 kg. Treat the Earth as a sphere of
moment of inertia . (b) The rotational energy of
the Earth is decreasing steadily because of tidal friction.
Estimate the change in one day, given that the rota-
tional period increases by about 10 �s each year.

65. The speed of a moving bullet can be determined by al-
lowing the bullet to pass through two rotating paper
disks mounted a distance d apart on the same axle (Fig.
P10.65). From the angular displacement �� of the two

2
5MR 2

v � [4gdM(m 	 2M)�1(sin � � � cos �)]1/2

F

A′

A

h

xPivot
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y

Figure P10.59

Figure P10.60 Problems 60 and 61.

Figure P10.62
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bullet holes in the disks and the rotational speed of the
disks, we can determine the speed v of the bullet. Find
the bullet speed for the following data: d � 80 cm, 
� � 900 rev/min, and �� � 31.0°.

66. A wheel is formed from a hoop and n equally spaced
spokes extending from the center of the hoop to its
rim. The mass of the hoop is M, and the radius of the
hoop (and hence the length of each spoke) is R. The
mass of each spoke is m. Determine (a) the moment of
inertia of the wheel about an axis through its center
and perpendicular to the plane of the wheel and 
(b) the moment of inertia of the wheel about an axis
through its rim and perpendicular to the plane of the
wheel.

67. A uniform, thin, solid door has a height of 2.20 m, a
width of 0.870 m, and a mass of 23.0 kg. Find its mo-
ment of inertia for rotation on its hinges. Are any of the
data unnecessary?

68. A uniform, hollow, cylindrical spool has inside radius
R/2, outside radius R , and mass M (Fig. P10.68). It is
mounted so that it rotates on a massless horizontal axle.
A mass m is connected to the end of a string wound
around the spool. The mass m falls from rest through a
distance y in time t. Show that the torque due to the
frictional forces between spool and axle is 

69. An electric motor can accelerate a Ferris wheel of
moment of inertia I � 20 000 kg� m2 from rest to 

�f � R[m(g � 2y/t2) � M(5y/4t2)]

10.0 rev/min in 12.0 s. When the motor is turned off,
friction causes the wheel to slow down from 10.0 to 
8.00 rev/min in 10.0 s. Determine (a) the torque gener-
ated by the motor to bring the wheel to 10.0 rev/min
and (b) the power that would be needed to maintain
this rotational speed.

70. The pulley shown in Figure P10.70 has radius R and
moment of inertia I. One end of the mass m is con-
nected to a spring of force constant k, and the other
end is fastened to a cord wrapped around the pulley.
The pulley axle and the incline are frictionless. If the
pulley is wound counterclockwise so that the spring is
stretched a distance d from its unstretched position and
is then released from rest, find (a) the angular speed of
the pulley when the spring is again unstretched and 
(b) a numerical value for the angular speed at this
point if I � 1.00 kg � m2, R � 0.300 m, k � 50.0 N/m, 
m � 0.500 kg, d � 0.200 m, and � � 37.0°.

71. Two blocks, as shown in Figure P10.71, are connected
by a string of negligible mass passing over a pulley of ra-
dius 0.250 m and moment of inertia I. The block on the
frictionless incline is moving upward with a constant ac-
celeration of 2.00 m/s2. (a) Determine T1 and T2 , the
tensions in the two parts of the string. (b) Find the mo-
ment of inertia of the pulley.

72. A common demonstration, illustrated in Figure P10.72,
consists of a ball resting at one end of a uniform board

37.0°

15.0 kg

T1

m1
20.0 kg

T2

2.00 m/s2

m2

m

R

k

θ

M

m
R/2

R/2 y

= 31°
v

d

ω

θ∆

Figure P10.65

Figure P10.68

Figure P10.70

Figure P10.71
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ANSWERS TO QUICK QUIZZES

rotational motion. (b) No, not all points on the wheel
have the same linear speed. (c) 
(d) , (at is zero
at all points because � is constant).(e) .

10.3 (a) I � MR 2. (b) I � MR 2. The moment of inertia of a
system of masses equidistant from an axis of rotation is
always the sum of the masses multiplied by the square of
the distance from the axis.

10.4 (b) Rotation about the axis through point P requires
more work. The moment of inertia of the hoop about
the center axis is ICM � MR 2, whereas, by the parallel-
axis theorem, the moment of inertia about the axis
through point P is IP � ICM 	 MR 2 � MR 2 	 MR 2 �
2MR 2 .

v � R�, a � R�2
a � ar � v2/(R/2) � R�2/2v � R�/2

v � 0, a � 0.
10.1 The fact that � is negative indicates that we are dealing

with an object that is rotating in the clockwise direction.
We also know that when � and � are antiparallel, �
must be decreasing—the object is slowing down. There-
fore, the object is spinning more and more slowly (with
less and less angular speed) in the clockwise, or nega-
tive, direction. This has a linear analogy to a sky diver
opening her parachute. The velocity is negative—down-
ward. When the sky diver opens the parachute, a large
upward force causes an upward acceleration. As a result,
the acceleration and velocity vectors are in opposite di-
rections. Consequently, the parachutist slows down.

10.2 (a) Yes, all points on the wheel have the same angular
speed. This is why we use angular quantities to describe

this limiting angle and the cup is placed at

(c) If a ball is at the end of a 1.00-m stick at this critical
angle, show that the cup must be 18.4 cm from the mov-
ing end.

73. As a result of friction, the angular speed of a wheel
changes with time according to the relationship

where �0 and � are constants. The angular speed
changes from 3.50 rad/s at t � 0 to 2.00 rad/s at 
t � 9.30 s. Use this information to determine � and �0 .
Then, determine (a) the magnitude of the angular ac-
celeration at t � 3.00 s, (b) the number of revolutions
the wheel makes in the first 2.50 s, and (c) the number
of revolutions it makes before coming to rest.

74. The hour hand and the minute hand of Big Ben, the fa-
mous Parliament tower clock in London, are 2.70 m
long and 4.50 m long and have masses of 60.0 kg and
100 kg, respectively (see Fig. P10.26). (a) Determine
the total torque due to the weight of these hands about
the axis of rotation when the time reads (i) 3:00, 
(ii) 5:15, (iii) 6:00, (iv) 8:20, and (v) 9:45. (You may
model the hands as long thin rods.) (b) Determine all
times at which the total torque about the axis of rota-
tion is zero. Determine the times to the nearest second,
solving a transcendental equation numerically.

d�/dt � �0e��t

rc �
2 �

3 cos �

of length �, hinged at the other end, and elevated at an
angle �. A light cup is attached to the board at rc so that
it will catch the ball when the support stick is suddenly

removed. (a) Show that the ball will lag behind the
falling board when � is less than 35.3° ; and that (b) the
ball will fall into the cup when the board is supported at

r c

Cup

�

Hinged end

Support
stick

θ

Figure P10.72
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Rolling Motion and Angular
Momentum

One of the most popular early bicycles
was the penny – farthing, introduced in
1870. The bicycle was so named because
the size relationship of its two wheels
was about the same as the size relation-
ship of the penny and the farthing, two
English coins. When the rider looks down
at the top of the front wheel, he sees it
moving forward faster than he and the
handlebars are moving. Yet the center of
the wheel does not appear to be moving
at all relative to the handlebars. How can
different parts of the rolling wheel move
at different linear speeds? (© Steve

Lovegrove/Tasmanian Photo Library)
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n the preceding chapter we learned how to treat a rigid body rotating about a
fixed axis; in the present chapter, we move on to the more general case in
which the axis of rotation is not fixed in space. We begin by describing such mo-

tion, which is called rolling motion. The central topic of this chapter is, however, an-
gular momentum, a quantity that plays a key role in rotational dynamics. In anal-
ogy to the conservation of linear momentum, we find that the angular momentum
of a rigid object is always conserved if no external torques act on the object. Like
the law of conservation of linear momentum, the law of conservation of angular
momentum is a fundamental law of physics, equally valid for relativistic and quan-
tum systems.

ROLLING MOTION OF A RIGID OBJECT
In this section we treat the motion of a rigid object rotating about a moving axis.
In general, such motion is very complex. However, we can simplify matters by re-
stricting our discussion to a homogeneous rigid object having a high degree of
symmetry, such as a cylinder, sphere, or hoop. Furthermore, we assume that the
object undergoes rolling motion along a flat surface. We shall see that if an object
such as a cylinder rolls without slipping on the surface (we call this pure rolling mo-
tion), a simple relationship exists between its rotational and translational motions.

Suppose a cylinder is rolling on a straight path. As Figure 11.1 shows, the cen-
ter of mass moves in a straight line, but a point on the rim moves in a more com-
plex path called a cycloid. This means that the axis of rotation remains parallel to
its initial orientation in space. Consider a uniform cylinder of radius R rolling
without slipping on a horizontal surface (Fig. 11.2). As the cylinder rotates
through an angle �, its center of mass moves a linear distance (see Eq.
10.1a). Therefore, the linear speed of the center of mass for pure rolling motion is
given by

(11.1)

where � is the angular velocity of the cylinder. Equation 11.1 holds whenever a
cylinder or sphere rolls without slipping and is the condition for pure rolling

vCM �
ds
dt

� R 
d�

dt
� R�

s � R�

11.1

I

Figure 11.1 One light source at the center of a rolling cylinder and another at one point on
the rim illustrate the different paths these two points take. The center moves in a straight line
(green line), whereas the point on the rim moves in the path called a cycloid (red curve). (Henry
Leap and Jim Lehman)

7.7
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motion. The magnitude of the linear acceleration of the center of mass for pure
rolling motion is

(11.2)

where � is the angular acceleration of the cylinder.
The linear velocities of the center of mass and of various points on and within

the cylinder are illustrated in Figure 11.3. A short time after the moment shown in
the drawing, the rim point labeled P will have rotated from the six o’clock position
to, say, the seven o’clock position, the point Q will have rotated from the ten 
o’clock position to the eleven o’clock position, and so on. Note that the linear ve-
locity of any point is in a direction perpendicular to the line from that point to the
contact point P. At any instant, the part of the rim that is at point P is at rest rela-
tive to the surface because slipping does not occur.

All points on the cylinder have the same angular speed. Therefore, because
the distance from P � to P is twice the distance from P to the center of mass, P � has
a speed To see why this is so, let us model the rolling motion of the
cylinder in Figure 11.4 as a combination of translational (linear) motion and rota-
tional motion. For the pure translational motion shown in Figure 11.4a, imagine
that the cylinder does not rotate, so that each point on it moves to the right with
speed vCM . For the pure rotational motion shown in Figure 11.4b, imagine that a
rotation axis through the center of mass is stationary, so that each point on the
cylinder has the same rotational speed �. The combination of these two motions
represents the rolling motion shown in Figure 11.4c. Note in Figure 11.4c that the
top of the cylinder has linear speed vCM � R� � vCM � vCM � 2vCM , which is
greater than the linear speed of any other point on the cylinder. As noted earlier,
the center of mass moves with linear speed vCM while the contact point between
the surface and cylinder has a linear speed of zero.

We can express the total kinetic energy of the rolling cylinder as

(11.3)

where IP is the moment of inertia about a rotation axis through P. Applying the
parallel-axis theorem, we can substitute into Equation 11.3 to 
obtain

K � 1
2ICM�2 � 1

2MR2�2

IP � ICM � MR2

K � 1
2IP�2

2vCM � 2R�.

aCM �
dvCM

dt
� R 

d�

dt
� R�

R s
θ

s = Rθ

Figure 11.2 In pure rolling motion, as the
cylinder rotates through an angle �, its center
of mass moves a linear distance s � R�.

P

CM

Q

P ′
2vCM

vCM

Figure 11.3 All points on a
rolling object move in a direction
perpendicular to an axis through
the instantaneous point of contact
P. In other words, all points rotate
about P. The center of mass of the
object moves with a velocity vCM ,
and the point P �moves with a veloc-
ity 2vCM .

7.2

330 C H A P T E R  1 1 Rolling Motion and Angular Momentum

or, because 

(11.4)

The term represents the rotational kinetic energy of the cylinder about its
center of mass, and the term represents the kinetic energy the cylinder
would have if it were just translating through space without rotating. Thus, we can
say that the total kinetic energy of a rolling object is the sum of the rota-
tional kinetic energy about the center of mass and the translational kinetic
energy of the center of mass.

We can use energy methods to treat a class of problems concerning the rolling
motion of a sphere down a rough incline. (The analysis that follows also applies to
the rolling motion of a cylinder or hoop.) We assume that the sphere in Figure
11.5 rolls without slipping and is released from rest at the top of the incline. Note
that accelerated rolling motion is possible only if a frictional force is present be-
tween the sphere and the incline to produce a net torque about the center of mass.
Despite the presence of friction, no loss of mechanical energy occurs because the
contact point is at rest relative to the surface at any instant. On the other hand, if
the sphere were to slip, mechanical energy would be lost as motion progressed.

Using the fact that vCM � R� for pure rolling motion, we can express Equa-
tion 11.4 as

(11.5)K � 1
2� ICM

R2 � M�vCM 

2

K � 1
2ICM� vCM

R �
2

� 1
2MvCM 

2

1
2MvCM 

2

1
2ICM�2

K � 1
2ICM�2 � 1

2MvCM 

2

vCM � R�,

P ′
vCM

CM vCM

vCM
P

P ′

CM v = 0

P

v = Rω

v = Rω

(a) Pure translation (b) Pure rotation

P ′

CM

P
v = 0

v = vCM

v = vCM + Rω = 2vCM

(c) Combination of translation and rotation

ω

ω

ω

Figure 11.4 The motion of a rolling object can be modeled as a combination of pure transla-
tion and pure rotation.

Total kinetic energy of a rolling
body

h
x

vCM

ω

M

R

θ

Figure 11.5 A sphere rolling
down an incline. Mechanical en-
ergy is conserved if no slipping
occurs.
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By the time the sphere reaches the bottom of the incline, work equal to Mgh has
been done on it by the gravitational field, where h is the height of the incline. Be-
cause the sphere starts from rest at the top, its kinetic energy at the bottom, given
by Equation 11.5, must equal this work done. Therefore, the speed of the center of
mass at the bottom can be obtained by equating these two quantities:

(11.6)

Imagine that you slide your textbook across a gymnasium floor with a certain initial speed.
It quickly stops moving because of friction between it and the floor. Yet, if you were to start
a basketball rolling with the same initial speed, it would probably keep rolling from one end
of the gym to the other. Why does a basketball roll so far? Doesn’t friction affect its motion?

Quick Quiz 11.1

   vCM � � 2gh
1 � ICM/MR2 �

1/2

1
2� ICM

R2 � M�vCM 

2 � Mgh

Sphere Rolling Down an InclineEXAMPLE 11.1
x sin �. Hence, after squaring both sides, we can express the
equation above as

Comparing this with the expression from kinematics,
(see Eq. 2.12), we see that the acceleration of

the center of mass is

These results are quite interesting in that both the speed
and the acceleration of the center of mass are independent of
the mass and the radius of the sphere! That is, all homoge-
neous solid spheres experience the same speed and ac-
celeration on a given incline.

If we repeated the calculations for a hollow sphere, a solid
cylinder, or a hoop, we would obtain similar results in which
only the factor in front of g sin � would differ. The constant
factors that appear in the expressions for vCM and a CM depend
only on the moment of inertia about the center of mass for the
specific body. In all cases, the acceleration of the center of
mass is less than g sin �, the value the acceleration would have if
the incline were frictionless and no rolling occurred.

5
7 g sin �aCM �

vCM 

2 � 2aCMx

vCM 

2 � 10
7  gx sin �

For the solid sphere shown in Figure 11.5, calculate the linear
speed of the center of mass at the bottom of the incline and
the magnitude of the linear acceleration of the center of mass.

Solution The sphere starts from the top of the incline
with potential energy and kinetic energy As
we have seen before, if it fell vertically from that height, it
would have a linear speed of at the moment before it hit
the floor. After rolling down the incline, the linear speed of
the center of mass must be less than this value because some
of the initial potential energy is diverted into rotational ki-
netic energy rather than all being converted into transla-
tional kinetic energy. For a uniform solid sphere, 

(see Table 10.2), and therefore Equation 11.6 gives

which is less than 
To calculate the linear acceleration of the center of mass,

we note that the vertical displacement is related to the dis-
placement x along the incline through the relationship h �

!2gh.

� 10
7

 gh�
1/2

vCM � �
2gh

1 �
2/5MR2

MR2 �
1/2

�

2
5MR2

ICM �

!2gh

K � 0.Ug � Mgh

Another Look at the Rolling SphereEXAMPLE 11.2
(1)

where x is measured along the slanted surface of the incline.
Now let us write an expression for the torque acting on

the sphere. A convenient axis to choose is the one that passes

�Fy � n � Mg cos � � 0 

�Fx � Mg sin � � f � MaCMIn this example, let us use dynamic methods to verify the re-
sults of Example 11.1. The free-body diagram for the sphere
is illustrated in Figure 11.6.

Solution Newton’s second law applied to the center of
mass gives
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Which gets to the bottom first: a ball rolling without sliding down incline A or a box sliding
down a frictionless incline B having the same dimensions as incline A?

THE VECTOR PRODUCT AND TORQUE
Consider a force F acting on a rigid body at the vector position r (Fig. 11.7). The
origin O is assumed to be in an inertial frame, so Newton’s first law is valid
in this case. As we saw in Section 10.6, the magnitude of the torque due to this
force relative to the origin is, by definition, rF sin 	, where 	 is the angle between
r and F. The axis about which F tends to produce rotation is perpendicular to the
plane formed by r and F. If the force lies in the xy plane, as it does in Figure 11.7,
the torque � is represented by a vector parallel to the z axis. The force in Figure
11.7 creates a torque that tends to rotate the body counterclockwise about the z
axis; thus the direction of � is toward increasing z, and � is therefore in the positive
z direction. If we reversed the direction of F in Figure 11.7, then � would be in the
negative z direction.

The torque � involves the two vectors r and F, and its direction is perpendicu-
lar to the plane of r and F. We can establish a mathematical relationship between
�, r, and F, using a new mathematical operation called the vector product, or
cross product:

� � r � F (11.7)

11.2

Quick Quiz 11.2

Torque

QuickLab
Hold a basketball and a tennis ball
side by side at the top of a ramp and
release them at the same time. Which
reaches the bottom first? Does the
outcome depend on the angle of the
ramp? What if the angle were 90°
(that is, if the balls were in free fall)?

1 Although a coordinate system whose origin is at the center of mass of a rolling object is not an iner-
tial frame, the expression 
CM � I� still applies in the center-of-mass frame.

through the center of the sphere and is perpendicular to the
plane of the figure.1 Because n and Mg go through the cen-
ter of mass, they have zero moment arm about this axis and
thus do not contribute to the torque. However, the force of
static friction produces a torque about this axis equal to fR in
the clockwise direction; therefore, because 
 is also in the

clockwise direction,

Because and we obtain

(2)

Substituting Equation (2) into Equation (1) gives

which agrees with the result of Example 11.1.
Note that �F � ma applies only if �F is the net external

force exerted on the sphere and a is the acceleration of its
center of mass. In the case of our sphere rolling down an in-
cline, even though the frictional force does not change the
total kinetic energy of the sphere, it does contribute to �F
and thus decreases the acceleration of the center of mass. As
a result, the final translational kinetic energy is less than it
would be in the absence of friction. As mentioned in Exam-
ple 11.1, some of the initial potential energy is converted to
rotational kinetic energy. 

5
7g sin �aCM �

f �
ICM�

R
� �

2
5MR2

R � 
aCM

R
� 2

5MaCM

� � aCM/R,ICM � 2
5MR2


CM � f R � ICM �

x

y

n

CM

f

Mg  cos

Mg

θ

vCM

θ

Mg  sin θ

Figure 11.6 Free-body diagram for a solid sphere rolling down an
incline.
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We now give a formal definition of the vector product. Given any two vectors A
and B, the vector product A � B is defined as a third vector C, the magnitude of
which is AB sin �, where � is the angle between A and B. That is, if C is given by

C � A � B (11.8)

then its magnitude is

(11.9)

The quantity AB sin � is equal to the area of the parallelogram formed by A and B,
as shown in Figure 11.8. The direction of C is perpendicular to the plane formed by
A and B, and the best way to determine this direction is to use the right-hand rule
illustrated in Figure 11.8. The four fingers of the right hand are pointed along A
and then “wrapped” into B through the angle �. The direction of the erect right
thumb is the direction of A � B � C. Because of the notation, A � B is often read
“A cross B”; hence, the term cross product.

Some properties of the vector product that follow from its definition are as 
follows:

1. Unlike the scalar product, the vector product is not commutative. Instead, the
order in which the two vectors are multiplied in a cross product is important:

A � B � � B � A (11.10)

Therefore, if you change the order of the vectors in a cross product, you must
change the sign. You could easily verify this relationship with the right-hand
rule.

2. If A is parallel to B (� � 0° or 180°), then A � B � 0; therefore, it follows that
A � A � 0.

3. If A is perpendicular to B, then 
4. The vector product obeys the distributive law:

A � (B � C) � A � B � A � C (11.11)

5. The derivative of the cross product with respect to some variable such as t is

(11.12)

where it is important to preserve the multiplicative order of A and B, in view of
Equation 11.10.

It is left as an exercise to show from Equations 11.9 and 11.10 and from the
definition of unit vectors that the cross products of the rectangular unit vectors i,

d
dt

 (A � B) � A �
dB
dt

�
dA
dt

� B

� A � B � � AB.

C � AB sin �
O

r

P

φx
F

y

τ  =  r  ×  F

z

τ

Figure 11.7 The torque vector �
lies in a direction perpendicular to
the plane formed by the position
vector r and the applied force vec-
tor F.

Right-hand rule

– C  =  B  ×  A

C  =  A  ×  B

A

B

θ

Figure 11.8 The vector product 
A � B is a third vector C having a
magnitude AB sin � equal to the area
of the parallelogram shown. The di-
rection of C is perpendicular to the
plane formed by A and B, and this
direction is determined by the right-
hand rule.

Properties of the vector product

ANGULAR MOMENTUM OF A PARTICLE
Imagine a rigid pole sticking up through the ice on a frozen pond (Fig. 11.9). A
skater glides rapidly toward the pole, aiming a little to the side so that she does not
hit it. As she approaches a point beside the pole, she reaches out and grabs the
pole, an action that whips her rapidly into a circular path around the pole. Just as
the idea of linear momentum helps us analyze translational motion, a rotational
analog—angular momentum—helps us describe this skater and other objects un-
dergoing rotational motion.

To analyze the motion of the skater, we need to know her mass and her veloc-
ity, as well as her position relative to the pole. In more general terms, consider a

11.3
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j, and k obey the following rules:

(11.13a)

(11.13b)

(11.13c)

(11.13d)

Signs are interchangeable in cross products. For example, A � (� B) � � A � B
and i � (� j) � � i � j.

The cross product of any two vectors A and B can be expressed in the follow-
ing determinant form:

Expanding these determinants gives the result

(11.14)A � B � (AyBz � AzBy)i � (AxBz � AzBx)j � (AxBy � AyBx)k

A � B � � i
Ax

Bx

j
Ay

By

k
Az

Bz
� � i �Ay

By

Az

Bz
� � j �Ax

Bx

Az

Bz
� � k �Ax

Bx

Ay

By
�

k � i � � i � k � j 

j � k � � k � j � i 

i � j � � j � i � k 

i � i � j � j � k � k � 0

The Cross ProductEXAMPLE 11.3

Therefore, A � B � � B � A.
As an alternative method for finding A � B, we could use

Equation 11.14, with and 

Exercise Use the results to this example and Equation 11.9
to find the angle between A and B.

Answer 60.3°

A � B � (0)i � (0)j � [(2)(2) � (3)(�1)]k � 7k

Bz � 0:By � 2,
Bx � � 1,Az � 0Ay � 3,Ax � 2,

�7k � � i � 3j � 2j � 2i � �3k � 4k �

B � A � (�i � 2j) � (2i � 3j) Two vectors lying in the xy plane are given by the equations 
A � 2i � 3 j and B � � i � 2j. Find A � B and verify that 
A � B � � B � A.

Solution Using Equations 11.13a through 11.13d, we
obtain

(We have omitted the terms containing i � i and j � j be-
cause, as Equation 11.13a shows, they are equal to zero.)

We can show that A � B � � B � A, since

7k � 2i � 2j � 3j � (�i) � 4k � 3k �

A � B � (2i � 3j) � (� i � 2j) 

Cross products of unit vectors

7.8
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The instantaneous angular momentum L of the particle relative to the origin O
is defined as the cross product of the particle’s instantaneous position vector r
and its instantaneous linear momentum p:

(11.15)L � r � p

particle of mass m located at the vector position r and moving with linear velocity v
(Fig. 11.10).

The SI unit of angular momentum is kg� m2/s. It is important to note that both
the magnitude and the direction of L depend on the choice of origin. Following
the right-hand rule, note that the direction of L is perpendicular to the plane
formed by r and p. In Figure 11.10, r and p are in the xy plane, and so L points in
the z direction. Because p � mv, the magnitude of L is

(11.16)

where 	 is the angle between r and p. It follows that L is zero when r is parallel to
p (	 � 0 or 180°). In other words, when the linear velocity of the particle is along
a line that passes through the origin, the particle has zero angular momentum
with respect to the origin. On the other hand, if r is perpendicular to p (	 � 90°),
then L � mvr. At that instant, the particle moves exactly as if it were on the rim of
a wheel rotating about the origin in a plane defined by r and p.

Recall the skater described at the beginning of this section. What would be her angular mo-
mentum relative to the pole if she were skating directly toward it?

In describing linear motion, we found that the net force on a particle equals the
time rate of change of its linear momentum, �F � dp/dt (see Eq. 9.3). We now
show that the net torque acting on a particle equals the time rate of change of its an-
gular momentum. Let us start by writing the net torque on the particle in the form

(11.17)

Now let us differentiate Equation 11.15 with respect to time, using the rule given
by Equation 11.12:

Remember, it is important to adhere to the order of terms because A � B �
� B � A. The last term on the right in the above equation is zero because 
v � dr/dt is parallel to p � mv (property 2 of the vector product). Therefore,

(11.18)

Comparing Equations 11.17 and 11.18, we see that

(11.19)�� �
dL
dt

dL
dt

� r �
dp
dt

dL
dt

�
d
dt

 (r � p) � r �
dp
dt

�
dr
dt

� p

�� � r � �F � r �
dp
dt

Quick Quiz 11.3

L � mvr sin 	

Angular momentum of a particle

Figure 11.9 As the skater passes
the pole, she grabs hold of it. This
causes her to swing around the
pole rapidly in a circular path.

O

z

L  =  r  ×  p

r m p

φ

y

x

Figure 11.10 The angular mo-
mentum L of a particle of mass m
and linear momentum p located at
the vector position r is a vector
given by L � r � p. The value of L
depends on the origin about which
it is measured and is a vector per-
pendicular to both r and p.

The net torque equals time rate of
change of angular momentum
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which is the rotational analog of Newton’s second law, �F � dp/dt. Note that
torque causes the angular momentum L to change just as force causes linear mo-
mentum p to change. This rotational result, Equation 11.19, states that

the net torque acting on a particle is equal to the time rate of change of the
particle’s angular momentum.

It is important to note that Equation 11.19 is valid only if �� and L are measured
about the same origin. (Of course, the same origin must be used in calculating all
of the torques.) Furthermore, the expression is valid for any origin fixed in an
inertial frame.

Angular Momentum of a System of Particles

The total angular momentum of a system of particles about some point is defined
as the vector sum of the angular momenta of the individual particles:

where the vector sum is over all n particles in the system.
Because individual angular momenta can change with time, so can the total

angular momentum. In fact, from Equations 11.18 and 11.19, we find that the
time rate of change of the total angular momentum equals the vector sum of 
all torques acting on the system, both those associated with internal forces 
between particles and those associated with external forces. However, the net
torque associated with all internal forces is zero. To understand this, recall 
that Newton’s third law tells us that internal forces between particles of the sys-
tem are equal in magnitude and opposite in direction. If we assume that these
forces lie along the line of separation of each pair of particles, then the torque
due to each action – reaction force pair is zero. That is, the moment arm d from
O to the line of action of the forces is equal for both particles. In the summa-
tion, therefore, we see that the net internal torque vanishes. We conclude that
the total angular momentum of a system can vary with time only if a net exter-
nal torque is acting on the system, so that we have

(11.20)

That is,

��ext � �
i

dLi

dt
�

d
dt

 �
i

Li �
dL
dt

L � L1 � L2 � ��� � Ln � �
i

Li

the time rate of change of the total angular momentum of a system about some
origin in an inertial frame equals the net external torque acting on the system
about that origin.

Note that Equation 11.20 is the rotational analog of Equation 9.38, ,
for a system of particles.

�Fext � dp/dt
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ANGULAR MOMENTUM OF A
ROTATING RIGID OBJECT

Consider a rigid object rotating about a fixed axis that coincides with the z axis of
a coordinate system, as shown in Figure 11.12. Let us determine the angular mo-
mentum of this object. Each particle of the object rotates in the xy plane about the
z axis with an angular speed �. The magnitude of the angular momentum of a par-
ticle of mass mi about the origin O is miviri . Because vi � ri�, we can express the
magnitude of the angular momentum of this particle as

The vector Li is directed along the z axis, as is the vector �.

Li � miri 

2�

11.4

Circular MotionEXAMPLE 11.4
though the direction of p � mv keeps changing. You can vi-
sualize this by sliding the vector v in Figure 11.11 parallel to
itself until its tail meets the tail of r and by then applying the
right-hand rule. (You can use v to determine the direction of
L � r � p because the direction of p is the same as the direc-
tion of v.) Line up your fingers so that they point along r and
wrap your fingers into the vector v. Your thumb points up-
ward and away from the page; this is the direction of L.
Hence, we can write the vector expression L � (mvr)k. If
the particle were to move clockwise, L would point down-
ward and into the page.

(b) Find the magnitude and direction of L in terms of the
particle’s angular speed �.

Solution Because v � r� for a particle rotating in a circle,
we can express L as

where I is the moment of inertia of the particle about the z
axis through O. Because the rotation is counterclockwise, the
direction of � is along the z axis (see Section 10.1). The di-
rection of L is the same as that of �, and so we can write the
angular momentum as L � I� � I�k.

Exercise A car of mass 1 500 kg moves with a linear speed
of 40 m/s on a circular race track of radius 50 m. What is the
magnitude of its angular momentum relative to the center of
the track?

Answer 3.0 � 106 kg� m2/s

I�L � mvr � mr 2� �

A particle moves in the xy plane in a circular path of radius r,
as shown in Figure 11.11. (a) Find the magnitude and direc-
tion of its angular momentum relative to O when its linear ve-
locity is v.

Solution You might guess that because the linear momen-
tum of the particle is always changing (in direction, not mag-
nitude), the direction of the angular momentum must also
change. In this example, however, this is not the case. The
magnitude of L is given by

(for r perpendicular to v)

This value of L is constant because all three factors on the
right are constant. The direction of L also is constant, even

mvrL � mvr sin 90° �

x

y

m

v

O

r

Figure 11.11 A particle moving in a circle of radius r has an angu-
lar momentum about O that has magnitude mvr. The vector L � r � p
points out of the diagram.
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Equation 11.23 also is valid for a rigid object rotating about a moving axis pro-
vided the moving axis (1) passes through the center of mass and (2) is a symmetry
axis.

You should note that if a symmetrical object rotates about a fixed axis passing
through its center of mass, you can write Equation 11.21 in vector form as L � I�,
where L is the total angular momentum of the object measured with respect to the
axis of rotation. Furthermore, the expression is valid for any object, regardless of
its symmetry, if L stands for the component of angular momentum along the axis
of rotation.2

That is, the net external torque acting on a rigid object rotating about a fixed
axis equals the moment of inertia about the rotation axis multiplied by the ob-
ject’s angular acceleration relative to that axis.

Bowling BallEXAMPLE 11.5
solid sphere. A typical bowling ball might have a mass of 6 kg
and a radius of 12 cm. The moment of inertia of a solid
sphere about an axis through its center is, from Table 10.2,

Therefore, the magnitude of the angular momentum is

I � 2
5MR2 � 2

5(6 kg)(0.12 m)2 � 0.035 kg�m2

Estimate the magnitude of the angular momentum of a bowl-
ing ball spinning at 10 rev/s, as shown in Figure 11.13.

Solution We start by making some estimates of the rele-
vant physical parameters and model the ball as a uniform

2 In general, the expression L � I� is not always valid. If a rigid object rotates about an arbitrary axis,
L and � may point in different directions. In this case, the moment of inertia cannot be treated as a
scalar. Strictly speaking, L � I� applies only to rigid objects of any shape that rotate about one of three
mutually perpendicular axes (called principal axes) through the center of mass. This is discussed in
more advanced texts on mechanics.

Figure 11.12 When a rigid body
rotates about an axis, the angular
momentum L is in the same direc-
tion as the angular velocity �, ac-
cording to the expression L � I�.

y

z

L

ω

r

x

vi
mi

We can now find the angular momentum (which in this situation has only a z
component) of the whole object by taking the sum of Li over all particles:

(11.21)

where I is the moment of inertia of the object about the z axis.
Now let us differentiate Equation 11.21 with respect to time, noting that I is

constant for a rigid body:

(11.22)

where � is the angular acceleration relative to the axis of rotation. Because dLz/dt
is equal to the net external torque (see Eq. 11.20), we can express Equation 11.22
as

(11.23)�  
ext �
dLz

dt
� I�

dLz

dt
� I 

d�

dt
� I�

Lz � I� 

Lz � �
i

miri 

2� � ��
i

miri 

2��
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z

y

L

x

Figure 11.13 A bowling ball that rotates about the z axis in the di-
rection shown has an angular momentum L in the positive z direc-
tion. If the direction of rotation is reversed, L points in the negative
z direction.

Because of the roughness of our estimates, we probably want 

to keep only one significant figure, and so L � 2 kg�m2/s.

� 2.2 kg�m2/s

L � I� � (0.035 kg�m2)(10 rev/s)(2
 rad/rev)

Rotating RodEXAMPLE 11.6

The torque due to the force m 2g about the pivot is

(�2 into page)

Hence, the net torque exerted on the system about O is

The direction of ��ext is out of the page if m1 � m2 and is
into the page if m2 � m1 .

To find �, we use �
ext � I�, where I was obtained in part (a):

Note that � is zero when � is 
/2 or � 
/2 (vertical position)
and is a maximum when � is 0 or 
 (horizontal position).

Exercise If m2 � m 1, at what value of � is � a maximum? 

Answer � � �
/2.

2(m1 � m2)g cos �

�(M/3 � m1 � m2)
� �

�
ext

I
�

�
ext � 
1 � 
2 � 1
2(m1 � m2)g � cos �


2 � �m2g 
�

2
 cos �

A rigid rod of mass M and length � is pivoted without friction
at its center (Fig. 11.14). Two particles of masses m1 and m 2
are connected to its ends. The combination rotates in a verti-
cal plane with an angular speed �. (a) Find an expression for
the magnitude of the angular momentum of the system.

Solution This is different from the last example in that we
now must account for the motion of more than one object.
The moment of inertia of the system equals the sum of the
moments of inertia of the three components: the rod and the
two particles. Referring to Table 10.2 to obtain the expression
for the moment of inertia of the rod, and using the expres-
sion I � mr 2 for each particle, we find that the total moment
of inertia about the z axis through O is

Therefore, the magnitude of the angular momentum is

(b) Find an expression for the magnitude of the angular
acceleration of the system when the rod makes an angle �
with the horizontal.

Solution If the masses of the two particles are equal, then
the system has no angular acceleration because the net
torque on the system is zero when m1 � m 2 . If the initial an-
gle � is exactly 
/2 or � 
/2 (vertical position), then the rod
will be in equilibrium. To find the angular acceleration of the
system at any angle �, we first calculate the net torque on the
system and then use �
ext � I� to obtain an expression for �.

The torque due to the force m1g about the pivot is

(�1 out of page)
1 � m1g 
�

2
 cos �

�2

4 � M
3

� m1 � m2��L � I� �

 �
�2

4 � M
3

� m1 � m2� 

I �
1
12

M�2 � m1� �

2 �
2

� m2� �

2 �
2

�

y

θ

m2g

m1g

x
O

m2

m1

Figure 11.14 Because gravitational forces act on the rotating rod,
there is in general a net nonzero torque about O when m1 � m 2 . This
net torque produces an angular acceleration given by � � �
ext �I.

This follows directly from Equation 11.20, which indicates that if

(11.24)

then
(11.25)

For a system of particles, we write this conservation law as � Ln � constant, where
the index n denotes the nth particle in the system.

L � constant

��ext �
dL
dt

� 0
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Two Connected MassesEXAMPLE 11.7
Now let us evaluate the total external torque acting on the

system about the pulley axle. Because it has a moment arm of
zero, the force exerted by the axle on the pulley does not
contribute to the torque. Furthermore, the normal force act-
ing on the block is balanced by the force of gravity m 2g, and
so these forces do not contribute to the torque. The force of
gravity m1g acting on the sphere produces a torque about the
axle equal in magnitude to m1gR, where R is the moment
arm of the force about the axle. (Note that in this situation,
the tension is not equal to m1g.) This is the total external
torque about the pulley axle; that is, �
ext � m1gR. Using this
result, together with Equation (1) and Equation 11.23, we
find

(2)

Because dv/dt � a, we can solve this for a to obtain

a �

You may wonder why we did not include the forces that the
cord exerts on the objects in evaluating the net torque about
the axle. The reason is that these forces are internal to the
system under consideration, and we analyzed the system as a
whole. Only external torques contribute to the change in the
system’s angular momentum.

m1g
(m1 � m2) � I/R2

m1gR � (m1 � m2)R 
dv
dt

�
I
R

 
dv
dt

 

 m1gR �
d
dt �(m1 � m2)Rv � I 

v
R �

�
ext �
dL
dt

 

A sphere of mass m1 and a block of mass m 2 are connected by
a light cord that passes over a pulley, as shown in Figure
11.15. The radius of the pulley is R, and the moment of iner-
tia about its axle is I. The block slides on a frictionless, hori-
zontal surface. Find an expression for the linear acceleration
of the two objects, using the concepts of angular momentum
and torque.

Solution We need to determine the angular momentum
of the system, which consists of the two objects and the pul-
ley. Let us calculate the angular momentum about an axis
that coincides with the axle of the pulley.

At the instant the sphere and block have a common speed
v, the angular momentum of the sphere is m1vR , and that of
the block is m 2vR . At the same instant, the angular momen-
tum of the pulley is I� � Iv/R. Hence, the total angular mo-
mentum of the system is

(1) L � m1vR � m2vR � I 
v
R

The total angular momentum of a system is constant in both magnitude and di-
rection if the resultant external torque acting on the system is zero.

Conservation of angular
momentum

CONSERVATION OF ANGULAR MOMENTUM
In Chapter 9 we found that the total linear momentum of a system of particles re-
mains constant when the resultant external force acting on the system is zero. We
have an analogous conservation law in rotational motion:

11.5

m2

v

v m1

R

Figure 11.15

7.9
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If the mass of an object undergoes redistribution in some way, then the ob-
ject’s moment of inertia changes; hence, its angular speed must change because 
L � I�. In this case we express the conservation of angular momentum in the form

(11.26)

If the system is an object rotating about a fixed axis, such as the z axis, we can
write Lz � I�, where Lz is the component of L along the axis of rotation and I is
the moment of inertia about this axis. In this case, we can express the conservation
of angular momentum as

(11.27)

This expression is valid both for rotation about a fixed axis and for rotation about
an axis through the center of mass of a moving system as long as that axis remains
parallel to itself. We require only that the net external torque be zero.

Although we do not prove it here, there is an important theorem concerning
the angular momentum of an object relative to the object’s center of mass:

I i�i � I f �f � constant

Li � Lf � constant

The resultant torque acting on an object about an axis through the center of
mass equals the time rate of change of angular momentum regardless of the
motion of the center of mass.

This theorem applies even if the center of mass is accelerating, provided � and L
are evaluated relative to the center of mass.

In Equation 11.26 we have a third conservation law to add to our list. We can
now state that the energy, linear momentum, and angular momentum of an iso-
lated system all remain constant:

For an isolated system

There are many examples that demonstrate conservation of angular momen-
tum. You may have observed a figure skater spinning in the finale of a program.
The angular speed of the skater increases when the skater pulls his hands and feet
close to his body, thereby decreasing I. Neglecting friction between skates and ice,
no external torques act on the skater. The change in angular speed is due to the
fact that, because angular momentum is conserved, the product I� remains con-
stant, and a decrease in the moment of inertia of the skater causes an increase in
the angular speed. Similarly, when divers or acrobats wish to make several somer-
saults, they pull their hands and feet close to their bodies to rotate at a higher rate.
In these cases, the external force due to gravity acts through the center of mass
and hence exerts no torque about this point. Therefore, the angular momentum
about the center of mass must be conserved—that is, For example,
when divers wish to double their angular speed, they must reduce their moment of
inertia to one-half its initial value.

A particle moves in a straight line, and you are told that the net torque acting on it is zero
about some unspecified point. Decide whether the following statements are true or false:
(a) The net force on the particle must be zero. (b) The particle’s velocity must be constant.

Quick Quiz 11.4

I i�i � I f �f .

K i � Ui � K f � Uf

pi � pf

 Li � L f

 �

Angular momentum is conserved
as figure skater Todd Eldredge
pulls his arms toward his body. 
(© 1998 David Madison)
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Formation of a Neutron StarEXAMPLE 11.8
of time a point on the star’s equator takes to make one com-
plete circle around the axis of rotation. The angular speed of
a star is given by � � 2
/T. Therefore, because I is propor-
tional to r 2, Equation 11.27 gives

Thus, the neutron star rotates about four times each second;
this result is approximately the same as that for a spinning
figure skater.

0.23 s� 2.7 � 10�6 days �

Tf � Ti� rf

ri
�

2
� (30 days)� 3.0 km

1.0 � 104 km �
2

A star rotates with a period of 30 days about an axis through
its center. After the star undergoes a supernova explosion,
the stellar core, which had a radius of 1.0 � 104 km, collapses
into a neutron star of radius 3.0 km. Determine the period of
rotation of the neutron star.

Solution The same physics that makes a skater spin faster
with his arms pulled in describes the motion of the neutron
star. Let us assume that during the collapse of the stellar core,
(1) no torque acts on it, (2) it remains spherical, and (3) its
mass remains constant. Also, let us use the symbol T for the
period, with Ti being the initial period of the star and Tf be-
ing the period of the neutron star. The period is the length

The Merry-Go-RoundEXAMPLE 11.9
Solution The speed change here is similar to the increase
in angular speed of the spinning skater when he pulls his
arms inward. Let us denote the moment of inertia of the plat-
form as Ip and that of the student as Is . Treating the student
as a point mass, we can write the initial moment of inertia Ii
of the system (student plus platform) about the axis of rota-
tion:

I i � Ipi � I si � 1
2MR 2 � mR 2

A horizontal platform in the shape of a circular disk rotates
in a horizontal plane about a frictionless vertical axle (Fig.
11.16). The platform has a mass M � 100 kg and a radius 
R � 2.0 m. A student whose mass is m � 60 kg walks slowly
from the rim of the disk toward its center. If the angular
speed of the system is 2.0 rad/s when the student is at the
rim, what is the angular speed when he has reached a point 
r � 0.50 m from the center?

A color-enhanced, infrared image of Hurricane Mitch, which devastated large areas of Honduras
and Nicaragua in October 1998. The spiral, nonrigid mass of air undergoes rotation and has an-
gular momentum. (Courtesy of NOAA)
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When the student has walked to the position r � R, the mo-
ment of inertia of the system reduces to

Note that we still use the greater radius R when calculating Ipf
because the radius of the platform has not changed. Because
no external torques act on the system about the axis of rotation,
we can apply the law of conservation of angular momentum:

As expected, the angular speed has increased.

Exercise Calculate the initial and final rotational energies
of the system.

Answer K i � 880 J; K f � 1.8 � 103 J.

4.1 rad/s �f � � 200 � 240
200 � 15 �(2.0 rad/s) �

  �f � �
1
2MR2 � mR2

1
2MR2 � mr 2 ��i

�1
2MR2 � mR2��i � (1

2MR2 � mr 2)�f

  I i �i � I f �f  

I f � Ipf � I sf � 1
2MR 2 � mr 2

M

m

R

Figure 11.16 As the student walks toward the center of the rotat-
ing platform, the angular speed of the system increases because the
angular momentum must remain constant.

The Spinning Bicycle WheelEXAMPLE 11.10
stool start rotating. In terms of Li , what are the magnitude
and the direction of L for the student plus stool?

Solution The system consists of the student, the wheel,
and the stool. Initially, the total angular momentum of the
system Li comes entirely from the spinning wheel. As the
wheel is inverted, the student applies a torque to the wheel,
but this torque is internal to the system. No external torque is
acting on the system about the vertical axis. Therefore, the
angular momentum of the system is conserved. Initially, we
have

(upward)

After the wheel is inverted, we have Linverted wheel � � L i . For
angular momentum to be conserved, some other part of the
system has to start rotating so that the total angular momen-
tum remains the initial angular momentum L i . That other
part of the system is the student plus the stool she is sitting
on. So, we can now state that

2LiLstudent�stool �

Lf � Li � Lstudent�stool � Li

Lsystem � Li � Lwheel

In a favorite classroom demonstration, a student holds the
axle of a spinning bicycle wheel while seated on a stool that is
free to rotate (Fig. 11.17). The student and stool are initially
at rest while the wheel is spinning in a horizontal plane with
an initial angular momentum Li that points upward. When
the wheel is inverted about its center by 180°, the student and

L i

Figure 11.17 The wheel is initially spinning when the student is
at rest. What happens when the wheel is inverted?

Note that the rotational energy of the system described in Example 11.9 increases. What ac-
counts for this increase in energy?

Quick Quiz 11.5
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Disk and StickEXAMPLE 11.11
We used the fact that radians are dimensionless to ensure
consistent units for each term.

Finally, the elastic nature of the collision reminds us that
kinetic energy is conserved; in this case, the kinetic energy
consists of translational and rotational forms:

(3)

In solving Equations (1), (2), and (3) simultaneously, we find
that vd f � 2.3 m/s, vs � 1.3 m/s, and � � � 2.0 rad/s. These
values seem reasonable. The disk is moving more slowly than it
was before the collision, and the stick has a small translational
speed. Table 11.1 summarizes the initial and final values of vari-
ables for the disk and the stick and verifies the conservation of
linear momentum, angular momentum, and kinetic energy.

Exercise Verify the values in Table 11.1.

54 m2/s2 � 6.0vd f 

2 � 3.0v s 

2 � (4.0 m2)�2

   � 1
2(1.33 kg�m2/s)�2

  12(2.0 kg)(3.0 m/s)2 � 1
2(2.0 kg)vd f 

2 � 1
2(1.0 kg)v s 

2

  12mdvdi 

2 � 1
2mdvd f 

2 � 1
2msv s 

2 � 1
2I�2  

  K i � K f  

A 2.0-kg disk traveling at 3.0 m/s strikes a 1.0-kg stick that is
lying flat on nearly frictionless ice, as shown in Figure 11.18.
Assume that the collision is elastic. Find the translational
speed of the disk, the translational speed of the stick, and the
rotational speed of the stick after the collision. The moment
of inertia of the stick about its center of mass is 1.33 kg� m2.

Solution Because the disk and stick form an isolated sys-
tem, we can assume that total energy, linear momentum, and
angular momentum are all conserved. We have three un-
knowns, and so we need three equations to solve simultane-
ously. The first comes from the law of the conservation of lin-
ear momentum:

(1)

Now we apply the law of conservation of angular momen-
tum, using the initial position of the center of the stick as our
reference point. We know that the component of angular mo-
mentum of the disk along the axis perpendicular to the plane
of the ice is negative (the right-hand rule shows that Ld points
into the ice).

(2) �9.0 rad/s � (3.0 rad/m)vd f � � 

  � (1.33 kg�m2)�  

  �12 kg�m2/s � �(4.0 kg�m)vd f

  � (1.33 kg�m2)� 

 �(2.0 m)(2.0 kg)(3.0 m/s) � �(2.0 m)(2.0 kg)vd f

 �rmdvdi � �rmdvd f � I� 

 Li � Lf 

6.0 kg�m/s � (2.0 kg)vd f � (1.0 kg)v s 

 (2.0 kg)(3.0 m/s) � (2.0 kg)vd f � (1.0 kg)v s

 mdvdi � mdvd f � msv s 

 pi � pf 

TABLE 11.1 Comparison of Values in Example 11.11 Before and 
After the Collisiona

Ktrans Krot
v (m/s) � (rad/s) p (kg�m/s) L (kg�m2/s) ( J) ( J)

Before
Disk 3.0 — 6.0 � 12 9.0 —
Stick 0 0 0 0 0 0
Total — — 6.0 � 12 9.0 0

After
Disk 2.3 — 4.7 � 9.3 5.4 —
Stick 1.3 � 2.0 1.3 � 2.7 0.9 2.7
Total — — 6.0 � 12 6.3 2.7

a Notice that linear momentum, angular momentum, and total kinetic energy are conserved.

Before After

2.0 m

vdi = 3.0 m/s

ω

vs

vdf

Figure 11.18 Overhead view of a disk striking a stick in an elastic
collision, which causes the stick to rotate.
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Optional Section

THE MOTION OF GYROSCOPES AND TOPS
A very unusual and fascinating type of motion you probably have observed is that
of a top spinning about its axis of symmetry, as shown in Figure 11.19a. If the top
spins very rapidly, the axis rotates about the z axis, sweeping out a cone (see Fig.
11.19b). The motion of the axis about the vertical—known as precessional mo-
tion—is usually slow relative to the spin motion of the top.

It is quite natural to wonder why the top does not fall over. Because the center
of mass is not directly above the pivot point O, a net torque is clearly acting on the
top about O—a torque resulting from the force of gravity Mg. The top would cer-
tainly fall over if it were not spinning. Because it is spinning, however, it has an an-
gular momentum L directed along its symmetry axis. As we shall show, the motion
of this symmetry axis about the z axis (the precessional motion) occurs because
the torque produces a change in the direction of the symmetry axis. This is an 
excellent example of the importance of the directional nature of angular 
momentum.

The two forces acting on the top are the downward force of gravity Mg and
the normal force n acting upward at the pivot point O. The normal force produces
no torque about the pivot because its moment arm through that point is zero.
However, the force of gravity produces a torque � � r � Mg about O, where the
direction of � is perpendicular to the plane formed by r and Mg. By necessity, the
vector � lies in a horizontal xy plane perpendicular to the angular momentum vec-
tor. The net torque and angular momentum of the top are related through Equa-
tion 11.19:

From this expression, we see that the nonzero torque produces a change in angu-
lar momentum dL—a change that is in the same direction as �. Therefore, like
the torque vector, dL must also be at right angles to L. Figure 11.19b illustrates the
resulting precessional motion of the symmetry axis of the top. In a time �t, the
change in angular momentum is Because �L is perpendicu-
lar to L, the magnitude of L does not change Rather, what is chang-
ing is the direction of L. Because the change in angular momentum �L is in the di-
rection of �, which lies in the xy plane, the top undergoes precessional motion.

The essential features of precessional motion can be illustrated by considering
the simple gyroscope shown in Figure 11.20a. This device consists of a wheel free
to spin about an axle that is pivoted at a distance h from the center of mass of the
wheel. When given an angular velocity � about the axle, the wheel has an angular
momentum L � I� directed along the axle as shown. Let us consider the torque
acting on the wheel about the pivot O. Again, the force n exerted by the support
on the axle produces no torque about O, and the force of gravity Mg produces a
torque of magnitude Mgh about O, where the axle is perpendicular to the support.
The direction of this torque is perpendicular to the axle (and perpendicular to L),
as shown in Figure 11.20a. This torque causes the angular momentum to change
in the direction perpendicular to the axle. Hence, the axle moves in the direction
of the torque—that is, in the horizontal plane.

To simplify the description of the system, we must make an assumption: The
total angular momentum of the precessing wheel is the sum of the angular mo-
mentum I� due to the spinning and the angular momentum due to the motion of

(� Li � � � Lf �).
�L � Lf � Li � � �t.

� �
dL
dt

11.6

Precessional motion

L i Lf

L

CM

O
y

z

∆L

τ

Mg

x

n

r

(a)

(b)

Figure 11.19 Precessional mo-
tion of a top spinning about its
symmetry axis. (a) The only exter-
nal forces acting on the top are the
normal force n and the force of
gravity Mg. The direction of the
angular momentum L is along the
axis of symmetry. The right-hand
rule indicates that � � r � F �
r � Mg is in the xy plane. (b). The
direction of �L is parallel to that of 
� in part (a). The fact that Lf �
�L � Li indicates that the top pre-
cesses about the z axis.
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the center of mass about the pivot. In our treatment, we shall neglect the contribu-
tion from the center-of-mass motion and take the total angular momentum to be
just I�. In practice, this is a good approximation if � is made very large.

In a time dt, the torque due to the gravitational force changes the angular mo-
mentum of the system by dL � � dt. When added vectorially to the original total

Li

Lf

ττ

n
h

O

Mg

(a) (b)

Li

LfdL

dφφ

Figure 11.20 (a) The motion of a simple gyroscope pivoted a distance h from its center of
mass. The force of gravity Mg produces a torque about the pivot, and this torque is perpendicu-
lar to the axle. (b) This torque results in a change in angular momentum dL in a direction per-
pendicular to the axle. The axle sweeps out an angle d	 in a time dt.

L

r

n

Mg

τ

This toy gyroscope undergoes precessional motion about the vertical axis as it spins about its axis
of symmetry. The only forces acting on it are the force of gravity Mg and the upward force of the
pivot n. The direction of its angular momentum L is along the axis of symmetry. The torque and
�L are directed into the page. (Courtesy of Central Scientific Company)
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angular momentum I�, this additional angular momentum causes a shift in the di-
rection of the total angular momentum.

The vector diagram in Figure 11.20b shows that in the time dt, the angular
momentum vector rotates through an angle d	, which is also the angle through
which the axle rotates. From the vector triangle formed by the vectors Li , Lf , and
dL, we see that

where we have used the fact that, for small values of any angle �, sin � � �. Divid-
ing through by dt and using the relationship L � I�, we find that the rate at which
the axle rotates about the vertical axis is

(11.28)

The angular speed �p is called the precessional frequency. This result is valid
only when �p V �. Otherwise, a much more complicated motion is involved. As
you can see from Equation 11.28, the condition �p V � is met when I� is great
compared with Mgh. Furthermore, note that the precessional frequency decreases
as � increases—that is, as the wheel spins faster about its axis of symmetry.

How much work is done by the force of gravity when a top precesses through one complete
circle?

Optional Section

ANGULAR MOMENTUM AS A
FUNDAMENTAL QUANTITY

We have seen that the concept of angular momentum is very useful for describing the
motion of macroscopic systems. However, the concept also is valid on a submicro-
scopic scale and has been used extensively in the development of modern theories of
atomic, molecular, and nuclear physics. In these developments, it was found that the
angular momentum of a system is a fundamental quantity. The word fundamental in
this context implies that angular momentum is an intrinsic property of atoms, mole-
cules, and their constituents, a property that is a part of their very nature.

To explain the results of a variety of experiments on atomic and molecular sys-
tems, we rely on the fact that the angular momentum has discrete values. These
discrete values are multiples of the fundamental unit of angular momentum

where h is called Planck’s constant:

Fundamental unit of angular momentum

Let us accept this postulate without proof for the time being and show how it
can be used to estimate the angular speed of a diatomic molecule. Consider the
O2 molecule as a rigid rotor, that is, two atoms separated by a fixed distance d and
rotating about the center of mass (Fig. 11.21). Equating the angular momentum
to the fundamental unit we can estimate the lowest angular speed:

ICM� � �  or  � �
�

ICM

�,

� � � 1.054 � 10�34  kg�m2/s

� � h/2
,

11.7

Quick Quiz 11.6

�p �
d	

dt
�

Mgh

I�

sin (d	) � d	 �
dL
L

�
(Mgh)dt

L

Precessional frequency

Figure 11.21 The rigid-rotor
model of a diatomic molecule. The
rotation occurs about the center of
mass in the plane of the page.

d

m m

ω

CM

⊕
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In Example 10.3, we found that the moment of inertia of the O2 molecule
about this axis of rotation is 1.95 � 10�46 kg� m2. Therefore,

Actual angular speeds are multiples of this smallest possible value.
This simple example shows that certain classical concepts and models, when

properly modified, might be useful in describing some features of atomic and mo-
lecular systems. A wide variety of phenomena on the submicroscopic scale can be
explained only if we assume discrete values of the angular momentum associated
with a particular type of motion.

The Danish physicist Niels Bohr (1885–1962) accepted and adopted this radi-
cal idea of discrete angular momentum values in developing his theory of the hy-
drogen atom. Strictly classical models were unsuccessful in describing many prop-
erties of the hydrogen atom. Bohr postulated that the electron could occupy only
those circular orbits about the proton for which the orbital angular momentum
was equal to where n is an integer. That is, he made the bold assumption that
orbital angular momentum is quantized. From this simple model, the rotational
frequencies of the electron in the various orbits can be estimated (see Problem 43).

SUMMARY

The total kinetic energy of a rigid object rolling on a rough surface without slip-
ping equals the rotational kinetic energy about its center of mass, plus the
translational kinetic energy of the center of mass, 

(11.4)

The torque � due to a force F about an origin in an inertial frame is defined
to be

(11.7)

Given two vectors A and B, the cross product A � B is a vector C having a
magnitude

(11.9)

where � is the angle between A and B. The direction of the vector C � A � B is
perpendicular to the plane formed by A and B, and this direction is determined
by the right-hand rule.

The angular momentum L of a particle having linear momentum p � mv is

(11.15)

where r is the vector position of the particle relative to an origin in an inertial
frame.

The net external torque acting on a particle or rigid object is equal to the
time rate of change of its angular momentum:

(11.20)

The z component of angular momentum of a rigid object rotating about a
fixed z axis is

(11.21)Lz � I�

��ext �
dL
dt

L � r � p

C � AB sin �

� � r � F

K � 1
2 ICM�2 � 1

2MvCM 

2

1
2MvCM 

2:

1
2 ICM�2,

n�,

� �
�

ICM
�

1.054 � 10�34 kg�m2/s
1.95 � 10�46 kg�m2 � 5.41 � 1011 rad/s
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QUESTIONS

moved away from him for some unknown reason. At this
point, the alarmed bellhop dropped the suitcase and ran
off. What do you suppose might have been in the suit-
case?

11. When a cylinder rolls on a horizontal surface as in Figure
11.3, do any points on the cylinder have only a vertical
component of velocity at some instant? If so, where are
they?

12. Three objects of uniform density—a solid sphere, a solid
cylinder, and a hollow cylinder—are placed at the top of
an incline (Fig. Q11.12). If they all are released from rest
at the same elevation and roll without slipping, which ob-
ject reaches the bottom first? Which reaches it last? You
should try this at home and note that the result is inde-
pendent of the masses and the radii of the objects.

1. Is it possible to calculate the torque acting on a rigid body
without specifying a center of rotation? Is the torque in-
dependent of the location of the center of rotation?

2. Is the triple product defined by a scalar or a
vector quantity? Explain why the operation 
has no meaning.

3. In some motorcycle races, the riders drive over small hills,
and the motorcycles become airborne for a short time. If
a motorcycle racer keeps the throttle open while leaving
the hill and going into the air, the motorcycle tends to
nose upward. Why does this happen?

4. If the torque acting on a particle about a certain origin is
zero, what can you say about its angular momentum
about that origin?

5. Suppose that the velocity vector of a particle is completely
specified. What can you conclude about the direction of
its angular momentum vector with respect to the direc-
tion of motion?

6. If a single force acts on an object, and the torque caused
by that force is nonzero about some point, is there any
other point about which the torque is zero?

7. If a system of particles is in motion, is it possible for the
total angular momentum to be zero about some origin?
Explain.

8. A ball is thrown in such a way that it does not spin about
its own axis. Does this mean that the angular momentum
is zero about an arbitrary origin? Explain.

9. In a tape recorder, the tape is pulled past the read-and-
write heads at a constant speed by the drive mechanism.
Consider the reel from which the tape is pulled—as the
tape is pulled off it, the radius of the roll of remaining
tape decreases. How does the torque on the reel change
with time? How does the angular speed of the reel
change with time? If the tape mechanism is suddenly
turned on so that the tape is quickly pulled with a great
force, is the tape more likely to break when pulled from a
nearly full reel or a nearly empty reel?

10. A scientist at a hotel sought assistance from a bellhop to
carry a mysterious suitcase. When the unaware bellhop
rounded a corner carrying the suitcase, it suddenly

(A � B) � C
A � (B � C)

where I is the moment of inertia of the object about the axis of rotation and � is
its angular speed.

The net external torque acting on a rigid object equals the product of its mo-
ment of inertia about the axis of rotation and its angular acceleration:

(11.23)

If the net external torque acting on a system is zero, then the total angular
momentum of the system is constant. Applying this law of conservation of angu-
lar momentum to a system whose moment of inertia changes gives

(11.27)I i�i � I f �f � constant

�
ext � I�

13. A mouse is initially at rest on a horizontal turntable
mounted on a frictionless vertical axle. If the mouse be-
gins to walk around the perimeter, what happens to the
turntable? Explain.

14. Stars originate as large bodies of slowly rotating gas. Be-
cause of gravity, these regions of gas slowly decrease in
size. What happens to the angular speed of a star as it
shrinks? Explain.

15. Often, when a high diver wants to execute a flip in
midair, she draws her legs up against her chest. Why does
this make her rotate faster? What should she do when she
wants to come out of her flip?

16. As a tether ball winds around a thin pole, what happens
to its angular speed? Explain.

Figure Q11.12 Which object wins the race?
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17. Two solid spheres—a large, massive sphere and a small
sphere with low mass—are rolled down a hill. Which
sphere reaches the bottom of the hill first? Next, a large,
low-density sphere and a small, high-density sphere hav-
ing the same mass are rolled down the hill. Which one
reaches the bottom first in this case?

18. Suppose you are designing a car for a coasting race—the
cars in this race have no engines; they simply coast down
a hill. Do you want to use large wheels or small wheels?
Do you want to use solid, disk-like wheels or hoop-like
wheels? Should the wheels be heavy or light?

19. Why do tightrope walkers carry a long pole to help them-
selves keep their balance?

20. Two balls have the same size and mass. One is hollow,
whereas the other is solid. How would you determine
which is which without breaking them apart?

21. A particle is moving in a circle with constant speed. Lo-
cate one point about which the particle’s angular mo-
mentum is constant and another about which it changes
with time.

22. If global warming occurs over the next century, it is likely
that some polar ice will melt and the water will be distrib-
uted closer to the equator. How would this change the
moment of inertia of the Earth? Would the length of the
day (one revolution) increase or decrease?

PROBLEMS

7. A metal can containing condensed mushroom soup has
a mass of 215 g, a height of 10.8 cm, and a diameter of
6.38 cm. It is placed at rest on its side at the top of a
3.00-m-long incline that is at an angle of 25.0° to the
horizontal and is then released to roll straight down. As-
suming energy conservation, calculate the moment of
inertia of the can if it takes 1.50 s to reach the bottom
of the incline. Which pieces of data, if any, are unneces-
sary for calculating the solution?

8. A tennis ball is a hollow sphere with a thin wall. It is
set rolling without slipping at 4.03 m/s on the hori-
zontal section of a track, as shown in Figure P11.8. 
It rolls around the inside of a vertical circular loop
90.0 cm in diameter and finally leaves the track at a
point 20.0 cm below the horizontal section. (a) Find
the speed of the ball at the top of the loop. Demon-
strate that it will not fall from the track. (b) Find its
speed as it leaves the track. (c) Suppose that static
friction between the ball and the track was negligible,
so that the ball slid instead of rolling. Would its speed

Section 11.1 Rolling Motion of a Rigid Object
1. A cylinder of mass 10.0 kg rolls without slipping on a

horizontal surface. At the instant its center of mass has
a speed of 10.0 m/s, determine (a) the translational ki-
netic energy of its center of mass, (b) the rotational en-
ergy about its center of mass, and (c) its total energy.

2. A bowling ball has a mass of 4.00 kg, a moment of iner-
tia of 1.60 � 10�2 kg� m2, and a radius of 0.100 m. If it
rolls down the lane without slipping at a linear speed of
4.00 m/s, what is its total energy?

3. A bowling ball has a mass M, a radius R, and a moment
of inertia If it starts from rest, how much work
must be done on it to set it rolling without slipping at a
linear speed v? Express the work in terms of M and v.

4. A uniform solid disk and a uniform hoop are placed
side by side at the top of an incline of height h. If they
are released from rest and roll without slipping, deter-
mine their speeds when they reach the bottom. Which
object reaches the bottom first?

5. (a) Determine the acceleration of the center of mass of
a uniform solid disk rolling down an incline making an
angle � with the horizontal. Compare this acceleration
with that of a uniform hoop. (b) What is the minimum
coefficient of friction required to maintain pure rolling
motion for the disk?

6. A ring of mass 2.40 kg, inner radius 6.00 cm, and outer
radius 8.00 cm rolls (without slipping) up an inclined
plane that makes an angle of � � 36.9° (Fig. P11.6). At
the moment the ring is at position x � 2.00 m up the
plane, its speed is 2.80 m/s. The ring continues up the
plane for some additional distance and then rolls back
down. It does not roll off the top end. How far up the
plane does it go?

2
5MR2.

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

θ

v

x

Figure P11.6
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then be higher, lower, or the same at the top of the
loop? Explain.

Section 11.2 The Vector Product and Torque
9. Given M � 6i � 2j � k and N � 2i � j � 3k, calculate

the vector product M � N.
10. The vectors 42.0 cm at 15.0° and 23.0 cm at 65.0° both

start from the origin. Both angles are measured coun-
terclockwise from the x axis. The vectors form two sides
of a parallelogram. (a) Find the area of the parallelo-
gram. (b) Find the length of its longer diagonal.

11. Two vectors are given by A � � 3i � 4j and B � 2i �
3j. Find (a) A � B and (b) the angle between A and B.

12. For the vectors A � � 3i � 7j � 4k and B � 6i � 10j �
9k, evaluate the expressions (a) cos�1 and
(b) sin�1 (c) Which give(s) the angle
between the vectors?

13. A force of F � 2.00i � 3.00j N is applied to an object
that is pivoted about a fixed axis aligned along the z co-
ordinate axis. If the force is applied at the point r �
(4.00i � 5.00j � 0k) m, find (a) the magnitude of the
net torque about the z axis and (b) the direction of the
torque vector �.

14. A student claims that she has found a vector A such that
(2i � 3j � 4k) � A � (4i � 3j � k). Do you believe
this claim? Explain.

15. Vector A is in the negative y direction, and vector B is in
the negative x direction. What are the directions of 
(a) A � B and (b) B � A?

16. A particle is located at the vector position r � (i � 3j) m,
and the force acting on it is F � (3i � 2j) N. What is 
the torque about (a) the origin and (b) the point hav-
ing coordinates (0, 6) m?

17. If what is the angle between A and B?
18. Two forces F1 and F2 act along the two sides of an equi-

lateral triangle, as shown in Figure P11.18. Point O is
the intersection of the altitudes of the triangle. Find a
third force F3 to be applied at B and along BC that will
make the total torque about the point O be zero. Will
the total torque change if F3 is applied not at B, but
rather at any other point along BC?

� A � B � � A � B,

(� A � B �/AB).
(A � B/AB )

Section 11.3 Angular Momentum of a Particle
19. A light, rigid rod 1.00 m in length joins two particles—

with masses 4.00 kg and 3.00 kg—at its ends. The com-
bination rotates in the xy plane about a pivot through
the center of the rod (Fig. P11.19). Determine the an-
gular momentum of the system about the origin when
the speed of each particle is 5.00 m/s.

WEB
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20. A 1.50-kg particle moves in the xy plane with a velocity
of v � (4.20i � 3.60j) m/s. Determine the particle’s 
angular momentum when its position vector is r �
(1.50i � 2.20j) m.

21. The position vector of a particle of mass 2.00 kg is given
as a function of time by r � (6.00i � 5.00t j) m. Deter-
mine the angular momentum of the particle about the
origin as a function of time.

22. A conical pendulum consists of a bob of mass m in mo-
tion in a circular path in a horizontal plane, as shown in
Figure P11.22. During the motion, the supporting wire
of length � maintains the constant angle � with the ver-
tical. Show that the magnitude of the angular momen-

WEB
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tum of the mass about the center of the circle is

L � (m2g �3 sin4 �/cos �)1/2

cle about the origin when the particle is (a) at the ori-
gin, (b) at the highest point of its trajectory, and (c) just
about to hit the ground. (d) What torque causes its an-
gular momentum to change?

26. Heading straight toward the summit of Pike’s Peak, an
airplane of mass 12 000 kg flies over the plains of
Kansas at a nearly constant altitude of 4.30 km and with
a constant velocity of 175 m/s westward. (a) What is the
airplane’s vector angular momentum relative to a wheat
farmer on the ground directly below the airplane? 
(b) Does this value change as the airplane continues its
motion along a straight line? (c) What is its angular mo-
mentum relative to the summit of Pike’s Peak?

27. A ball of mass m is fastened at the end of a flagpole con-
nected to the side of a tall building at point P, as shown
in Figure P11.27. The length of the flagpole is �, and �
is the angle the flagpole makes with the horizontal. Sup-
pose that the ball becomes loose and starts to fall. De-
termine the angular momentum (as a function of time)
of the ball about point P. Neglect air resistance.

Figure P11.23

Figure P11.22

28. A fireman clings to a vertical ladder and directs the noz-
zle of a hose horizontally toward a burning building.
The rate of water flow is 6.31 kg/s, and the nozzle speed
is 12.5 m/s. The hose passes between the fireman’s feet,
which are 1.30 m vertically below the nozzle. Choose
the origin to be inside the hose between the fireman’s

24. A 4.00-kg mass is attached to a light cord that is wound
around a pulley (see Fig. 10.20). The pulley is a uni-
form solid cylinder with a radius of 8.00 cm and a mass
of 2.00 kg. (a) What is the net torque on the system
about the point O? (b) When the mass has a speed v,
the pulley has an angular speed � � v/R. Determine
the total angular momentum of the system about O. 
(c) Using the fact that � � dL/dt and your result from
part (b), calculate the acceleration of the mass.

25. A particle of mass m is shot with an initial velocity vi and
makes an angle � with the horizontal, as shown in Fig-
ure P11.25. The particle moves in the gravitational field
of the Earth. Find the angular momentum of the parti-

23. A particle of mass m moves in a circle of radius R at a
constant speed v, as shown in Figure P11.23. If the mo-
tion begins at point Q, determine the angular momen-
tum of the particle about point P as a function of time.
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the ratio of the final rotational energy to the initial rota-
tional energy.

34. A playground merry-go-round of radius R � 2.00 m has
a moment of inertia of I � 250 kg� m2 and is rotating at
10.0 rev/min about a frictionless vertical axle. Facing
the axle, a 25.0-kg child hops onto the merry-go-round
and manages to sit down on its edge. What is the new
angular speed of the merry-go-round?

35. A student sits on a freely rotating stool holding two
weights, each of which has a mass of 3.00 kg. When his
arms are extended horizontally, the weights are 1.00 m
from the axis of rotation and he rotates with an angular
speed of 0.750 rad/s. The moment of inertia of the stu-
dent plus stool is 3.00 kg� m2 and is assumed to be con-
stant. The student pulls the weights inward horizontally
to a position 0.300 m from the rotation axis. (a) Find
the new angular speed of the student. (b) Find the ki-
netic energy of the rotating system before and after he
pulls the weights inward.

36. A uniform rod with a mass of 100 g and a length of 
50.0 cm rotates in a horizontal plane about a fixed, 
vertical, frictionless pin passing through its center. 
Two small beads, each having a mass 30.0 g, are
mounted on the rod so that they are able to slide with-
out friction along its length. Initially, the beads are held
by catches at positions 10.0 cm on each side of center; 
at this time, the system rotates at an angular speed of
20.0 rad/s. Suddenly, the catches are released, and the
small beads slide outward along the rod. Find (a) the 
angular speed of the system at the instant the beads
reach the ends of the rod and (b) the angular speed of
the rod after the beads fly off the rod’s ends.

37. A 60.0-kg woman stands at the rim of a horizontal
turntable having a moment of inertia of 500 kg� m2 and
a radius of 2.00 m. The turntable is initially at rest and is
free to rotate about a frictionless, vertical axle through
its center. The woman then starts walking around the
rim clockwise (as viewed from above the system) at a
constant speed of 1.50 m/s relative to the Earth. (a) In
what direction and with what angular speed does the
turntable rotate? (b) How much work does the woman
do to set herself and the turntable into motion?

38. A puck with a mass of 80.0 g and a radius of 4.00 cm
slides along an air table at a speed of 1.50 m/s, as
shown in Figure P11.38a. It makes a glancing collision

feet. What torque must the fireman exert on the hose?
That is, what is the rate of change of angular momen-
tum of the water?

Section 11.4 Angular Momentum of a 
Rotating Rigid Object

29. A uniform solid sphere with a radius of 0.500 m and a
mass of 15.0 kg turns counterclockwise about a vertical
axis through its center. Find its vector angular momen-
tum when its angular speed is 3.00 rad/s.

30. A uniform solid disk with a mass of 3.00 kg and a radius
of 0.200 m rotates about a fixed axis perpendicular 
to its face. If the angular speed is 6.00 rad/s, calculate
the angular momentum of the disk when the axis of ro-
tation (a) passes through its center of mass and 
(b) passes through a point midway between the center
and the rim.

31. A particle with a mass of 0.400 kg is attached to the 
100-cm mark of a meter stick with a mass of 0.100 kg. The
meter stick rotates on a horizontal, frictionless table 
with an angular speed of 4.00 rad/s. Calculate the angu-
lar momentum of the system when the stick is pivoted
about an axis (a) perpendicular to the table through 
the 50.0-cm mark and (b) perpendicular to the table
through the 0-cm mark.

32. The hour and minute hands of Big Ben, the famous
Parliament Building tower clock in London, are 2.70 m
and 4.50 m long and have masses of 60.0 kg and 100 kg,
respectively. Calculate the total angular momentum of
these hands about the center point. Treat the hands as
long thin rods.

Section 11.5 Conservation of Angular Momentum
33. A cylinder with a moment of inertia of I1 rotates about a

vertical, frictionless axle with angular velocity �i . A sec-
ond cylinder that has a moment of inertia of I2 and ini-
tially is not rotating drops onto the first cylinder (Fig.
P11.33). Because of friction between the surfaces, the
two eventually reach the same angular speed �f . 
(a) Calculate �f . (b) Show that the kinetic energy of 
the system decreases in this interaction and calculate

Figure P11.38Figure P11.33

(b)(a)

1.50 m/s

I2

ωi
ωf
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with a second puck having a radius of 6.00 cm and a
mass of 120 g (initially at rest) such that their rims just
touch. Because their rims are coated with instant-acting
glue, the pucks stick together and spin after the colli-
sion (Fig. P11.38b). (a) What is the angular momentum
of the system relative to the center of mass? (b) What is
the angular speed about the center of mass?

39. A wooden block of mass M resting on a frictionless hori-
zontal surface is attached to a rigid rod of length � and
of negligible mass (Fig. P11.39). The rod is pivoted at
the other end. A bullet of mass m traveling parallel to
the horizontal surface and normal to the rod with speed
v hits the block and becomes embedded in it. (a) What
is the angular momentum of the bullet–block system?
(b) What fraction of the original kinetic energy is lost
in the collision?

maximum possible decrease in the angular speed of the
Earth due to this collision? Explain your answer.

(Optional)
Section 11.7 Angular Momentum as a 
Fundamental Quantity

43. In the Bohr model of the hydrogen atom, the electron
moves in a circular orbit of radius 0.529 � 10�10 m
around the proton. Assuming that the orbital angular
momentum of the electron is equal to h/2
, calculate
(a) the orbital speed of the electron, (b) the kinetic en-
ergy of the electron, and (c) the angular speed of the
electron’s motion.

ADDITIONAL PROBLEMS

44. Review Problem. A rigid, massless rod has three equal
masses attached to it, as shown in Figure P11.44. The
rod is free to rotate in a vertical plane about a friction-
less axle perpendicular to the rod through the point P,
and it is released from rest in the horizontal position at
t � 0. Assuming m and d are known, find (a) the mo-
ment of inertia of the system about the pivot, (b) the
torque acting on the system at t � 0, (c) the angular ac-
celeration of the system at t � 0, (d) the linear accelera-
tion of the mass labeled “3” at t � 0, (e) the maximum

40. A space station shaped like a giant wheel has a radius of
100 m and a moment of inertia of 5.00 � 108 kg� m2. A
crew of 150 are living on the rim, and the station’s rota-
tion causes the crew to experience an acceleration of 1g
(Fig. P11.40). When 100 people move to the center of
the station for a union meeting, the angular speed
changes. What acceleration is experienced by the man-
agers remaining at the rim? Assume that the average
mass of each inhabitant is 65.0 kg.

41. A wad of sticky clay of mass m and velocity vi is fired at a
solid cylinder of mass M and radius R (Fig. P11.41).
The cylinder is initially at rest and is mounted on a
fixed horizontal axle that runs through the center of
mass. The line of motion of the projectile is perpendic-
ular to the axle and at a distance d, less than R, from the
center. (a) Find the angular speed of the system just af-
ter the clay strikes and sticks to the surface of the cylin-
der. (b) Is mechanical energy conserved in this process?
Explain your answer.

42. Suppose a meteor with a mass of 3.00 � 1013 kg is mov-
ing at 30.0 km/s relative to the center of the Earth and
strikes the Earth. What is the order of magnitude of the

Figure P11.39

MR

vim

dM

�

v

Figure P11.41

Figure P11.40



Problems 355

kinetic energy of the system, (f) the maximum angular
speed attained by the rod, (g) the maximum angular
momentum of the system, and (h) the maximum speed
attained by the mass labeled “2.”

time. (f) Find the work done by the drive motor during
the 440-s motion. (g) Find the work done by the string
brake on the sliding mass. (h) Find the total work done
on the system consisting of the disk and the sliding
mass.

48. Comet Halley moves about the Sun in an elliptical orbit,
with its closest approach to the Sun being about 
0.590 AU and its greatest distance from the Sun being
35.0 AU (1 AU � the average Earth–Sun distance). If
the comet’s speed at its closest approach is 54.0 km/s,

47. A string is wound around a uniform disk of radius R
and mass M. The disk is released from rest when the
string is vertical and its top end is tied to a fixed bar
(Fig. P11.47). Show that (a) the tension in the string is
one-third the weight of the disk, (b) the magnitude of
the acceleration of the center of mass is 2g/3, and 
(c) the speed of the center of mass is (4gh/3)1/2 as the
disk descends. Verify your answer to part (c) using the
energy approach.

46. A 100-kg uniform horizontal disk of radius 5.50 m turns
without friction at 2.50 rev/s on a vertical axis through
its center, as shown in Figure P11.46. A feedback mech-
anism senses the angular speed of the disk, and a drive
motor at A ensures that the angular speed remains con-
stant. While the disk turns, a 1.20-kg mass on top of the
disk slides outward in a radial slot. The 1.20-kg mass
starts at the center of the disk at time t � 0 and moves
outward with a constant speed of 1.25 cm/s relative to
the disk until it reaches the edge at t � 440 s. The slid-
ing mass experiences no friction. Its motion is con-
strained by a brake at B so that its radial speed remains
constant. The constraint produces tension in a light
string tied to the mass. (a) Find the torque as a function
of time that the drive motor must provide while the
mass is sliding. (b) Find the value of this torque at 
t � 440 s, just before the sliding mass finishes its mo-
tion. (c) Find the power that the drive motor must de-
liver as a function of time. (d) Find the value of the
power when the sliding mass is just reaching the end of
the slot. (e) Find the string tension as a function of

45. A uniform solid sphere of radius r is placed on the in-
side surface of a hemispherical bowl having a much
greater radius R. The sphere is released from rest at an
angle � to the vertical and rolls without slipping (Fig.
P11.45). Determine the angular speed of the sphere
when it reaches the bottom of the bowl.
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what is its speed when it is farthest from the Sun? The
angular momentum of the comet about the Sun is con-
served because no torque acts on the comet. The gravi-
tational force exerted by the Sun on the comet has a
moment arm of zero.

49. A constant horizontal force F is applied to a lawn roller
having the form of a uniform solid cylinder of radius R
and mass M (Fig. P11.49). If the roller rolls without slip-
ping on the horizontal surface, show that (a) the accel-
eration of the center of mass is 2F/3M and that (b) the
minimum coefficient of friction necessary to prevent
slipping is F/3Mg. (Hint: Consider the torque with re-
spect to the center of mass.)

The monkey climbs the rope in an attempt to reach the
bananas. (a) Treating the system as consisting of the
monkey, bananas, rope, and pulley, evaluate the net
torque about the pulley axis. (b) Using the results to
part (a), determine the total angular momentum about
the pulley axis and describe the motion of the system.
Will the monkey reach the bananas?

51. A solid sphere of mass m and radius r rolls without slip-
ping along the track shown in Figure P11.51. The
sphere starts from rest with its lowest point at height h
above the bottom of a loop of radius R, which is much
larger than r. (a) What is the minimum value that h can
have (in terms of R) if the sphere is to complete the
loop? (b) What are the force components on the
sphere at point P if h � 3R?

52. A thin rod with a mass of 0.630 kg and a length of 
1.24 m is at rest, hanging vertically from a strong fixed
hinge at its top end. Suddenly, a horizontal impulsive
force (14.7i) N is applied to it. (a) Suppose that the
force acts at the bottom end of the rod. Find the accel-
eration of the rod’s center of mass and the horizontal
force that the hinge exerts. (b) Suppose that the force
acts at the midpoint of the rod. Find the acceleration of
this point and the horizontal hinge reaction. (c) Where
can the impulse be applied so that the hinge exerts no
horizontal force? (This point is called the center of per-
cussion.)

53. At one moment, a bowling ball is both sliding and spin-
ning on a horizontal surface such that its rotational ki-
netic energy equals its translational kinetic energy. Let
vCM represent the ball’s center-of-mass speed relative to
the surface. Let vr represent the speed of the topmost
point on the ball’s surface relative to the center of mass.
Find the ratio vCM/vr .

54. A projectile of mass m moves to the right with speed vi
(Fig. P11.54a). The projectile strikes and sticks to the
end of a stationary rod of mass M and length d that is
pivoted about a frictionless axle through its center (Fig.
P11.54b). (a) Find the angular speed of the system right
after the collision. (b) Determine the fractional loss in
mechanical energy due to the collision.

50. A light rope passes over a light, frictionless pulley. A
bunch of bananas of mass M is fastened at one end, and
a monkey of mass M clings to the other (Fig. P11.50).

Figure P11.50

Figure P11.49
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55. A mass m is attached to a cord passing through a small
hole in a frictionless, horizontal surface (Fig. P11.55).
The mass is initially orbiting with speed vi in a circle of
radius ri . The cord is then slowly pulled from below,
and the radius of the circle decreases to r. (a) What is
the speed of the mass when the radius is r? (b) Find the
tension in the cord as a function of r. (c) How much
work W is done in moving m from ri to r ? (Note: The
tension depends on r.) (d) Obtain numerical values 
for v, T, and W when r � 0.100 m, m � 50.0 g, ri �
0.300 m, and vi � 1.50 m/s.

cal grape at the top of his bald head, which itself has the
shape of a sphere. After all of the children have had
time to giggle, the grape starts from rest and rolls down
your uncle’s head without slipping. It loses contact with
your uncle’s scalp when the radial line joining it to the
center of curvature makes an angle � with the vertical.
What is the measure of angle �?

58. A thin rod of length h and mass M is held vertically with
its lower end resting on a frictionless horizontal surface.
The rod is then released to fall freely. (a) Determine
the speed of its center of mass just before it hits the hor-
izontal surface. (b) Now suppose that the rod has a
fixed pivot at its lower end. Determine the speed of the
rod’s center of mass just before it hits the surface.

59. Two astronauts (Fig. P11.59), each having a mass of
75.0 kg, are connected by a 10.0-m rope of negligible
mass. They are isolated in space, orbiting their center of
mass at speeds of 5.00 m/s. (a) Treating the astronauts
as particles, calculate the magnitude of the angular mo-
mentum and (b) the rotational energy of the system. By
pulling on the rope, one of the astronauts shortens the
distance between them to 5.00 m. (c) What is the new
angular momentum of the system? (d) What are the as-
tronauts’ new speeds? (e) What is the new rotational en-
ergy of the system? (f) How much work is done by the
astronaut in shortening the rope?

60. Two astronauts (see Fig. P11.59), each having a mass M,
are connected by a rope of length d having negligible
mass. They are isolated in space, orbiting their center of
mass at speeds v. Treating the astronauts as particles,
calculate (a) the magnitude of the angular momentum
and (b) the rotational energy of the system. By pulling
on the rope, one of the astronauts shortens the distance
between them to d/2. (c) What is the new angular mo-
mentum of the system? (d) What are the astronauts’
new speeds? (e) What is the new rotational energy of
the system? (f) How much work is done by the astro-
naut in shortening the rope?

WEB

56. A bowler releases a bowling ball with no spin, sending it
sliding straight down the alley toward the pins. The ball
continues to slide for some distance before its motion
becomes rolling without slipping; of what order of mag-
nitude is this distance? State the quantities you take as
data, the values you measure or estimate for them, and
your reasoning.

57. Following Thanksgiving dinner, your uncle falls into a
deep sleep while sitting straight up and facing the televi-
sion set. A naughty grandchild balances a small spheri-
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Figure P11.59 Problems 59 and 60.

Figure P11.55

Figure P11.54

61. A solid cube of wood of side 2a and mass M is resting
on a horizontal surface. The cube is constrained to ro-
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tate about an axis AB (Fig. P11.61). A bullet of mass m
and speed v is shot at the face opposite ABCD at a
height of 4a/3. The bullet becomes embedded in the
cube. Find the minimum value of v required to tip the
cube so that it falls on face ABCD. Assume m V M.

a horizontal surface and released, as shown in Figure
P11.64. (a) What is the angular speed of the disk once
pure rolling takes place? (b) Find the fractional loss in
kinetic energy from the time the disk is released until
the time pure rolling occurs. (Hint: Consider torques
about the center of mass.)

65. Suppose a solid disk of radius R is given an angular
speed �i about an axis through its center and is then
lowered to a horizontal surface and released, as shown
in Problem 64 (see Fig. P11.64). Furthermore, assume
that the coefficient of friction between the disk and the
surface is �. (a) Show that the time it takes for pure
rolling motion to occur is R�i/3�g. (b) Show that the
distance the disk travels before pure rolling occurs is

66. A solid cube of side 2a and mass M is sliding on a fric-
tionless surface with uniform velocity v, as shown in Fig-
ure P11.66a. It hits a small obstacle at the end of the
table; this causes the cube to tilt, as shown in Figure
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64. A uniform solid disk is set into rotation with an angular
speed �i about an axis through its center. While still ro-
tating at this speed, the disk is placed into contact with

62. A large, cylindrical roll of paper of initial radius R lies
on a long, horizontal surface with the open end of the
paper nailed to the surface. The roll is given a slight
shove (vi � 0) and begins to unroll. (a) Determine the
speed of the center of mass of the roll when its radius
has diminished to r. (b) Calculate a numerical value 
for this speed at r � 1.00 mm, assuming R � 6.00 m. 
(c) What happens to the energy of the system when the
paper is completely unrolled? (Hint: Assume that the
roll has a uniform density and apply energy methods.)

63. A spool of wire of mass M and radius R is unwound un-
der a constant force F (Fig. P11.63). Assuming that the
spool is a uniform solid cylinder that does not slip, show
that (a) the acceleration of the center of mass is 
4F/3M and that (b) the force of friction is to the right
and is equal in magnitude to F/3. (c) If the cylinder
starts from rest and rolls without slipping, what is the
speed of its center of mass after it has rolled through a
distance d?

Figure P11.66

Figure P11.64 Problems 64 and 65.

Figure P11.63

Figure P11.61



Problems 359

∆x

θ

x

y
c

F1

F2

F3

F4

P

θ
R

r

M

m R m R

F

69. The spool of wire shown in Figure P11.68 has an inner
radius r and an outer radius R. The angle � between the
applied force and the horizontal can be varied. Show

68. A spool of wire rests on a horizontal surface as in Figure
P11.68. As the wire is pulled, the spool does not slip at
the contact point P. On separate trials, each one of the
forces F1 , F2 , F3 , and F4 is applied to the spool. For
each one of these forces, determine the direction in
which the spool will roll. Note that the line of action of
F2 passes through P.

that the critical angle for which the spool does not slip
and remains stationary is

(Hint: At the critical angle, the line of action of the ap-
plied force passes through the contact point.)

70. In a demonstration that employs a ballistics cart, a ball
is projected vertically upward from a cart moving with
constant velocity along the horizontal direction. The
ball lands in the catching cup of the cart because both
the cart and the ball have the same horizontal compo-
nent of velocity. Now consider a ballistics cart on an in-
cline making an angle � with the horizontal, as shown in
Figure P11.70. The cart (including its wheels) has a
mass M, and the moment of inertia of each of the two
wheels is mR 2/2. (a) Using conservation of energy con-
siderations (assuming that there is no friction between
the cart and the axles) and assuming pure rolling mo-
tion (that is, no slipping), show that the acceleration of
the cart along the incline is

(b) Note that the x component of acceleration of the
ball released by the cart is g sin �. Thus, the x compo-
nent of the cart’s acceleration is smaller than that of the
ball by the factor M/(M � 2m). Use this fact and kine-
matic equations to show that the ball overshoots the
cart by an amount �x, where

and vyi is the initial speed of the ball imparted to it by
the spring in the cart. (c) Show that the distance d that
the ball travels measured along the incline is

d �
2v 2

 yi

g
 

sin �

cos2 �

�x � � 4m
M � 2m �� sin �

cos2 � � 
vyi

2

g

ax � � M
M � 2m �g sin �

cos �c �
r
R

P11.66b. Find the minimum value of v such that the
cube falls off the table. Note that the moment of inertia
of the cube about an axis along one of its edges is
8Ma2/3. (Hint: The cube undergoes an inelastic colli-
sion at the edge.)

67. A plank with a mass M � 6.00 kg rides on top of two
identical solid cylindrical rollers that have R � 5.00 cm
and m � 2.00 kg (Fig. P11.67). The plank is pulled by a
constant horizontal force of magnitude F � 6.00 N ap-
plied to the end of the plank and perpendicular to the
axes of the cylinders (which are parallel). The cylinders
roll without slipping on a flat surface. Also, no slipping
occurs between the cylinders and the plank. (a) Find
the acceleration of the plank and that of the rollers. 
(b) What frictional forces are acting?

Figure P11.70

Figure P11.68 Problems 68 and 69.

Figure P11.67
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ANSWERS TO QUICK QUIZZES

11.4 Both (a) and (b) are false. The net force is not necessar-
ily zero. If the line of action of the net force passes
through the point, then the net torque about an axis
passing through that point is zero even though the net
force is not zero. Because the net force is not necessarily
zero, you cannot conclude that the particle’s velocity is
constant.

11.5 The student does work as he walks from the rim of the
platform toward its center.

11.6 Because it is perpendicular to the precessional motion
of the top, the force of gravity does no work. This is a sit-
uation in which a force causes motion but does no work.

11.1 There is very little resistance to motion that can reduce
the kinetic energy of the rolling ball. Even though there
is friction between the ball and the floor (if there were
not, then no rotation would occur, and the ball would
slide), there is no relative motion of the two surfaces (by
the definition of “rolling”), and so kinetic friction can-
not reduce K. (Air drag and friction associated with de-
formation of the ball eventually stop the ball.)

11.2 The box. Because none of the box’s initial potential en-
ergy is converted to rotational kinetic energy, at any time
t � 0 its translational kinetic energy is greater than that
of the rolling ball.

11.3 Zero. If she were moving directly toward the pole, r and
p would be antiparallel to each other, and the sine of
the angle between them is zero; therefore, L � 0.
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This one-bottle wine holder is an inter-
esting example of a mechanical system
that seems to defy gravity. The system
(holder plus bottle) is balanced when its
center of gravity is directly over the low-
est support point. What two conditions
are necessary for an object to exhibit
this kind of stability? (Charles D. Winters)
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n Chapters 10 and 11 we studied the dynamics of rigid objects—that is, objects
whose parts remain at a fixed separation with respect to each other when sub-
jected to external forces. Part of this chapter addresses the conditions under

which a rigid object is in equilibrium. The term equilibrium implies either that the
object is at rest or that its center of mass moves with constant velocity. We deal
here only with the former case, in which the object is described as being in static
equilibrium. Static equilibrium represents a common situation in engineering prac-
tice, and the principles it involves are of special interest to civil engineers, archi-
tects, and mechanical engineers. If you are an engineering student you will un-
doubtedly take an advanced course in statics in the future.

The last section of this chapter deals with how objects deform under load con-
ditions. Such deformations are usually elastic and do not affect the conditions for
equilibrium. An elastic object returns to its original shape when the deforming
forces are removed. Several elastic constants are defined, each corresponding to a
different type of deformation.

THE CONDITIONS FOR EQUILIBRIUM
In Chapter 5 we stated that one necessary condition for equilibrium is that the net
force acting on an object be zero. If the object is treated as a particle, then this is
the only condition that must be satisfied for equilibrium. The situation with real
(extended) objects is more complex, however, because these objects cannot be
treated as particles. For an extended object to be in static equilibrium, a second
condition must be satisfied. This second condition involves the net torque acting
on the extended object. Note that equilibrium does not require the absence of
motion. For example, a rotating object can have constant angular velocity and still
be in equilibrium.

Consider a single force F acting on a rigid object, as shown in Figure 12.1. The
effect of the force depends on its point of application P. If r is the position vector
of this point relative to O, the torque associated with the force F about O is given
by Equation 11.7:

Recall from the discussion of the vector product in Section 11.2 that the vector � is
perpendicular to the plane formed by r and F. You can use the right-hand rule to
determine the direction of � : Curl the fingers of your right hand in the direction
of rotation that F tends to cause about an axis through O : your thumb then points
in the direction of �. Hence, in Figure 12.1 � is directed toward you out of the
page.

As you can see from Figure 12.1, the tendency of F to rotate the object about
an axis through O depends on the moment arm d, as well as on the magnitude of
F. Recall that the magnitude of � is Fd (see Eq. 10.19). Now suppose a rigid object
is acted on first by force F1 and later by force F2 . If the two forces have the same
magnitude, they will produce the same effect on the object only if they have the
same direction and the same line of action. In other words,

� � r � F

12.1

two forces F1 and F2 are equivalent if and only if F1 � F2 and if and only if the
two produce the same torque about any axis.

Equivalent forces

I

F θ P

r d

O

Figure 12.1 A single force F acts
on a rigid object at the point P.

The two forces shown in Figure 12.2 are equal in magnitude and opposite in
direction. They are not equivalent. The force directed to the right tends to rotate
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the object clockwise about an axis perpendicular to the diagram through O,
whereas the force directed to the left tends to rotate it counterclockwise about that
axis.

Suppose an object is pivoted about an axis through its center of mass, as
shown in Figure 12.3. Two forces of equal magnitude act in opposite directions
along parallel lines of action. A pair of forces acting in this manner form what is
called a couple. (The two forces shown in Figure 12.2 also form a couple.) Do not
make the mistake of thinking that the forces in a couple are a result of Newton’s
third law. They cannot be third-law forces because they act on the same object.
Third-law force pairs act on different objects. Because each force produces the
same torque Fd, the net torque has a magnitude of 2Fd. Clearly, the object rotates
clockwise and undergoes an angular acceleration about the axis. With respect to
rotational motion, this is a nonequilibrium situation. The net torque on the ob-
ject gives rise to an angular acceleration � according to the relationship 

(see Eq. 10.21).
In general, an object is in rotational equilibrium only if its angular accelera-

tion � � 0. Because �� � I� for rotation about a fixed axis, our second necessary
condition for equilibrium is that the net torque about any axis must be zero.
We now have two necessary conditions for equilibrium of an object:

1. The resultant external force must equal zero. (12.1)

2. The resultant external torque about any axis must be zero. (12.2)

The first condition is a statement of translational equilibrium; it tells us that the
linear acceleration of the center of mass of the object must be zero when viewed
from an inertial reference frame. The second condition is a statement of rota-
tional equilibrium and tells us that the angular acceleration about any axis must
be zero. In the special case of static equilibrium, which is the main subject of this
chapter, the object is at rest and so has no linear or angular speed (that is, vCM � 0
and � � 0).

(a) Is it possible for a situation to exist in which Equation 12.1 is satisfied while Equation
12.2 is not? (b) Can Equation 12.2 be satisfied while Equation 12.1 is not?

The two vector expressions given by Equations 12.1 and 12.2 are equivalent, in
general, to six scalar equations: three from the first condition for equilibrium, and
three from the second (corresponding to x, y, and z components). Hence, in a
complex system involving several forces acting in various directions, you could be
faced with solving a set of equations with many unknowns. Here, we restrict our
discussion to situations in which all the forces lie in the xy plane. (Forces whose
vector representations are in the same plane are said to be coplanar.) With this re-
striction, we must deal with only three scalar equations. Two of these come from
balancing the forces in the x and y directions. The third comes from the torque
equation—namely, that the net torque about any point in the xy plane must be
zero. Hence, the two conditions of equilibrium provide the equations

(12.3)

where the axis of the torque equation is arbitrary, as we now show.

�Fx � 0  �Fy � 0  ��z � 0

Quick Quiz 12.1

�� � 0

�F � 0

2Fd � I�
�� �

Conditions for equilibrium

F2

F1

O

Figure 12.2 The forces F1 and
F2 are not equivalent because they
do not produce the same torque
about some axis, even though they
are equal in magnitude and oppo-
site in direction.

F
d

d

CM

– F

Figure 12.3 Two forces of equal
magnitude form a couple if their
lines of action are different parallel
lines. In this case, the object rotates
clockwise. The net torque about
any axis is 2Fd.
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Regardless of the number of forces that are acting, if an object is in transla-
tional equilibrium and if the net torque is zero about one axis, then the net torque
must also be zero about any other axis. The point can be inside or outside the
boundaries of the object. Consider an object being acted on by several forces such
that the resultant force Figure 12.4 describes this
situation (for clarity, only four forces are shown). The point of application of F1
relative to O is specified by the position vector r1 . Similarly, the points of applica-
tion of F2 , F3 , . . . are specified by r2 , r3 , . . . (not shown). The net torque
about an axis through O is

Now consider another arbitrary point O� having a position vector r� relative to
O. The point of application of F1 relative to O� is identified by the vector r1 � r�.
Likewise, the point of application of F2 relative to O� is r2 � r�, and so forth.
Therefore, the torque about an axis through O� is

Because the net force is assumed to be zero (given that the object is in transla-
tional equilibrium), the last term vanishes, and we see that the torque about O� is
equal to the torque about O. Hence, if an object is in translational equilibrium
and the net torque is zero about one point, then the net torque must be zero
about any other point.

MORE ON THE CENTER OF GRAVITY
We have seen that the point at which a force is applied can be critical in determin-
ing how an object responds to that force. For example, two equal-magnitude but
oppositely directed forces result in equilibrium if they are applied at the same
point on an object. However, if the point of application of one of the forces is
moved, so that the two forces no longer act along the same line of action, then a
force couple results and the object undergoes an angular acceleration. (This is the
situation shown in Figure 12.3.) 

Whenever we deal with a rigid object, one of the forces we must consider is
the force of gravity acting on it, and we must know the point of application of this
force. As we learned in Section 9.6, on every object is a special point called its cen-
ter of gravity. All the various gravitational forces acting on all the various mass ele-
ments of the object are equivalent to a single gravitational force acting through
this point. Thus, to compute the torque due to the gravitational force on an object
of mass M, we need only consider the force Mg acting at the center of gravity of
the object.

How do we find this special point? As we mentioned in Section 9.6, if 
we assume that g is uniform over the object, then the center of gravity of 
the object coincides with its center of mass. To see that this is so, consider an
object of arbitrary shape lying in the xy plane, as illustrated in Figure 12.5. 
Suppose the object is divided into a large number of particles of masses 
m 1 , m 2 , m 3 , . . . having coordinates (x1 , y1), (x 2 , y 2), (x 3 , y 3), . . . . In

12.2

 � r1 � F1 � r2 � F2 � r3 � F3 � 			 �r� � (F1 � F2 � F3 � 			)

��O � � (r1 � r�) � F1 � (r2 � r�) � F2 � (r3 � r�) � F3 � 			 

��O � r1 � F1 � r2 � F2 � r3 � F3 � 			

�F � F1 � F2 � F3 � 			 � 0.

F2

F1

F3 F4

r 1
r 1 – r ′

r ′
O

O ′

Figure 12.4 Construction show-
ing that if the net torque is zero
about origin O, it is also zero about
any other origin, such as O�.

x1,y1

y

x 2,y 2

x 3,y 3

m1
m2

m 3

CM

O
x

×

Figure 12.5 An object can be di-
vided into many small particles
each having a specific mass and
specific coordinates. These parti-
cles can be used to locate the cen-
ter of mass.
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Equation 9.28 we defined the x coordinate of the center of mass of such an ob-
ject to be

We use a similar equation to define the y coordinate of the center of mass, replac-
ing each x with its y counterpart.

Let us now examine the situation from another point of view by consider-
ing the force of gravity exerted on each particle, as shown in Figure 12.6. 
Each particle contributes a torque about the origin equal in magnitude to the
particle’s weight mg multiplied by its moment arm. For example, the torque due
to the force m1g1 is m1g 1x1 , where g 1 is the magnitude of the gravitational field
at the position of the particle of mass m1. We wish to locate the center of gravity,
the point at which application of the single gravitational force Mg (where M �
m1 � m2 � m3 � . . . is the total mass of the object) has the same effect on rota-
tion as does the combined effect of all the individual gravitational forces mi g i .
Equating the torque resulting from Mg acting at the center of gravity to the
sum of the torques acting on the individual particles gives

This expression accounts for the fact that the gravitational field strength g can in
general vary over the object. If we assume uniform g over the object (as is usually
the case), then the g terms cancel and we obtain

(12.4)

Comparing this result with Equation 9.28, we see that the center of gravity is lo-
cated at the center of mass as long as the object is in a uniform gravita-
tional field.

In several examples presented in the next section, we are concerned with ho-
mogeneous, symmetric objects. The center of gravity for any such object coincides
with its geometric center.

EXAMPLES OF RIGID OBJECTS
IN STATIC EQUILIBRIUM

The photograph of the one-bottle wine holder on the first page of this chapter
shows one example of a balanced mechanical system that seems to defy gravity. For
the system (wine holder plus bottle) to be in equilibrium, the net external force
must be zero (see Eq. 12.1) and the net external torque must be zero (see Eq.
12.2). The second condition can be satisfied only when the center of gravity of the
system is directly over the support point.

In working static equilibrium problems, it is important to recognize all the ex-
ternal forces acting on the object. Failure to do so results in an incorrect analysis.
When analyzing an object in equilibrium under the action of several external
forces, use the following procedure.

12.3

xCG �
m1x1 � m2x2 � m3x3 � 			

m1 � m2 � m3 � 			

(m1g1 � m2g2 � m3g3 � 			)xCG � m1g1x1 � m2g2x2 � m3g3x3 � 			

xCM �
m1x1 � m 2x 2 � m 3x 3 � 			

m1 � m 2 � m 3 � 			
�

�
i
mix i

�
i
mi

m3g

m2g
x1,y1

y

x 2,y 2

x 3,y 3

m1g

CG

O
x

×

Fg = Mg

Figure 12.6 The center of gravity
of an object is located at the center
of mass if g is constant over the
object.

A large balanced rock at the Gar-
den of the Gods in Colorado
Springs, Colorado—an example of
stable equilibrium. 
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The first and second conditions for equilibrium give a set of linear equations con-
taining several unknowns, and these equations can be solved simultaneously.

Problem-Solving Hints
Objects in Static Equilibrium

• Draw a simple, neat diagram of the system.
• Isolate the object being analyzed. Draw a free-body diagram and then show

and label all external forces acting on the object, indicating where those
forces are applied. Do not include forces exerted by the object on its sur-
roundings. (For systems that contain more than one object, draw a separate
free-body diagram for each one.) Try to guess the correct direction for each
force. If the direction you select leads to a negative force, do not be
alarmed; this merely means that the direction of the force is the opposite of
what you guessed.

• Establish a convenient coordinate system for the object and find the compo-
nents of the forces along the two axes. Then apply the first condition for
equilibrium. Remember to keep track of the signs of all force components.

• Choose a convenient axis for calculating the net torque on the object. Re-
member that the choice of origin for the torque equation is arbitrary; there-
fore, choose an origin that simplifies your calculation as much as possible.
Note that a force that acts along a line passing through the point chosen as
the origin gives zero contribution to the torque and thus can be ignored.

The SeesawEXAMPLE 12.1
(b) Determine where the child should sit to balance the

system.

Solution To find this position, we must invoke the second
condition for equilibrium. Taking an axis perpendicular to
the page through the center of gravity of the board as the
axis for our torque equation (this means that the torques

A uniform 40.0-N board supports a father and daughter
weighing 800 N and 350 N, respectively, as shown in Figure
12.7. If the support (called the fulcrum) is under the center of
gravity of the board and if the father is 1.00 m from the cen-
ter, (a) determine the magnitude of the upward force n ex-
erted on the board by the support.

Solution First note that, in addition to n, the external
forces acting on the board are the downward forces exerted
by each person and the force of gravity acting on the board.
We know that the board’s center of gravity is at its geometric
center because we were told the board is uniform. Because
the system is in static equilibrium, the upward force n must
balance all the downward forces. From we have,
once we define upward as the positive y direction,

(The equation also applies, but we do not need
to consider it because no forces act horizontally on the
board.)

�Fx � 0

1 190 Nn �

n � 800 N � 350 N � 40.0 N � 0

�Fy � 0,

1.00 m

n

x

350 N

40.0 N
800 N

Figure 12.7 A balanced system.
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In Example 12.1, if the fulcrum did not lie under the board’s center of gravity, what other
information would you need to solve the problem?

Quick Quiz 12.2

A Weighted HandEXAMPLE 12.2
Solution We simplify the situation by modeling the fore-
arm as a bar as shown in Figure 12.8b, where F is the upward
force exerted by the biceps and R is the downward force ex-
erted by the upper arm at the joint. From the first condition
for equilibrium, we have, with upward as the positive y direc-
tion,

(1)

From the second condition for equilibrium, we know that
the sum of the torques about any point must be zero. With
the joint O as the axis, we have

This value for F can be substituted into Equation (1) to
give R � 533 N. As this example shows, the forces at joints
and in muscles can be extremely large.

Exercise In reality, the biceps makes an angle of 15.0° with
the vertical; thus, F has both a vertical and a horizontal com-
ponent. Find the magnitude of F and the components of R
when you include this fact in your analysis.

Answer F � 604 N, Rx � 156 N, R y � 533 N.

583 N  F �

F(3.00 cm) � (50.0 N)(35.0 cm) � 0 

 Fd � mg� � 0 

�Fy � F � R � 50.0 N � 0

A person holds a 50.0-N sphere in his hand. The forearm is
horizontal, as shown in Figure 12.8a. The biceps muscle is at-
tached 3.00 cm from the joint, and the sphere is 35.0 cm
from the joint. Find the upward force exerted by the biceps
on the forearm and the downward force exerted by the up-
per arm on the forearm and acting at the joint. Neglect the
weight of the forearm.

produced by n and the force of gravity acting on the board
about this axis are zero), we see from that

(c) Repeat part (b) for another axis.

Solution To illustrate that the choice of axis is arbitrary,
let us choose an axis perpendicular to the page and passing

2.29 mx �

(800 N)(1.00 m) � (350 N)x � 0

�� � 0
through the location of the father. Recall that the sign of the
torque associated with a force is positive if that force tends to
rotate the system counterclockwise, while the sign of the
torque is negative if the force tends to rotate the system
clockwise. In this case, yields

From part (a) we know that n � 1 190 N. Thus, we can solve 

for x to find This result is in agreement with 

the one we obtained in part (b).

x � 2.29 m.

n(1.00 m) � (40.0 N)(1.00 m) � (350 N)(1.00 m � x) � 0

�� � 0

�

mg

d

O

mg = 50.0 N
d = 3.00 cm
� = 35.0 cm

O

�

d

R

mg

F
Biceps

Figure 12.8 (a) The biceps muscle pulls upward with a force F
that is essentially at right angles to the forearm. (b) The mechanical
model for the system described in part (a).

Standing on a Horizontal BeamEXAMPLE 12.3
the horizontal (Fig. 12.9a). If a 600-N person stands 2.00 m
from the wall, find the tension in the cable, as well as the magni-
tude and direction of the force exerted by the wall on the beam.

A uniform horizontal beam with a length of 8.00 m and a
weight of 200 N is attached to a wall by a pin connection. Its far
end is supported by a cable that makes an angle of 53.0° with
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Solution First we must identify all the external forces
acting on the beam: They are the 200-N force of gravity, the
force T exerted by the cable, the force R exerted by the
wall at the pivot, and the 600-N force that the person exerts
on the beam. These forces are all indicated in the free-body
diagram for the beam shown in Figure 12.9b. When we con-
sider directions for forces, it sometimes is helpful if we
imagine what would happen if a force were suddenly re-
moved. For example, if the wall were to vanish suddenly,

the left end of the beam would probably move to the left as
it begins to fall. This tells us that the wall is not only hold-
ing the beam up but is also pressing outward against it.
Thus, we draw the vector R as shown in Figure 12.9b. If we
resolve T and R into horizontal and vertical components,
as shown in Figure 12.9c, and apply the first condition for
equilibrium, we obtain

(1)

(2)

where we have chosen rightward and upward as our positive
directions. Because R, T, and 
 are all unknown, we cannot
obtain a solution from these expressions alone. (The number
of simultaneous equations must equal the number of un-
knowns for us to be able to solve for the unknowns.)

Now let us invoke the condition for rotational equilib-
rium. A convenient axis to choose for our torque equation is
the one that passes through the pin connection. The feature
that makes this point so convenient is that the force R and
the horizontal component of T both have a moment arm of
zero; hence, these forces provide no torque about this point.
Recalling our counterclockwise-equals-positive convention for
the sign of the torque about an axis and noting that the mo-
ment arms of the 600-N, 200-N, and T sin 53.0° forces are
2.00 m, 4.00 m, and 8.00 m, respectively, we obtain

Thus, the torque equation with this axis gives us one of the
unknowns directly! We now substitute this value into Equa-
tions (1) and (2) and find that

We divide the second equation by the first and, recalling the
trigonometric identity sin 
/cos 
 � tan 
, we obtain

This positive value indicates that our estimate of the direction
of R was accurate. 

Finally,

If we had selected some other axis for the torque equa-
tion, the solution would have been the same. For example, if

580 NR �
188 N
cos 


�
188 N

cos 71.1�
�

71.1�   
 �

tan 
 �
550 N
188 N

� 2.93

R sin 
 � 550 N

R cos 
 � 188 N

313 N  T �

� (600 N)(2.00 m) � (200 N )(4.00 m) � 0
�� � (T sin 53.0�)(8.00 m)

� 600 N � 200 N � 0
�Fy � R sin 
 � T sin 53.0�

�Fx � R cos 
 � T cos 53.0� � 0 

200 N

600 N

53.0°

8.00 m

(a)

(b)

TR

53.0°

200 N

600 N

4.00 m

2.00 m

R cos θ

R sin θ

T cos 53.0°

T sin 53.0°

θ

θ

θ

Figure 12.9 (a) A uniform beam supported by a cable. (b) The
free-body diagram for the beam. (c) The free-body diagram for the
beam showing the components of R and T.
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Moment Arm
Force Relative to Torque About
Component O (m) O (N	m)

T sin 53.0° 8.00 (8.00)T sin 53.0°
T cos 53.0° 0 0
200 N 4.00 � (4.00)(200)
600 N 2.00 � (2.00)(600)
R sin 
 0 0
R cos 
 0 0

The Leaning LadderEXAMPLE 12.4
for equilibrium to the ladder, we have

From the second equation we see that n � mg � 50 N. Fur-
thermore, when the ladder is on the verge of slipping, the
force of friction must be a maximum, which is given by

(Recall Eq. 5.8: fs � 
sn.)
Thus, at this angle, P � 20 N.

To find 
min , we must use the second condition for equi-
librium. When we take the torques about an axis through the
origin O at the bottom of the ladder, we have

Because P � 20 N when the ladder is about to slip, and be-
cause mg � 50 N, this expression gives

An alternative approach is to consider the intersection O�
of the lines of action of forces mg and P. Because the torque
about any origin must be zero, the torque about O� must be
zero. This requires that the line of action of R (the resultant
of n and f ) pass through O�. In other words, because the lad-
der is stationary, the three forces acting on it must all pass
through some common point. (We say that such forces are
concurrent.) With this condition, you could then obtain the
angle � that R makes with the horizontal (where � is greater
than 
). Because this approach depends on the length of the
ladder, you would have to know the value of � to obtain a
value for 
min .

Exercise For the angles labeled in Figure 12.10, show that
tan � � 2 tan 
.

51�  
min �

tan 
min �
mg
2P

�
50 N
40 N

� 1.25

��O � P  � sin 
 � mg 
�

2
 cos 
 � 0

fs,max � 
sn � 0.40(50 N) � 20 N.

�Fy � n � mg � 0

�Fx � f � P � 0 

A uniform ladder of length � and weight mg � 50 N rests
against a smooth, vertical wall (Fig. 12.10a). If the coefficient
of static friction between the ladder and the ground is 
s �
0.40, find the minimum angle 
min at which the ladder does
not slip.

Solution The free-body diagram showing all the external
forces acting on the ladder is illustrated in Figure 12.10b.
The reaction force R exerted by the ground on the ladder is
the vector sum of a normal force n and the force of static fric-
tion fs . The reaction force P exerted by the wall on the lad-
der is horizontal because the wall is frictionless. Notice how
we have included only forces that act on the ladder. For ex-
ample, the forces exerted by the ladder on the ground and
on the wall are not part of the problem and thus do not ap-
pear in the free-body diagram. Applying the first condition

we had chosen an axis through the center of gravity of the
beam, the torque equation would involve both T and R. How-
ever, this equation, coupled with Equations (1) and (2),
could still be solved for the unknowns. Try it!

When many forces are involved in a problem of this na-
ture, it is convenient to set up a table. For instance, for the
example just given, we could construct the following table.
Setting the sum of the terms in the last column equal to zero
represents the condition of rotational equilibrium.

(a)

θ

�

(b)

θ
φ

mgO f

n R

P

O ′

Figure 12.10 (a) A uniform ladder at rest, leaning against a
smooth wall. The ground is rough. (b) The free-body diagram for
the ladder. Note that the forces R, mg, and P pass through a com-
mon point O�.
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Negotiating a CurbEXAMPLE 12.5
(a) Estimate the magnitude of the force F a person must ap-
ply to a wheelchair’s main wheel to roll up over a sidewalk
curb (Fig. 12.11a). This main wheel, which is the one that
comes in contact with the curb, has a radius r, and the height
of the curb is h.

Solution Normally, the person’s hands supply the re-
quired force to a slightly smaller wheel that is concentric with
the main wheel. We assume that the radius of the smaller
wheel is the same as the radius of the main wheel, and so we
can use r for our radius. Let us estimate a combined weight
of mg � 1 400 N for the person and the wheelchair and
choose a wheel radius of r � 30 cm, as shown in Figure
12.11b. We also pick a curb height of h � 10 cm. We assume
that the wheelchair and occupant are symmetric, and that
each wheel supports a weight of 700 N. We then proceed to
analyze only one of the wheels.

When the wheel is just about to be raised from the street,
the reaction force exerted by the ground on the wheel at
point Q goes to zero. Hence, at this time only three forces act
on the wheel, as shown in Figure 12.11c. However, the force
R, which is the force exerted on the wheel by the curb, acts at
point P, and so if we choose to have our axis of rotation pass
through point P, we do not need to include R in our torque
equation. From the triangle OPQ shown in Figure 12.11b, we
see that the moment arm d of the gravitational force mg act-
ing on the wheel relative to point P is

The moment arm of F relative to point P is 2r � h. There-
fore, the net torque acting on the wheel about point P is

(Notice that we have kept only one digit as significant.) This
result indicates that the force that must be applied to each
wheel is substantial. You may want to estimate the force re-
quired to roll a wheelchair up a typical sidewalk accessibility
ramp for comparison.

(b) Determine the magnitude and direction of R.

Solution We use the first condition for equilibrium to de-
termine the direction:

Dividing the second equation by the first gives

; 70�  
 �tan 
 �
mg
F

�
700 N
300 N

�Fy � R sin 
 � mg � 0

�Fx � F � R cos 
 � 0  

300 N  F �
(700 N)!2(0.3 m)(0.1 m) � (0.1 m)2

2(0.3 m) � 0.1 m
�

  F �
mg !2rh � h2

2r � h
      

mg !2rh � h2 � F(2r � h) � 0     

    mgd � F(2r � h) � 0    

d � !r 2 � (r � h)2
 � !2rh � h2

(d)

R

F

θ

mg

(a)

(c)

F

O
2r – h

P

C

θ

R

mg

F

r – h

d

r
P

Q

h

(b)

O

R

Figure 12.11 (a) A wheelchair and person of total weight mg being
raised over a curb by a force F. (b) Details of the wheel and curb. 
(c) The free-body diagram for the wheel when it is just about to be
raised. Three forces act on the wheel at this instant: F, which is exerted
by the hand; R, which is exerted by the curb; and the gravitational
force mg. (d) The vector sum of the three external forces acting on the
wheel is zero.
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Analysis of a TrussAPPLICATION

Next, we calculate the torque about A, noting that the overall
length of the bridge structure is L � 50 m:

Although we could repeat the torque calculation for the right
end (point E), it should be clear from symmetry arguments
that nA � 3 600 N.

Now let us balance the vertical forces acting on the pin at
point A. If we assume that strut AB is in compression, then
the force FAB that the strut exerts on the pin at point A has a
negative y component. (If the strut is actually in tension, our
calculations will result in a negative value for the magnitude
of the force, still of the correct size):

The positive result shows that our assumption of compression
was correct.

We can now find the forces acting in the strut between A
and C by considering the horizontal forces acting on the pin
at point A. Because point A is not accelerating, we can safely
assume that FAC must point toward the right (Fig. 12.12b);
this indicates that the bar between points A and C is under
tension:

Now let us consider the vertical forces acting on the pin at
point C. We shall assume that strut BC is in tension. (Imagine
the subsequent motion of the pin at point C if strut BC were
to break suddenly.) On the basis of symmetry, we assert that

and that 

Finally, we balance the horizontal forces on B, assuming that
strut BD is in compression:

Thus, the top bar in a bridge of this design must be very
strong.

FBD � 12 000 N

(7 200 N)cos 30� � (7 200 N)cos 30� � FBD � 0
�Fx � FAB cos 30� � FBC cos 30� � FBD � 0

  FBC � 7 200 N  
�Fy � 2 FBC sin 30� � 7 200 N � 0

FAC � FEC :FBC � FDC

  FAC � (7 200 N)cos 30� � 6 200 N
�Fx � FAC � FAB cos 30� � 0  

  FAB � 7 200 N  
�Fy � nA � FAB sin 30� � 0

nE � Fg/2 � 3 600 N  
�� � LnE � (L/2)Fg � 0

nA � nE � 7 200 N  

  �Fy � nA � nE � Fg � 0Roofs, bridges, and other structures that must be both strong
and lightweight often are made of trusses similar to the one
shown in Figure 12.12a. Imagine that this truss structure repre-
sents part of a bridge. To approach this problem, we assume
that the structural components are connected by pin joints. We
also assume that the entire structure is free to slide horizon-
tally because it sits on “rockers” on each end, which allow it to
move back and forth as it undergoes thermal expansion and
contraction. Assuming the mass of the bridge structure is negli-
gible compared with the load, let us calculate the forces of ten-
sion or compression in all the structural components when it is
supporting a 7 200-N load at the center (see Problem 58).

The force notation that we use here is not of our usual for-
mat. Until now, we have used the notation FAB to mean “the
force exerted by A on B.” For this application, however, all
double-letter subscripts on F indicate only the body exerting
the force. The body on which a given force acts is not named
in the subscript. For example, in Figure 12.12, FAB is the force
exerted by strut AB on the pin at A.

First, we apply Newton’s second law to the truss as a whole
in the vertical direction. Internal forces do not enter into this
accounting. We balance the weight of the load with the nor-
mal forces exerted at the two ends by the supports on which
the bridge rests:

We can use the right triangle shown in Figure 12.11d to ob-
tain R :

800 NR � !(mg)2 � F2 � !(700 N)2 � (300 N)2 �

Exercise Solve this problem by noting that the three forces
acting on the wheel are concurrent (that is, that all three pass
through the point C). The three forces form the sides of the
triangle shown in Figure 12.11d.

50 m

30° 30° 30° 30°A E

B D

C

(a)

Load: 7 200 N

Figure 12.12 (a) Truss structure for a bridge. (b) The forces act-
ing on the pins at points A, C, and E. As an exercise, you should dia-
gram the forces acting on the pin at point B.

A E

B D

C30°
FACFAB

nA

FCA FCE

Fg

FBC FDC

FEC

nE

FED

30° 30°

(b)

30°
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ELASTIC PROPERTIES OF SOLIDS
In our study of mechanics thus far, we have assumed that objects remain unde-
formed when external forces act on them. In reality, all objects are deformable.
That is, it is possible to change the shape or the size of an object (or both) by ap-
plying external forces. As these changes take place, however, internal forces in the
object resist the deformation.

We shall discuss the deformation of solids in terms of the concepts of stress
and strain. Stress is a quantity that is proportional to the force causing a deforma-
tion; more specifically, stress is the external force acting on an object per unit
cross-sectional area. Strain is a measure of the degree of deformation. It is found
that, for sufficiently small stresses, strain is proportional to stress; the constant
of proportionality depends on the material being deformed and on the nature of
the deformation. We call this proportionality constant the elastic modulus. The
elastic modulus is therefore the ratio of the stress to the resulting strain:

(12.5)

In a very real sense it is a comparison of what is done to a solid object (a force is
applied) and how that object responds (it deforms to some extent).

Elastic modulus �
stress
strain

12.4

A plastic model of an arch structure under load conditions. The wavy lines indicate regions
where the stresses are greatest. Such models are useful in designing architectural components.
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Young’s Modulus: Elasticity in Length

Consider a long bar of cross-sectional area A and initial length Li that is clamped
at one end, as in Figure 12.13. When an external force is applied perpendicular to
the cross section, internal forces in the bar resist distortion (“stretching”), but the
bar attains an equilibrium in which its length Lf is greater than Li and in which
the external force is exactly balanced by internal forces. In such a situation, the
bar is said to be stressed. We define the tensile stress as the ratio of the magni-
tude of the external force F to the cross-sectional area A. The tensile strain in this
case is defined as the ratio of the change in length �L to the original length Li .
We define Young’s modulus by a combination of these two ratios:

(12.6)

Young’s modulus is typically used to characterize a rod or wire stressed under ei-
ther tension or compression. Note that because strain is a dimensionless quantity,
Y has units of force per unit area. Typical values are given in Table 12.1. Experi-
ments show (a) that for a fixed applied force, the change in length is proportional
to the original length and (b) that the force necessary to produce a given strain is
proportional to the cross-sectional area. Both of these observations are in accord
with Equation 12.6.

The elastic limit of a substance is defined as the maximum stress that can be
applied to the substance before it becomes permanently deformed. It is possible to
exceed the elastic limit of a substance by applying a sufficiently large stress, as seen
in Figure 12.14. Initially, a stress– strain curve is a straight line. As the stress in-
creases, however, the curve is no longer straight. When the stress exceeds the elas-

Y �
tensile stress
tensile strain

�
F/A

�L/Li

We consider three types of deformation and define an elastic modulus for each:

1. Young’s modulus, which measures the resistance of a solid to a change in its
length

2. Shear modulus, which measures the resistance to motion of the planes of a
solid sliding past each other

3. Bulk modulus, which measures the resistance of solids or liquids to changes
in their volume

TABLE 12.1 Typical Values for Elastic Modulus

Young’s Modulus Shear Modulus Bulk Modulus
Substance (N/m2) (N/m2) (N/m2)

Tungsten 35 � 1010 14 � 1010 20 � 1010

Steel 20 � 1010 8.4 � 1010 6 � 1010

Copper 11 � 1010 4.2 � 1010 14 � 1010

Brass 9.1 � 1010 3.5 � 1010 6.1 � 1010

Aluminum 7.0 � 1010 2.5 � 1010 7.0 � 1010

Glass 6.5–7.8 � 1010 2.6–3.2 � 1010 5.0–5.5 � 1010

Quartz 5.6 � 1010 2.6 � 1010 2.7 � 1010

Water — — 0.21 � 1010

Mercury — — 2.8 � 1010

F
A

Li
∆L

Figure 12.13 A long bar
clamped at one end is stretched by
an amount �L under the action of
a force F.

Elastic
limit

Breaking
point

Elastic
behavior

0.002 0.004 0.006 0.008 0.010

100

200

300

400

Stress
(MN/m2)

Strain

Figure 12.14 Stress-versus-strain
curve for an elastic solid.

Young’s modulus
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tic limit, the object is permanently distorted and does not return to its original
shape after the stress is removed. Hence, the shape of the object is permanently
changed. As the stress is increased even further, the material ultimately breaks.

What is Young’s modulus for the elastic solid whose stress– strain curve is depicted in Figure
12.14?

A material is said to be ductile if it can be stressed well beyond its elastic limit without break-
ing. A brittle material is one that breaks soon after the elastic limit is reached. How would
you classify the material in Figure 12.14?

Shear Modulus: Elasticity of Shape

Another type of deformation occurs when an object is subjected to a force tangen-
tial to one of its faces while the opposite face is held fixed by another force (Fig.
12.15a). The stress in this case is called a shear stress. If the object is originally a
rectangular block, a shear stress results in a shape whose cross-section is a parallel-
ogram. A book pushed sideways, as shown in Figure 12.15b, is an example of an
object subjected to a shear stress. To a first approximation (for small distortions),
no change in volume occurs with this deformation.

We define the shear stress as F/A, the ratio of the tangential force to the area
A of the face being sheared. The shear strain is defined as the ratio �x/h, where
�x is the horizontal distance that the sheared face moves and h is the height of the
object. In terms of these quantities, the shear modulus is

(12.7)

Values of the shear modulus for some representative materials are given in
Table 12.1. The unit of shear modulus is force per unit area.

Bulk Modulus: Volume Elasticity

Bulk modulus characterizes the response of a substance to uniform squeezing or
to a reduction in pressure when the object is placed in a partial vacuum. Suppose
that the external forces acting on an object are at right angles to all its faces, as
shown in Figure 12.16, and that they are distributed uniformly over all the faces.
As we shall see in Chapter 15, such a uniform distribution of forces occurs when
an object is immersed in a fluid. An object subject to this type of deformation un-
dergoes a change in volume but no change in shape. The volume stress is de-
fined as the ratio of the magnitude of the normal force F to the area A. The quan-
tity P � F/A is called the pressure. If the pressure on an object changes by an
amount �P � �F/A, then the object will experience a volume change �V. The vol-
ume strain is equal to the change in volume �V divided by the initial volume Vi .
Thus, from Equation 12.5, we can characterize a volume (“bulk”) compression in
terms of the bulk modulus, which is defined as

(12.8)B �
volume stress
volume strain

� �
�F/A
�V/Vi

� �
�P

�V/Vi

S �
shear stress
shear strain

�
F/A
�x/h

Quick Quiz 12.4

Quick Quiz 12.3

Shear modulus

Bulk modulus

QuickLab
Estimate the shear modulus for the
pages of your textbook. Does the
thickness of the book have any effect
on the modulus value?

F

(b)

–F

∆x A
F

Fixed face

h

(a)

fs

Figure 12.15 (a) A shear defor-
mation in which a rectangular
block is distorted by two forces of
equal magnitude but opposite di-
rections applied to two parallel
faces. (b) A book under shear
stress.
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A negative sign is inserted in this defining equation so that B is a positive number.
This maneuver is necessary because an increase in pressure (positive �P) causes a
decrease in volume (negative �V ) and vice versa.

Table 12.1 lists bulk moduli for some materials. If you look up such values in a
different source, you often find that the reciprocal of the bulk modulus is listed.
The reciprocal of the bulk modulus is called the compressibility of the material.

Note from Table 12.1 that both solids and liquids have a bulk modulus. How-
ever, no shear modulus and no Young’s modulus are given for liquids because a
liquid does not sustain a shearing stress or a tensile stress (it flows instead).

Prestressed Concrete

If the stress on a solid object exceeds a certain value, the object fractures. The
maximum stress that can be applied before fracture occurs depends on the nature
of the material and on the type of applied stress. For example, concrete has a ten-
sile strength of about 2 � 106 N/m2, a compressive strength of 20 � 106 N/m2,
and a shear strength of 2 � 106 N/m2. If the applied stress exceeds these values,
the concrete fractures. It is common practice to use large safety factors to prevent
failure in concrete structures.

Concrete is normally very brittle when it is cast in thin sections. Thus, concrete
slabs tend to sag and crack at unsupported areas, as shown in Figure 12.17a. The
slab can be strengthened by the use of steel rods to reinforce the concrete, as illus-
trated in Figure 12.17b. Because concrete is much stronger under compression
(squeezing) than under tension (stretching) or shear, vertical columns of concrete
can support very heavy loads, whereas horizontal beams of concrete tend to sag
and crack. However, a significant increase in shear strength is achieved if the rein-
forced concrete is prestressed, as shown in Figure 12.17c. As the concrete is being
poured, the steel rods are held under tension by external forces. The external

Figure 12.16 When a solid is under uniform pressure, it
undergoes a change in volume but no change in shape.
This cube is compressed on all sides by forces normal to its
six faces.

Vi

F

Vi – ∆V

Load force

Concrete
Cracks

(a)

Steel
reinforcing

rod

(b) (c)

Steel
rod

under
tension

Figure 12.17 (a) A concrete slab with no reinforcement tends to crack under a heavy load.
(b) The strength of the concrete is increased by using steel reinforcement rods. (c) The concrete
is further strengthened by prestressing it with steel rods under tension.

QuickLab
Support a new flat eraser (art gum or
Pink Pearl will do) on two parallel
pencils at least 3 cm apart. Press
down on the middle of the top sur-
face just enough to make the top face
of the eraser curve a bit. Is the top
face under tension or compression?
How about the bottom? Why does a
flat slab of concrete supported at the
ends tend to crack on the bottom
face and not the top?
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forces are released after the concrete cures; this results in a permanent tension in
the steel and hence a compressive stress on the concrete. This enables the con-
crete slab to support a much heavier load.

Squeezing a Brass SphereEXAMPLE 12.7

Because the final pressure is so much greater than the initial
pressure, we can neglect the initial pressure and state that

Therefore,

The negative sign indicates a decrease in volume.

�1.6 � 10�4 m3�V � �
(0.50 m3)(2.0 � 107 N/m2)

6.1 � 1010 N/m2 �

�P � Pf � Pi  � Pf � 2.0 � 107
 N/m2.

�V � �
V i �P

B
A solid brass sphere is initially surrounded by air, and the air
pressure exerted on it is 1.0 � 105 N/m2 (normal atmos-
pheric pressure). The sphere is lowered into the ocean to a
depth at which the pressure is 2.0 � 107 N/m2. The volume
of the sphere in air is 0.50 m3. By how much does this volume
change once the sphere is submerged?

Solution From the definition of bulk modulus, we have

 B � �
�P

�V/Vi

Stage DesignEXAMPLE 12.6
The radius of the wire can be found from 

To provide a large margin of safety, we would probably use a
flexible cable made up of many smaller wires having a total
cross-sectional area substantially greater than our calculated
value.

3.4 mmd � 2r � 2(1.7 mm) �

r �! A

�
�! 9.4 � 10�6 m2

�
� 1.7 � 10�3 m � 1.7 mm

A � �r 2:Recall Example 8.10, in which we analyzed a cable used to
support an actor as he swung onto the stage. The tension in
the cable was 940 N. What diameter should a 10-m-long steel
wire have if we do not want it to stretch more than 0.5 cm un-
der these conditions?

Solution From the definition of Young’s modulus, we can
solve for the required cross-sectional area. Assuming that the
cross section is circular, we can determine the diameter of the
wire. From Equation 12.6, we have

A �
FLi

Y �L
�

(940 N)(10 m)
(20 � 1010 N/m2)(0.005 m)

� 9.4 � 10�6 m2

Y �
F/A

�L/Li
  

SUMMARY

A rigid object is in equilibrium if and only if the resultant external force acting
on it is zero and the resultant external torque on it is zero about any axis:

(12.1)

(12.2)

The first condition is the condition for translational equilibrium, and the second
is the condition for rotational equilibrium. These two equations allow you to ana-
lyze a great variety of problems. Make sure you can identify forces unambiguously,
create a free-body diagram, and then apply Equations 12.1 and 12.2 and solve for
the unknowns.

�� � 0

�F � 0
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The force of gravity exerted on an object can be considered as acting at a sin-
gle point called the center of gravity. The center of gravity of an object coincides
with its center of mass if the object is in a uniform gravitational field.

We can describe the elastic properties of a substance using the concepts of
stress and strain. Stress is a quantity proportional to the force producing a defor-
mation; strain is a measure of the degree of deformation. Strain is proportional to
stress, and the constant of proportionality is the elastic modulus:

(12.5)

Three common types of deformation are (1) the resistance of a solid to elon-
gation under a load, characterized by Young’s modulus Y ; (2) the resistance of a
solid to the motion of internal planes sliding past each other, characterized by the
shear modulus S ; and (3) the resistance of a solid or fluid to a volume change,
characterized by the bulk modulus B.

Elastic modulus �
stress
strain

QUESTIONS

keep the back as vertical as possible, lifting from the
knees, rather than bending over and lifting from the
waist?

10. Give a few examples in which several forces are acting on
a system in such a way that their sum is zero but the sys-
tem is not in equilibrium.

11. If you measure the net torque and the net force on a sys-
tem to be zero, (a) could the system still be rotating with
respect to you? (b) Could it be translating with respect to
you?

12. A ladder is resting inclined against a wall. Would you feel
safer climbing up the ladder if you were told that the
ground is frictionless but the wall is rough or that the wall
is frictionless but the ground is rough? Justify your an-
swer.

13. What kind of deformation does a cube of Jell-O exhibit
when it “jiggles”?

14. Ruins of ancient Greek temples often have intact vertical
columns, but few horizontal slabs of stone are still in
place. Can you think of a reason why this is so?

1. Can a body be in equilibrium if only one external force
acts on it? Explain.

2. Can a body be in equilibrium if it is in motion? Explain.
3. Locate the center of gravity for the following uniform ob-

jects: (a) sphere, (b) cube, (c) right circular cylinder.
4. The center of gravity of an object may be located outside

the object. Give a few examples for which this is the case.
5. You are given an arbitrarily shaped piece of plywood, to-

gether with a hammer, nail, and plumb bob. How could
you use these items to locate the center of gravity of the
plywood? (Hint: Use the nail to suspend the plywood.)

6. For a chair to be balanced on one leg, where must the
center of gravity of the chair be located?

7. Can an object be in equilibrium if the only torques acting
on it produce clockwise rotation?

8. A tall crate and a short crate of equal mass are placed side
by side on an incline (without touching each other). As
the incline angle is increased, which crate will topple
first? Explain.

9. When lifting a heavy object, why is it recommended to

PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

Section 12.1 The Conditions for Equilibrium
1. A baseball player holds a 36-oz bat (weight � 10.0 N)

with one hand at the point O (Fig. P12.1). The bat is in
equilibrium. The weight of the bat acts along a line 
60.0 cm to the right of O. Determine the force and the
torque exerted on the bat by the player.

60.0 cm

O

mg

Figure P12.1
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2. Write the necessary conditions of equilibrium for the
body shown in Figure P12.2. Take the origin of the
torque equation at the point O.

Section 12.2 More on the Center of Gravity
5. A 3.00-kg particle is located on the x axis at x �

� 5.00 m, and a 4.00-kg particle is located on the x axis
at x � 3.00 m. Find the center of gravity of this two-
particle system.

6. A circular pizza of radius R has a circular piece of radius
R/2 removed from one side, as shown in Figure P12.6.
Clearly, the center of gravity has moved from C to C �
along the x axis. Show that the distance from C to C� is
R/6. (Assume that the thickness and density of the
pizza are uniform throughout.)

Fg

Fx

Fy

Rx O

θ

Ry

�

12.0 cm

18.0 cm

4.0 cm

4.0 cm

C ′
C

12 m
Tree

0.50 m

F

d

P

x

O

�
2

�

m2m1

CG

8. Pat builds a track for his model car out of wood, as illus-
trated in Figure P12.8. The track is 5.00 cm wide, 
1.00 m high, and 3.00 m long, and it is solid. The run-
way is cut so that it forms a parabola described by the
equation y � (x � 3)2/9. Locate the horizontal position
of the center of gravity of this track.

9. Consider the following mass distribution: 5.00 kg at 
(0, 0) m, 3.00 kg at (0, 4.00) m, and 4.00 kg at 
(3.00, 0) m. Where should a fourth mass of 8.00 kg be
placed so that the center of gravity of the four-mass
arrangement will be at (0, 0)?

7. A carpenter’s square has the shape of an L, as shown in
Figure P12.7. Locate its center of gravity.

4. A student gets his car stuck in a snow drift. Not at a loss,
having studied physics, he attaches one end of a stout
rope to the vehicle and the other end to the trunk of a
nearby tree, allowing for a very small amount of slack.
The student then exerts a force F on the center of the
rope in the direction perpendicular to the car–tree line,
as shown in Figure P12.4. If the rope is inextensible and
if the magnitude of the applied force is 500 N, what is
the force on the car? (Assume equilibrium conditions.)

3. A uniform beam of mass mb and length � supports
blocks of masses m1 and m2 at two positions, as shown in
Figure P12.3. The beam rests on two points. For what
value of x will the beam be balanced at P such that the
normal force at O is zero?

Figure P12.2

Figure P12.3

Figure P12.4

Figure P12.6

Figure P12.7
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10. Figure P12.10 shows three uniform objects: a rod, a
right triangle, and a square. Their masses in kilograms
and their coordinates in meters are given. Determine
the center of gravity for the three-object system.

13. A 15.0-m uniform ladder weighing 500 N rests against a
frictionless wall. The ladder makes a 60.0° angle with
the horizontal. (a) Find the horizontal and vertical
forces that the ground exerts on the base of the ladder
when an 800-N firefighter is 4.00 m from the bottom.
(b) If the ladder is just on the verge of slipping when
the firefighter is 9.00 m up, what is the coefficient of
static friction between the ladder and the ground?

14. A uniform ladder of length L and mass m1 rests against a
frictionless wall. The ladder makes an angle 
 with the
horizontal. (a) Find the horizontal and vertical forces that
the ground exerts on the base of the ladder when a fire-
fighter of mass m2 is a distance x from the bottom. (b) If
the ladder is just on the verge of slipping when the fire-
fighter is a distance d from the bottom, what is the coeffi-
cient of static friction between the ladder and the ground?

15. Figure P12.15 shows a claw hammer as it is being used
to pull a nail out of a horizontal surface. If a force of
magnitude 150 N is exerted horizontally as shown, find

y

1.00 m

3.00 m

5.00 cm x

y = (x – 3)2/9

Single point
of contact

5.00 cm

30.0°

30.0 cm

F

15.0°

(4,1)

(2,7)
(8,5)

(9,7)
6.00 kg

5.00 kg
3.00 kg

(–2,2)

(–5,5)

y(m)

x(m)

Section 12.3 Examples of Rigid Objects 
in Static Equilibrium

11. Stephen is pushing his sister Joyce in a wheelbarrow
when it is stopped by a brick 8.00 cm high (Fig.
P12.11). The handles make an angle of 15.0° from the
horizontal. A downward force of 400 N is exerted on
the wheel, which has a radius of 20.0 cm. (a) What force
must Stephen apply along the handles to just start the
wheel over the brick? (b) What is the force (magnitude
and direction) that the brick exerts on the wheel just as
the wheel begins to lift over the brick? Assume in both
parts (a) and (b) that the brick remains fixed and does
not slide along the ground.

12. Two pans of a balance are 50.0 cm apart. The fulcrum of
the balance has been shifted 1.00 cm away from the cen-
ter by a dishonest shopkeeper. By what percentage is the
true weight of the goods being marked up by the shop-
keeper? (Assume that the balance has negligible mass.)

Figure P12.8

Figure P12.10

Figure P12.11

Figure P12.15
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(a) the force exerted by the hammer claws on the nail
and (b) the force exerted by the surface on the point of
contact with the hammer head. Assume that the force
the hammer exerts on the nail is parallel to the nail.

16. A uniform plank with a length of 6.00 m and a mass of
30.0 kg rests horizontally across two horizontal bars of a
scaffold. The bars are 4.50 m apart, and 1.50 m of the
plank hangs over one side of the scaffold. Draw a free-
body diagram for the plank. How far can a painter with
a mass of 70.0 kg walk on the overhanging part of the
plank before it tips?

17. A 1 500-kg automobile has a wheel base (the distance
between the axles) of 3.00 m. The center of mass of the
automobile is on the center line at a point 1.20 m be-
hind the front axle. Find the force exerted by the
ground on each wheel.

18. A vertical post with a square cross section is 10.0 m tall.
Its bottom end is encased in a base 1.50 m tall that is
precisely square but slightly loose. A force of 5.50 N 
to the right acts on the top of the post. The base main-
tains the post in equilibrium. Find the force that the top
of the right sidewall of the base exerts on the post. Find
the force that the bottom of the left sidewall of the base
exerts on the post.

19. A flexible chain weighing 40.0 N hangs between two
hooks located at the same height (Fig. P12.19). At each
hook, the tangent to the chain makes an angle 
 �
42.0° with the horizontal. Find (a) the magnitude of the
force each hook exerts on the chain and (b) the ten-
sion in the chain at its midpoint. (Hint: For part (b),
make a free-body diagram for half the chain.)

combined with that of his armor and steed is 1 000 kg.
Determine (a) the tension in the cable, as well as 
(b) the horizontal and (c) the vertical force compo-
nents acting on the bridge at the hinge.

22. Two identical, uniform bricks of length L are placed in
a stack over the edge of a horizontal surface such that
the maximum possible overhang without falling is
achieved, as shown in Figure P12.22. Find the dis-
tance x.

x

L

0.75 m
0.25 m

LuLu’s

Boutique

θ

20. A hemispherical sign 1.00 m in diameter and of uni-
form mass density is supported by two strings, as shown
in Figure P12.20. What fraction of the sign’s weight is
supported by each string?

21. Sir Lost-a-Lot dons his armor and sets out from the cas-
tle on his trusty steed in his quest to improve communi-
cation between damsels and dragons (Fig. P12.21). Un-
fortunately, his squire lowered the draw bridge too far
and finally stopped lowering it when it was 20.0° below
the horizontal. Lost-a-Lot and his horse stop when their
combined center of mass is 1.00 m from the end of the
bridge. The bridge is 8.00 m long and has a mass of 
2 000 kg. The lift cable is attached to the bridge 5.00 m
from the hinge at the castle end and to a point on the
castle wall 12.0 m above the bridge. Lost-a-Lot’s mass

Figure P12.19

Figure P12.20

Figure P12.21

Figure P12.22
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23. A vaulter holds a 29.4-N pole in equilibrium by exerting
an upward force U with her leading hand and a down-
ward force D with her trailing hand, as shown in Figure
P12.23. Point C is the center of gravity of the pole.
What are the magnitudes of U and D?

30. Review Problem. A 2.00-m-long cylindrical steel wire
with a cross-sectional diameter of 4.00 mm is placed
over a light frictionless pulley, with one end of the wire
connected to a 5.00-kg mass and the other end con-
nected to a 3.00-kg mass. By how much does the wire
stretch while the masses are in motion?

31. Review Problem. A cylindrical steel wire of length Li
with a cross-sectional diameter d is placed over a light
frictionless pulley, with one end of the wire connected
to a mass m1 and the other end connected to a mass m2 .
By how much does the wire stretch while the masses are
in motion?

32. Calculate the density of sea water at a depth of 1 000 m,
where the water pressure is about 1.00 � 107 N/m2 .
(The density of sea water is 1.030 � 103 kg/m3 at the
surface.)

33. If the shear stress exceeds about 4.00 � 108 N/m2, steel
ruptures. Determine the shearing force necessary (a) to
shear a steel bolt 1.00 cm in diameter and (b) to punch
a 1.00-cm-diameter hole in a steel plate 0.500 cm thick.

34. (a) Find the minimum diameter of a steel wire 18.0 m
long that elongates no more than 9.00 mm when a load
of 380 kg is hung on its lower end. (b) If the elastic
limit for this steel is 3.00 � 108 N/m2, does permanent
deformation occur with this load?

35. When water freezes, it expands by about 9.00%. What
would be the pressure increase inside your automobile’s
engine block if the water in it froze? (The bulk modulus
of ice is 2.00 � 109 N/m2.)

36. For safety in climbing, a mountaineer uses a 50.0-m ny-
lon rope that is 10.0 mm in diameter. When supporting
the 90.0-kg climber on one end, the rope elongates by
1.60 m. Find Young’s modulus for the rope material.

ADDITIONAL PROBLEMS

37. A bridge with a length of 50.0 m and a mass of 8.00 �
104 kg is supported on a smooth pier at each end, as il-
lustrated in Figure P12.37. A truck of mass 3.00 � 104 kg

2.25 m
0.750 m

A

1.50 m

U

D

B

C

Fg

Section 12.4 Elastic Properties of Solids
24. Assume that Young’s modulus for bone is 1.50 �

1010 N/m2 and that a bone will fracture if more than
1.50 � 108 N/m2 is exerted. (a) What is the maximum
force that can be exerted on the femur bone in the leg
if it has a minimum effective diameter of 2.50 cm? 
(b) If a force of this magnitude is applied compres-
sively, by how much does the 25.0-cm-long bone
shorten?

25. A 200-kg load is hung on a wire with a length of 4.00 m,
a cross-sectional area of 0.200 � 10�4 m2, and a Young’s
modulus of 8.00 � 1010 N/m2. What is its increase in
length?

26. A steel wire 1 mm in diameter can support a tension of
0.2 kN. Suppose you need a cable made of these wires
to support a tension of 20 kN. The cable’s diameter
should be of what order of magnitude?

27. A child slides across a floor in a pair of rubber-soled
shoes. The frictional force acting on each foot is 20.0 N.
The footprint area of each shoe’s sole is 14.0 cm2, and
the thickness of each sole is 5.00 mm. Find the horizon-
tal distance by which the upper and lower surfaces of
each sole are offset. The shear modulus of the rubber is
3.00 � 106 N/m2.

28. Review Problem. A 30.0-kg hammer strikes a steel
spike 2.30 cm in diameter while moving with a speed of
20.0 m/s. The hammer rebounds with a speed of 
10.0 m/s after 0.110 s. What is the average strain in the
spike during the impact?

29. If the elastic limit of copper is 1.50 � 108 N/m2, deter-
mine the minimum diameter a copper wire can have
under a load of 10.0 kg if its elastic limit is not to be ex-
ceeded.

Figure P12.23
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15.0 m
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Figure P12.37
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is located 15.0 m from one end. What are the forces on
the bridge at the points of support?

38. A frame in the shape of the letter A is formed from two
uniform pieces of metal, each of weight 26.0 N and
length 1.00 m. They are hinged at the top and held to-
gether by a horizontal wire 1.20 m in length (Fig.
P12.38). The structure rests on a frictionless surface. If
the wire is connected at points a distance of 0.650 m
from the top of the frame, determine the tension in the
wire.

lower ends of the ladder rest on frictionless surfaces.
The lower end is fastened to the wall by a horizontal
rope that can support a maximum tension of 110 N. 
(a) Draw a free-body diagram for the ladder. (b) Find
the tension in the rope when the monkey is one third
the way up the ladder. (c) Find the maximum distance
d that the monkey can climb up the ladder before the
rope breaks. Express your answer as a fraction of L.

42. A hungry bear weighing 700 N walks out on a beam in
an attempt to retrieve a basket of food hanging at the
end of the beam (Fig. P12.42). The beam is uniform,
weighs 200 N, and is 6.00 m long; the basket weighs
80.0 N. (a) Draw a free-body diagram for the beam. 
(b) When the bear is at x � 1.00 m, find the tension in
the wire and the components of the force exerted by
the wall on the left end of the beam. (c) If the wire can
withstand a maximum tension of 900 N, what is the
maximum distance that the bear can walk before the
wire breaks?

43. Old MacDonald had a farm, and on that farm he had a
gate (Fig. P12.43). The gate is 3.00 m wide and 1.80 m

39. Refer to Figure 12.17c. A lintel of prestressed rein-
forced concrete is 1.50 m long. The cross-sectional area
of the concrete is 50.0 cm2. The concrete encloses one
steel reinforcing rod with a cross-sectional area of 
1.50 cm2. The rod joins two strong end plates. Young’s
modulus for the concrete is 30.0 � 109 N/m2. After the
concrete cures and the original tension T1 in the rod is
released, the concrete will be under a compressive stress
of 8.00 � 106 N/m2. (a) By what distance will the rod
compress the concrete when the original tension in the
rod is released? (b) Under what tension T2 will the rod
still be? (c) How much longer than its unstressed length
will the rod then be? (d) When the concrete was
poured, the rod should have been stretched by what ex-
tension distance from its unstressed length? (e) Find
the required original tension T1 in the rod.

40. A solid sphere of radius R and mass M is placed in a
trough, as shown in Figure P12.40. The inner surfaces
of the trough are frictionless. Determine the forces ex-
erted by the trough on the sphere at the two contact
points.

41. A 10.0-kg monkey climbs up a 120-N uniform ladder of
length L, as shown in Figure P12.41. The upper and

Figure P12.38

Figure P12.40

Figure P12.41

Figure P12.42
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high, with hinges attached to the top and bottom. The
guy wire makes an angle of 30.0° with the top of the
gate and is tightened by a turn buckle to a tension of
200 N. The mass of the gate is 40.0 kg. (a) Determine
the horizontal force exerted on the gate by the bottom
hinge. (b) Find the horizontal force exerted by the up-
per hinge. (c) Determine the combined vertical force
exerted by both hinges. (d) What must the tension in
the guy wire be so that the horizontal force exerted by
the upper hinge is zero?

44. A 1 200-N uniform boom is supported by a cable, as il-
lustrated in Figure P12.44. The boom is pivoted at the
bottom, and a 2 000-N object hangs from its top. Find
the tension in the cable and the components of the re-
action force exerted on the boom by the floor.

46. A crane of mass 3 000 kg supports a load of 10 000 kg as
illustrated in Figure P12.46. The crane is pivoted with a
frictionless pin at A and rests against a smooth support
at B. Find the reaction forces at A and B.

47. A ladder having a uniform density and a mass m rests
against a frictionless vertical wall, making an angle 60.0°
with the horizontal. The lower end rests on a flat sur-
face, where the coefficient of static friction is 
s �
0.400. A window cleaner having a mass M � 2m at-
tempts to climb the ladder. What fraction of the length
L of the ladder will the worker have reached when the
ladder begins to slip?

48. A uniform ladder weighing 200 N is leaning against a
wall (see Fig. 12.10). The ladder slips when 
 � 60.0°.
Assuming that the coefficients of static friction at the
wall and the ground are the same, obtain a value for 
s .

49. A 10 000-N shark is supported by a cable attached to a
4.00-m rod that can pivot at its base. Calculate the ten-
sion in the tie-rope between the wall and the rod if it is
holding the system in the position shown in Figure
P12.49. Find the horizontal and vertical forces exerted
on the base of the rod. (Neglect the weight of the rod.)

45. A uniform sign of weight Fg and width 2L hangs from a
light, horizontal beam hinged at the wall and supported
by a cable (Fig. P12.45). Determine (a) the tension in
the cable and (b) the components of the reaction force
exerted by the wall on the beam in terms of Fg , d, L, 
and 
.

Figure P12.43

d

θ

2L

10 000 kg

(3 000 kg)g
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2.00 m
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30.0°

3.00 m

1.80 m

Figure P12.44

Figure P12.45

Figure P12.46
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50. When a person stands on tiptoe (a strenuous position),
the position of the foot is as shown in Figure P12.50a.
The total weight of the body Fg is supported by the
force n exerted by the floor on the toe. A mechanical
model for the situation is shown in Figure P12.50b,

where T is the force exerted by the Achilles tendon on
the foot and R is the force exerted by the tibia on the
foot. Find the values of T, R, and 
 when Fg � 700 N.

51. A person bends over and lifts a 200-N object as shown in
Figure P12.51a, with his back in a horizontal position (a
terrible way to lift an object). The back muscle attached
at a point two thirds the way up the spine maintains the
position of the back, and the angle between the spine
and this muscle is 12.0°. Using the mechanical model
shown in Figure P12.51b and taking the weight of the
upper body to be 350 N, find the tension in the back
muscle and the compressional force in the spine.

53. A force acts on a rectangular cabinet weighing 400 N, as
illustrated in Figure P12.53. (a) If the cabinet slides
with constant speed when F � 200 N and h � 0.400 m,

52. Two 200-N traffic lights are suspended from a single ca-
ble, as shown in Figure 12.52. Neglecting the cable’s
weight, (a) prove that if 
1 � 
2 , then T1 � T2 . 
(b) Determine the three tensions T1 , T2 , and T3 if 

1 � 
2 � 8.00°.

Figure P12.49

Figure P12.50

Figure P12.51

Figure P12.52
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find the coefficient of kinetic friction and the position
of the resultant normal force. (b) If F � 300 N, find the
value of h for which the cabinet just begins to tip.

59. A stepladder of negligible weight is constructed as
shown in Figure P12.59. A painter with a mass of 
70.0 kg stands on the ladder 3.00 m from the bottom.
Assuming that the floor is frictionless, find (a) the ten-
sion in the horizontal bar connecting the two halves of
the ladder, (b) the normal forces at A and B, and 
(c) the components of the reaction force at the single
hinge C that the left half of the ladder exerts on the
right half. (Hint: Treat each half of the ladder sepa-
rately.)

58. Figure P12.58 shows a truss that supports a downward
force of 1 000 N applied at the point B. The truss has
negligible weight. The piers at A and C are smooth. 
(a) Apply the conditions of equilibrium to prove that 
nA � 366 N and that nC � 634 N. (b) Show that, be-
cause forces act on the light truss only at the hinge
joints, each bar of the truss must exert on each hinge
pin only a force along the length of that bar—a force
of tension or compression. (c) Find the force of tension
or compression in each of the three bars.

be suspended from the top before the beam slips. 
(b) Determine the magnitude of the reaction force at
the floor and the magnitude of the force exerted by the
beam on the rope at P in terms of m, M, and 
s .

56. Review Problem. A cue stick strikes a cue ball and de-
livers a horizontal impulse in such a way that the ball
rolls without slipping as it starts to move. At what height
above the ball’s center (in terms of the radius of the
ball) was the blow struck?

57. A uniform beam of mass m is inclined at an angle 
 to
the horizontal. Its upper end produces a 90° bend in a
very rough rope tied to a wall, and its lower end rests on
a rough floor (Fig. P12.57). (a) If the coefficient of sta-
tic friction between the beam and the floor is 
s , deter-
mine an expression for the maximum mass M that can

54. Consider the rectangular cabinet of Problem 53, but
with a force F applied horizontally at its upper edge. 
(a) What is the minimum force that must be applied for
the cabinet to start tipping? (b) What is the minimum
coefficient of static friction required to prevent the cabi-
net from sliding with the application of a force of this
magnitude? (c) Find the magnitude and direction of
the minimum force required to tip the cabinet if the
point of application can be chosen anywhere on it.

55. A uniform rod of weight Fg and length L is supported at
its ends by a frictionless trough, as shown in Figure
P12.55. (a) Show that the center of gravity of the rod is
directly over point O when the rod is in equilibrium.
(b) Determine the equilibrium value of the angle 
.

1000 N

B

CA

10.0 m
nCnA

30.0° 45.0°

P

m

θ

M

O

60.0°30.0°

θ

h

37.0°

w = 60 cm

� = 100 cm

F

Figure P12.53 Problems 53 and 54.

Figure P12.55

Figure P12.57

Figure P12.58
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60. A flat dance floor of dimensions 20.0 m by 20.0 m has a
mass of 1 000 kg. Three dance couples, each of mass
125 kg, start in the top left, top right, and bottom left
corners. (a) Where is the initial center of gravity? 
(b) The couple in the bottom left corner moves 10.0 m
to the right. Where is the new center of gravity? 
(c) What was the average velocity of the center of grav-
ity if it took that couple 8.00 s to change position?

61. A shelf bracket is mounted on a vertical wall by a single
screw, as shown in Figure P12.61. Neglecting the weight
of the bracket, find the horizontal component of the
force that the screw exerts on the bracket when an 
80.0-N vertical force is applied as shown. (Hint: Imagine
that the bracket is slightly loose.)

P3

P2

P1

A

P

80.0 N 5.00 cm

3.00 cm

6.00 cm

2.00 m

2.00 m

3.00 m

A 2.00 m B

C

Figure P12.59

Figure P12.61

Figure P12.62

Figure P12.64

65. In Figure P12.65, the scales read Fg1 � 380 N and Fg 2 �
320 N. Neglecting the weight of the supporting plank,

62. Figure P12.62 shows a vertical force applied tangentially
to a uniform cylinder of weight Fg . The coefficient of

static friction between the cylinder and all surfaces is
0.500. In terms of Fg , find the maximum force P that
can be applied that does not cause the cylinder to ro-
tate. (Hint: When the cylinder is on the verge of slip-
ping, both friction forces are at their maximum values.
Why?)

63. Review Problem. A wire of length Li , Young’s modu-
lus Y, and cross-sectional area A is stretched elastically
by an amount �L. According to Hooke’s law, the restor-
ing force is � k �L. (a) Show that k � YA/Li . (b) Show
that the work done in stretching the wire by an amount
�L is W � YA(�L)2/2Li .

64. Two racquetballs are placed in a glass jar, as shown in
Figure P12.64. Their centers and the point A lie on a
straight line. (a) Assuming that the walls are frictionless,
determine P1 , P2 , and P3 . (b) Determine the magni-
tude of the force exerted on the right ball by the left
ball. Assume each ball has a mass of 170 g.

WEB



Problems 387

how far from the woman’s feet is her center of mass,
given that her height is 2.00 m?

66. A steel cable 3.00 cm2 in cross-sectional area has a mass
of 2.40 kg per meter of length. If 500 m of the cable is
hung over a vertical cliff, how much does the cable
stretch under its own weight? (For Young’s modulus for
steel, refer to Table 12.1.)

67. (a) Estimate the force with which a karate master strikes
a board if the hand’s speed at time of impact is 
10.0 m/s and decreases to 1.00 m/s during a 0.002 00-s
time-of-contact with the board. The mass of coordi-
nated hand-and-arm is 1.00 kg. (b) Estimate the shear
stress if this force is exerted on a 1.00-cm-thick pine
board that is 10.0 cm wide. (c) If the maximum shear
stress a pine board can receive before breaking is 
3.60 � 106 N/m2, will the board break?

68. A bucket is made from thin sheet metal. The bottom
and top of the bucket have radii of 25.0 cm and 
35.0 cm, respectively. The bucket is 30.0 cm high and
filled with water. Where is the center of gravity? (Ignore
the weight of the bucket itself.)

69. Review Problem. A trailer with a loaded weight of Fg is
being pulled by a vehicle with a force P, as illustrated in
Figure P12.69. The trailer is loaded such that its center
of mass is located as shown. Neglect the force of rolling
friction and let a represent the x component of the ac-
celeration of the trailer. (a) Find the vertical compo-
nent of P in terms of the given parameters. (b) If a �
2.00 m/s2 and h � 1.50 m, what must be the value of d

30° 60° 30°A E

B D

C

100 m

60°

40° 40° 40°A E

B D

C

200 m

40°

d

L

×

n

h P

CM

Fg

Fg1 Fg 2

2.00 m

Figure P12.65

Figure P12.69

Figure P12.71

Figure P12.72

72. A 100-m-long bridge truss is supported at its ends so that
it can slide freely (Fig. P12.72). A 1 500-kg car is halfway
between points A and C.  Show that the weight of the car
is evenly distributed between points A and C, and calcu-
late the force in each structural component. Specify
whether each structural component is under tension or
compression. Assume that the structural components are
connected by pin joints and that the masses of the com-
ponents are small compared with the mass of the car.

so that Py � 0 (that is, no vertical load on the vehicle)?
(c) Find the values of Px and Py given that Fg � 1 500 N,
d � 0.800 m, L � 3.00 m, h � 1.50 m, and a �
� 2.00 m/s2.

70. Review Problem. An aluminum wire is 0.850 m long
and has a circular cross section of diameter 0.780 mm.
Fixed at the top end, the wire supports a 1.20-kg mass
that swings in a horizontal circle. Determine the angu-
lar velocity required to produce strain 1.00 � 10�3.

71. A 200-m-long bridge truss extends across a river (Fig.
P12.71). Calculate the force of tension or compression
in each structural component when a 1 360-kg car is at
the center of the bridge.  Assume that the structure is
free to slide horizontally to permit thermal expansion
and contraction, that the structural components are
connected by pin joints, and that the masses of the
structural components are small compared with the
mass of the car.
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ANSWERS TO QUICK QUIZZES

12.3 Young’s modulus is given by the ratio of stress to strain,
which is the slope of the elastic behavior section of the
graph in Figure 12.14. Reading from the graph, we note
that a stress of approximately 3 � 108 N/m2 results in a
strain of 0.003. The slope, and hence Young’s modulus,
are therefore 10 � 1010 N/m2.

12.4 A substantial part of the graph extends beyond the elas-
tic limit, indicating permanent deformation. Thus, the
material is ductile.

12.1 (a) Yes, as Figure 12.3 shows. The unbalanced torques
cause an angular acceleration even though the linear ac-
celeration is zero. (b) Yes, again. This happens when the
lines of action of all the forces intersect at a common
point. If a net force acts on the object, then the object
has a translational acceleration. However, because there
is no net torque on the object, the object has no angular
acceleration. There are other instances in which torques
cancel but the forces do not. You should be able to draw
at least two.

12.2 The location of the board’s center of gravity relative to
the fulcrum.
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Oscillatory Motion

Inside the pocket watch is a small disk
(called a torsional pendulum) that oscil-
lates back and forth at a very precise
rate and controls the watch gears. A
grandfather clock keeps accurate time
because of its pendulum. The tall
wooden case provides the space needed
by the long pendulum as it advances the
clock gears with each swing. In both of
these timepieces, the vibration of a care-
fully shaped component is critical to ac-
curate operation. What properties of os-
cillating objects make them so useful in
timing devices? (Photograph of pocket

watch, George Semple; photograph of grand-

father clock, Charles D. Winters) 

C h a p t e r  O u t l i n e

13.1 Simple Harmonic Motion

13.2 The Block–Spring System
Revisited

13.3 Energy of the Simple Harmonic
Oscillator

13.4 The Pendulum

13.5 Comparing Simple Harmonic
Motion with Uniform Circular
Motion

13.6 (Optional) Damped Oscillations

13.7 (Optional) Forced Oscillations
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very special kind of motion occurs when the force acting on a body is propor-
tional to the displacement of the body from some equilibrium position. If
this force is always directed toward the equilibrium position, repetitive back-

and-forth motion occurs about this position. Such motion is called periodic motion,
harmonic motion, oscillation, or vibration (the four terms are completely equivalent).

You are most likely familiar with several examples of periodic motion, such as
the oscillations of a block attached to a spring, the swinging of a child on a play-
ground swing, the motion of a pendulum, and the vibrations of a stringed musical
instrument. In addition to these everyday examples, numerous other systems ex-
hibit periodic motion. For example, the molecules in a solid oscillate about their
equilibrium positions; electromagnetic waves, such as light waves, radar, and radio
waves, are characterized by oscillating electric and magnetic field vectors; and in
alternating-current electrical circuits, voltage, current, and electrical charge vary
periodically with time.

Most of the material in this chapter deals with simple harmonic motion, in which
an object oscillates such that its position is specified by a sinusoidal function of
time with no loss in mechanical energy. In real mechanical systems, damping (fric-
tional) forces are often present. These forces are considered in optional Section
13.6 at the end of this chapter.

SIMPLE HARMONIC MOTION
Consider a physical system that consists of a block of mass m attached to the end of a
spring, with the block free to move on a horizontal, frictionless surface (Fig. 13.1).
When the spring is neither stretched nor compressed, the block is at the position

called the equilibrium position of the system. We know from experience that
such a system oscillates back and forth if disturbed from its equilibrium position.

We can understand the motion in Figure 13.1 qualitatively by first recalling
that when the block is displaced a small distance x from equilibrium, the spring 
exerts on the block a force that is proportional to the displacement and given by
Hooke’s law (see Section 7.3):

(13.1)

We call this a restoring force because it is is always directed toward the equilib-
rium position and therefore opposite the displacement. That is, when the block is
displaced to the right of in Figure 13.1, then the displacement is positive
and the restoring force is directed to the left. When the block is displaced to the
left of then the displacement is negative and the restoring force is directed
to the right.

Applying Newton’s second law to the motion of the block, together with Equa-
tion 13.1, we obtain

(13.2)

That is, the acceleration is proportional to the displacement of the block, and its
direction is opposite the direction of the displacement. Systems that behave in this
way are said to exhibit simple harmonic motion. An object moves with simple
harmonic motion whenever its acceleration is proportional to its displace-
ment from some equilibrium position and is oppositely directed.

 a � �
k
m

 x 

Fs � �kx � ma

x � 0,

x � 0

Fs � �kx

x � 0,

13.1

A

8.10

Fs

Fs

m

(a)

x

x = 0
x

(b)

x

x = 0

Fs = 0

(c)

x

x = 0
x

m

m

Figure 13.1 A block attached to
a spring moving on a frictionless
surface. (a) When the block is dis-
placed to the right of equilibrium
(x � 0), the force exerted by the
spring acts to the left. (b) When
the block is at its equilibrium posi-
tion (x � 0), the force exerted by
the spring is zero. (c) When the
block is displaced to the left of
equilibrium (x � 0), the force ex-
erted by the spring acts to the
right.
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An experimental arrangement that exhibits simple harmonic motion is illus-
trated in Figure 13.2. A mass oscillating vertically on a spring has a pen attached to
it. While the mass is oscillating, a sheet of paper is moved perpendicular to the di-
rection of motion of the spring, and the pen traces out a wavelike pattern.

In general, a particle moving along the x axis exhibits simple harmonic mo-
tion when x, the particle’s displacement from equilibrium, varies in time according
to the relationship

(13.3)

where A, �, and � are constants. To give physical significance to these constants,
we have labeled a plot of x as a function of t in Figure 13.3a. This is just the pattern
that is observed with the experimental apparatus shown in Figure 13.2. The ampli-
tude A of the motion is the maximum displacement of the particle in either the
positive or negative x direction. The constant � is called the angular frequency of
the motion and has units of radians per second. (We shall discuss the geometric
significance of � in Section 13.2.) The constant angle �, called the phase con-
stant (or phase angle), is determined by the initial displacement and velocity of
the particle. If the particle is at its maximum position at then 
and the curve of x versus t is as shown in Figure 13.3b. If the particle is at some
other position at the constants � and A tell us what the position was at time

The quantity is called the phase of the mo-
tion and is useful in comparing the motions of two oscillators.

Note from Equation 13.3 that the trigonometric function x is periodic and re-
peats itself every time �t increases by 2� rad. The period T of the motion is the
time it takes for the particle to go through one full cycle. We say that the par-
ticle has made one oscillation. This definition of T tells us that the value of x at time
t equals the value of x at time We can show that by using the pre-
ceding observation that the phase increases by 2� rad in a time T :

Hence, or

(13.4)T �
2�

�

�T � 2�,

�t � � � 2� � �(t � T ) � �

(�t � �)
T � 2�/�t � T.

(�t � �)t � 0.
t � 0,

� � 0t � 0,x � A

x � A cos(�t � �)

8.2 
& 
8.3

Displacement versus time for
simple harmonic motion

Motion
of paper

m

Figure 13.2 An experimental apparatus for demonstrating
simple harmonic motion. A pen attached to the oscillating
mass traces out a wavelike pattern on the moving chart paper.

x

A

–A

t

(b)

x
φ/ω

A

–A

t

T

(a)

φ ω

Figure 13.3 (a) An x – t curve for
a particle undergoing simple har-
monic motion. The amplitude of
the motion is A, the period is T,
and the phase constant is �. 
(b) The x – t curve in the special
case in which at and
hence � � 0.

t � 0x � A
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The inverse of the period is called the frequency f of the motion. The fre-
quency represents the number of oscillations that the particle makes per
unit time:

(13.5)

The units of f are cycles per second � s�1, or hertz (Hz).
Rearranging Equation 13.5, we obtain the angular frequency:

(13.6)

What would the phase constant � have to be in Equation 13.3 if we were describing an oscil-
lating object that happened to be at the origin at 

An object undergoes simple harmonic motion of amplitude A. Through what total distance
does the object move during one complete cycle of its motion? (a) A/2. (b) A. (c) 2A. (d) 4A.

We can obtain the linear velocity of a particle undergoing simple harmonic mo-
tion by differentiating Equation 13.3 with respect to time:

(13.7)

The acceleration of the particle is

(13.8)

Because we can express Equation 13.8 in the form

(13.9)

From Equation 13.7 we see that, because the sine function oscillates between
	 1, the extreme values of v are 	 �A. Because the cosine function also oscillates
between 	 1, Equation 13.8 tells us that the extreme values of a are 	 �2A. There-
fore, the maximum speed and the magnitude of the maximum acceleration of a
particle moving in simple harmonic motion are

(13.10)

(13.11)

Figure 13.4a represents the displacement versus time for an arbitrary value of
the phase constant. The velocity and acceleration curves are illustrated in Figure
13.4b and c. These curves show that the phase of the velocity differs from the
phase of the displacement by �/2 rad, or 90°. That is, when x is a maximum or a
minimum, the velocity is zero. Likewise, when x is zero, the speed is a maximum.

amax � �2A

vmax � �A 

a � ��2x

x � A cos(�t � �),

a �
dv
dt

� ��2A cos(�t � �)

v �
dx
dt

� ��A sin(�t � �)

Quick Quiz 13.2

t � 0?

Quick Quiz 13.1

� � 2�f �
2�

T

f �
1
T

�
�

2�

Angular frequency

Velocity in simple harmonic
motion

Acceleration in simple harmonic
motion

Maximum values of speed and
acceleration in simple harmonic
motion

Frequency
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Furthermore, note that the phase of the acceleration differs from the phase of the
displacement by � rad, or 180°. That is, when x is a maximum, a is a maximum in
the opposite direction.

The phase constant � is important when we compare the motion of two or
more oscillating objects. Imagine two identical pendulum bobs swinging side by
side in simple harmonic motion, with one having been released later than the
other. The pendulum bobs have different phase constants. Let us show how the
phase constant and the amplitude of any particle moving in simple harmonic mo-
tion can be determined if we know the particle’s initial speed and position and the
angular frequency of its motion.

Suppose that at the initial position of a single oscillator is and its
initial speed is Under these conditions, Equations 13.3 and 13.7 give

(13.12)

(13.13)

Dividing Equation 13.13 by Equation 13.12 eliminates A, giving 
or

(13.14)

Furthermore, if we square Equations 13.12 and 13.13, divide the velocity equation
by �2, and then add terms, we obtain

Using the identity we can solve for A:

(13.15)A � √x i 

2 � � vi

� �
2

sin2 � � cos2 � � 1,

x i 

2 � � vi
� �

2
� A2 cos2 � � A2 sin2 �

tan � � �
vi

�x i

v i/x i � �� tan �,

vi � ��A sin �

x i � A cos � 

v � vi .
x � x it � 0

T

A
tO

x

xi

tO

v

vi

tO

a

vmax = ωA

amax= ω2A

(a)

(b)

(c)

ω

ω

Figure 13.4 Graphical representation of
simple harmonic motion. (a) Displacement
versus time. (b) Velocity versus time. (c) Ac-
celeration versus time. Note that at any speci-
fied time the velocity is 90° out of phase with
the displacement and the acceleration is 180°
out of phase with the displacement.

The following properties of a particle moving in simple harmonic motion are
important:

• The acceleration of the particle is proportional to the displacement but is in the
opposite direction. This is the necessary and sufficient condition for simple harmonic
motion, as opposed to all other kinds of vibration.

• The displacement from the equilibrium position, velocity, and acceleration all
vary sinusoidally with time but are not in phase, as shown in Figure 13.4.

• The frequency and the period of the motion are independent of the amplitude.
(We show this explicitly in the next section.)

Can we use Equations 2.8, 2.10, 2.11, and 2.12 (see pages 35 and 36) to describe the motion
of a simple harmonic oscillator?

Quick Quiz 13.3
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An Oscillating ObjectEXAMPLE 13.1
Solution Noting that the angles in the trigonometric func-
tions are in radians, we obtain, at s,

(d) Determine the maximum speed and maximum accel-
eration of the object.

Solution In the general expressions for v and a found in
part (b), we use the fact that the maximum values of the sine
and cosine functions are unity. Therefore, v varies between
	 4.00� m/s, and a varies between 	 4.00�2 m/s2. Thus,

m/s �

m/s2 �

We obtain the same results using and 
where m and rad/s.

(e) Find the displacement of the object between and
s.t � 1.00

t � 0
� � �A � 4.00

amax � �2A,vmax � �A

39.5 m/s2amax � 4.00�2

12.6 m/svmax � 4.00�

27.9 m/s2� �(4.00�2 m/s2)(�0.707) �

a � �(4.00�2 m/s2) cos � 5�

4 �

8.89 m/s�

v � �(4.00� m/s) sin � 5�

4 � � �(4.00� m/s)(�0.707)

�2.83 m � (4.00 m)(�0.707) �

x � (4.00 m) cos �� �
�

4 � � (4.00 m) cos � 5�

4 � 

t � 1.00
An object oscillates with simple harmonic motion along the x
axis. Its displacement from the origin varies with time accord-
ing to the equation

where t is in seconds and the angles in the parentheses are in
radians. (a) Determine the amplitude, frequency, and period
of the motion.

Solution By comparing this equation with Equation 13.3,
the general equation for simple harmonic motion—

)—we see that m and 
rad/s. Therefore, Hz and

s.
(b) Calculate the velocity and acceleration of the object at

any time t.

Solution

(c) Using the results of part (b), determine the position,
velocity, and acceleration of the object at s.t � 1.00

�(4.00�2 m/s2) cos ��t �
�

4 � �

a �
dv
dt

� �(4.00� m/s) cos ��t �
�

4 � 
d
dt

 (�t)

�(4.00� m/s) sin ��t �
�

4 � �

v �
dx
dt

� �(4.00 m) sin ��t �
�

4 � 
d
dt

 (�t) 

T � 1/f � 2.00
f � �/2� � �/2� � 0.500�

� �A � 4.00x � A cos(�t � �

x � (4.00 m) cos ��t �
�

4 �

Properties of simple harmonic
motion



13.2 The Block – Spring System Revisited 395

Solution The x coordinate at is

In part (c), we found that the x coordinate at s is
� 2.83 m; therefore, the displacement between and

s is

�5.66 m�x � x f � x i � �2.83 m � 2.83 m �

t � 1.00
t � 0

t � 1.00

x i � (4.00 m) cos �0 �
�

4 � � (4.00 m)(0.707) � 2.83 m

t � 0 Because the object’s velocity changes sign during the first
second, the magnitude of �x is not the same as the distance
traveled in the first second. (By the time the first second is
over, the object has been through the point m
once, traveled to m, and come back to

Exercise What is the phase of the motion at s?

Answer 9�/4 rad.

t � 2.00

x � �2.83 m.)
x � �4.00

x � �2.83

THE BLOCK – SPRING SYSTEM REVISITED
Let us return to the block–spring system (Fig. 13.5). Again we assume that the sur-
face is frictionless; hence, when the block is displaced from equilibrium, the only
force acting on it is the restoring force of the spring. As we saw in Equation 13.2,
when the block is displaced a distance x from equilibrium, it experiences an accel-
eration If the block is displaced a maximum distance at some
initial time and then released from rest, its initial acceleration at that instant is
� kA/m (its extreme negative value). When the block passes through the equilib-
rium position , its acceleration is zero. At this instant, its speed is a maxi-
mum. The block then continues to travel to the left of equilibrium and finally
reaches at which time its acceleration is kA/m (maximum positive) and
its speed is again zero. Thus, we see that the block oscillates between the turning
points 

Let us now describe the oscillating motion in a quantitative fashion. Recall
that and so we can express Equation 13.2 as

(13.16)

If we denote the ratio k/m with the symbol �2, this equation becomes

(13.17)

Now we require a solution to Equation 13.17—that is, a function x(t) that sat-
isfies this second-order differential equation. Because Equations 13.17 and 13.9
are equivalent, each solution must be that of simple harmonic motion:

To see this explicitly, assume that x � A cos(�t � �). Then

Comparing the expressions for x and d 2x/dt2, we see that d 2x/dt2 � � �2x, and
Equation 13.17 is satisfied. We conclude that whenever the force acting on a
particle is linearly proportional to the displacement from some equilibrium

d 2x
dt2 � ��A 

d
dt

 sin(�t � �) � ��2A cos(�t � �)

 
dx
dt

� A 
d
dt

 cos(�t � �) � ��A sin(�t � �) 

x � A cos(�t � �)

d 2x
dt2 � ��2x

d 2x
dt2 � �

k
m

 x

a � dv/dt � d 2x/dt2,

x � 	A.

x � �A,

x � 0

x � Aa � �(k/m)x.

13.2

m

m

(a)

x

x = 0

a

x

m

(b)

x

x = 0

a = 0

(c)

x

x = 0

a

x

Figure 13.5 A block of mass m at-
tached to a spring on a frictionless
surface undergoes simple har-
monic motion. (a) When the block
is displaced to the right of equilib-
rium, the displacement is positive
and the acceleration is negative.
(b) At the equilibrium position,

, the acceleration is zero and
the speed is a maximum. (c) When
the block is displaced to the left of
equilibrium, the displacement is
negative and the acceleration is
positive.

x � 0
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position and in the opposite direction (F � � kx), the particle moves in sim-
ple harmonic motion.

Recall that the period of any simple harmonic oscillator is (Eq.
13.4) and that the frequency is the inverse of the period. We know from Equations 

13.16 and 13.17 that , so we can express the period and frequency of the
block–spring system as

(13.18)

(13.19)

That is, the frequency and period depend only on the mass of the block and
on the force constant of the spring. Furthermore, the frequency and period are
independent of the amplitude of the motion. As we might expect, the frequency is
greater for a stiffer spring (the stiffer the spring, the greater the value of k) and
decreases with increasing mass.

Special Case 1. Let us consider a special case to better understand the physi-
cal significance of Equation 13.3, the defining expression for simple harmonic
motion. We shall use this equation to describe the motion of an oscillating
block– spring system. Suppose we pull the block a distance A from equilibrium
and then release it from rest at this stretched position, as shown in Figure 13.6.
Our solution for x must obey the initial conditions that and at

It does if we choose � � 0, which gives cos �t as the solution. To
check this solution, we note that it satisfies the condition that at be-
cause cos Thus, we see that A and � contain the information on initial
conditions.

Now let us investigate the behavior of the velocity and acceleration for this
special case. Because cos �t,

From the velocity expression we see that, because sin at as we
require. The expression for the acceleration tells us that at Physi-
cally, this negative acceleration makes sense because the force acting on the block
is directed to the left when the displacement is positive. In fact, at the extreme po-

t � 0.a � ��2A
t � 0,vi � 00 � 0,

a �
dv
dt

� ��2A cos �t

v �
dx
dt

� ��A sin �t 

x � A

0 � 1.
t � 0x i � A

x � At � 0.
vi � 0x i � A

f �
1
T

�
1

2�
 √ k

m

T �
2�

�
� 2� √ m

k

� � √k/m

T � 2�/�

Period and frequency for a
block–spring system

QuickLab
Hang an object from a rubber band
and start it oscillating. Measure T.
Now tie four identical rubber bands
together, end to end. How should k
for this longer band compare with k
for the single band? Again, time the
oscillations with the same object. Can
you verify Equation 13.19?

A
x = 0

t = 0
xi = A
vi = 0

x = A cos ωtm ω

Figure 13.6 A block–spring system that starts from rest at In this case, � � 0 and thus
cos �t.x � A

x i � A.
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sition shown in Figure 13.6, (to the left) and the initial acceleration is

Another approach to showing that cos �t is the correct solution involves
using the relationship tan (Eq. 13.14). Because at 
tan � � 0 and thus � � 0. (The tangent of � also equals zero, but � � � gives the
wrong value for xi .)

Figure 13.7 is a plot of displacement, velocity, and acceleration versus time for
this special case. Note that the acceleration reaches extreme values of 	 �2A while
the displacement has extreme values of 	 A because the force is maximal at those
positions. Furthermore, the velocity has extreme values of 	 �A, which both occur
at Hence, the quantitative solution agrees with our qualitative description
of this system.

Special Case 2. Now suppose that the block is given an initial velocity vi to the
right at the instant it is at the equilibrium position, so that and at

(Fig. 13.8). The expression for x must now satisfy these initial conditions. Be-
cause the block is moving in the positive x direction at and because at

the expression for x must have the form sin �t.
Applying Equation 13.14 and the initial condition that at we 

find that tan and Hence, Equation 13.3 becomes 
A cos ( which can be written sin �t. Furthermore, from Equa-
tion 13.15 we see that therefore, we can express x as

The velocity and acceleration in this case are

These results are consistent with the facts that (1) the block always has a maximum

a �
dv
dt

� ��vi sin �t

v �
dx
dt

� vi cos �t 

x �
vi

�
 sin �t

A � vi/� ;
x � A�t � �/2),

x �� � ��/2.� � ��
t � 0,x i � 0

x � At � 0,
x i � 0t � 0

t � 0
v � vix i � 0

x � 0.

t � 0,vi � 0� � �vi/�x i

x � A
��2A � �kA/m.

Fs � �kA

x = A cos ωt

T
2

TO ′

x

O
t

3T
2

T
2

TO ′

v

t
3T
2

v = –ωA sin ωt

T
2

TO ′

a

t
3T
2

a = –ω2A cos ωt

O

O

ω ω

ω ω

ω

Figure 13.7 Displacement, velocity, and ac-
celeration versus time for a block–spring sys-
tem like the one shown in Figure 13.6, undergo-
ing simple harmonic motion under the initial
conditions that at , and 
(Special Case 1). The origins at O
 correspond
to Special Case 2, the block–spring system un-
der the initial conditions shown in Figure 13.8.

v i � 0x i � At � 0

xi = 0
t = 0

v = vi

x = 0

vi

x = A sin ωt

m

ω

Figure 13.8 The block–spring
system starts its motion at the equi-
librium position at . If its ini-
tial velocity is vi to the right, the
block’s x coordinate varies as
x � (v i /�) sin �t.

t � 0
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speed at and (2) the force and acceleration are zero at this position. The
graphs of these functions versus time in Figure 13.7 correspond to the origin at O
.

What is the solution for x if the block is initially moving to the left in Figure 13.8?

Quick Quiz 13.4

x � 0

Watch Out for Potholes!EXAMPLE 13.2
Hence, the frequency of vibration is, from Equation 13.19,

Exercise How long does it take the car to execute two com-
plete vibrations?

Answer 1.70 s.

1.18 Hzf �
1

2�
 √ k

m
�

1
2�

 √ 20 000 N/m
365 kg

�

A car with a mass of 1 300 kg is constructed so that its frame
is supported by four springs. Each spring has a force constant
of 20 000 N/m. If two people riding in the car have a com-
bined mass of 160 kg, find the frequency of vibration of the
car after it is driven over a pothole in the road.

Solution We assume that the mass is evenly distributed.
Thus, each spring supports one fourth of the load. The total
mass is 1 460 kg, and therefore each spring supports 365 kg.

A Block – Spring SystemEXAMPLE 13.3
(c) What is the maximum acceleration of the block?

Solution We use Equation 13.11:

(d) Express the displacement, speed, and acceleration as
functions of time.

Solution This situation corresponds to Special Case 1,
where our solution is cos �t. Using this expression and
the results from (a), (b), and (c), we find that

�(1.25 m/s2) cos 5.00ta � �2A cos �t �

�(0.250 m/s) sin 5.00t v � �A sin �t �

(0.050 m) cos 5.00t x � A cos �t �

x � A

1.25 m/s2amax � �2A � (5.00 rad/s)2(5.00 � 10�2 m) �

A block with a mass of 200 g is connected to a light spring for
which the force constant is 5.00 N/m and is free to oscillate
on a horizontal, frictionless surface. The block is displaced
5.00 cm from equilibrium and released from rest, as shown in
Figure 13.6. (a) Find the period of its motion.

Solution From Equations 13.16 and 13.17, we know that
the angular frequency of any block–spring system is

and the period is

(b) Determine the maximum speed of the block.

Solution We use Equation 13.10:

0.250 m/svmax � �A � (5.00 rad/s)(5.00 � 10�2 m) �

1.26 sT �
2�

�
�

2�

5.00 rad/s
�

� � √ k
m

� √ 5.00 N/m
200 � 10�3 kg

� 5.00 rad/s

ENERGY OF THE SIMPLE HARMONIC OSCILLATOR
Let us examine the mechanical energy of the block–spring system illustrated in
Figure 13.6. Because the surface is frictionless, we expect the total mechanical en-
ergy to be constant, as was shown in Chapter 8. We can use Equation 13.7 to ex-

13.3
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press the kinetic energy as

(13.20)

The elastic potential energy stored in the spring for any elongation x is given
by (see Eq. 8.4). Using Equation 13.3, we obtain

(13.21)

We see that K and U are always positive quantities. Because we can ex-
press the total mechanical energy of the simple harmonic oscillator as

From the identity sin2 we see that the quantity in square brackets is
unity. Therefore, this equation reduces to

(13.22)

That is, the total mechanical energy of a simple harmonic oscillator is a con-
stant of the motion and is proportional to the square of the amplitude. Note
that U is small when K is large, and vice versa, because the sum must be constant.
In fact, the total mechanical energy is equal to the maximum potential energy
stored in the spring when because at these points and thus there is
no kinetic energy. At the equilibrium position, where because the to-
tal energy, all in the form of kinetic energy, is again That is,

(at 

Plots of the kinetic and potential energies versus time appear in Figure 13.9a,
where we have taken � � 0. As already mentioned, both K and U are always posi-
tive, and at all times their sum is a constant equal to the total energy of the
system. The variations of K and U with the displacement x of the block are plotted

1
2 kA2,

x � 0)E � 1
2 mv2

max � 1
2 m�2A2 � 1

2 m 
k
m

 A2 � 1
2 kA2

1
2 kA2.

x � 0,U � 0
v � 0x � 	A

E � 1
2 kA2

� � cos2 � � 1,

E � K � U � 1
2 kA2[sin2(�t � �) � cos2(�t � �)]

�2 � k/m,

U � 1
2 kx2 � 1

2 kA2 cos2(�t � �)

1
2 kx2

K � 1
2 mv2 � 1

2 m�2A2 sin2(�t � �) Kinetic energy of a simple
harmonic oscillator

Potential energy of a simple
harmonic oscillator

Total energy of a simple harmonic
oscillator

K , U

1
2 kA2

U

K

U =    kx2

K =    mv2

1
2
1
2

φ = 0

(a)

T
t

T
2

K , U

(b)

A
x

–A O

φ

Figure 13.9 (a) Kinetic energy and potential energy versus time for a simple harmonic oscilla-
tor with � � 0. (b) Kinetic energy and potential energy versus displacement for a simple har-
monic oscillator. In either plot, note that constant.K � U �
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in Figure 13.9b. Energy is continuously being transformed between potential en-
ergy stored in the spring and kinetic energy of the block.

Figure 13.10 illustrates the position, velocity, acceleration, kinetic energy, and
potential energy of the block–spring system for one full period of the motion.
Most of the ideas discussed so far are incorporated in this important figure. Study
it carefully.

Finally, we can use the principle of conservation of energy to obtain the veloc-
ity for an arbitrary displacement by expressing the total energy at some arbitrary
position x as

(13.23)

When we check Equation 13.23 to see whether it agrees with known cases, we find
that it substantiates the fact that the speed is a maximum at and is zero at
the turning points x � 	A.

x � 0

 v � 	√ k
m

 (A2 � x2) � 	�√A2 � x2

E � K � U � 1
2 mv2 � 1

2 kx2 � 1
2 kA2 

Velocity as a function of position
for a simple harmonic oscillator

–A 0 A
x

amax

vmax

amax

vmax

amax

t x v a K U

0 A 0 –ω2A 0

T/4 0 –ωA 0 0

T/2 –A 0 ω2A 0

3T/4 0 ωA 0 0

T A 0 –ω2A 0
1
2 kA2

1
2 kA2

1
2 kA2

1
2 kA2

1
2 kA2

θmaxθ

θmaxθ

θmaxθ

ω

ω

ω

ω

ω

Figure 13.10 Simple harmonic motion for a block–spring system and its relationship to the
motion of a simple pendulum. The parameters in the table refer to the block–spring system, as-
suming that at thus, cos �t (see Special Case 1).x � At � 0;x � A
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You may wonder why we are spending so much time studying simple harmonic
oscillators. We do so because they are good models of a wide variety of physical
phenomena. For example, recall the Lennard–Jones potential discussed in Exam-
ple 8.11. This complicated function describes the forces holding atoms together.
Figure 13.11a shows that, for small displacements from the equilibrium position,
the potential energy curve for this function approximates a parabola, which repre-
sents the potential energy function for a simple harmonic oscillator. Thus, we can
approximate the complex atomic binding forces as tiny springs, as depicted in Fig-
ure 13.11b. 

The ideas presented in this chapter apply not only to block–spring systems
and atoms, but also to a wide range of situations that include bungee jumping,
tuning in a television station, and viewing the light emitted by a laser. You will see
more examples of simple harmonic oscillators as you work through this book.

Oscillations on a Horizontal SurfaceEXAMPLE 13.4
(b) What is the velocity of the cube when the displace-

ment is 2.00 cm?

Solution We can apply Equation 13.23 directly:

The positive and negative signs indicate that the cube could
be moving to either the right or the left at this instant.

(c) Compute the kinetic and potential energies of the sys-
tem when the displacement is 2.00 cm.

	0.141 m/s�

  � 	√ 20.0 N/m
0.500 kg

 [(0.030 0 m)2 � (0.020 0 m)2]

v � 	√ k
m

 (A2 � x2) 

A 0.500-kg cube connected to a light spring for which the
force constant is 20.0 N/m oscillates on a horizontal, friction-
less track. (a) Calculate the total energy of the system and the
maximum speed of the cube if the amplitude of the motion is 
3.00 cm.

Solution Using Equation 13.22, we obtain

When the cube is at we know that and
therefore,

0.190 m/s vmax � √ 18.0 � 10�3 J
0.500 kg

�

1
2 mv2

max � 9.00 � 10�3 J 

E � 1
2 mv2

max ;
U � 0x � 0,

9.00 � 10�3 J�

E � K � U � 1
2 kA2 � 1

2 (20.0 N/m) (3.00 � 10�2 m)2

U

r

Figure 13.11 (a) If the atoms in a molecule do not move too far from their equilibrium posi-
tions, a graph of potential energy versus separation distance between atoms is similar to the
graph of potential energy versus position for a simple harmonic oscillator. (b) Tiny springs ap-
proximate the forces holding atoms together.
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THE PENDULUM
The simple pendulum is another mechanical system that exhibits periodic mo-
tion. It consists of a particle-like bob of mass m suspended by a light string of
length L that is fixed at the upper end, as shown in Figure 13.12. The motion oc-
curs in the vertical plane and is driven by the force of gravity. We shall show that,
provided the angle � is small (less than about 10°), the motion is that of a simple
harmonic oscillator.

The forces acting on the bob are the force T exerted by the string and the
gravitational force mg. The tangential component of the gravitational force, 
mg sin �, always acts toward � � 0, opposite the displacement. Therefore, the tan-
gential force is a restoring force, and we can apply Newton’s second law for mo-
tion in the tangential direction:

where s is the bob’s displacement measured along the arc and the minus sign indi-
cates that the tangential force acts toward the equilibrium (vertical) position. Be-
cause (Eq. 10.1a) and L is constant, this equation reduces to

The right side is proportional to sin � rather than to �; hence, with sin �
present, we would not expect simple harmonic motion because this expression is
not of the form of Equation 13.17. However, if we assume that � is small, we can
use the approximation sin � � �; thus the equation of motion for the simple pen-

d 2�

dt2 � �
g
L

 sin �

s � L�

�Ft � �mg sin � � m 
d 2s
dt2

13.4

8.11 
& 

8.12

Solution Using the result of (b), we find that

4.00 � 10�3 JU � 1
2 kx2 � 1

2 (20.0 N/m)(0.020 0 m)2 �

5.00 � 10�3 JK � 1
2 mv2 � 1

2 (0.500 kg)(0.141 m/s)2 �

Note that 

Exercise For what values of x is the speed of the cube 
0.100 m/s?

Answer 	 2.55 cm.

K � U � E.

θ

TL

s

m g sin

m

m g cos

m g

θ
θ

θ

Figure 13.12 When � is small, a
simple pendulum oscillates in sim-
ple harmonic motion about the
equilibrium position � � 0. The
restoring force is mg sin �, the com-
ponent of the gravitational force
tangent to the arc.

The motion of a simple pendulum, captured
with multiflash photography. Is the oscillating
motion simple harmonic in this case? 
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dulum becomes

(13.24)

Now we have an expression of the same form as Equation 13.17, and we conclude
that the motion for small amplitudes of oscillation is simple harmonic motion.
Therefore, � can be written as � � �max cos where �max is the maximum
angular displacement and the angular frequency � is

(13.25)� � √ g
L

(�t � �),

d 2�

dt2 � �
g
L

 �

Angular frequency of motion for a
simple pendulum

The Foucault pendulum at the Franklin Institute in Philadelphia. This type of pendulum was first
used by the French physicist Jean Foucault to verify the Earth’s rotation experimentally. As the
pendulum swings, the vertical plane in which it oscillates appears to rotate as the bob successively
knocks over the indicators arranged in a circle on the floor. In reality, the plane of oscillation is
fixed in space, and the Earth rotating beneath the swinging pendulum moves the indicators into
position to be knocked down, one after the other.

Equation of motion for a simple
pendulum (small �)
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The period of the motion is

(13.26)

In other words, the period and frequency of a simple pendulum depend only
on the length of the string and the acceleration due to gravity. Because the
period is independent of the mass, we conclude that all simple pendulums that are
of equal length and are at the same location (so that g is constant) oscillate with
the same period. The analogy between the motion of a simple pendulum and that
of a block–spring system is illustrated in Figure 13.10.

The simple pendulum can be used as a timekeeper because its period depends
only on its length and the local value of g. It is also a convenient device for making
precise measurements of the free-fall acceleration. Such measurements are impor-
tant because variations in local values of g can provide information on the location
of oil and of other valuable underground resources.

A block of mass m is first allowed to hang from a spring in static equilibrium. It stretches the
spring a distance L beyond the spring’s unstressed length. The block and spring are then
set into oscillation. Is the period of this system less than, equal to, or greater than the pe-
riod of a simple pendulum having a length L and a bob mass m?

Quick Quiz 13.5

T �
2�

�
� 2� √ L

g

QuickLab
Firmly hold a ruler so that about half
of it is over the edge of your desk.
With your other hand, pull down and
then release the free end, watching
how it vibrates. Now slide the ruler so
that only about a quarter of it is free
to vibrate. This time when you release
it, how does the vibrational period
compare with its earlier value? Why?

A Connection Between Length and TimeEXAMPLE 13.5
Thus, the meter’s length would be slightly less than one-
fourth its current length. Note that the number of significant
digits depends only on how precisely we know g because the
time has been defined to be exactly 1 s.

Christian Huygens (1629–1695), the greatest clockmaker in
history, suggested that an international unit of length could
be defined as the length of a simple pendulum having a pe-
riod of exactly 1 s. How much shorter would our length unit
be had his suggestion been followed?

Solution Solving Equation 13.26 for the length gives

0.248 mL �
T 2g
4�2 �

(1 s)2(9.80 m/s2)
4�2 �

Physical Pendulum

Suppose you balance a wire coat hanger so that the hook is supported by your ex-
tended index finger. When you give the hanger a small displacement (with your
other hand) and then release it, it oscillates. If a hanging object oscillates about a
fixed axis that does not pass through its center of mass and the object cannot be
approximated as a point mass, we cannot treat the system as a simple pendulum.
In this case the system is called a physical pendulum.

Consider a rigid body pivoted at a point O that is a distance d from the center
of mass (Fig. 13.13). The force of gravity provides a torque about an axis through
O, and the magnitude of that torque is mgd sin �, where � is as shown in Figure
13.13. Using the law of motion � where I is the moment of inertia about� � I�,

Period of motion for a simple
pendulum
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the axis through O, we obtain

The minus sign indicates that the torque about O tends to decrease �. That is, the
force of gravity produces a restoring torque. Because this equation gives us the
angular acceleration d 2�/dt2 of the pivoted body, we can consider it the equation
of motion for the system. If we again assume that � is small, the approximation 
sin � � � is valid, and the equation of motion reduces to

(13.27)

Because this equation is of the same form as Equation 13.17, the motion is simple
harmonic motion. That is, the solution of Equation 13.27 is � � �max cos(�t � �),
where �max is the maximum angular displacement and

The period is

(13.28)

One can use this result to measure the moment of inertia of a flat rigid body. If
the location of the center of mass—and hence the value of d —are known, the mo-
ment of inertia can be obtained by measuring the period. Finally, note that Equation
13.28 reduces to the period of a simple pendulum (Eq. 13.26) when I � md 2—that
is, when all the mass is concentrated at the center of mass.

T �
2�

�
� 2� √ I

mgd

� � √ mgd
I

d 2�

dt2 � �� mgd
I � � � ��2�

�mgd sin � � I 
d 2�

dt2

Period of motion for a physical
pendulum

Pivot O

θ
d

d sin θ
CM

m g

Figure 13.13 A physical pendu-
lum.

A Swinging RodEXAMPLE 13.6
Exercise Calculate the period of a meter stick that is piv-
oted about one end and is oscillating in a vertical plane.

Answer 1.64 s.

A uniform rod of mass M and length L is pivoted about one
end and oscillates in a vertical plane (Fig. 13.14). Find the
period of oscillation if the amplitude of the motion is small.

Solution In Chapter 10 we found that the moment of in-
ertia of a uniform rod about an axis through one end is

The distance d from the pivot to the center of mass is
L/2. Substituting these quantities into Equation 13.28 gives

Comment In one of the Moon landings, an astronaut walk-
ing on the Moon’s surface had a belt hanging from his space
suit, and the belt oscillated as a physical pendulum. A scien-
tist on the Earth observed this motion on television and used
it to estimate the free-fall acceleration on the Moon. How did
the scientist make this calculation?

2� √ 2L
3g

T � 2� √
1
3 ML2

Mg 
L
2

�

1
3ML2.

Pivot

O

L

CM

Mg

Figure 13.14 A rigid rod oscillating about a pivot through one end
is a physical pendulum with and, from Table 10.2, I � 1

3 ML2.d � L/2
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Torsional Pendulum

Figure 13.15 shows a rigid body suspended by a wire attached at the top to a fixed
support. When the body is twisted through some small angle �, the twisted wire ex-
erts on the body a restoring torque that is proportional to the angular displace-
ment. That is,

where � (kappa) is called the torsion constant of the support wire. The value of �
can be obtained by applying a known torque to twist the wire through a measur-
able angle �. Applying Newton’s second law for rotational motion, we find

(13.29)

Again, this is the equation of motion for a simple harmonic oscillator, with 
and a period

(13.30)

This system is called a torsional pendulum. There is no small-angle restriction in this
situation as long as the elastic limit of the wire is not exceeded. Figure 13.16 shows
the balance wheel of a watch oscillating as a torsional pendulum, energized by the
mainspring.

COMPARING SIMPLE HARMONIC MOTION WITH
UNIFORM CIRCULAR MOTION

We can better understand and visualize many aspects of simple harmonic motion
by studying its relationship to uniform circular motion. Figure 13.17 is an over-
head view of an experimental arrangement that shows this relationship. A ball is
attached to the rim of a turntable of radius A, which is illuminated from the side
by a lamp. The ball casts a shadow on a screen. We find that as the turntable ro-
tates with constant angular speed, the shadow of the ball moves back and forth in
simple harmonic motion.

13.5

T � 2� √ I
�

� � √�/I

d 2�

dt2 � �
�

I
 � 

 � � ��� � I 
d 2�

dt2

� � ���

8.8

Period of motion for a torsional
pendulum

O

P
maxθ

Figure 13.15 A torsional pendu-
lum consists of a rigid body sus-
pended by a wire attached to a
rigid support. The body oscillates
about the line OP with an ampli-
tude �max .

Balance wheel

Figure 13.16 The balance wheel of this antique pocket watch is a torsional pendulum and reg-
ulates the time-keeping mechanism.
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Consider a particle located at point P on the circumference of a circle of ra-
dius A, as shown in Figure 13.18a, with the line OP making an angle � with the x
axis at . We call this circle a reference circle for comparing simple harmonic mo-
tion and uniform circular motion, and we take the position of P at as our ref-
erence position. If the particle moves along the circle with constant angular speed
� until OP makes an angle � with the x axis, as illustrated in Figure 13.18b, then at
some time t � 0, the angle between OP and the x axis is � � �t � �. As the parti-
cle moves along the circle, the projection of P on the x axis, labeled point Q ,
moves back and forth along the x axis, between the limits 

Note that points P and Q always have the same x coordinate. From the right
triangle OPQ , we see that this x coordinate is

(13.31)

This expression shows that the point Q moves with simple harmonic motion along
the x axis. Therefore, we conclude that

x � A cos(�t � �)

x � 	A.

t � 0
t � 0

simple harmonic motion along a straight line can be represented by the projec-
tion of uniform circular motion along a diameter of a reference circle.

We can make a similar argument by noting from Figure 13.18b that the projec-
tion of P along the y axis also exhibits simple harmonic motion. Therefore, uni-
form circular motion can be considered a combination of two simple har-
monic motions, one along the x axis and one along the y axis, with the two
differing in phase by 90°.

This geometric interpretation shows that the time for one complete revolution
of the point P on the reference circle is equal to the period of motion T for simple
harmonic motion between That is, the angular speed � of P is the same
as the angular frequency � of simple harmonic motion along the x axis (this is why
we use the same symbol). The phase constant � for simple harmonic motion cor-
responds to the initial angle that OP makes with the x axis. The radius A of the ref-
erence circle equals the amplitude of the simple harmonic motion.

x � 	A.
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Figure 13.17 An experimental
setup for demonstrating the con-
nection between simple harmonic
motion and uniform circular mo-
tion. As the ball rotates on the
turntable with constant angular
speed, its shadow on the screen
moves back and forth in simple
harmonic motion.

Figure 13.18 Relationship between the uniform circular motion of a point P and the simple
harmonic motion of a point Q. A particle at P moves in a circle of radius A with constant angular
speed �. (a) A reference circle showing the position of P at . (b) The x coordinates of
points P and Q are equal and vary in time as cos(�t � �). (c) The x component of the ve-
locity of P equals the velocity of Q . (d) The x component of the acceleration of P equals the ac-
celeration of Q .

x � A
t � 0
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Because the relationship between linear and angular speed for circular mo-
tion is (see Eq. 10.10), the particle moving on the reference circle of radius
A has a velocity of magnitude �A. From the geometry in Figure 13.18c, we see that
the x component of this velocity is � �A sin(�t � �). By definition, the point Q
has a velocity given by dx/dt. Differentiating Equation 13.31 with respect to time,
we find that the velocity of Q is the same as the x component of the velocity of P.

The acceleration of P on the reference circle is directed radially inward toward
O and has a magnitude From the geometry in Figure 13.18d, we see
that the x component of this acceleration is This value is also
the acceleration of the projected point Q along the x axis, as you can verify by tak-
ing the second derivative of Equation 13.31.

cos(�t � �).��2A
v2/A � �2A.

v � r�

Circular Motion with Constant Angular SpeedEXAMPLE 13.7

Note that � in the cosine function must be in radians.
(b) Find the x components of the particle’s velocity and

acceleration at any time t.

Solution

From these results, we conclude that vmax � 24.0 m/s and
that amax � 192 m/s2. Note that these values also equal the
tangential speed �A and the centripetal acceleration �2A.

�(192 m/s2) cos(8.00t � 0.841) �

ax �
dvx

dt
� (�24.0 m/s)(8.00 rad/s) cos(8.00t � 0.841)

�(24.0 m/s) sin(8.00t � 0.841) �

vx �
dx
dt

� (�3.00 m)(8.00 rad/s) sin(8.00t � 0.841) 

(3.00 m) cos (8.00t � 0.841)x �
A particle rotates counterclockwise in a circle of radius 
3.00 m with a constant angular speed of 8.00 rad/s. At ,
the particle has an x coordinate of 2.00 m and is moving to
the right. (a) Determine the x coordinate as a function of
time.

Solution Because the amplitude of the particle’s motion
equals the radius of the circle and � � 8.00 rad/s, we have

We can evaluate � by using the initial condition that 
2.00 m at 

If we were to take our answer as � � 48.2°, then the coordi-
nate x � (3.00 m) cos (8.00t � 48.2°) would be decreasing at
time t � 0 (that is, moving to the left). Because our particle is
first moving to the right, we must choose � � �48.2° �
�0.841 rad. The x coordinate as a function of time is then

 � � cos�1 � 2.00 m
3.00 m �

2.00 m � (3.00 m) cos(0 � �) 

t � 0:
x �

x � A cos(�t � �) � (3.00 m) cos(8.00t � �)

t � 0

Optional Section

DAMPED OSCILLATIONS
The oscillatory motions we have considered so far have been for ideal systems—
that is, systems that oscillate indefinitely under the action of a linear restoring
force. In many real systems, dissipative forces, such as friction, retard the motion.
Consequently, the mechanical energy of the system diminishes in time, and the
motion is said to be damped.

One common type of retarding force is the one discussed in Section 6.4,
where the force is proportional to the speed of the moving object and acts in the
direction opposite the motion. This retarding force is often observed when an ob-
ject moves through air, for instance. Because the retarding force can be expressed
as R � � bv (where b is a constant called the damping coefficient) and the restoring

13.6
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force of the system is � kx, we can write Newton’s second law as

(13.32)

The solution of this equation requires mathematics that may not be familiar to you
yet; we simply state it here without proof. When the retarding force is small com-
pared with the maximum restoring force—that is, when b is small—the solution
to Equation 13.32 is

(13.33)

where the angular frequency of oscillation is

(13.34)

This result can be verified by substituting Equation 13.33 into Equation 13.32.
Figure 13.19a shows the displacement as a function of time for an object oscil-

lating in the presence of a retarding force, and Figure 13.19b depicts one such sys-
tem: a block attached to a spring and submersed in a viscous liquid. We see that
when the retarding force is much smaller than the restoring force, the oscil-
latory character of the motion is preserved but the amplitude decreases in
time, with the result that the motion ultimately ceases. Any system that be-
haves in this way is known as a damped oscillator. The dashed blue lines in Fig-
ure 13.19a, which define the envelope of the oscillatory curve, represent the expo-
nential factor in Equation 13.33. This envelope shows that the amplitude decays
exponentially with time. For motion with a given spring constant and block
mass, the oscillations dampen more rapidly as the maximum value of the retarding
force approaches the maximum value of the restoring force.

It is convenient to express the angular frequency of a damped oscillator in the
form

where represents the angular frequency in the absence of a retarding
force (the undamped oscillator) and is called the natural frequency of the sys-
tem. When the magnitude of the maximum retarding force 
the system is said to be underdamped. As the value of R approaches kA, the am-
plitudes of the oscillations decrease more and more rapidly. This motion is repre-
sented by the blue curve in Figure 13.20. When b reaches a critical value bc such
that bc/2m � �0 , the system does not oscillate and is said to be critically damped.
In this case the system, once released from rest at some nonequilibrium position,
returns to equilibrium and then stays there. The graph of displacement versus
time for this case is the red curve in Figure 13.20.

If the medium is so viscous that the retarding force is greater than the restor-
ing force—that is, if and —the system is over-
damped. Again, the displaced system, when free to move, does not oscillate but
simply returns to its equilibrium position. As the damping increases, the time it
takes the system to approach equilibrium also increases, as indicated by the black
curve in Figure 13.20.

In any case in which friction is present, whether the system is overdamped or
underdamped, the energy of the oscillator eventually falls to zero. The lost me-
chanical energy dissipates into internal energy in the retarding medium.

b/2m � �0R max � bvmax � kA

R max � bvmax � kA,

�0 � √k/m

� � √�0 

2 � � b
2m �

2

� � √ k
m

� � b
2m �

2

x � Ae� b
2mt cos(�t � �)

�kx � b 
dx
dt

� m 
d 2x
dt2  

 �Fx � �kx � bv � max A

x

0 t

A e

(a)

(b)

m

b
2m

– t

Figure 13.19 (a) Graph of dis-
placement versus time for a
damped oscillator. Note the de-
crease in amplitude with time. 
(b) One example of a damped os-
cillator is a mass attached to a
spring and submersed in a viscous
liquid.

x

a
b

c

t

Figure 13.20 Graphs of dis-
placement versus time for (a) an
underdamped oscillator, (b) a criti-
cally damped oscillator, and (c) an
overdamped oscillator.
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An automotive suspension system consists of a combination of springs and shock absorbers,
as shown in Figure 13.21. If you were an automotive engineer, would you design a suspen-
sion system that was underdamped, critically damped, or overdamped? Discuss each case.

Optional Section

FORCED OSCILLATIONS
It is possible to compensate for energy loss in a damped system by applying an ex-
ternal force that does positive work on the system. At any instant, energy can be
put into the system by an applied force that acts in the direction of motion of the
oscillator. For example, a child on a swing can be kept in motion by appropriately
timed pushes. The amplitude of motion remains constant if the energy input per
cycle exactly equals the energy lost as a result of damping. Any motion of this type
is called forced oscillation.

A common example of a forced oscillator is a damped oscillator driven by an
external force that varies periodically, such as where � is the angu-
lar frequency of the periodic force and Fext is a constant. Adding this driving force
to the left side of Equation 13.32 gives

(13.35)

(As earlier, we present the solution of this equation without proof.) After a suffi-
ciently long period of time, when the energy input per cycle equals the energy lost
per cycle, a steady-state condition is reached in which the oscillations proceed with
constant amplitude. At this time, when the system is in a steady state, the solution
of Equation 13.35 is

(13.36)x � A cos(�t � �)

Fext cos �t � kx � b 
dx
dt

� m 
d 2x
dt2

F � Fext  cos �t,

13.7

Quick Quiz 13.6

Oil or
other viscous
fluid

Piston
with holes

(a)

Shock absorber
Coil spring

(b)

Figure 13.21 (a) A shock absorber consists of a piston oscillating in a chamber filled with oil.
As the piston oscillates, the oil is squeezed through holes between the piston and the chamber,
causing a damping of the piston’s oscillations. (b) One type of automotive suspension system, in
which a shock absorber is placed inside a coil spring at each wheel.

web
To learn more about shock
absorbers, visit
http://www.hdridecontrol.com
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where

(13.37)

and where is the angular frequency of the undamped oscillator 
One could argue that in steady state the oscillator must physically have the same fre-
quency as the driving force, and thus the solution given by Equation 13.36 is ex-
pected. In fact, when this solution is substituted into Equation 13.35, one finds that
it is indeed a solution, provided the amplitude is given by Equation 13.37.

Equation 13.37 shows that, because an external force is driving it, the motion
of the forced oscillator is not damped. The external agent provides the necessary
energy to overcome the losses due to the retarding force. Note that the system os-
cillates at the angular frequency � of the driving force. For small damping, the am-
plitude becomes very large when the frequency of the driving force is near the nat-
ural frequency of oscillation. The dramatic increase in amplitude near the natural
frequency �0 is called resonance, and for this reason �0 is sometimes called the
resonance frequency of the system.

The reason for large-amplitude oscillations at the resonance frequency is that
energy is being transferred to the system under the most favorable conditions. We
can better understand this by taking the first time derivative of x in Equation
13.36, which gives an expression for the velocity of the oscillator. We find that v is
proportional to sin When the applied force F is in phase with the veloc-
ity, the rate at which work is done on the oscillator by F equals the dot product
F � v. Remember that “rate at which work is done” is the definition of power. Be-
cause the product F � v is a maximum when F and v are in phase, we conclude that
at resonance the applied force is in phase with the velocity and that the
power transferred to the oscillator is a maximum.

Figure 13.22 is a graph of amplitude as a function of frequency for a forced os-
cillator with and without damping. Note that the amplitude increases with decreas-
ing damping (b : 0) and that the resonance curve broadens as the damping in-
creases. Under steady-state conditions and at any driving frequency, the energy
transferred into the system equals the energy lost because of the damping force;
hence, the average total energy of the oscillator remains constant. In the absence
of a damping force (b � 0), we see from Equation 13.37 that the steady-state am-
plitude approaches infinity as � : �0 . In other words, if there are no losses in the
system and if we continue to drive an initially motionless oscillator with a periodic
force that is in phase with the velocity, the amplitude of motion builds without
limit (see the red curve in Fig. 13.22). This limitless building does not occur in
practice because some damping is always present.

The behavior of a driven oscillating system after the driving force is removed
depends on b and on how close � was to �0 . This behavior is sometimes quantified
by a parameter called the quality factor Q. The closer a system is to being un-
damped, the greater its Q. The amplitude of oscillation drops by a factor of 
e . . . ) in Q/� cycles.

Later in this book we shall see that resonance appears in other areas of physics.
For example, certain electrical circuits have natural frequencies. A bridge has nat-
ural frequencies that can be set into resonance by an appropriate driving force. A
dramatic example of such resonance occurred in 1940, when the Tacoma Narrows
Bridge in the state of Washington was destroyed by resonant vibrations. Although
the winds were not particularly strong on that occasion, the bridge ultimately col-
lapsed (Fig. 13.23) because the bridge design had no built-in safety features.

(�2.718

(�t � �).

(b � 0).�0 � √k/m

A �
Fext/m

√(�2 � �0 

2)2 � � b�

m �
2

A
b = 0
Undamped

Small b

Large b

ω00
ω

ω

Figure 13.22 Graph of ampli-
tude versus frequency for a
damped oscillator when a periodic
driving force is present. When the
frequency of the driving force
equals the natural frequency �0 ,
resonance occurs. Note that the
shape of the resonance curve de-
pends on the size of the damping
coefficient b.

QuickLab
Tie several objects to strings and sus-
pend them from a horizontal string,
as illustrated in the figure. Make two
of the hanging strings approximately
the same length. If one of this pair,
such as P, is set into sideways motion,
all the others begin to oscillate. But
Q , whose length is the same as that of
P, oscillates with the greatest ampli-
tude. Must all the masses have the
same value?

Q

P
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Many other examples of resonant vibrations can be cited. A resonant vibration
that you may have experienced is the “singing” of telephone wires in the wind. Ma-
chines often break if one vibrating part is at resonance with some other moving
part. Soldiers marching in cadence across a bridge have been known to set up res-
onant vibrations in the structure and thereby cause it to collapse. Whenever any
real physical system is driven near its resonance frequency, you can expect oscilla-
tions of very large amplitudes.

SUMMARY

When the acceleration of an object is proportional to its displacement from some
equilibrium position and is in the direction opposite the displacement, the object
moves with simple harmonic motion. The position x of a simple harmonic oscilla-
tor varies periodically in time according to the expression

(13.3)

where A is the amplitude of the motion, � is the angular frequency, and � is the
phase constant. The value of � depends on the initial position and initial velocity
of the oscillator. You should be able to use this formula to describe the motion of
an object undergoing simple harmonic motion.

The time T needed for one complete oscillation is defined as the period of
the motion:

(13.4)

The inverse of the period is the frequency of the motion, which equals the num-
ber of oscillations per second.

The velocity and acceleration of a simple harmonic oscillator are

(13.7)

(13.8)

(13.23)v � 	�√A2 � x2

a �
dv
dt

� ��2A cos(�t � �)

v �
dx
dt

� ��A sin(�t � �) 

T �
2�

�

x � A cos(�t � �)

Figure 13.23 (a) In 1940 turbulent winds set up torsional vibrations in the Tacoma Narrows
Bridge, causing it to oscillate at a frequency near one of the natural frequencies of the bridge
structure. (b) Once established, this resonance condition led to the bridge’s collapse.

(a) (b)
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Thus, the maximum speed is �A, and the maximum acceleration is �2A. The speed
is zero when the oscillator is at its turning points, and is a maximum when
the oscillator is at the equilibrium position The magnitude of the accelera-
tion is a maximum at the turning points and zero at the equilibrium position. You
should be able to find the velocity and acceleration of an oscillating object at any
time if you know the amplitude, angular frequency, and phase constant.

A block–spring system moves in simple harmonic motion on a frictionless sur-
face, with a period

(13.18)

The kinetic energy and potential energy for a simple harmonic oscillator vary with
time and are given by

(13.20)

(13.21)

These three formulas allow you to analyze a wide variety of situations involving os-
cillations. Be sure you recognize how the mass of the block and the spring con-
stant of the spring enter into the calculations.

The total energy of a simple harmonic oscillator is a constant of the motion
and is given by

(13.22)

The potential energy of the oscillator is a maximum when the oscillator is at its
turning points and is zero when the oscillator is at the equilibrium position. The
kinetic energy is zero at the turning points and a maximum at the equilibrium po-
sition. You should be able to determine the division of energy between potential
and kinetic forms at any time t .

A simple pendulum of length L moves in simple harmonic motion. For small
angular displacements from the vertical, its period is

(13.26)

For small angular displacements from the vertical, a physical pendulum
moves in simple harmonic motion about a pivot that does not go through the cen-
ter of mass.  The period of this motion is

(13.28)

where I is the moment of inertia about an axis through the pivot and d is the dis-
tance from the pivot to the center of mass. You should be able to distinguish when
to use the simple-pendulum formula and when the system must be considered a
physical pendulum.

Uniform circular motion can be considered a combination of two simple har-
monic motions, one along the x axis and the other along the y axis, with the two
differing in phase by 90°.

T � 2� √ I
mgd

T � 2� √ L
g

E � 1
2 kA2

U � 1
2 kx2 � 1

2 kA2 cos2(�t � �)

K � 1
2 mv2 � 1

2 m�2A2 sin2(�t � �)

T �
2�

�
� 2� √ m

k

x � 0.
x � 	A,

QUESTIONS

2. If the coordinate of a particle varies as cos �t,
what is the phase constant in Equation 13.3? At what posi-
tion does the particle begin its motion?

x � �A1. Is a bouncing ball an example of simple harmonic motion?
Is the daily movement of a student from home to school
and back simple harmonic motion? Why or why not?
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PROBLEMS

find (a) the displacement of the particle, (b) its velocity,
and (c) its acceleration. (d) Find the period and ampli-
tude of the motion.

5. A particle moving along the x axis in simple harmonic
motion starts from its equilibrium position, the origin,
at and moves to the right. The amplitude of its
motion is 2.00 cm, and the frequency is 1.50 Hz. 
(a) Show that the displacement of the particle is given
by Determine (b) the maxi-
mum speed and the earliest time (t � 0) at which the
particle has this speed, (c) the maximum acceleration
and the earliest time (t � 0) at which the particle has
this acceleration, and (d) the total distance traveled be-
tween and s.

6. The initial position and initial velocity of an object mov-
ing in simple harmonic motion are xi and vi ; the angular
frequency of oscillation is �. (a) Show that the position
and velocity of the object for all time can be written as

(b) If the amplitude of the motion is A, show that

v2 � ax � vi 

2 � aix i � �2A2

v(t) � �x i� sin �t � vi cos �t

x(t) � x i cos �t � � vi

� � sin �t

t � 1.00t � 0

x � (2.00 cm) sin(3.00�t).

t � 0

Section 13.1 Simple Harmonic Motion
1. The displacement of a particle at s is given by

the expression where x
is in meters and t is in seconds. Determine (a) the fre-
quency and period of the motion, (b) the amplitude of
the motion, (c) the phase constant, and (d) the dis-
placement of the particle at s.

2. A ball dropped from a height of 4.00 m makes a per-
fectly elastic collision with the ground. Assuming that
no energy is lost due to air resistance, (a) show that the
motion is periodic and (b) determine the period of the
motion. (c) Is the motion simple harmonic? Explain.

3. A particle moves in simple harmonic motion with a fre-
quency of 3.00 oscillations/s and an amplitude of 
5.00 cm. (a) Through what total distance does the parti-
cle move during one cycle of its motion? (b) What is its
maximum speed? Where does this occur? (c) Find the
maximum acceleration of the particle. Where in the
motion does the maximum acceleration occur?

4. In an engine, a piston oscillates with simple harmonic
motion so that its displacement varies according to the
expression

where x is in centimeters and t is in seconds. At ,t � 0

x � (5.00 cm) cos(2t � �/6)

t � 0.250

x � (4.00 m) cos(3.00�t � �),
t � 0.250

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

WEB

3. Does the displacement of an oscillating particle between
and a later time t necessarily equal the position of

the particle at time t? Explain.
4. Determine whether the following quantities can be in the

same direction for a simple harmonic oscillator: (a) dis-
placement and velocity, (b) velocity and acceleration, 
(c) displacement and acceleration.

5. Can the amplitude A and the phase constant � be deter-
mined for an oscillator if only the position is specified at

? Explain.
6. Describe qualitatively the motion of a mass–spring system

when the mass of the spring is not neglected.
7. Make a graph showing the potential energy of a station-

ary block hanging from a spring, Why is
the lowest part of the graph offset from the origin?

8. A block–spring system undergoes simple harmonic motion
with an amplitude A. Does the total energy change if the
mass is doubled but the amplitude is not changed? Do the
kinetic and potential energies depend on the mass? Explain.

9. What happens to the period of a simple pendulum if the
pendulum’s length is doubled? What happens to the pe-
riod if the mass of the suspended bob is doubled?

10. A simple pendulum is suspended from the ceiling of a sta-
tionary elevator, and the period is determined. Describe
the changes, if any, in the period when the elevator 

U � 1
2 ky2 � mgy.

t � 0

t � 0
(a) accelerates upward, (b) accelerates downward, and
(c) moves with constant velocity.

11. A simple pendulum undergoes simple harmonic motion
when � is small. Is the motion periodic when � is large?
How does the period of motion change as � increases?

12. Will damped oscillations occur for any values of b and k?
Explain.

13. As it possible to have damped oscillations when a system
is at resonance? Explain.

14. At resonance, what does the phase constant � equal in
Equation 13.36? (Hint: Compare this equation with the
expression for the driving force, which must be in phase
with the velocity at resonance.)

15. Some parachutes have holes in them to allow air to move
smoothly through them. Without such holes, sometimes
the air that has gathered beneath the chute as a para-
chutist falls is released from under its edges alternately
and periodically, at one side and then at the other. Why
might this periodic release of air cause a problem?

16. If a grandfather clock were running slowly, how could we
adjust the length of the pendulum to correct the time?

17. A pendulum bob is made from a sphere filled with water.
What would happen to the frequency of vibration of this
pendulum if the sphere had a hole in it that allowed the
water to leak out slowly?
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Section 13.2 The Block – Spring System Revisited
Note: Neglect the mass of the spring in all problems in this
section.

7. A spring stretches by 3.90 cm when a 10.0-g mass is
hung from it. If a 25.0-g mass attached to this spring os-
cillates in simple harmonic motion, calculate the period
of the motion.

8. A simple harmonic oscillator takes 12.0 s to undergo
five complete vibrations. Find (a) the period of its mo-
tion, (b) the frequency in hertz, and (c) the angular
frequency in radians per second.

9. A 0.500-kg mass attached to a spring with a force con-
stant of 8.00 N/m vibrates in simple harmonic motion
with an amplitude of 10.0 cm. Calculate (a) the maxi-
mum value of its speed and acceleration, (b) the speed
and acceleration when the mass is 6.00 cm from the
equilibrium position, and (c) the time it takes the mass
to move from to cm.

10. A 1.00-kg mass attached to a spring with a force con-
stant of 25.0 N/m oscillates on a horizontal, frictionless
track. At , the mass is released from rest at

cm. (That is, the spring is compressed by
3.00 cm.) Find (a) the period of its motion; (b) the
maximum values of its speed and acceleration; and 
(c) the displacement, velocity, and acceleration as func-
tions of time.

11. A 7.00-kg mass is hung from the bottom end of a verti-
cal spring fastened to an overhead beam. The mass is
set into vertical oscillations with a period of 2.60 s. Find
the force constant of the spring.

12. A block of unknown mass is attached to a spring with a
spring constant of 6.50 N/m and undergoes simple har-
monic motion with an amplitude of 10.0 cm. When the
mass is halfway between its equilibrium position and the
end point, its speed is measured to be � 30.0 cm/s. Cal-
culate (a) the mass of the block, (b) the period of the
motion, and (c) the maximum acceleration of the
block.

13. A particle that hangs from a spring oscillates with an an-
gular frequency of 2.00 rad/s. The spring–particle sys-
tem is suspended from the ceiling of an elevator car and
hangs motionless (relative to the elevator car) as the car
descends at a constant speed of 1.50 m/s. The car then
stops suddenly. (a) With what amplitude does the parti-
cle oscillate? (b) What is the equation of motion for the
particle? (Choose upward as the positive direction.)

14. A particle that hangs from a spring oscillates with an an-
gular frequency �. The spring–particle system is sus-
pended from the ceiling of an elevator car and hangs
motionless (relative to the elevator car) as the car de-
scends at a constant speed v. The car then stops sud-
denly. (a) With what amplitude does the particle oscil-
late? (b) What is the equation of motion for the
particle? (Choose upward as the positive direction.)

15. A 1.00-kg mass is attached to a horizontal spring. The
spring is initially stretched by 0.100 m, and the mass is

x � �3.00
t � 0

x � 8.00x � 0

released from rest there. It proceeds to move without
friction. After 0.500 s, the speed of the mass is zero.
What is the maximum speed of the mass?

Section 13.3 Energy of the Simple Harmonic Oscillator
Note: Neglect the mass of the spring in all problems in this
section.

16. A 200-g mass is attached to a spring and undergoes sim-
ple harmonic motion with a period of 0.250 s. If the to-
tal energy of the system is 2.00 J, find (a) the force con-
stant of the spring and (b) the amplitude of the motion.

17. An automobile having a mass of 1 000 kg is driven into
a brick wall in a safety test. The bumper behaves as a
spring of constant 5.00 � 106 N/m and compresses 
3.16 cm as the car is brought to rest. What was the
speed of the car before impact, assuming that no energy
is lost during impact with the wall?

18. A mass–spring system oscillates with an amplitude of
3.50 cm. If the spring constant is 250 N/m and the mass
is 0.500 kg, determine (a) the mechanical energy of the
system, (b) the maximum speed of the mass, and 
(c) the maximum acceleration.

19. A 50.0-g mass connected to a spring with a force con-
stant of 35.0 N/m oscillates on a horizontal, frictionless
surface with an amplitude of 4.00 cm. Find (a) the total
energy of the system and (b) the speed of the mass
when the displacement is 1.00 cm. Find (c) the kinetic
energy and (d) the potential energy when the displace-
ment is 3.00 cm.

20. A 2.00-kg mass is attached to a spring and placed on a
horizontal, smooth surface. A horizontal force of 20.0 N
is required to hold the mass at rest when it is pulled
0.200 m from its equilibrium position (the origin of the
x axis). The mass is now released from rest with an ini-
tial displacement of m, and it subsequently
undergoes simple harmonic oscillations. Find (a) the
force constant of the spring, (b) the frequency of the
oscillations, and (c) the maximum speed of the mass.
Where does this maximum speed occur? (d) Find the
maximum acceleration of the mass. Where does it oc-
cur? (e) Find the total energy of the oscillating system.
Find (f) the speed and (g) the acceleration when the
displacement equals one third of the maximum 
value.

21. A 1.50-kg block at rest on a tabletop is attached to a hor-
izontal spring having force constant of 19.6 N/m. The
spring is initially unstretched. A constant 20.0-N hori-
zontal force is applied to the object, causing the spring
to stretch. (a) Determine the speed of the block after it
has moved 0.300 m from equilibrium, assuming that the
surface between the block and the tabletop is friction-
less. (b) Answer part (a) for a coefficient of kinetic fric-
tion of 0.200 between the block and the tabletop.

22. The amplitude of a system moving in simple harmonic
motion is doubled. Determine the change in (a) the to-
tal energy, (b) the maximum speed, (c) the maximum
acceleration, and (d) the period.

x i � 0.200

WEB
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23. A particle executes simple harmonic motion with an
amplitude of 3.00 cm. At what displacement from the
midpoint of its motion does its speed equal one half of
its maximum speed?

24. A mass on a spring with a constant of 3.24 N/m vi-
brates, with its position given by the equation 

cm) cos(3.60t rad/s). (a) During the first 
cycle, for 0 � t � 1.75 s, when is the potential energy 
of the system changing most rapidly into kinetic energy?
(b) What is the maximum rate of energy transfor-
mation?

Section 13.4 The Pendulum
25. A man enters a tall tower, needing to know its height.

He notes that a long pendulum extends from the ceil-
ing almost to the floor and that its period is 12.0 s. 
(a) How tall is the tower? (b) If this pendulum is taken
to the Moon, where the free-fall acceleration is 
1.67 m/s2, what is its period there?

26. A “seconds” pendulum is one that moves through its
equilibrium position once each second. (The period of
the pendulum is 2.000 s.) The length of a seconds pen-
dulum is 0.992 7 m at Tokyo and 0.994 2 m at Cam-
bridge, England. What is the ratio of the free-fall accel-
erations at these two locations?

27. A rigid steel frame above a street intersection supports
standard traffic lights, each of which is hinged to hang
immediately below the frame. A gust of wind sets a light
swinging in a vertical plane. Find the order of magni-
tude of its period. State the quantities you take as data
and their values.

28. The angular displacement of a pendulum is repre-
sented by the equation � � (0.320 rad)cos �t, where �
is in radians and � � 4.43 rad/s. Determine the period
and length of the pendulum.

29. A simple pendulum has a mass of 0.250 kg and a length
of 1.00 m. It is displaced through an angle of 15.0° and
then released. What are (a) the maximum speed, 
(b) the maximum angular acceleration, and 
(c) the maximum restoring force?

30. A simple pendulum is 5.00 m long. (a) What is the pe-
riod of simple harmonic motion for this pendulum if it
is hanging in an elevator that is accelerating upward at
5.00 m/s2? (b) What is its period if the elevator is accel-
erating downward at 5.00 m/s2? (c) What is the period
of simple harmonic motion for this pendulum if it is
placed in a truck that is accelerating horizontally at 
5.00 m/s2?

31. A particle of mass m slides without friction inside a
hemispherical bowl of radius R . Show that, if it starts
from rest with a small displacement from equilibrium,
the particle moves in simple harmonic motion with an
angular frequency equal to that of a simple pendulum
of length R . That is, 

32. A mass is attached to the end of a string to form a sim-
ple pendulum. The period of its harmonic motion is

� � √g/R .

x � (5.00

measured for small angular displacements and three
lengths; in each case, the motion is clocked with a stop-
watch for 50 oscillations. For lengths of 1.000 m, 
0.750 m, and 0.500 m, total times of 99.8 s, 86.6 s, and
71.1 s, respectively, are measured for the 50 oscillations.
(a) Determine the period of motion for each length.
(b) Determine the mean value of g obtained from these
three independent measurements, and compare it with
the accepted value. (c) Plot T 2 versus L, and obtain a
value for g from the slope of your best-fit straight-line
graph. Compare this value with that obtained in part
(b).

33. A physical pendulum in the form of a planar body
moves in simple harmonic motion with a frequency of
0.450 Hz. If the pendulum has a mass of 2.20 kg and the
pivot is located 0.350 m from the center of mass, deter-
mine the moment of inertia of the pendulum.

34. A very light, rigid rod with a length of 0.500 m extends
straight out from one end of a meter stick. The stick is
suspended from a pivot at the far end of the rod and is
set into oscillation. (a) Determine the period of oscilla-
tion. (b) By what percentage does this differ from a
1.00-m-long simple pendulum?

35. Consider the physical pendulum of Figure 13.13. (a) If
ICM is its moment of inertia about an axis that passes
through its center of mass and is parallel to the axis that
passes through its pivot point, show that its period is

where d is the distance between the pivot point and the
center of mass. (b) Show that the period has a mini-
mum value when d satisfies 

36. A torsional pendulum is formed by attaching a wire to
the center of a meter stick with a mass of 2.00 kg. If the
resulting period is 3.00 min, what is the torsion constant
for the wire?

37. A clock balance wheel has a period of oscillation of
0.250 s. The wheel is constructed so that 20.0 g of mass
is concentrated around a rim of radius 0.500 cm. What
are (a) the wheel’s moment of inertia and (b) the tor-
sion constant of the attached spring?

Section 13.5 Comparing Simple Harmonic 
Motion with Uniform Circular Motion

38. While riding behind a car that is traveling at 3.00 m/s,
you notice that one of the car’s tires has a small hemi-
spherical boss on its rim, as shown in Figure P13.38. 
(a) Explain why the boss, from your viewpoint behind
the car, executes simple harmonic motion. (b) If the 
radius of the car’s tires is 0.300 m, what is the boss’s pe-
riod of oscillation?

39. Consider the simplified single-piston engine shown in
Figure P13.39. If the wheel rotates with constant angu-
lar speed, explain why the piston rod oscillates in sim-
ple harmonic motion.

md 2 � ICM .

T � 2�√ ICM � md 2

mgd

WEB
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riod and (b) the amplitude of the motion. (Hint: As-
sume that there is no damping—that is, that 
b � 0—and use Eq. 13.37.)

45. Considering an undamped, forced oscillator 
show that Equation 13.36 is a solution of Equation
13.35, with an amplitude given by Equation 13.37.

46. A weight of 40.0 N is suspended from a spring that has a
force constant of 200 N/m. The system is undamped
and is subjected to a harmonic force with a frequency of
10.0 Hz, which results in a forced-motion amplitude of
2.00 cm. Determine the maximum value of the force.

47. Damping is negligible for a 0.150-kg mass hanging from
a light 6.30-N/m spring. The system is driven by a force
oscillating with an amplitude of 1.70 N. At what fre-
quency will the force make the mass vibrate with an am-
plitude of 0.440 m?

48. You are a research biologist. Before dining at a fine
restaurant, you set your pager to vibrate instead of
beep, and you place it in the side pocket of your suit
coat. The arm of your chair presses the light cloth
against your body at one spot. Fabric with a length of
8.21 cm hangs freely below that spot, with the pager at
the bottom. A co-worker telephones you. The motion of
the vibrating pager makes the hanging part of your coat
swing back and forth with remarkably large amplitude.
The waiter, maître d’, wine steward, and nearby diners
notice immediately and fall silent. Your daughter pipes
up and says, “Daddy, look! Your cockroaches must have
gotten out again!” Find the frequency at which your
pager vibrates.

ADDITIONAL PROBLEMS

49. A car with bad shock absorbers bounces up and down
with a period of 1.50 s after hitting a bump. The car has
a mass of 1 500 kg and is supported by four springs of
equal force constant k. Determine the value of k.

50. A large passenger with a mass of 150 kg sits in the mid-
dle of the car described in Problem 49. What is the new
period of oscillation?

51. A compact mass M is attached to the end of a uniform
rod, of equal mass M and length L , that is pivoted at the
top (Fig. P13.51). (a) Determine the tensions in the rod

(b � 0),

Piston

A

x = �A x(t )

ω

Boss

Figure P13.38

L

P

y

Pivot

y = 0M

Figure P13.39

(Optional)
Section 13.6 Damped Oscillations

40. Show that the time rate of change of mechanical energy
for a damped, undriven oscillator is given by

and hence is always negative. (Hint: Dif-
ferentiate the expression for the mechanical energy of
an oscillator, and use Eq. 13.32.)

41. A pendulum with a length of 1.00 m is released from an
initial angle of 15.0°. After 1 000 s, its amplitude is re-
duced by friction to 5.50°. What is the value of b/2m ?

42. Show that Equation 13.33 is a solution of Equation
13.32 provided that 

(Optional)
Section 13.7 Forced Oscillations

43. A baby rejoices in the day by crowing and jumping up
and down in her crib. Her mass is 12.5 kg, and the crib
mattress can be modeled as a light spring with a force
constant of 4.30 kN/m. (a) The baby soon learns to
bounce with maximum amplitude and minimum effort
by bending her knees at what frequency? (b) She learns
to use the mattress as a trampoline—losing contact
with it for part of each cycle—when her amplitude ex-
ceeds what value?

44. A 2.00-kg mass attached to a spring is driven by an ex-
ternal force F � (3.00 N) cos(2�t). If the force con-
stant of the spring is 20.0 N/m, determine (a) the pe-

b 2 � 4mk.

E � 1
2 mv2 � 1

2 kx2,

dE/dt � �bv2

Figure P13.51
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at the pivot and at the point P when the system is sta-
tionary. (b) Calculate the period of oscillation for small
displacements from equilibrium, and determine this pe-
riod for L � 2.00 m. (Hint: Assume that the mass at the
end of the rod is a point mass, and use Eq. 13.28.)

52. A mass, m1 � 9.00 kg, is in equilibrium while connected
to a light spring of constant k � 100 N/m that is fas-
tened to a wall, as shown in Figure P13.52a. A second
mass, m2 � 7.00 kg, is slowly pushed up against mass
m1 , compressing the spring by the amount A � 0.200 m
(see Fig. P13.52b). The system is then released, and
both masses start moving to the right on the frictionless
surface. (a) When m1 reaches the equilibrium point, m2
loses contact with m1 (see Fig. P13.52c) and moves to
the right with speed v. Determine the value of v. 
(b) How far apart are the masses when the spring is
fully stretched for the first time (D in Fig. P13.52d)?
(Hint: First determine the period of oscillation and the
amplitude of the m1 – spring system after m2 loses con-
tact with m1 .)

in Figure P13.53, and the coefficient of static friction
between the two is �s � 0.600. What maximum ampli-
tude of oscillation can the system have if block B is not
to slip?

54. A large block P executes horizontal simple harmonic
motion as it slides across a frictionless surface with a fre-
quency f. Block B rests on it, as shown in Figure P13.53,
and the coefficient of static friction between the two is
�s . What maximum amplitude of oscillation can the sys-
tem have if the upper block is not to slip?

55. The mass of the deuterium molecule (D2) is twice 
that of the hydrogen molecule (H2). If the vibrational
frequency of H2 is 1.30 � 1014 Hz, what is the vibra-
tional frequency of D2 ? Assume that the “spring con-
stant’’ of attracting forces is the same for the two 
molecules.

56. A solid sphere (radius � R) rolls without slipping in a
cylindrical trough (radius � 5R), as shown in Figure
P13.56. Show that, for small displacements from equilib-
rium perpendicular to the length of the trough, the
sphere executes simple harmonic motion with a period
T � 2� √28R/5g.

WEB

5R

R

B
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m1 m2

v

v

m1 m2

m1 m2
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(b)

(c)

(d)

k

k

k

k

D

57. A light cubical container of volume a3 is initially filled
with a liquid of mass density �. The container is initially
supported by a light string to form a pendulum of
length Li , measured from the center of mass of the
filled container. The liquid is allowed to flow from the
bottom of the container at a constant rate (dM/dt). At
any time t, the level of the liquid in the container is h

53. A large block P executes horizontal simple harmonic
motion as it slides  across a frictionless surface with a
frequency of f � 1.50 Hz. Block B rests on it, as shown

Figure P13.52

Figure P13.53 Problems 53 and 54.

Figure P13.56



Problems 419

59. A pendulum of length L and mass M has a spring of
force constant k connected to it at a distance h below its
point of suspension (Fig. P13.59). Find the frequency of
vibration of the system for small values of the amplitude
(small �). (Assume that the vertical suspension of
length L is rigid, but neglect its mass.)

60. A horizontal plank of mass m and length L is pivoted at
one end. The plank’s other end is supported by a spring
of force constant k (Fig. P13.60). The moment of iner-
tia of the plank about the pivot is (a) Show that
the plank, after being displaced a small angle � from its
horizontal equilibrium position and released, moves
with simple harmonic motion of angular frequency 

(b) Evaluate the frequency if the mass is
5.00 kg and the spring has a force constant of 100 N/m.
� � √3k/m.

1
3 mL2.

Pivot

θ

k

h
θ

L

k

M

m

(a)

61. One end of a light spring with a force constant of 
100 N/m is attached to a vertical wall. A light string is
tied to the other end of the horizontal spring. The
string changes from horizontal to vertical as it passes
over a 4.00-cm-diameter solid pulley that is free to turn
on a fixed smooth axle. The vertical section of the
string supports a 200-g mass. The string does not slip at
its contact with the pulley. Find the frequency of oscilla-
tion of the mass if the mass of the pulley is (a) negligi-
ble, (b) 250 g, and (c) 750 g.

62. A 2.00-kg block hangs without vibrating at the end of a
spring (k � 500 N/m) that is attached to the ceiling of
an elevator car. The car is rising with an upward acceler-
ation of g/3 when the acceleration suddenly ceases (at

). (a) What is the angular frequency of oscillation
of the block after the acceleration ceases? (b) By what
amount is the spring stretched during the acceleration
of the elevator car? (c) What are the amplitude of the
oscillation and the initial phase angle observed by a
rider in the car? Take the upward direction to be posi-
tive.

63. A simple pendulum with a length of 2.23 m and a mass
of 6.74 kg is given an initial speed of 2.06 m/s at its
equilibrium position. Assume that it undergoes simple
harmonic motion, and determine its (a) period, (b) to-
tal energy, and (c) maximum angular displacement.

t � 0

Figure P13.58 (a) Mass–spring system for Problems 58 and 68.
(b) Bungee-jumping from a bridge. (Telegraph Colour Library/
FPG International)

Figure P13.59

Figure P13.60

(b)

and the length of the pendulum is L (measured relative
to the instantaneous center of mass). (a) Sketch the ap-
paratus and label the dimensions a, h, Li , and L . 
(b) Find the time rate of change of the period as a
function of time t. (c) Find the period as a function of
time.

58. After a thrilling plunge, bungee-jumpers bounce freely
on the bungee cords through many cycles. Your little
brother can make a pest of himself by figuring out the
mass of each person, using a proportion he set up by
solving this problem: A mass m is oscillating freely on a
vertical spring with a period T (Fig. P13.58a). An un-
known mass m
 on the same spring oscillates with a pe-
riod T 
. Determine (a) the spring constant k and 
(b) the unknown mass m
.
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67. A ball of mass m is connected to two rubber bands of
length L , each under tension T, as in Figure P13.67.
The ball is displaced by a small distance y perpendicular
to the length of the rubber bands. Assuming that the
tension does not change, show that (a) the restoring
force is � (2T/L)y and (b) the system exhibits simple
harmonic motion with an angular frequency
� � √2T/mL .

68. When a mass M, connected to the end of a spring of
mass g and force constant k, is set into simple
harmonic motion, the period of its motion is

A two-part experiment is conducted with the use of vari-
ous masses suspended vertically from the spring, as
shown in Figure P13.58a. (a) Static extensions of 17.0,
29.3, 35.3, 41.3, 47.1, and 49.3 cm are measured for M
values of 20.0, 40.0, 50.0, 60.0, 70.0, and 80.0 g, respec-
tively. Construct a graph of Mg versus x, and perform a
linear least-squares fit to the data. From the slope of
your graph, determine a value for k for this spring. 
(b) The system is now set into simple harmonic motion,
and periods are measured with a stopwatch. With M �
80.0 g, the total time for 10 oscillations is measured to
be 13.41 s. The experiment is repeated with M values of
70.0, 60.0, 50.0, 40.0, and 20.0 g, with corresponding
times for 10 oscillations of 12.52, 11.67, 10.67, 9.62, and
7.03 s. Compute the experimental value for T for each
of these measurements. Plot a graph of T 2 versus M,
and determine a value for k from the slope of the linear
least-squares fit through the data points. Compare this
value of k with that obtained in part (a). (c) Obtain a
value for ms from your graph, and compare it with the
given value of 7.40 g.

69. A small, thin disk of radius r and mass m is attached
rigidly to the face of a second thin disk of radius R and
mass M, as shown in Figure P13.69. The center of the
small disk is located at the edge of the large disk. The
large disk is mounted at its center on a frictionless axle.
The assembly is rotated through a small angle � from its
equilibrium position and released. (a) Show that the

T � 2�√ M � (ms/3)
k

ms � 7.40

WEB
R

M

θθ

mv

y

L L

x

dx

M

v

Figure P13.66

Figure P13.67

Figure P13.69

64. People who ride motorcycles and bicycles learn to look
out for bumps in the road and especially for washboard-
ing, which is a condition of many equally spaced ridges
worn into the road. What is so bad about washboarding?
A motorcycle has several springs and shock absorbers in
its suspension, but you can model it as a single spring
supporting a mass. You can estimate the spring constant
by thinking about how far the spring compresses when
a big biker sits down on the seat. A motorcyclist travel-
ing at highway speed must be particularly careful of
washboard bumps that are a certain distance apart.
What is the order of magnitude of their separation dis-
tance? State the quantities you take as data and the val-
ues you estimate or measure for them.

65. A wire is bent into the shape of one cycle of a cosine
curve. It is held in a vertical plane so that the height y
of the wire at any horizontal distance x from the center
is given by rad/m)]. A
bead can slide without friction on the stationary wire.
Show that if its excursion away from is never large,
the bead moves with simple harmonic motion. Deter-
mine its angular frequency. (Hint: cos for
small �.)

66. A block of mass M is connected to a spring of mass m
and oscillates in simple harmonic motion on a horizon-
tal, frictionless track (Fig. P13.66). The force constant
of the spring is k, and the equilibrium length is �. Find
(a) the kinetic energy of the system when the block has
a speed v, and (b) the period of oscillation. (Hint: As-
sume that all portions of the spring oscillate in phase
and that the velocity of a segment dx is proportional to
the distance x from the fixed end; that is, /�]v.
Also, note that the mass of a segment of the spring is

�]dx.)dm � [m/

vx � [x

� � 1 � � 2/2

x � 0

y � 20.0 cm[1 � cos(0.160x
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13.3 No, because in simple harmonic motion, the accelera-
tion is not constant.

13.4 where 
13.5 From Hooke’s law, the spring constant must be

If we substitute this value for k into Equation
13.18, we find that

This is the same as Equation 13.26, which gives the pe-
riod of a simple pendulum. Thus, when an object
stretches a vertically hung spring, the period of the sys-
tem is the same as that of a simple pendulum having a
length equal to the amount of static extension of the
spring.

T � 2�√ m
k

� 2�√ m
mg/L

� 2�√ L
g

k � mg/L .

A � vi/�.x � �A sin �t,

13.1 Because A can never be zero, � must be any value that
results in the cosine function’s being zero at . In
other words, � � cos�1(0). This is true at � � �/2,
3�/2 or,  more generally, � � 	 n�/2, where n is any
nonzero odd integer. If we want to restrict our choices
of � to values between 0 and 2�, we need to know
whether the object was moving to the right or to the left
at . If it was moving with a positive velocity, then 
� � 3�/2. If vi � 0, then � � �/2.

13.2 (d) 4A. From its maximum positive position to the equi-
librium position, it travels a distance A, by definition of
amplitude. It then goes an equal distance past the equi-
librium position to its maximum negative position. It
then repeats these two motions in the reverse direction
to return to its original position and complete one cycle.

t � 0

t � 0

m

(a)

k1 k2

(b)

k1 k2

m

speed of the center of the small disk as it passes through
the equilibrium position is

(b) Show that the period of the motion is

70. Consider the damped oscillator illustrated in Figure
13.19. Assume that the mass is 375 g, the spring con-
stant is 100 N/m, and kg/s. (a) How long
does it takes for the amplitude to drop to half its initial
value? (b) How long does it take for the mechanical en-
ergy to drop to half its initial value? (c) Show that, in
general, the fractional rate at which the amplitude de-
creases in a damped harmonic oscillator is one-half the
fractional rate at which the mechanical energy de-
creases.

71. A mass m is connected to two springs of force constants
k1 and k2 , as shown in Figure P13.71a and b. In each
case, the mass moves on a frictionless table and is dis-
placed from equilibrium and then released. Show that
in the two cases the mass exhibits simple harmonic mo-
tion with periods

(a)

(b)

72. Consider a simple pendulum of length L � 1.20 m that
is displaced from the vertical by an angle �max and then
released. You are to predict the subsequent angular dis-
placements when �max is small and also when it is large.
Set up and carry out a numerical method to integrate

T � 2�√ m
k1 � k2

T � 2�√ m(k1 � k2)
k1k2

b � 0.100

T � 2� � (M � 2m)R2 � mr 2

2mgR �
1/2

v � 2 � Rg(1 � cos �)
(M/m) � (r/R)2 � 2 �

1/2

the equation of motion for the simple pendulum:

Take the initial conditions to be � � �max and d�/dt � 0
at . On one trial choose �max � 5.00°, and on an-
other trial take �max � 100°. In each case, find the dis-
placement � as a function of time. Using the same val-
ues for �max, compare your results for � with those
obtained from �max cos �t . How does the period for the
large value of �max compare with that for the small value
of �max ? Note: Using the Euler method to solve this dif-
ferential equation, you may find that the amplitude
tends to increase with time. The fourth-order
Runge–Kutta method would be a better choice to solve
the differential equation. However, if you choose �t
small enough, the solution that you obtain using Euler’s
method can still be good.

t � 0

d 2�

dt2 � �
g
L

 sin �

Figure P13.71
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13.6 If your goal is simply to stop the bounce from an ab-
sorbed shock as rapidly as possible, you should critically
damp the suspension. Unfortunately, the stiffness of this
design makes for an uncomfortable ride. If you under-
damp the suspension, the ride is more comfortable but
the car bounces. If you overdamp the suspension, the
wheel is displaced from its equilibrium position longer
than it should be. (For example, after hitting a bump,
the spring stays compressed for a short time and the

wheel does not quickly drop back down into contact
with the road after the wheel is past the bump—a dan-
gerous situation.) Because of all these considerations,
automotive engineers usually design suspensions to be
slightly underdamped. This allows the suspension to ab-
sorb a shock rapidly (minimizing the roughness of the
ride) and then return to equilibrium after only one or
two noticeable oscillations.
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The Law of Gravity

P U Z Z L E R

More than 300 years ago, Isaac Newton
realized that the same gravitational force
that causes apples to fall to the Earth
also holds the Moon in its orbit. In recent
years, scientists have used the Hubble
Space Telescope to collect evidence of
the gravitational force acting even far-
ther away, such as at this protoplanetary
disk in the constellation Taurus. What
properties of an object such as a proto-
planet or the Moon determine the
strength of its gravitational attraction to
another object? (Left, Larry West/FPG

International; right, Courtesy of NASA)
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14.1 Newton’s Law of Universal
Gravitation

14.2 Measuring the Gravitational
Constant

14.3 Free-Fall Acceleration and the
Gravitational Force

14.4 Kepler’s Laws

14.5 The Law of Gravity and the
Motion of Planets

14.6 The Gravitational Field

14.7 Gravitational Potential Energy

14.8 Energy Considerations in
Planetary and Satellite Motion

14.9 (Optional) The Gravitational
Force Between an Extended
Object and a Particle

14.10 (Optional) The Gravitational
Force Between a Particle and a
Spherical Mass
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For more information about the Hubble,
visit the Space Telescope Science Institute
at http://www.stsci.edu/
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efore 1687, a large amount of data had been collected on the motions of the
Moon and the planets, but a clear understanding of the forces causing these
motions was not available. In that year, Isaac Newton provided the key that

unlocked the secrets of the heavens. He knew, from his first law, that a net force
had to be acting on the Moon because without such a force the Moon would move
in a straight-line path rather than in its almost circular orbit. Newton reasoned
that this force was the gravitational attraction exerted by the Earth on the Moon.
He realized that the forces involved in the Earth–Moon attraction and in the
Sun–planet attraction were not something special to those systems, but rather
were particular cases of a general and universal attraction between objects. In
other words, Newton saw that the same force of attraction that causes the Moon to
follow its path around the Earth also causes an apple to fall from a tree. As he put
it, “I deduced that the forces which keep the planets in their orbs must be recipro-
cally as the squares of their distances from the centers about which they revolve;
and thereby compared the force requisite to keep the Moon in her orb with the
force of gravity at the surface of the Earth; and found them answer pretty nearly.”

In this chapter we study the law of gravity. We place emphasis on describing
the motion of the planets because astronomical data provide an important test of
the validity of the law of gravity. We show that the laws of planetary motion devel-
oped by Johannes Kepler follow from the law of gravity and the concept of conser-
vation of angular momentum. We then derive a general expression for gravita-
tional potential energy and examine the energetics of planetary and satellite
motion. We close by showing how the law of gravity is also used to determine the
force between a particle and an extended object.

NEWTON’S LAW OF UNIVERSAL GRAVITATION
You may have heard the legend that Newton was struck on the head by a falling ap-
ple while napping under a tree. This alleged accident supposedly prompted him
to imagine that perhaps all bodies in the Universe were attracted to each other in
the same way the apple was attracted to the Earth. Newton analyzed astronomical
data on the motion of the Moon around the Earth. From that analysis, he made
the bold assertion that the force law governing the motion of planets was the same
as the force law that attracted a falling apple to the Earth. This was the first time
that “earthly” and “heavenly” motions were unified. We shall look at the mathe-
matical details of Newton’s analysis in Section 14.5.

In 1687 Newton published his work on the law of gravity in his treatise Mathe-
matical Principles of Natural Philosophy. Newton’s law of universal gravitation
states that

14.1

every particle in the Universe attracts every other particle with a force that is di-
rectly proportional to the product of their masses and inversely proportional to
the square of the distance between them.

B

If the particles have masses m1 and m2 and are separated by a distance r, the mag-
nitude of this gravitational force is

(14.1)Fg � G 
m1m2

r 2The law of gravity
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where G is a constant, called the universal gravitational constant, that has been mea-
sured experimentally. As noted in Example 6.6, its value in SI units is

(14.2)

The form of the force law given by Equation 14.1 is often referred to as an in-
verse-square law because the magnitude of the force varies as the inverse square
of the separation of the particles.1 We shall see other examples of this type of force
law in subsequent chapters. We can express this force in vector form by defining a
unit vector (Fig. 14.1). Because this unit vector is directed from particle 1 to
particle 2, the force exerted by particle 1 on particle 2 is

(14.3)

where the minus sign indicates that particle 2 is attracted to particle 1, and hence
the force must be directed toward particle 1. By Newton’s third law, the force ex-
erted by particle 2 on particle 1, designated F21 , is equal in magnitude to F12 and
in the opposite direction. That is, these forces form an action–reaction pair, and

Several features of Equation 14.3 deserve mention. The gravitational force is a
field force that always exists between two particles, regardless of the medium that
separates them. Because the force varies as the inverse square of the distance be-
tween the particles, it decreases rapidly with increasing separation. We can relate
this fact to the geometry of the situation by noting that the intensity of light ema-
nating from a point source drops off in the same 1/r 2 manner, as shown in Figure
14.2.

Another important point about Equation 14.3 is that the gravitational force
exerted by a finite-size, spherically symmetric mass distribution on a parti-
cle outside the distribution is the same as if the entire mass of the distribu-
tion were concentrated at the center. For example, the force exerted by the

F21 � �F12.

F12 � �G 
m1m2

r 2  r̂12

r̂12

G � 6.673 � 10�11 N�m2/kg2

Properties of the gravitational
force

QuickLab
Inflate a balloon just enough to form
a small sphere. Measure its diameter.
Use a marker to color in a 1-cm
square on its surface. Now continue
inflating the balloon until it reaches
twice the original diameter. Measure
the size of the square you have drawn.
Also note how the color of the
marked area has changed. Have you
verified what is shown in Figure 14.2?

1 An inverse relationship between two quantities x and y is one in which where k is a constant.
A direct proportion between x and y exists when y � kx.

y � k/x,

m1

m2
r

r̂

F21

F12

12

Figure 14.1 The gravitational
force between two particles is at-
tractive. The unit vector is di-
rected from particle 1 to particle 2.
Note that F21 � � F12 .

r̂12

r

2r Figure 14.2 Light radiating from a
point source drops off as 1/r2, a relation-
ship that matches the way the gravita-
tional force depends on distance. When
the distance from the light source is dou-
bled, the light has to cover four times the
area and thus is one fourth as bright.
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Earth on a particle of mass m near the Earth’s surface has the magnitude

(14.4)

where ME is the Earth’s mass and RE its radius. This force is directed toward the
center of the Earth.

We have evidence of the fact that the gravitational force acting on an object is
directly proportional to its mass from our observations of falling objects, discussed
in Chapter 2. All objects, regardless of mass, fall in the absence of air resistance at
the same acceleration g near the surface of the Earth. According to Newton’s sec-
ond law, this acceleration is given by where m is the mass of the falling
object. If this ratio is to be the same for all falling objects, then Fg must be directly
proportional to m, so that the mass cancels in the ratio. If we consider the more
general situation of a gravitational force between any two objects with mass, such
as two planets, this same argument can be applied to show that the gravitational
force is proportional to one of the masses. We can choose either of the masses in
the argument, however; thus, the gravitational force must be directly proportional
to both masses, as can be seen in Equation 14.3.

MEASURING THE GRAVITATIONAL CONSTANT
The universal gravitational constant G was measured in an important experiment
by Henry Cavendish (1731–1810) in 1798. The Cavendish apparatus consists of
two small spheres, each of mass m, fixed to the ends of a light horizontal rod sus-
pended by a fine fiber or thin metal wire, as illustrated in Figure 14.3. When two
large spheres, each of mass M, are placed near the smaller ones, the attractive
force between smaller and larger spheres causes the rod to rotate and twist the
wire suspension to a new equilibrium orientation. The angle of rotation is mea-
sured by the deflection of a light beam reflected from a mirror attached to the ver-
tical suspension. The deflection of the light is an effective technique for amplify-
ing the motion. The experiment is carefully repeated with different masses at
various separations. In addition to providing a value for G, the results show experi-
mentally that the force is attractive, proportional to the product mM, and inversely
proportional to the square of the distance r.

14.2

g � Fg/m,

Fg � G 
MEm
R E 

2

Billiards, Anyone?EXAMPLE 14.1
Solution First we calculate separately the individual forces
on the cue ball due to the other two balls, and then we find
the vector sum to get the resultant force. We can see graphi-
cally that this force should point upward and toward the

Three 0.300-kg billiard balls are placed on a table at the cor-
ners of a right triangle, as shown in Figure 14.4. Calculate the
gravitational force on the cue ball (designated m1) resulting
from the other two balls.

Mirror

r
m

M

Light
source

Figure 14.3 Schematic diagram of the Cavendish ap-
paratus for measuring G. As the small spheres of mass m
are attracted to the large spheres of mass M, the rod be-
tween the two small spheres rotates through a small an-
gle. A light beam reflected from a mirror on the rotating
apparatus measures the angle of rotation. The dashed
line represents the original position of the rod.
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FREE-FALL ACCELERATION AND THE
GRAVITATIONAL FORCE

In Chapter 5, when defining mg as the weight of an object of mass m, we referred
to g as the magnitude of the free-fall acceleration. Now we are in a position to ob-
tain a more fundamental description of g. Because the force acting on a freely
falling object of mass m near the Earth’s surface is given by Equation 14.4, we can
equate mg to this force to obtain

(14.5)

Now consider an object of mass m located a distance h above the Earth’s sur-
face or a distance r from the Earth’s center, where The magnitude of
the gravitational force acting on this object is

The gravitational force acting on the object at this position is also where
g� is the value of the free-fall acceleration at the altitude h. Substituting this expres-

Fg � mg �,

Fg � G 
MEm

r 2 � G 
MEm

(R E � h)2

r � R E � h.

 g � G 
ME

R E 

2  

mg � G 
MEm
R E 

2

14.3

right. We locate our coordinate axes as shown in Figure 14.4,
placing our origin at the position of the cue ball.

The force exerted by m2 on the cue ball is directed up-
ward and is given by

F21 � G 
m2m1

r21 

2  j 
This result shows that the gravitational forces between every-
day objects have extremely small magnitudes. The force ex-
erted by m3 on the cue ball is directed to the right:

Therefore, the resultant force on the cue ball is

and the magnitude of this force is

Exercise Find the direction of F.

Answer 29.3° counterclockwise from the positive x axis.

 � 7.65 � 10�11 N

F � √F21 

2 � F31 

2 � √(3.75)2 � (6.67)2 � 10�11

(3.75j � 6.67i) � 10�11 NF � F21 � F31 �

 � 6.67 � 10�11 i N 

 � �6.67 � 10�11 
N�m2

kg2 � 
(0.300 kg)(0.300 kg)

(0.300 m)2  i

F31 � G 
m3m1

r31 

2  i 

 � 3.75 � 10�11 j N 

 � �6.67 � 10�11 
N�m2

kg2 � 
(0.300 kg)(0.300 kg)

(0.400 m)2  j

0.400 m

m2

0.500 m

m1 0.300 m m3

F21
F

F31y

x

Figure 14.4 The resultant gravitational force acting on the cue
ball is the vector sum F21 � F31 .

Free-fall acceleration near the
Earth’s surface
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sion for Fg into the last equation shows that g� is

(14.6)

Thus, it follows that g� decreases with increasing altitude. Because the weight of a
body is mg�, we see that as its weight approaches zero.r : �,

g� �
GME

r 2 �
GME

(R E � h)2

Variation of g with Altitude hEXAMPLE 14.2
The International Space Station is designed to operate at an
altitude of 350 km. When completed, it will have a weight
(measured at the Earth’s surface) of 4.22 � 106 N. What is its
weight when in orbit?

Solution Because the station is above the surface of the
Earth, we expect its weight in orbit to be less than its weight
on Earth, 4.22 � 106 N. Using Equation 14.6 with h �
350 km, we obtain

Because g�/g � 8.83/9.80 � 0.901, we conclude that the
weight of the station at an altitude of 350 km is 90.1% of 
the value at the Earth’s surface. So the station’s weight in or-
bit is 

(0.901)(4.22 � 106 N) �

Values of g� at other altitudes are listed in Table 14.1.

3.80 � 106 N

 � 8.83 m/s2 

 �
(6.67 � 10�11 N�m2/kg2)(5.98 � 1024 kg)

(6.37 � 106 m � 0.350 � 106 m)2

g� �
GME

(R E � h)2  

The Density of the EarthEXAMPLE 14.3
Because this value is about twice the density of most rocks at
the Earth’s surface, we conclude that the inner core of the
Earth has a density much higher than the average value. It is
most amazing that the Cavendish experiment, which deter-
mines G (and can be done on a tabletop), combined with
simple free-fall measurements of g, provides information
about the core of the Earth.

Using the fact that g � 9.80 m/s2 at the Earth’s surface, find
the average density of the Earth.

Solution Using g � 9.80 m/s2 and we
find from Equation 14.5 that From this
result, and using the definition of density from Chapter 1, we
obtain

5.50 � 103 kg/m3�

�	 �

	

V	
�


	
4
3�R E 

3 �
5.96 � 1024 kg

4
3�(6.37 � 106 m)3

ME � 5.96 � 1024 kg.
R E � 6.37 � 106 m,

Variation of g with altitude

web
The official web site for the International
Space Station is www.station.nasa.gov

TABLE 14.1 Free-Fall Acceleration g �
at Various Altitudes
Above the Earth’s Surface

Altitude h (km) g� (m/s2)

1 000 7.33
2 000 5.68
3 000 4.53
4 000 3.70
5 000 3.08
6 000 2.60
7 000 2.23
8 000 1.93
9 000 1.69

10 000 1.49
50 000 0.13

� 0
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KEPLER’S LAWS
People have observed the movements of the planets, stars, and other celestial bod-
ies for thousands of years. In early history, scientists regarded the Earth as the cen-
ter of the Universe. This so-called geocentric model was elaborated and formalized
by the Greek astronomer Claudius Ptolemy (c. 100–c. 170) in the second century
A.D. and was accepted for the next 1 400 years. In 1543 the Polish astronomer
Nicolaus Copernicus (1473–1543) suggested that the Earth and the other planets
revolved in circular orbits around the Sun (the heliocentric model).

The Danish astronomer Tycho Brahe (1546–1601) wanted to determine how
the heavens were constructed, and thus he developed a program to determine the
positions of both stars and planets. It is interesting to note that those observations
of the planets and 777 stars visible to the naked eye were carried out with only a
large sextant and a compass. (The telescope had not yet been invented.)

The German astronomer Johannes Kepler was Brahe’s assistant for a short
while before Brahe’s death, whereupon he acquired his mentor’s astronomical
data and spent 16 years trying to deduce a mathematical model for the motion of
the planets. Such data are difficult to sort out because the Earth is also in motion
around the Sun. After many laborious calculations, Kepler found that Brahe’s data
on the revolution of Mars around the Sun provided the answer.

14.4

Astronauts F. Story Musgrave and Jeffrey A. Hoffman, along with the Hubble Space Telescope
and the space shuttle Endeavor, are all falling around the Earth.

Johannes Kepler German as-
tronomer (1571 – 1630) The German
astronomer Johannes Kepler is best
known for developing the laws of
planetary motion based on the careful
observations of Tycho Brahe. (Art Re-
source)

For more information about Johannes
Kepler, visit our Web site at 
www.saunderscollege.com/physics/
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Kepler’s analysis first showed that the concept of circular orbits around the
Sun had to be abandoned. He eventually discovered that the orbit of Mars could
be accurately described by an ellipse. Figure 14.5 shows the geometric description
of an ellipse. The longest dimension is called the major axis and is of length 2a,
where a is the semimajor axis. The shortest dimension is the minor axis, of
length 2b, where b is the semiminor axis. On either side of the center is a focal
point, a distance c from the center, where The Sun is located at one
of the focal points of Mars’s orbit. Kepler generalized his analysis to include the
motions of all planets. The complete analysis is summarized in three statements
known as Kepler’s laws:

a2 � b2 � c 2.

1. All planets move in elliptical orbits with the Sun at one focal point.
2. The radius vector drawn from the Sun to a planet sweeps out equal areas in

equal time intervals.
3. The square of the orbital period of any planet is proportional to the cube of

the semimajor axis of the elliptical orbit.

Most of the planetary orbits are close to circular in shape; for example, the
semimajor and semiminor axes of the orbit of Mars differ by only 0.4%. Mercury
and Pluto have the most elliptical orbits of the nine planets. In addition to the
planets, there are many asteroids and comets orbiting the Sun that obey Kepler’s
laws. Comet Halley is such an object; it becomes visible when it is close to the Sun
every 76 years. Its orbit is very elliptical, with a semiminor axis 76% smaller than its
semimajor axis.

Although we do not prove it here, Kepler’s first law is a direct consequence of
the fact that the gravitational force varies as 1/r 2. That is, under an inverse-square
gravitational-force law, the orbit of a planet can be shown mathematically to be an
ellipse with the Sun at one focal point. Indeed, half a century after Kepler devel-
oped his laws, Newton demonstrated that these laws are a consequence of the grav-
itational force that exists between any two masses. Newton’s law of universal gravi-
tation, together with his development of the laws of motion, provides the basis for
a full mathematical solution to the motion of planets and satellites.

THE LAW OF GRAVITY AND
THE MOTION OF PLANETS

In formulating his law of gravity, Newton used the following reasoning, which sup-
ports the assumption that the gravitational force is proportional to the inverse
square of the separation between the two interacting bodies. He compared the ac-
celeration of the Moon in its orbit with the acceleration of an object falling near
the Earth’s surface, such as the legendary apple (Fig. 14.6). Assuming that both ac-
celerations had the same cause—namely, the gravitational attraction of the
Earth—Newton used the inverse-square law to reason that the acceleration of the
Moon toward the Earth (centripetal acceleration) should be proportional to
1/rM

2, where rM is the distance between the centers of the Earth and the Moon.
Furthermore, the acceleration of the apple toward the Earth should be propor-
tional to 1/RE

2, where RE is the radius of the Earth, or the distance between the
centers of the Earth and the apple. Using the values m andrM � 3.84 � 108

14.5

Kepler’s laws

a

c b

F2F1

Figure 14.5 Plot of an ellipse.
The semimajor axis has a length a,
and the semiminor axis has a
length b. The focal points are lo-
cated at a distance c from the cen-
ter, where a2 � b2 � c 2.
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m, Newton predicted that the ratio of the Moon’s acceleration
aM to the apple’s acceleration g would be

Therefore, the centripetal acceleration of the Moon is

Newton also calculated the centripetal acceleration of the Moon from a knowl-
edge of its mean distance from the Earth and its orbital period, days �
2.36 � 106 s. In a time T, the Moon travels a distance 2�rM , which equals the cir-
cumference of its orbit. Therefore, its orbital speed is 2�rM/T and its centripetal
acceleration is

In other words, because the Moon is roughly 60 Earth radii away, the gravitational
acceleration at that distance should be about 1/602 of its value at the Earth’s sur-
face. This is just the acceleration needed to account for the circular motion of the
Moon around the Earth. The nearly perfect agreement between this value and the
value Newton obtained using g provides strong evidence of the inverse-square na-
ture of the gravitational force law.

Although these results must have been very encouraging to Newton, he was
deeply troubled by an assumption he made in the analysis. To evaluate the acceler-
ation of an object at the Earth’s surface, Newton treated the Earth as if its mass
were all concentrated at its center. That is, he assumed that the Earth acted as a
particle as far as its influence on an exterior object was concerned. Several years
later, in 1687, on the basis of his pioneering work in the development of calculus,
Newton proved that this assumption was valid and was a natural consequence of
the law of universal gravitation.

 � 2.72 � 10�3 m/s2 �
9.80 m/s2

602  

aM �
v2

rM
�

(2�rM/T)2

rM
�

4�2rM

T 2 �
4�2(3.84 � 108 m)

(2.36 � 106 s)2

T � 27.32

aM � (2.75 � 10�4)(9.80 m/s2) � 2.70 � 10�3 m/s2

aM

g
�

(1/rM)2

(1/R E)2 � � R E

rM
�

2
� � 6.37 � 106 m

3.84 � 108 m �
2

� 2.75 � 10�4

R E � 6.37 � 106

Acceleration of the Moon

RE

Moon

v

aM

rM

Earth

g Figure 14.6 As it revolves around the
Earth, the Moon experiences a cen-
tripetal acceleration aM directed toward
the Earth. An object near the Earth’s
surface, such as the apple shown here,
experiences an acceleration g. (Dimen-
sions are not to scale.)
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Kepler’s Third Law

It is informative to show that Kepler’s third law can be predicted from the inverse-
square law for circular orbits.2 Consider a planet of mass Mp moving around the
Sun of mass MS in a circular orbit, as shown in Figure 14.7. Because the gravita-
tional force exerted by the Sun on the planet is a radially directed force that keeps
the planet moving in a circle, we can apply Newton’s second law to the
planet:

Because the orbital speed v of the planet is simply 2�r/T, where T is its period of
revolution, the preceding expression becomes

(14.7)

where KS is a constant given by

Equation 14.7 is Kepler’s third law. It can be shown that the law is also valid
for elliptical orbits if we replace r with the length of the semimajor axis a. Note
that the constant of proportionality KS is independent of the mass of the planet.
Therefore, Equation 14.7 is valid for any planet.3 Table 14.2 contains a collection
of useful planetary data. The last column verifies that T 2/r 3 is a constant. The
small variations in the values in this column reflect uncertainties in the measured
values of the periods and semimajor axes of the planets.

If we were to consider the orbit around the Earth of a satellite such as the
Moon, then the proportionality constant would have a different value, with the
Sun’s mass replaced by the Earth’s mass.

K S �
4�2

GMS
� 2.97 � 10�19 s2/m3

T 2 � � 4�2

GMS
� r 3 � K Sr 3

GMS

r 2 �
(2�r/T)2

r

GMSMp

r 2 �
Mpv2

r

(�F � ma)

The Mass of the SunEXAMPLE 14.4

In Example 14.3, an understanding of gravitational forces en-
abled us to find out something about the density of the
Earth’s core, and now we have used this understanding to de-
termine the mass of the Sun.

1.99 � 1030 kg�
Calculate the mass of the Sun using the fact that the period
of the Earth’s orbit around the Sun is 3.156 � 107 s and its
distance from the Sun is 1.496 � 1011 m.

Solution Using Equation 14.7, we find that

MS �
4�2r 3

GT 2 �
4�2(1.496 � 1011 m)3

(6.67 � 10�11 N�m2/kg2)(3.156 � 107 s)2

2 The orbits of all planets except Mercury and Pluto are very close to being circular; hence, we do not
introduce much error with this assumption. For example, the ratio of the semiminor axis to the semi-
major axis for the Earth’s orbit is 
3 Equation 14.7 is indeed a proportion because the ratio of the two quantities T 2 and r 3 is a constant.
The variables in a proportion are not required to be limited to the first power only.

b/a � 0.999 86.

Kepler’s third law

r

MS

Mp

v

Figure 14.7 A planet of mass Mp
moving in a circular orbit around
the Sun. The orbits of all planets
except Mercury and Pluto are
nearly circular.
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Kepler’s Second Law and Conservation of Angular Momentum

Consider a planet of mass Mp moving around the Sun in an elliptical orbit (Fig.
14.8). The gravitational force acting on the planet is always along the radius vector,
directed toward the Sun, as shown in Figure 14.9a. When a force is directed to-
ward or away from a fixed point and is a function of r only, it is called a central
force. The torque acting on the planet due to this force is clearly zero; that is, be-
cause F is parallel to r,

(You may want to revisit Section 11.2 to refresh your memory on the vector prod-
uct.) Recall from Equation 11.19, however, that torque equals the time rate of
change of angular momentum: Therefore, because the gravitational� � d L/dt.

� � r � F � r � F r̂ � 0

TABLE 14.2 Useful Planetary Data

Mean Period of
Radius Revolution Mean Distance

Body Mass (kg) (m) (s) from Sun (m)

Mercury 3.18 � 1023 2.43 � 106 7.60 � 106 5.79 � 1010 2.97 � 10�19

Venus 4.88 � 1024 6.06 � 106 1.94 � 107 1.08 � 1011 2.99 � 10�19

Earth 5.98 � 1024 6.37 � 106 3.156 � 107 1.496 � 1011 2.97 � 10�19

Mars 6.42 � 1023 3.37 � 106 5.94 � 107 2.28 � 1011 2.98 � 10�19

Jupiter 1.90 � 1027 6.99 � 107 3.74 � 108 7.78 � 1011 2.97 � 10�19

Saturn 5.68 � 1026 5.85 � 107 9.35 � 108 1.43 � 1012 2.99 � 10�19

Uranus 8.68 � 1025 2.33 � 107 2.64 � 109 2.87 � 1012 2.95 � 10�19

Neptune 1.03 � 1026 2.21 � 107 5.22 � 109 4.50 � 1012 2.99 � 10�19

Pluto � 1.4 � 1022 � 1.5 � 106 7.82 � 109 5.91 � 1012 2.96 � 10�19

Moon 7.36 � 1022 1.74 � 106 — — —
Sun 1.991 � 1030 6.96 � 108 — — —

D

C

A

B
S

Sun

Figure 14.8 Kepler’s second law
is called the law of equal areas.
When the time interval required
for a planet to travel from A to B is
equal to the time interval required
for it to go from C to D, the two ar-
eas swept out by the planet’s radius
vector are equal. Note that in order
for this to be true, the planet must
be moving faster between C and D
than between A and B.

Separate views of Jupiter and of Periodic Comet
Shoemaker–Levy 9—both taken with the Hubble
Space Telescope about two months before Jupiter
and the comet collided in July 1994—were put to-
gether with the use of a computer. Their relative
sizes and distances were altered. The black spot
on Jupiter is the shadow of its moon Io.

T 2

r3  (s2/m3)
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It is important to recognize that this result, which is Kepler’s second law, is a con-
sequence of the fact that the force of gravity is a central force, which in turn im-
plies that angular momentum is constant. Therefore, Kepler’s second law applies
to any situation involving a central force, whether inverse-square or not.

force exerted by the Sun on a planet results in no torque on the planet, the
angular momentum L of the planet is constant:

(14.8)

Because L remains constant, the planet’s motion at any instant is restricted to the
plane formed by r and v.

We can relate this result to the following geometric consideration. The radius
vector r in Figure 14.9b sweeps out an area dA in a time dt. This area equals one-
half the area of the parallelogram formed by the vectors r and dr (see
Section 11.2). Because the displacement of the planet in a time dt is we
can say that

(14.9)

where L and Mp are both constants. Thus, we conclude that

dA
dt

�
L

2Mp
� constant

dA � 1
2� r � dr � � 1

2� r � v dt � �
L

2Mp
 dt

dr � vdt,
� r � dr �

L � r � p � r � Mpv � Mpr � v � constant

the radius vector from the Sun to a planet sweeps out equal areas in equal time
intervals.

Motion in an Elliptical OrbitEXAMPLE 14.5
14.10), and the maximum distance is called the apogee (indi-
cated by a). If the speed of the satellite at p is vp , what is its
speed at a?

Solution As the satellite moves from perigee toward
apogee, it is moving farther from the Earth. Thus, a compo-
nent of the gravitational force exerted by the Earth on the
satellite is opposite the velocity vector. Negative work is done
on the satellite, which causes it to slow down, according to
the work–kinetic energy theorem. As a result, we expect the
speed at apogee to be lower than the speed at perigee.

The angular momentum of the satellite relative to the
Earth is At the points a and p, v is perpen-
dicular to r. Therefore, the magnitude of the angular mo-
mentum at these positions is and Be-
cause angular momentum is constant, we see that

rp

ra
 vpva �

mvara � mvprp 

Lp � mvprp .La � mvara

mr � v.r � mv �

A satellite of mass m moves in an elliptical orbit around the
Earth (Fig. 14.10). The minimum distance of the satellite
from the Earth is called the perigee (indicated by p in Fig.

Sun
r

MS

Fg

Mp

v

(a)

Sun

(b)

r

dA

dr = vdt

Figure 14.9 (a) The gravitational
force acting on a planet is directed
toward the Sun, along the radius
vector. (b) As a planet orbits the
Sun, the area swept out by the ra-
dius vector in a time dt is equal to
one-half the area of the parallelo-
gram formed by the vectors r and
d r � vdt.

va

ra

vpp

a

rp

Figure 14.10 As a satellite moves around the Earth in an elliptical or-
bit, its angular momentum is constant. Therefore, 
where the subscripts a and p represent apogee and perigee, respectively.

mvara � mvprp ,
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How would you explain the fact that Saturn and Jupiter have periods much greater than
one year?

THE GRAVITATIONAL FIELD
When Newton published his theory of universal gravitation, it was considered a
success because it satisfactorily explained the motion of the planets. Since 1687
the same theory has been used to account for the motions of comets, the deflec-
tion of a Cavendish balance, the orbits of binary stars, and the rotation of galaxies.
Nevertheless, both Newton’s contemporaries and his successors found it difficult
to accept the concept of a force that acts through a distance, as mentioned in Sec-
tion 5.1. They asked how it was possible for two objects to interact when they were
not in contact with each other. Newton himself could not answer that question.

An approach to describing interactions between objects that are not in contact
came well after Newton’s death, and it enables us to look at the gravitational inter-
action in a different way. As described in Section 5.1, this alternative approach uses
the concept of a gravitational field that exists at every point in space. When a
particle of mass m is placed at a point where the gravitational field is g, the particle
experiences a force In other words, the field exerts a force on the parti-
cle. Hence, the gravitational field g is defined as

(14.10)

That is, the gravitational field at a point in space equals the gravitational force ex-
perienced by a test particle placed at that point divided by the mass of the test parti-
cle. Notice that the presence of the test particle is not necessary for the field to ex-
ist—the Earth creates the gravitational field. We call the object creating the field
the source particle (although the Earth is clearly not a particle; we shall discuss
shortly the fact that we can approximate the Earth as a particle for the purpose of
finding the gravitational field that it creates). We can detect the presence of the
field and measure its strength by placing a test particle in the field and noting the
force exerted on it.

Although the gravitational force is inherently an interaction between two ob-
jects, the concept of a gravitational field allows us to “factor out” the mass of one
of the objects. In essence, we are describing the “effect” that any object (in this
case, the Earth) has on the empty space around itself in terms of the force that
would be present if a second object were somewhere in that space.4

As an example of how the field concept works, consider an object of mass m
near the Earth’s surface. Because the gravitational force acting on the object has a
magnitude GMEm/r 2 (see Eq. 14.4), the field g at a distance r from the center of
the Earth is

(14.11)

where is a unit vector pointing radially outward from the Earth and the minusr̂

g �
Fg

m
� �

GME

r 2  r̂

g � 
Fg

m

Fg � mg.

14.6

Quick Quiz 14.1

Gravitational field

4 We shall return to this idea of mass affecting the space around it when we discuss Einstein’s theory of
gravitation in Chapter 39.
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sign indicates that the field points toward the center of the Earth, as illustrated in
Figure 14.11a. Note that the field vectors at different points surrounding the Earth
vary in both direction and magnitude. In a small region near the Earth’s surface,
the downward field g is approximately constant and uniform, as indicated in Fig-
ure 14.11b. Equation 14.11 is valid at all points outside the Earth’s surface, assum-
ing that the Earth is spherical. At the Earth’s surface, where g has a magni-
tude of 9.80 N/kg.

GRAVITATIONAL POTENTIAL ENERGY
In Chapter 8 we introduced the concept of gravitational potential energy, which is
the energy associated with the position of a particle. We emphasized that the gravi-
tational potential energy function is valid only when the particle is near
the Earth’s surface, where the gravitational force is constant. Because the gravita-
tional force between two particles varies as 1/r 2, we expect that a more general po-
tential energy function—one that is valid without the restriction of having to be
near the Earth’s surface—will be significantly different from 

Before we calculate this general form for the gravitational potential energy
function, let us first verify that the gravitational force is conservative. (Recall from Sec-
tion 8.2 that a force is conservative if the work it does on an object moving be-
tween any two points is independent of the path taken by the object.) To do this,
we first note that the gravitational force is a central force. By definition, a central
force is any force that is directed along a radial line to a fixed center and has a
magnitude that depends only on the radial coordinate r. Hence, a central force
can be represented by where is a unit vector directed from the origin to
the particle, as shown in Figure 14.12.

Consider a central force acting on a particle moving along the general path P
to Q in Figure 14.12. The path from P to Q can be approximated by a series of

r̂F(r)r̂,

U � mgy.

U � mgy

14.7

r � R E ,

(a) (b)

Figure 14.11 (a) The gravitational field vectors in the vicinity of a uniform spherical mass such
as the Earth vary in both direction and magnitude. The vectors point in the direction of the ac-
celeration a particle would experience if it were placed in the field. The magnitude of the field
vector at any location is the magnitude of the free-fall acceleration at that location. (b) The gravi-
tational field vectors in a small region near the Earth’s surface are uniform in both direction and
magnitude.



14.7 Gravitational Potential Energy 437

steps according to the following procedure. In Figure 14.12, we draw several thin
wedges, which are shown as dashed lines. The outer boundary of our set of wedges
is a path consisting of short radial line segments and arcs (gray in the figure). We
select the length of the radial dimension of each wedge such that the short arc at
the wedge’s wide end intersects the actual path of the particle. Then we can ap-
proximate the actual path with a series of zigzag movements that alternate be-
tween moving along an arc and moving along a radial line.

By definition, a central force is always directed along one of the radial seg-
ments; therefore, the work done by F along any radial segment is

You should recall that, by definition, the work done by a force that is perpendicu-
lar to the displacement is zero. Hence, the work done in moving along any arc is
zero because F is perpendicular to the displacement along these segments. There-
fore, the total work done by F is the sum of the contributions along the radial seg-
ments:

where the subscripts i and f refer to the initial and final positions. Because the in-
tegrand is a function only of the radial position, this integral depends only on the
initial and final values of r. Thus, the work done is the same over any path from P
to Q. Because the work done is independent of the path and depends only on the
end points, we conclude that any central force is conservative. We are now assured
that a potential energy function can be obtained once the form of the central
force is specified.

Recall from Equation 8.2 that the change in the gravitational potential energy
associated with a given displacement is defined as the negative of the work done by
the gravitational force during that displacement:

(14.12)

We can use this result to evaluate the gravitational potential energy function. Con-
sider a particle of mass m moving between two points P and Q above the Earth’s
surface (Fig. 14.13). The particle is subject to the gravitational force given by
Equation 14.1. We can express this force as

where the negative sign indicates that the force is attractive. Substituting this ex-
pression for F(r) into Equation 14.12, we can compute the change in the gravita-

F(r) � �
GMEm

r 2  


U � Uf � Ui � ��rf

ri

F(r) dr

W � �rf

ri

F(r) dr

dW � F � dr � F(r) dr

Work done by a central force

O

r i

P

Q

r f

F

r̂

r̂

Radial segment

Arc

Figure 14.12 A particle moves
from P to Q while acted on by a
central force F, which is directed
radially. The path is broken into a
series of radial segments and arcs.
Because the work done along the
arcs is zero, the work done is inde-
pendent of the path and depends
only on rf and ri .

Figure 14.13 As a particle of mass m moves from P to
Q above the Earth’s surface, the gravitational potential
energy changes according to Equation 14.12.

P

Fg

Fg Q

m

rf

ri

ME

RE
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tional potential energy function:

(14.13)

As always, the choice of a reference point for the potential energy is completely ar-
bitrary. It is customary to choose the reference point where the force is zero. Tak-
ing at we obtain the important result

(14.14)

This expression applies to the Earth–particle system where the two masses are sep-
arated by a distance r, provided that The result is not valid for particles in-
side the Earth, where (The situation in which is treated in Section
14.10.) Because of our choice of Ui , the function U is always negative (Fig. 14.14).

Although Equation 14.14 was derived for the particle–Earth system, it can be
applied to any two particles. That is, the gravitational potential energy associated
with any pair of particles of masses m1 and m2 separated by a distance r is

(14.15)

This expression shows that the gravitational potential energy for any pair of parti-
cles varies as 1/r, whereas the force between them varies as 1/r 2. Furthermore, the
potential energy is negative because the force is attractive and we have taken the
potential energy as zero when the particle separation is infinite. Because the force
between the particles is attractive, we know that an external agent must do positive
work to increase the separation between them. The work done by the external
agent produces an increase in the potential energy as the two particles are sepa-
rated. That is, U becomes less negative as r increases.

When two particles are at rest and separated by a distance r, an external agent
has to supply an energy at least equal to � Gm1m2/r in order to separate the parti-
cles to an infinite distance. It is therefore convenient to think of the absolute value
of the potential energy as the binding energy of the system. If the external agent
supplies an energy greater than the binding energy, the excess energy of the sys-
tem will be in the form of kinetic energy when the particles are at an infinite sepa-
ration.

We can extend this concept to three or more particles. In this case, the total
potential energy of the system is the sum over all pairs of particles.5 Each pair con-
tributes a term of the form given by Equation 14.15. For example, if the system
contains three particles, as in Figure 14.15, we find that

(14.16)

The absolute value of Utotal represents the work needed to separate the particles by
an infinite distance.

U total � U12 � U13 � U23 � �G � m1m2

r12
�

m1m3

r13
�

m2m3

r23
�

U � �
Gm1m2

r

r � R Er � R E .
r � R E .

U � �
GMEm

r

ri � �,Ui � 0

Uf � Ui � �GMEm� 1
rf

�
1
ri
�

Uf � Ui � GMEm �rf

ri

 
dr
r 2 � GMEm��

1
r �

rf

ri

5 The fact that potential energy terms can be added for all pairs of particles stems from the experimen-
tal fact that gravitational forces obey the superposition principle.

Gravitational potential energy of
the Earth–particle system for
r � R E

Change in gravitational potential
energy

Earth

R E

O

GME m

U

r

R E

ME

–

Figure 14.14 Graph of the gravi-
tational potential energy U versus r
for a particle above the Earth’s sur-
face. The potential energy goes to
zero as r approaches infinity.

1

2

3r 13

r 12 r 23

Figure 14.15 Three interacting
particles.
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ENERGY CONSIDERATIONS IN PLANETARY
AND SATELLITE MOTION

Consider a body of mass m moving with a speed v in the vicinity of a massive body
of mass M, where The system might be a planet moving around the Sun, a
satellite in orbit around the Earth, or a comet making a one-time flyby of the Sun.
If we assume that the body of mass M is at rest in an inertial reference frame, then
the total mechanical energy E of the two-body system when the bodies are sepa-
rated by a distance r is the sum of the kinetic energy of the body of mass m and the
potential energy of the system, given by Equation 14.15:6

(14.17)

This equation shows that E may be positive, negative, or zero, depending on the
value of v. However, for a bound system,7 such as the Earth–Sun system, E is neces-
sarily less than zero because we have chosen the convention that as 

We can easily establish that for the system consisting of a body of mass m
moving in a circular orbit about a body of mass (Fig. 14.16). Newton’s sec-
ond law applied to the body of mass m gives

GMm
r 2 � ma �

mv2

r

M W m
E � 0

r : �.U : 0

E � 1
2mv2 �

GMm
r

E � K � U 

M W m.

14.8

The Change in Potential EnergyEXAMPLE 14.6
If both the initial and final positions of the particle are close
to the Earth’s surface, then and (Re-
call that r is measured from the center of the Earth.) There-
fore, the change in potential energy becomes

where we have used the fact that (Eq. 14.5).
Keep in mind that the reference point is arbitrary because it
is the change in potential energy that is meaningful.

g � GME/R E 

2


U �
GMEm

R E 

2  
y � mg 
y

rir f � R E 

2.rf � ri � 
y
A particle of mass m is displaced through a small vertical dis-
tance 
y near the Earth’s surface. Show that in this situation
the general expression for the change in gravitational poten-
tial energy given by Equation 14.13 reduces to the familiar re-
lationship 

Solution We can express Equation 14.13 in the form


U � �GMEm � 1
rf

�
1
ri
� � GMEm � rf � ri

r i r f
�


U � mg 
y.

6 You might recognize that we have ignored the acceleration and kinetic energy of the larger body. To
see that this simplification is reasonable, consider an object of mass m falling toward the Earth. Because
the center of mass of the object–Earth system is effectively stationary, it follows that Thus,
the Earth acquires a kinetic energy equal to

where K is the kinetic energy of the object. Because this result shows that the kinetic energy
of the Earth is negligible.
7 Of the three examples provided at the beginning of this section, the planet moving around the Sun
and a satellite in orbit around the Earth are bound systems—the Earth will always stay near the Sun,
and the satellite will always stay near the Earth. The one-time comet flyby represents an unbound
system—the comet interacts once with the Sun but is not bound to it. Thus, in theory the comet can
move infinitely far away from the Sun.

ME W m,

1
2ME vE 

2 � 1
2 

m2

ME
 v2 �

m
ME

 K

mv � ME vE .

r

M

m

v

Figure 14.16 A body of mass m
moving in a circular orbit about a
much larger body of mass M.
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Multiplying both sides by r and dividing by 2 gives

(14.18)

Substituting this into Equation 14.17, we obtain

(14.19)

This result clearly shows that the total mechanical energy is negative in the
case of circular orbits. Note that the kinetic energy is positive and equal to
one-half the absolute value of the potential energy. The absolute value of E is
also equal to the binding energy of the system, because this amount of energy
must be provided to the system to move the two masses infinitely far apart.

The total mechanical energy is also negative in the case of elliptical orbits. The
expression for E for elliptical orbits is the same as Equation 14.19 with r replaced
by the semimajor axis length a. Furthermore, the total energy is constant if we as-
sume that the system is isolated. Therefore, as the body of mass m moves from P to
Q in Figure 14.13, the total energy remains constant and Equation 14.17 gives

(14.20)

Combining this statement of energy conservation with our earlier discussion of
conservation of angular momentum, we see that both the total energy and the
total angular momentum of a gravitationally bound, two-body system are
constants of the motion.

E � 1
2mvi 

2 �
GMm

ri
� 1

2mvf 

2 �
GMm

rf

E � �
GMm

2r
  

E �
GMm

2r
�

GMm
r

1
2mv2 �

GMm
2r

Changing the Orbit of a SatelliteEXAMPLE 14.7
We must also determine the initial radius (not the altitude

above the Earth’s surface) of the satellite’s orbit when it was
still in the shuttle’s cargo bay. This is simply

Now, applying Equation 14.19, we obtain, for the total initial
and final energies,

The energy required from the engine to boost the satellite is

1.19 � 1010 J�

� � 1
4.23 � 107 m

�
1

6.65 � 106 m �
 � �

(6.67 � 10�11 N�m2/kg2)(5.98 � 1024 kg)(470 kg)
2

Eengine � Ef � Ei � �
GMEm

2
 � 1

R f
�

1
R i

� 

Ei � �
GMEm

2R i
  Ef � �

GMEm
2R f

R E � 280 km � 6.65 � 106 m � R i

The space shuttle releases a 470-kg communications satellite
while in an orbit that is 280 km above the surface of the
Earth. A rocket engine on the satellite boosts it into a geosyn-
chronous orbit, which is an orbit in which the satellite stays
directly over a single location on the Earth. How much en-
ergy did the engine have to provide?

Solution First we must determine the radius of a geosyn-
chronous orbit. Then we can calculate the change in energy
needed to boost the satellite into orbit.

The period of the orbit T must be one day (86 400 s), so
that the satellite travels once around the Earth in the same
time that the Earth spins once on its axis. Knowing the pe-
riod, we can then apply Kepler’s third law (Eq. 14.7) to find
the radius, once we replace KS with 

This is a little more than 26 000 mi above the Earth’s surface. 

 r � √3 T 2

K E
� √3 (86 400 s)2

9.89 � 10�14 s2/m3 � 4.23 � 107 m � R f

T 2 � K Er 3 

9.89 � 10�14 s2/m3:
K E � 4�2/GME �

Total energy for circular orbits
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Escape Speed

Suppose an object of mass m is projected vertically upward from the Earth’s sur-
face with an initial speed vi , as illustrated in Figure 14.17. We can use energy con-
siderations to find the minimum value of the initial speed needed to allow the ob-
ject to escape the Earth’s gravitational field. Equation 14.17 gives the total energy
of the object at any point. At the surface of the Earth, and 
When the object reaches its maximum altitude, and Be-
cause the total energy of the system is constant, substituting these conditions into
Equation 14.20 gives

Solving for gives

(14.21)

Therefore, if the initial speed is known, this expression can be used to calculate
the maximum altitude h because we know that

We are now in a position to calculate escape speed, which is the minimum
speed the object must have at the Earth’s surface in order to escape from the influ-
ence of the Earth’s gravitational field. Traveling at this minimum speed, the object
continues to move farther and farther away from the Earth as its speed asymptoti-
cally approaches zero. Letting in Equation 14.21 and taking , we
obtain

(14.22)

Note that this expression for vesc is independent of the mass of the object. In 
other words, a spacecraft has the same escape speed as a molecule. Further-
more, the result is independent of the direction of the velocity and ignores air 
resistance.

If the object is given an initial speed equal to vesc , its total energy is equal to
zero. This can be seen by noting that when the object’s kinetic energy and
its potential energy are both zero. If vi is greater than vesc , the total energy is
greater than zero and the object has some residual kinetic energy as r : �.

r : �,

vesc � √ 2GME

R E

vi � vescrmax : �

h � rmax � R E

vi 

2 � 2GME � 1
R E

�
1

rmax
�

vi 

2

1
2mvi 

2 �
GMEm

R E
� �

GMEm
rmax

r � rf � rmax .v � vf � 0
r � ri � R E .v � vi

This is the energy equivalent of 89 gal of gasoline. NASA en-
gineers must account for the changing mass of the spacecraft
as it ejects burned fuel, something we have not done here.
Would you expect the calculation that includes the effect of
this changing mass to yield a greater or lesser amount of en-
ergy required from the engine?

If we wish to determine how the energy is distributed 
after the engine is fired, we find from Equation 14.18 
that the change in kinetic energy is 

(a decrease),(GMEm/2)(1/R f � 1/R i) � �1.19 � 1010 J

K �

and the corresponding change in potential energy is
(an increase).

Thus, the change in mechanical energy of the system is
as we already calculated.

The firing of the engine results in an increase in the total me-
chanical energy of the system. Because an increase in poten-
tial energy is accompanied by a decrease in kinetic energy, we
conclude that the speed of an orbiting satellite decreases as
its altitude increases.

1.19 � 1010 J,
E � 
K � 
U �


U � �GMEm(1/R f � 1/R i) � 2.38 � 1010 J

h

m

v i

rmax

vf = 0

M E

R E

Figure 14.17 An object of mass
m projected upward from the
Earth’s surface with an initial speed
vi reaches a maximum altitude h.

Escape speed
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Equations 14.21 and 14.22 can be applied to objects projected from any
planet. That is, in general, the escape speed from the surface of any planet of mass
M and radius R is

Escape speeds for the planets, the Moon, and the Sun are provided in Table
14.3. Note that the values vary from 1.1 km/s for Pluto to about 618 km/s for the
Sun. These results, together with some ideas from the kinetic theory of gases (see
Chapter 21), explain why some planets have atmospheres and others do not. As we
shall see later, a gas molecule has an average kinetic energy that depends on the
temperature of the gas. Hence, lighter molecules, such as hydrogen and helium,
have a higher average speed than heavier species at the same temperature. When
the average speed of the lighter molecules is not much less than the escape speed
of a planet, a significant fraction of them have a chance to escape from the planet.

This mechanism also explains why the Earth does not retain hydrogen mole-
cules and helium atoms in its atmosphere but does retain heavier molecules, such
as oxygen and nitrogen. On the other hand, the very large escape speed for
Jupiter enables that planet to retain hydrogen, the primary constituent of its at-
mosphere.

If you were a space prospector and discovered gold on an asteroid, it probably would not be
a good idea to jump up and down in excitement over your find. Why?

Figure 14.18 is a drawing by Newton showing the path of a stone thrown from a mountain-
top. He shows the stone landing farther and farther away when thrown at higher and higher
speeds (at points D, E, F, and G), until finally it is thrown all the way around the Earth. Why
didn’t Newton show the stone landing at B and A before it was going fast enough to com-
plete an orbit?

Quick Quiz 14.3

Quick Quiz 14.2

vesc � √ 2GM
R

Escape Speed of a RocketEXAMPLE 14.8

This corresponds to about 25 000 mi/h.
The kinetic energy of the spacecraft is

This is equivalent to about 2 300 gal of gasoline.

3.14 � 1011 J�

K � 1
2mv2

esc � 1
2(5.00 � 103 kg)(1.12 � 104 m/s)2

1.12 � 104 m/s�
Calculate the escape speed from the Earth for a 5 000-kg
spacecraft, and determine the kinetic energy it must have at
the Earth’s surface in order to escape the Earth’s gravita-
tional field.

Solution Using Equation 14.22 gives

 � √ 2(6.67 � 10�11 N�m2/kg2)(5.98 � 1024 kg)
6.37 � 106 m

vesc � √ 2GME

R E
 

TABLE 14.3
Escape Speeds from the
Surfaces of the Planets,
Moon, and Sun

Body vesc (km/s)

Mercury 4.3
Venus 10.3
Earth 11.2
Moon 2.3
Mars 5.0
Jupiter 60
Saturn 36
Uranus 22
Neptune 24
Pluto 1.1
Sun 618
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Optional Section

THE GRAVITATIONAL FORCE BETWEEN AN
EXTENDED OBJECT AND A PARTICLE

We have emphasized that the law of universal gravitation given by Equation 14.3 is
valid only if the interacting objects are treated as particles. In view of this, how can
we calculate the force between a particle and an object having finite dimensions?
This is accomplished by treating the extended object as a collection of particles
and making use of integral calculus. We first evaluate the potential energy func-
tion, and then calculate the gravitational force from that function.

We obtain the potential energy associated with a system consisting of a particle
of mass m and an extended object of mass M by dividing the object into many ele-
ments, each having a mass 
Mi (Fig. 14.19). The potential energy associated with
the system consisting of any one element and the particle is 
where ri is the distance from the particle to the element 
Mi . The total potential
energy of the overall system is obtained by taking the sum over all elements as 

Mi : 0. In this limit, we can express U in integral form as

(14.23)

Once U has been evaluated, we obtain the force exerted by the extended object
on the particle by taking the negative derivative of this scalar function (see Section
8.6). If the extended object has spherical symmetry, the function U depends only
on r, and the force is given by � dU/dr. We treat this situation in Section 14.10. In
principle, one can evaluate U for any geometry; however, the integration can be
cumbersome.

An alternative approach to evaluating the gravitational force between a parti-
cle and an extended object is to perform a vector sum over all mass elements of
the object. Using the procedure outlined in evaluating U and the law of universal
gravitation in the form shown in Equation 14.3, we obtain, for the total force ex-
erted on the particle

(14.24)

where is a unit vector directed from the element dM toward the particle (see Fig.
14.19) and the minus sign indicates that the direction of the force is opposite that
of This procedure is not always recommended because working with a vector
function is more difficult than working with the scalar potential energy function.
However, if the geometry is simple, as in the following example, the evaluation of
F can be straightforward.

r̂.

r̂

Fg � �Gm � 
dM
r 2  r̂

U � �Gm � 
dM
r

U � �Gm 
Mi/ri ,

14.9

Figure 14.18 “The greater the velocity . . . with which [a
stone] is projected, the farther it goes before it falls to the Earth.
We may therefore suppose the velocity to be so increased, that it
would describe an arc of 1, 2, 5, 10, 100, 1000 miles before it ar-
rived at the Earth, till at last, exceeding the limits of the Earth, it
should pass into space without touching.” Sir Isaac Newton, System
of the World.

M

∆Mi

r i

m

r̂

Figure 14.19 A particle of mass
m interacting with an extended ob-
ject of mass M. The total gravita-
tional force exerted by the object
on the particle can be obtained by
dividing the object into numerous
elements, each having a mass 
Mi ,
and then taking a vector sum over
the forces exerted by all elements.

Total force exerted on a particle by
an extended object
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Optional Section

THE GRAVITATIONAL FORCE BETWEEN A
PARTICLE AND A SPHERICAL MASS

We have already stated that a large sphere attracts a particle outside it as if the to-
tal mass of the sphere were concentrated at its center. We now describe the force
acting on a particle when the extended object is either a spherical shell or a solid
sphere, and then apply these facts to some interesting systems.

Spherical Shell

Case 1. If a particle of mass m is located outside a spherical shell of mass M at,
for instance, point P in Figure 14.21a, the shell attracts the particle as though the
mass of the shell were concentrated at its center. We can show this, as Newton did,
with integral calculus. Thus, as far as the gravitational force acting on a particle
outside the shell is concerned, a spherical shell acts no differently from the solid
spherical distributions of mass we have seen.

Case 2. If the particle is located inside the shell (at point P in Fig. 14.21b), the
gravitational force acting on it can be shown to be zero.

We can express these two important results in the following way:

(14.25a)

(14.25b)

The gravitational force as a function of the distance r is plotted in Figure 14.21c. 

Fg � 0  for r � R 

Fg � �
GMm

r 2  r̂  for r � R

14.10

Gravitational Force Between a Particle and a BarEXAMPLE 14.9
of lengths dx/L, and so In this problem, the
variable r in Equation 14.24 is the distance x shown in Figure
14.20, the unit vector is and the force acting on the
particle is to the right; therefore, Equation 14.24 gives us

We see that the force exerted on the particle is in the positive
x direction, which is what we expect because the gravitational
force is attractive.

Note that in the limit L : 0, the force varies as 1/h2,
which is what we expect for the force between two point
masses. Furthermore, if the force also varies as 1/h2.
This can be seen by noting that the denominator of the ex-
pression for Fg can be expressed in the form 
which is approximately equal to h2 when Thus, when
bodies are separated by distances that are great relative to
their characteristic dimensions, they behave like particles.

h W L .
h2(1 �  L/h),

h W L,

GmM
h(h � L)

 i Fg �
GmM

L
 ��

1
x �

h�L

h
 i �

Fg � �Gm �h�L

h
 
Mdx

L
 

1
x2  (� i) � Gm 

M
L

 �h�L

h
 
dx
x2  i

r̂ � � i,r̂

dM � (M/L) dx.The left end of a homogeneous bar of length L and mass M
is at a distance h from a particle of mass m (Fig. 14.20). Calcu-
late the total gravitational force exerted by the bar on the
particle.

Solution The arbitrary segment of the bar of length dx
has a mass dM. Because the mass per unit length is constant,
it follows that the ratio of masses dM/M is equal to the ratio

Force on a particle due to a
spherical shell

x
O

mm

y

h L

dx

x

Figure 14.20 The gravitational force exerted by the bar on the
particle is directed to the right. Note that the bar is not equivalent to
a particle of mass M located at the center of mass of the bar.
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The shell does not act as a gravitational shield, which means that a particle in-
side a shell may experience forces exerted by bodies outside the shell.

Solid Sphere

Case 1. If a particle of mass m is located outside a homogeneous solid sphere of
mass M (at point P in Fig. 14.22), the sphere attracts the particle as though the

(a)

M Q

Q ′

P

m
FQ ′P

FQP

M

P m

FTop, P

FBottom, P

(b)

(c)

O
r

R

Fg

Figure 14.21 (a) The nonradial components of the gravitational forces exerted on a particle of
mass m located at point P outside a spherical shell of mass M cancel out. (b) The spherical shell
can be broken into rings. Even though point P is closer to the top ring than to the bottom ring,
the bottom ring is larger, and the gravitational forces exerted on the particle at P by the matter
in the two rings cancel each other. Thus, for a particle located at any point P inside the shell,
there is no gravitational force exerted on the particle by the mass M of the shell. (c) The magni-
tude of the gravitational force versus the radial distance r from the center of the shell.
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mass of the sphere were concentrated at its center. We have used this notion at sev-
eral places in this chapter already, and we can argue it from Equation 14.25a. A
solid sphere can be considered to be a collection of concentric spherical shells.
The masses of all of the shells can be interpreted as being concentrated at their
common center, and the gravitational force is equivalent to that due to a particle
of mass M located at that center.

Case 2. If a particle of mass m is located inside a homogeneous solid sphere of
mass M (at point Q in Fig. 14.22), the gravitational force acting on it is due only to
the mass M� contained within the sphere of radius shown in Figure 14.22.
In other words,

(14.26a)

(14.26b)

This also follows from spherical-shell Case 1 because the part of the sphere that is

Fg � �
GmM �

r 2  r̂  for r � R

Fg � �
GmM

r 2  r̂  for r � R

r � R,

Force on a particle due to a solid
sphere

m

P

R

M

Q
r

M ′

r

RO

Fg

Fg

Figure 14.22 The gravitational force acting on a particle when it is outside a uniform solid
sphere is GMm/r2 and is directed toward the center of the sphere. The gravitational force acting
on the particle when it is inside such a sphere is proportional to r and goes to zero at the center.
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farther from the center than Q can be treated as a series of concentric spherical
shells that do not exert a net force on the particle because the particle is inside
them. Because the sphere is assumed to have a uniform density, it follows that the
ratio of masses M�/M is equal to the ratio of volumes V �/V, where V is the total vol-
ume of the sphere and V � is the volume within the sphere of radius r only:

Solving this equation for M� and substituting the value obtained into Equation
14.26b, we have

(14.27)

This equation tells us that at the center of the solid sphere, where the gravi-
tational force goes to zero, as we intuitively expect. The force as a function of r is
plotted in Figure 14.22.

Case 3. If a particle is located inside a solid sphere having a density � that is
spherically symmetric but not uniform, then M� in Equation 14.26b is given by an
integral of the form where the integration is taken over the volume
contained within the sphere of radius r in Figure 14.22. We can evaluate this inte-
gral if the radial variation of � is given. In this case, we take the volume element dV
as the volume of a spherical shell of radius r and thickness dr, and thus

For example, if � where A is a constant, it is left to a problem
(Problem 63) to show that 

Hence, we see from Equation 14.26b that F is proportional to r2 in this case and is
zero at the center.

A particle is projected through a small hole into the interior of a spherical shell. Describe

Quick Quiz 14.4

M� � �Ar 4.
� Ar,dV � 4�r 2 dr.

M� � � � dV,

r � 0,

Fg � �
GmM

R3  r r̂  for r � R

M�

M
�

V�

V
�

4
3�r 3

4
3 �R3 �

r 3

R3

A Free Ride, Thanks to GravityEXAMPLE 14.10
The y component of the gravitational force on the object

is balanced by the normal force exerted by the tunnel wall,
and the x component is

Because the x coordinate of the object is we can
write

Applying Newton’s second law to the motion along the x di-
rection gives

Fx � �
GmME

R E 

3  x � max

Fx � �
GmME

R E 

3  x

x � r cos �,

Fx � �
GmME

R E 

3  r cos �

An object of mass m moves in a smooth, straight tunnel dug
between two points on the Earth’s surface (Fig. 14.23). Show
that the object moves with simple harmonic motion, and find
the period of its motion. Assume that the Earth’s density is
uniform.

Solution The gravitational force exerted on the object
acts toward the Earth’s center and is given by Equation 14.27:

We receive our first indication that this force should result in
simple harmonic motion by comparing it to Hooke’s law, first
seen in Section 7.3. Because the gravitational force on the ob-
ject is linearly proportional to the displacement, the object
experiences a Hooke’s law force.

Fg � �
GmM

R3  r r̂

448 C H A P T E R  1 4 The Law of Gravity

the motion of the particle inside the shell.

SUMMARY

Newton’s law of universal gravitation states that the gravitational force of at-
traction between any two particles of masses m1 and m2 separated by a distance r
has the magnitude

(14.1)

where is the universal gravitational constant. This
equation enables us to calculate the force of attraction between masses under a
wide variety of circumstances.

An object at a distance h above the Earth’s surface experiences a gravitational
force of magnitude mg�, where g� is the free-fall acceleration at that elevation:

(14.6)g � �
GME

r 2 �
GME

(R E � h)2

G � 6.673 � 10�11 N�m2/kg2

Fg � G 
m1m2

r 2

y

x

θ

x

O

r

mFg

Figure 14.23 An object moves along a tunnel dug through the
Earth. The component of the gravitational force Fg along the x axis is
the driving force for the motion. Note that this component always
acts toward O.

Solving for ax , we obtain

If we use the symbol �2 for the coefficient of x —GME /RE
3 �

— we see that

an expression that matches the mathematical form of Equa-
tion 13.9, which gives the acceleration of a particle in simple
harmonic motion: Therefore, Equation (1),ax � ��2x.

(1)  ax � ��2x

�2

ax � �
GME

R E 

3  x

which we have derived for the acceleration of our object in
the tunnel, is the acceleration equation for simple harmonic
motion at angular speed � with

Thus, the object in the tunnel moves in the same way as a
block hanging from a spring! The period of oscillation is

This period is the same as that of a satellite traveling in a cir-
cular orbit just above the Earth’s surface (ignoring any trees,
buildings, or other objects in the way). Note that the result is
independent of the length of the tunnel.

A proposal has been made to operate a mass-transit system
between any two cities, using the principle described in this
example. A one-way trip would take about 42 min. A more
precise calculation of the motion must account for the fact
that the Earth’s density is not uniform. More important,
there are many practical problems to consider. For instance,
it would be impossible to achieve a frictionless tunnel, and so
some auxiliary power source would be required. Can you
think of other problems?

84.3 min � 5.06 � 103 s �

 � 2� √ (6.37 � 106 m)3

(6.67 � 10�11 N�m2/kg2)(5.98 � 1024 kg)

T �
2�

�
� 2� √ R E 

3

GME
 

� � √ GME

R E 

3
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In this expression, ME is the mass of the Earth and RE is its radius. Thus, the weight
of an object decreases as the object moves away from the Earth’s surface.

Kepler’s laws of planetary motion state that

1. All planets move in elliptical orbits with the Sun at one focal point.
2. The radius vector drawn from the Sun to a planet sweeps out equal areas in

equal time intervals.
3. The square of the orbital period of any planet is proportional to the cube of the

semimajor axis of the elliptical orbit.

Kepler’s third law can be expressed as

(14.7)

where MS is the mass of the Sun and r is the orbital radius. For elliptical orbits,
Equation 14.7 is valid if r is replaced by the semimajor axis a. Most planets have
nearly circular orbits around the Sun. 

The gravitational field at a point in space equals the gravitational force expe-
rienced by any test particle located at that point divided by the mass of the test 
particle:

(14.10)

The gravitational force is conservative, and therefore a potential energy func-
tion can be defined. The gravitational potential energy associated with two par-
ticles separated by a distance r is

(14.15)

where U is taken to be zero as The total potential energy for a system of
particles is the sum of energies for all pairs of particles, with each pair represented
by a term of the form given by Equation 14.15.

If an isolated system consists of a particle of mass m moving with a speed v in
the vicinity of a massive body of mass M, the total energy E of the system is the sum
of the kinetic and potential energies:

(14.17)

The total energy is a constant of the motion. If the particle moves in a circular or-
bit of radius r around the massive body and if the total energy of the sys-
tem is

(14.19)

The total energy is negative for any bound system.
The escape speed for an object projected from the surface of the Earth is

(14.22)vesc � √ 2GME

R E

E � �
GMm

2r

M W m,

E � 1
2mv2�

GMm
r

r : �.

U � �
Gm1m2

r

g �
Fg

m

T 2 � � 4�2

GMS
�r 3
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PROBLEMS

mote ones) can the 50.0-kg mass be placed so as to ex-
perience a net force of zero?

3. Three equal masses are located at three corners of a
square of edge length �, as shown in Figure P14.3. Find
the gravitational field g at the fourth corner due to
these masses.

4. Two objects attract each other with a gravitational force
of magnitude 1.00 � 10�8 N when separated by 
20.0 cm. If the total mass of the two objects is 5.00 kg,
what is the mass of each?

5. Three uniform spheres of masses 2.00 kg, 4.00 kg, and
6.00 kg are placed at the corners of a right triangle, as
illustrated in Figure P14.5. Calculate the resultant gravi-

Section 14.1 Newton’s Law of Universal Gravitation
Section 14.2 Measuring the Gravitational Constant
Section 14.3 Free-Fall Acceleration and the 
Gravitational Force

1. Determine the order of magnitude of the gravitational
force that you exert on another person 2 m away. In
your solution, state the quantities that you measure or
estimate and their values.

2. A 200-kg mass and a 500-kg mass are separated by 
0.400 m. (a) Find the net gravitational force exerted by
these masses on a 50.0-kg mass placed midway between
them. (b) At what position (other than infinitely re-

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems

QUESTIONS

tional force is acting on the planet. What is the net work
done on a planet during each revolution as it moves
around the Sun in an elliptical orbit?

11. Explain why the force exerted on a particle by a uniform
sphere must be directed toward the center of the sphere.
Would this be the case if the mass distribution of the
sphere were not spherically symmetric?

12. Neglecting the density variation of the Earth, what would
be the period of a particle moving in a smooth hole dug
between opposite points on the Earth’s surface, passing
through its center?

13. At what position in its elliptical orbit is the speed of a
planet a maximum? At what position is the speed a mini-
mum?

14. If you were given the mass and radius of planet X, how
would you calculate the free-fall acceleration on the sur-
face of this planet?

15. If a hole could be dug to the center of the Earth, do you
think that the force on a mass m would still obey Equa-
tion 14.1 there? What do you think the force on m would
be at the center of the Earth?

16. In his 1798 experiment, Cavendish was said to have
“weighed the Earth.” Explain this statement.

17. The gravitational force exerted on the Voyager spacecraft
by Jupiter accelerated it toward escape speed from the
Sun. How is this possible?

18. How would you find the mass of the Moon?
19. The Apollo 13 spaceship developed trouble in the oxygen

system about halfway to the Moon. Why did the spaceship
continue on around the Moon and then return home,
rather than immediately turn back to Earth?

1. Use Kepler’s second law to convince yourself that the
Earth must move faster in its orbit during December,
when it is closest to the Sun, than during June, when it is
farthest from the Sun.

2. The gravitational force that the Sun exerts on the Moon
is about twice as great as the gravitational force that the
Earth exerts on the Moon. Why doesn’t the Sun pull the
Moon away from the Earth during a total eclipse of the
Sun?

3. If a system consists of five particles, how many terms ap-
pear in the expression for the total potential energy? How
many terms appear if the system consists of N particles?

4. Is it possible to calculate the potential energy function as-
sociated with a particle and an extended body without
knowing the geometry or mass distribution of the ex-
tended body?

5. Does the escape speed of a rocket depend on its mass?
Explain.

6. Compare the energies required to reach the Moon for a
105-kg spacecraft and a 103-kg satellite.

7. Explain why it takes more fuel for a spacecraft to travel
from the Earth to the Moon than for the return trip. Esti-
mate the difference.

8. Why don’t we put a geosynchronous weather satellite in
orbit around the 45th parallel? Wouldn’t this be more
useful for the United States than such a satellite in orbit
around the equator?

9. Is the potential energy associated with the Earth–Moon
system greater than, less than, or equal to the kinetic en-
ergy of the Moon relative to the Earth?

10. Explain why no work is done on a planet as it moves in a
circular orbit around the Sun, even though a gravita-
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tational force on the 4.00-kg mass, assuming that the
spheres are isolated from the rest of the Universe.

6. The free-fall acceleration on the surface of the Moon is
about one-sixth that on the surface of the Earth. If the
radius of the Moon is about 0.250RE , find the ratio of
their average densities, �Moon/�Earth .

7. During a solar eclipse, the Moon, Earth, and Sun all lie
on the same line, with the Moon between the Earth and
the Sun. (a) What force is exerted by the Sun on the
Moon? (b) What force is exerted by the Earth on the
Moon? (c) What force is exerted by the Sun on the
Earth?

8. The center-to-center distance between the Earth and
the Moon is 384 400 km. The Moon completes an orbit
in 27.3 days. (a) Determine the Moon’s orbital speed.
(b) If gravity were switched off, the Moon would move
along a straight line tangent to its orbit, as described by
Newton’s first law. In its actual orbit in 1.00 s, how far
does the Moon fall below the tangent line and toward
the Earth?

9. When a falling meteoroid is at a distance above the
Earth’s surface of 3.00 times the Earth’s radius, what is
its acceleration due to the Earth’s gravity?

10. Two ocean liners, each with a mass of 40 000 metric
tons, are moving on parallel courses, 100 m apart. What
is the magnitude of the acceleration of one of the liners
toward the other due to their mutual gravitational at-
traction? (Treat the ships as point masses.)

11. A student proposes to measure the gravitational con-
stant G by suspending two spherical masses from the
ceiling of a tall cathedral and measuring the deflection
of the cables from the vertical. Draw a free-body dia-
gram of one of the masses. If two 100.0-kg masses are
suspended at the end of 45.00-m-long cables, and the
cables are attached to the ceiling 1.000 m apart, what is
the separation of the masses?

12. On the way to the Moon, the Apollo astronauts reached
a point where the Moon’s gravitational pull became
stronger than the Earth’s. (a) Determine the distance of
this point from the center of the Earth. (b) What is the
acceleration due to the Earth’s gravity at this point?

Section 14.4 Kepler’s Laws
Section 14.5 The Law of Gravity and the 
Motion of Planets

13. A particle of mass m moves along a straight line with
constant speed in the x direction, a distance b from the
x axis (Fig. P14.13). Show that Kepler’s second law is
satisfied by demonstrating that the two shaded triangles
in the figure have the same area when t4 � t3 � t2 � t1 .
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Figure P14.3

Figure P14.5

Figure P14.13

14. A communications satellite in geosynchronous orbit re-
mains above a single point on the Earth’s equator as the
planet rotates on its axis. (a) Calculate the radius of its
orbit. (b) The satellite relays a radio signal from a trans-
mitter near the north pole to a receiver, also near the
north pole. Traveling at the speed of light, how long is
the radio wave in transit?

15. Plaskett’s binary system consists of two stars that revolve
in a circular orbit about a center of mass midway be-
tween them. This means that the masses of the two stars
are equal (Fig. P14.15). If the orbital velocity of each
star is 220 km/s and the orbital period of each is 
14.4 days, find the mass M of each star. (For compari-
son, the mass of our Sun is 1.99 � 1030 kg.)

16. Plaskett’s binary system consists of two stars that revolve
in a circular orbit about a center of gravity midway be-
tween them. This means that the masses of the two stars
are equal (see Fig. P14.15). If the orbital speed of each
star is v and the orbital period of each is T, find the
mass M of each star.

WEB
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17. The Explorer VIII satellite, placed into orbit November 3,
1960, to investigate the ionosphere, had the following
orbit parameters: perigee, 459 km; apogee, 2 289 km
(both distances above the Earth’s surface); and period,
112.7 min. Find the ratio vp /va of the speed at perigee
to that at apogee.

18. Comet Halley (Fig. P14.18) approaches the Sun to
within 0.570 AU, and its orbital period is 75.6 years (AU
is the symbol for astronomical unit, where 1 AU �
1.50 � 1011 m is the mean Earth–Sun distance). How
far from the Sun will Halley’s comet travel before it
starts its return journey?

20. Two planets, X and Y, travel counterclockwise in circular
orbits about a star, as shown in Figure P14.20. The radii
of their orbits are in the ratio 3:1. At some time, they
are aligned as in Figure P14.20a, making a straight line
with the star. During the next five years, the angular dis-
placement of planet X is 90.0°, as shown in Figure
P14.20b. Where is planet Y at this time?

WEB

Figure P14.15 Problems 15 and 16.

21. A synchronous satellite, which always remains above the
same point on a planet’s equator, is put in orbit around
Jupiter so that scientists can study the famous red spot.
Jupiter rotates once every 9.84 h. Use the data in Table
14.2 to find the altitude of the satellite.

22. Neutron stars are extremely dense objects that are
formed from the remnants of supernova explosions.
Many rotate very rapidly. Suppose that the mass of a cer-
tain spherical neutron star is twice the mass of the Sun
and that its radius is 10.0 km. Determine the greatest
possible angular speed it can have for the matter at the
surface of the star on its equator to be just held in orbit
by the gravitational force.

23. The Solar and Heliospheric Observatory (SOHO)
spacecraft has a special orbit, chosen so that its view of
the Sun is never eclipsed and it is always close enough
to the Earth to transmit data easily. It moves in a near-
circle around the Sun that is smaller than the Earth’s
circular orbit. Its period, however, is not less than 1 yr
but is just equal to 1 yr. It is always located between the
Earth and the Sun along the line joining them. Both ob-
jects exert gravitational forces on the observatory. Show
that the spacecraft’s distance from the Earth must be
between 1.47 � 109 m and 1.48 � 109 m. In 1772
Joseph Louis Lagrange determined theoretically the
special location that allows this orbit. The SOHO space-
craft took this position on February 14, 1996. (Hint: Use
data that are precise to four digits. The mass of the
Earth is 5.983 � 1024 kg.)

Section 14.6 The Gravitational Field
24. A spacecraft in the shape of a long cylinder has a length

of 100 m, and its mass with occupants is 1 000 kg. It has

19. Io, a satellite of Jupiter, has an orbital period of 
1.77 days and an orbital radius of 4.22 � 105 km. From
these data, determine the mass of Jupiter.
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M
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M
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0.570 AU
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Figure P14.18

Figure P14.20
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strayed too close to a 1.0-m-radius black hole having a
mass 100 times that of the Sun (Fig. P14.24). The nose
of the spacecraft is pointing toward the center of the
black hole, and the distance between the nose and the
black hole is 10.0 km. (a) Determine the total force on
the spacecraft. (b) What is the difference in the gravita-
tional fields acting on the occupants in the nose of the
ship and on those in the rear of the ship, farthest from
the black hole?

25. Compute the magnitude and direction of the gravita-
tional field at a point P on the perpendicular bisector of
two equal masses separated by a distance 2a, as shown in
Figure P14.25.

equal to the radius of the Earth. Calculate (a) the aver-
age density of the white dwarf, (b) the acceleration due
to gravity at its surface, and (c) the gravitational poten-
tial energy associated with a 1.00-kg object at its surface.

30. At the Earth’s surface a projectile is launched straight
up at a speed of 10.0 km/s. To what height will it rise?
Ignore air resistance.

31. A system consists of three particles, each of mass 5.00 g,
located at the corners of an equilateral triangle with
sides of 30.0 cm. (a) Calculate the potential energy of
the system. (b) If the particles are released simultane-
ously, where will they collide?

32. How much work is done by the Moon’s gravitational
field as a 1 000-kg meteor comes in from outer space
and impacts the Moon’s surface?

Section 14.8 Energy Considerations in 
Planetary and Satellite Motion

33. A 500-kg satellite is in a circular orbit at an altitude of
500 km above the Earth’s surface. Because of air fric-
tion, the satellite is eventually brought to the Earth’s
surface, and it hits the Earth with a speed of 2.00 km/s.
How much energy was transformed to internal energy
by means of friction?

34. (a) What is the minimum speed, relative to the Sun, that
is necessary for a spacecraft to escape the Solar System if
it starts at the Earth’s orbit? (b) Voyager 1 achieved a max-
imum speed of 125 000 km/h on its way to photograph
Jupiter. Beyond what distance from the Sun is this speed
sufficient for a spacecraft to escape the Solar System?

35. A satellite with a mass of 200 kg is placed in Earth orbit
at a height of 200 km above the surface. (a) Assuming a
circular orbit, how long does the satellite take to com-
plete one orbit? (b) What is the satellite’s speed? 
(c) What is the minimum energy necessary to place this
satellite in orbit (assuming no air friction)?

36. A satellite of mass m is placed in Earth orbit at an altitude
h. (a) Assuming a circular orbit, how long does the satel-
lite take to complete one orbit? (b) What is the satellite’s
speed? (c) What is the minimum energy necessary to
place this satellite in orbit (assuming no air friction)?

37. A spaceship is fired from the Earth’s surface with an ini-
tial speed of 2.00 � 104 m/s. What will its speed be
when it is very far from the Earth? (Neglect friction.)

38. A 1 000-kg satellite orbits the Earth at a constant alti-
tude of 100 km. How much energy must be added to
the system to move the satellite into a circular orbit at
an altitude of 200 km?

39. A “treetop satellite” moves in a circular orbit just above
the surface of a planet, which is assumed to offer no air
resistance. Show that its orbital speed v and the escape
speed from the planet are related by the expression

40. The planet Uranus has a mass about 14 times the
Earth’s mass, and its radius is equal to about 3.7 Earth

vesc � √2v.

WEB

26. Find the gravitational field at a distance r along the axis
of a thin ring of mass M and radius a.

Section 14.7 Gravitational Potential Energy
Note: Assume that as 

27. A satellite of the Earth has a mass of 100 kg and is at an
altitude of 2.00 � 106 m. (a) What is the potential en-
ergy of the satellite–Earth system? (b) What is the mag-
nitude of the gravitational force exerted by the Earth
on the satellite? (c) What force does the satellite exert
on the Earth?

28. How much energy is required to move a 1 000-kg mass
from the Earth’s surface to an altitude twice the Earth’s
radius?

29. After our Sun exhausts its nuclear fuel, its ultimate fate
may be to collapse to a white-dwarf state, in which it has
approximately the same mass it has now but a radius

r : �.U � 0

10.0 km100 m

Black hole

a

M

Pr

M

Figure P14.24

Figure P14.25
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radii. (a) By setting up ratios with the corresponding
Earth values, find the acceleration due to gravity at the
cloud tops of Uranus. (b) Ignoring the rotation of the
planet, find the minimum escape speed from Uranus.

41. Determine the escape velocity for a rocket on the far
side of Ganymede, the largest of Jupiter’s moons. The
radius of Ganymede is 2.64 � 106 m, and its mass is
1.495 � 1023 kg. The mass of Jupiter is 1.90 � 1027 kg,
and the distance between Jupiter and Ganymede is
1.071 � 109 m. Be sure to include the gravitational ef-
fect due to Jupiter, but you may ignore the motions of
Jupiter and Ganymede as they revolve about their cen-
ter of mass (Fig. P14.41).

(Optional)
Section 14.10 The Gravitational Force Between 
a Particle and a Spherical Mass

46. (a) Show that the period calculated in Example 14.10
can be written as

where g is the free-fall acceleration on the surface of the
Earth. (b) What would this period be if tunnels were
made through the Moon? (c) What practical problem
regarding these tunnels on Earth would be removed if
they were built on the Moon?

47. A 500-kg uniform solid sphere has a radius of 0.400 m.
Find the magnitude of the gravitational force exerted
by the sphere on a 50.0-g particle located (a) 1.50 m
from the center of the sphere, (b) at the surface of the
sphere, and (c) 0.200 m from the center of the sphere.

48. A uniform solid sphere of mass m1 and radius R1 is in-
side and concentric with a spherical shell of mass m2
and radius R 2 (Fig. P14.48). Find the gravitational force
exerted by the spheres on a particle of mass m located
at (a) (b) and (c) where r is mea-
sured from the center of the spheres.

r � c,r � b,r � a,

T � 2�√ R E

g

42. In Robert Heinlein’s The Moon is a Harsh Mistress, the
colonial inhabitants of the Moon threaten to launch
rocks down onto the Earth if they are not given inde-
pendence (or at least representation). Assuming that a
rail gun could launch a rock of mass m at twice the lu-
nar escape speed, calculate the speed of the rock as it
enters the Earth’s atmosphere. (By lunar escape speed we
mean the speed required to escape entirely from a sta-
tionary Moon alone in the Universe.)

43. Derive an expression for the work required to move an
Earth satellite of mass m from a circular orbit of radius
2RE to one of radius 3RE .

(Optional)
Section 14.9 The Gravitational Force Between 
an Extended Object and a Particle

44. Consider two identical uniform rods of length L and
mass m lying along the same line and having their clos-
est points separated by a distance d (Fig. P14.44). Show
that the mutual gravitational force between these rods
has a magnitude

45. A uniform rod of mass M is in the shape of a semicircle
of radius R (Fig. P14.45). Calculate the force on a point
mass m placed at the center of the semicircle.

F �
Gm2

L2  ln � (L � d)2

d(2L � d) �

d
LL

mm

Ganymede

v

Jupiter

m 2

c

ba
R 2

R 1

m 1

m

M

R

Figure P14.41

Figure P14.44

Figure P14.45

Figure P14.48
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ADDITIONAL PROBLEMS

49. Let 
gM represent the difference in the gravitational
fields produced by the Moon at the points on the
Earth’s surface nearest to and farthest from the Moon.
Find the fraction 
gM/g, where g is the Earth’s gravita-
tional field. (This difference is responsible for the oc-
currence of the lunar tides on the Earth.)

50. Two spheres having masses M and 2M and radii R and
3R, respectively, are released from rest when the dis-
tance between their centers is 12R. How fast will each
sphere be moving when they collide? Assume that the
two spheres interact only with each other.

51. In Larry Niven’s science-fiction novel Ringworld, a rigid
ring of material rotates about a star (Fig. P14.51). The
rotational speed of the ring is 1.25 � 106 m/s, and its
radius is 1.53 � 1011 m. (a) Show that the centripetal
acceleration of the inhabitants is 10.2 m/s2. (b) The in-
habitants of this ring world experience a normal con-
tact force n. Acting alone, this normal force would pro-
duce an inward acceleration of 9.90 m/s2. Additionally,
the star at the center of the ring exerts a gravitational
force on the ring and its inhabitants. The difference be-
tween the total acceleration and the acceleration pro-
vided by the normal force is due to the gravitational at-
traction of the central star. Show that the mass of the
star is approximately 1032 kg.

(c) Evaluate this difference for m, a typical
height for a two-story building.

53. A particle of mass m is located inside a uniform solid
sphere of radius R and mass M, at a distance r from its
center. (a) Show that the gravitational potential energy
of the system is 
(b) Write an expression for the amount of work done
by the gravitational force in bringing the particle from
the surface of the sphere to its center.

54. Voyagers 1 and 2 surveyed the surface of Jupiter’s moon
Io and photographed active volcanoes spewing liquid
sulfur to heights of 70 km above the surface of this
moon. Find the speed with which the liquid sulfur left
the volcano. Io’s mass is 8.9 � 1022 kg, and its radius is 
1 820 km.

55. As an astronaut, you observe a small planet to be spheri-
cal. After landing on the planet, you set off, walking al-
ways straight ahead, and find yourself returning to your
spacecraft from the opposite side after completing a lap
of 25.0 km. You hold a hammer and a falcon feather at
a height of 1.40 m, release them, and observe that they
fall together to the surface in 29.2 s. Determine the
mass of the planet.

56. A cylindrical habitat in space, 6.00 km in diameter and
30 km long, was proposed by G. K. O’Neill in 1974.
Such a habitat would have cities, land, and lakes on the
inside surface and air and clouds in the center. All of
these would be held in place by the rotation of the
cylinder about its long axis. How fast would the cylinder
have to rotate to imitate the Earth’s gravitational field at
the walls of the cylinder?

57. In introductory physics laboratories, a typical Cavendish
balance for measuring the gravitational constant G uses
lead spheres with masses of 1.50 kg and 15.0 g whose
centers are separated by about 4.50 cm. Calculate the
gravitational force between these spheres, treating each
as a point mass located at the center of the sphere.

58. Newton’s law of universal gravitation is valid for dis-
tances covering an enormous range, but it is thought to
fail for very small distances, where the structure of space
itself is uncertain. The crossover distance, far less than
the diameter of an atomic nucleus,  is called the Planck
length. It is determined by a combination of the con-
stants G, c, and h, where c is the speed of light in vac-
uum and h is Planck’s constant (introduced briefly in
Chapter 11 and discussed in greater detail in Chapter
40) with units of angular momentum. (a) Use dimen-
sional analysis to find a combination of these three uni-
versal constants that has units of length. (b) Determine
the order of magnitude of the Planck length. (Hint: You
will need to consider noninteger powers of the con-
stants.)

59. Show that the escape speed from the surface of a planet
of uniform density is directly proportional to the radius
of the planet.

60. (a) Suppose that the Earth (or another object) has den-
sity �(r), which can vary with radius but is spherically

U � (GmM/2R3)r 2 � 3GmM/2R.

h � 6.00

WEB

52. (a) Show that the rate of change of the free-fall acceler-
ation with distance above the Earth’s surface is

This rate of change over distance is called a gradient.
(b) If h is small compared to the radius of the Earth,
show that the difference in free-fall acceleration be-
tween two points separated by vertical distance h is

� 
g � �
2GMEh

R E 

3

dg
dr

� �
2GME

R E 

3

n
Fg

Star

Figure P14.51
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symmetric. Show that at any particular radius r inside
the Earth, the gravitational field strength g(r) will in-
crease as r increases, if and only if the density there ex-
ceeds 2/3 the average density of the portion of the
Earth inside the radius r. (b) The Earth as a whole has
an average density of 5.5 g/cm3, while the density at the
surface is 1.0 g/cm3 on the oceans and about 3 g/cm3

on land. What can you infer from this?
61. Two hypothetical planets of masses m1 and m2 and radii

r1 and r2 , respectively, are nearly at rest when they are
an infinite distance apart. Because of their gravitational
attraction, they head toward each other on a collision
course. (a) When their center-to-center separation is d,
find expressions for the speed of each planet and their
relative velocity. (b) Find the kinetic energy of each
planet just before they collide, if m1 � 2.00 � 1024 kg,
m2 � 8.00 � 1024 kg, r1 � 3.00 � 106 m, and r2 �
5.00 � 106 m. (Hint: Both energy and momentum are
conserved.)

62. The maximum distance from the Earth to the Sun (at
our aphelion) is 1.521 � 1011 m, and the distance of
closest approach (at perihelion) is 1.471 � 1011 m. If
the Earth’s orbital speed at perihelion is 30.27 km/s,
determine (a) the Earth’s orbital speed at aphelion, 
(b) the kinetic and potential energies at perihelion,
and (c) the kinetic and potential energies at aphelion.
Is the total energy constant? (Neglect the effect of the
Moon and other planets.)

63. A sphere of mass M and radius R has a nonuniform
density that varies with r, the distance from its center,
according to the expression � � Ar, for 0 � r � R. 
(a) What is the constant A in terms of M and R ? 
(b) Determine an expression for the force exerted on a
particle of mass m placed outside the sphere. (c) Deter-
mine an expression for the force exerted on the parti-
cle if it is inside the sphere. (Hint: See Section 14.10
and note that the distribution is spherically symmetric.)

64. (a) Determine the amount of work (in joules) that must
be done on a 100-kg payload to elevate it to a height of
1 000 km above the Earth’s surface. (b) Determine the
amount of additional work that is required to put the
payload into circular orbit at this elevation.

65. X-ray pulses from Cygnus X-1, a celestial x-ray source,
have been recorded during high-altitude rocket flights.
The signals can be interpreted as originating when a
blob of ionized matter orbits a black hole with a period
of 5.0 ms. If the blob is in a circular orbit about a black
hole whose mass is 20MSun , what is the orbital radius?

66. Studies of the relationship of the Sun to its galaxy—the
Milky Way—have revealed that the Sun is located near
the outer edge of the galactic disk, about 30 000
lightyears from the center. Furthermore, it has been
found that the Sun has an orbital speed of approxi-
mately 250 km/s around the galactic center. (a) What is
the period of the Sun’s galactic motion? (b) What is the
order of magnitude of the mass of the Milky Way
galaxy? Suppose that the galaxy is made mostly of stars,

of which the Sun is typical. What is the order of magni-
tude of the number of stars in the Milky Way?

67. The oldest artificial satellite in orbit is Vanguard I,
launched March 3, 1958. Its mass is 1.60 kg. In its initial
orbit, its minimum distance from the center of the
Earth was 7.02 Mm, and its speed at this perigee point
was 8.23 km/s. (a) Find its total energy. (b) Find the
magnitude of its angular momentum. (c) Find its speed
at apogee and its maximum (apogee) distance from the
center of the Earth. (d) Find the semimajor axis of its
orbit. (e) Determine its period.

68. A rocket is given an initial speed vertically upward of
at the surface of the Earth, which has radius R

and surface free-fall acceleration g. The rocket motors are
quickly cut off, and thereafter the rocket coasts under the
action of gravitational forces only. (Ignore atmospheric
friction and the Earth’s rotation.) Derive an expression
for the subsequent speed v as a function of the distance r
from the center of the Earth in terms of g, R, and r.

69. Two stars of masses M and m, separated by a distance d,
revolve in circular orbits about their center of mass
(Fig. P14.69). Show that each star has a period given by

(Hint: Apply Newton’s second law to each star, and note
that the center-of-mass condition requires that

where r1 � r2 � d.)Mr2 � mr1 ,

T 2 �
4�2d3

G(M � m)

vi � 2√Rg

WEB

Figure P14.69
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70. (a) A 5.00-kg mass is released 1.20 � 107 m from the
center of the Earth. It moves with what acceleration rel-
ative to the Earth? (b) A 2.00 � 1024 kg mass is released
1.20 � 107 m from the center of the Earth. It moves
with what acceleration relative to the Earth? Assume
that the objects behave as pairs of particles, isolated
from the rest of the Universe.

71. The acceleration of an object moving in the gravita-
tional field of the Earth is

a � �
GME

r 3 r
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ANSWERS TO QUICK QUIZZES

14.4 The gravitational force is zero inside the shell (Eq.
14.25b). Because the force on it is zero, the particle
moves with constant velocity in the direction of its origi-
nal motion outside the shell until it hits the wall oppo-
site the entry hole. Its path thereafter depends on the
nature of the collision and on the particle’s original di-
rection.

14.1 Kepler’s third law (Eq. 14.7), which applies to all the
planets, tells us that the period of a planet is propor-
tional to r3/2. Because Saturn and Jupiter are farther
from the Sun than the Earth is, they have longer peri-
ods. The Sun’s gravitational field is much weaker at Sat-
urn and Jupiter than it is at the Earth. Thus, these plan-
ets experience much less centripetal acceleration than
the Earth does, and they have correspondingly longer
periods.

14.2 The mass of the asteroid might be so small that you
would be able to exceed escape velocity by leg power
alone. You would jump up, but you would never come
back down!

14.3 Kepler’s first law applies not only to planets orbiting the
Sun but also to any relatively small object orbiting an-
other under the influence of gravity. Any elliptical path
that does not touch the Earth before reaching point G
will continue around the other side to point V in a com-
plete orbit (see figure in next column).

where r is the position vector directed from the center
of the Earth to the object. Choosing the origin at the
center of the Earth and assuming that the small object
is moving in the xy plane, we find that the rectangular
(cartesian) components of its acceleration are

Use a computer to set up and carry out a numerical pre-

ax � �
GMEx

(x2 � y2)3/2   ay � �
GMEy

(x2 � y2)3/2

diction of the motion of the object, according to Euler’s
method. Assume that the initial position of the object is

and where RE is the radius of the Earth.
Give the object an initial velocity of 5 000 m/s in the x
direction. The time increment should be made as small
as practical. Try 5 s. Plot the x and y coordinates of the
object as time goes on. Does the object hit the Earth?
Vary the initial velocity until you find a circular orbit.

y � 2R E ,x � 0
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Have you ever wondered why a tennis
ball is fuzzy and why a golf ball has dim-
ples? A “spitball” is an illegal baseball
pitch because it makes the ball act too
much like the fuzzy tennis ball or the dim-
pled golf ball. What principles of physics
govern the behavior of these three
pieces of sporting equipment (and also
keep airplanes in the sky)? (George

Semple)

P U Z Z L E RP U Z Z L E R

15.1 Pressure

15.2 Variation of Pressure with Depth

15.3 Pressure Measurements

15.4 Buoyant Forces and
Archimedes’s Principle

15.5 Fluid Dynamics

15.6 Streamlines and the Equation of
Continuity

15.7 Bernoulli’s Equation

15.8 (Optional) Other Applications of
Bernoulli’s Equation

C h a p t e r  O u t l i n e

15.1 Pressure 459

atter is normally classified as being in one of three states: solid, liquid, or
gas. From everyday experience, we know that a solid has a definite volume
and shape. A brick maintains its familiar shape and size day in and day out.

We also know that a liquid has a definite volume but no definite shape. Finally, we
know that an unconfined gas has neither a definite volume nor a definite shape.
These definitions help us picture the states of matter, but they are somewhat artifi-
cial. For example, asphalt and plastics are normally considered solids, but over
long periods of time they tend to flow like liquids. Likewise, most substances can
be a solid, a liquid, or a gas (or a combination of any of these), depending on the
temperature and pressure. In general, the time it takes a particular substance to
change its shape in response to an external force determines whether we treat the
substance as a solid, as a liquid, or as a gas.

A fluid is a collection of molecules that are randomly arranged and held to-
gether by weak cohesive forces and by forces exerted by the walls of a container.
Both liquids and gases are fluids.

In our treatment of the mechanics of fluids, we shall see that we do not need
to learn any new physical principles to explain such effects as the buoyant force
acting on a submerged object and the dynamic lift acting on an airplane wing.
First, we consider the mechanics of a fluid at rest—that is, fluid statics—and derive
an expression for the pressure exerted by a fluid as a function of its density and
depth. We then treat the mechanics of fluids in motion—that is, fluid dynamics.
We can describe a fluid in motion by using a model in which we make certain sim-
plifying assumptions. We use this model to analyze some situations of practical im-
portance. An analysis leading to Bernoulli’s equation enables us to determine rela-
tionships between the pressure, density, and velocity at every point in a fluid.

PRESSURE
Fluids do not sustain shearing stresses or tensile stresses; thus, the only stress that
can be exerted on an object submerged in a fluid is one that tends to compress
the object. In other words, the force exerted by a fluid on an object is always per-
pendicular to the surfaces of the object, as shown in Figure 15.1.

The pressure in a fluid can be measured with the device pictured in Figure
15.2. The device consists of an evacuated cylinder that encloses a light piston con-
nected to a spring. As the device is submerged in a fluid, the fluid presses on the
top of the piston and compresses the spring until the inward force exerted by the
fluid is balanced by the outward force exerted by the spring. The fluid pressure
can be measured directly if the spring is calibrated in advance. If F is the magni-
tude of the force exerted on the piston and A is the surface area of the piston,

15.1

M

F

Vacuum

A

Figure 15.1 At any point on the
surface of a submerged object, the
force exerted by the fluid is per-
pendicular to the surface of the ob-
ject. The force exerted by the fluid
on the walls of the container is per-
pendicular to the walls at all points.

Figure 15.2 A simple device for measuring the pressure exerted
by a fluid.
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then the pressure P of the fluid at the level to which the device has been sub-
merged is defined as the ratio F/A:

(15.1)

Note that pressure is a scalar quantity because it is proportional to the magnitude
of the force on the piston.

To define the pressure at a specific point, we consider a fluid acting on the de-
vice shown in Figure 15.2. If the force exerted by the fluid over an infinitesimal
surface element of area dA containing the point in question is dF, then the pres-
sure at that point is

(15.2)

As we shall see in the next section, the pressure exerted by a fluid varies with
depth. Therefore, to calculate the total force exerted on a flat wall of a container,
we must integrate Equation 15.2 over the surface area of the wall.

Because pressure is force per unit area, it has units of newtons per square me-
ter (N/m2) in the SI system. Another name for the SI unit of pressure is pascal
(Pa):

(15.3)

Suppose you are standing directly behind someone who steps back and accidentally stomps
on your foot with the heel of one shoe. Would you be better off if that person were a profes-
sional basketball player wearing sneakers or a petite woman wearing spike-heeled shoes? Ex-
plain.

After a long lecture, the daring physics professor stretches out for a nap on a bed of nails, as
shown in Figure 15.3. How is this possible?

Quick Quiz 15.2

Quick Quiz 15.1

1 Pa � 1 N/m2

P �
dF
dA

P �
F
A

Snowshoes keep you from sinking
into soft snow because they spread
the downward force you exert on
the snow over a large area, reduc-
ing the pressure on the snow’s sur-
face.

Figure 15.3

Definition of pressure

QuickLab
Place a tack between your thumb and
index finger, as shown in the figure.
Now very gently squeeze the tack and
note the sensation. The pointed end
of the tack causes pain, and the blunt
end does not. According to Newton’s
third law, the force exerted by the
tack on the thumb is equal in magni-
tude and opposite in direction to the
force exerted by the tack on the in-
dex finger. However, the pressure at
the pointed end of the tack is much
greater than the pressure at the blunt
end. (Remember that pressure is
force per unit area.)

Tack
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VARIATION OF PRESSURE WITH DEPTH
As divers well know, water pressure increases with depth. Likewise, atmospheric
pressure decreases with increasing altitude; it is for this reason that aircraft flying
at high altitudes must have pressurized cabins.

We now show how the pressure in a liquid increases linearly with depth. As
Equation 1.1 describes, the density of a substance is defined as its mass per unit vol-
ume: Table 15.1 lists the densities of various substances. These values
vary slightly with temperature because the volume of a substance is temperature
dependent (as we shall see in Chapter 19). Note that under standard conditions
(at 0°C and at atmospheric pressure) the densities of gases are about 1/1 000 the
densities of solids and liquids. This difference implies that the average molecular
spacing in a gas under these conditions is about ten times greater than that in a
solid or liquid.

Now let us consider a fluid of density � at rest and open to the atmosphere, as
shown in Figure 15.4. We assume that � is constant; this means that the fluid is in-
compressible. Let us select a sample of the liquid contained within an imaginary
cylinder of cross-sectional area A extending from the surface to a depth h. The

� � m/V.

15.2

The Water BedEXAMPLE 15.1
imately 300 lb.) Because this load is so great, such a water
bed is best placed in the basement or on a sturdy, well-
supported floor.

(b) Find the pressure exerted by the water on the floor
when the bed rests in its normal position. Assume that the en-
tire lower surface of the bed makes contact with the floor.

Solution When the bed is in its normal position, the cross-
sectional area is 4.00 m2 ; thus, from Equation 15.1, we find
that

2.95 � 103 PaP �
1.18 � 104 N

4.00 m2 �

The mattress of a water bed is 2.00 m long by 2.00 m wide
and 30.0 cm deep. (a) Find the weight of the water in the
mattress.

Solution The density of water is 1 000 kg/m3 (Table
15.1), and so the mass of the water is

and its weight is

This is approximately 2 650 lb. (A regular bed weighs approx-

1.18 � 104 NMg � (1.20 � 103 kg)(9.80 m/s2) �

M � �V � (1 000 kg/m3)(1.20 m3) � 1.20 � 103 kg

TABLE 15.1 Densities of Some Common Substances at Standard
Temperature (0°C) and Pressure (Atmospheric)

Substance � (kg/m3) Substance � (kg/m3)

Air 1.29 Ice 0.917 � 103

Aluminum 2.70 � 103 Iron 7.86 � 103

Benzene 0.879 � 103 Lead 11.3 � 103

Copper 8.92 � 103 Mercury 13.6 � 103

Ethyl alcohol 0.806 � 103 Oak 0.710 � 103

Fresh water 1.00 � 103 Oxygen gas 1.43
Glycerine 1.26 � 103 Pine 0.373 � 103

Gold 19.3 � 103 Platinum 21.4 � 103

Helium gas 1.79 � 10�1 Seawater 1.03 � 103

Hydrogen gas 8.99 � 10�2 Silver 10.5 � 103

Mg

PAj

h

P0Aj

Figure 15.4 How pressure varies
with depth in a fluid. The net force
exerted on the volume of water
within the darker region must be
zero.
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pressure exerted by the outside liquid on the bottom face of the cylinder is P, and
the pressure exerted on the top face of the cylinder is the atmospheric pressure P0 .
Therefore, the upward force exerted by the outside fluid on the bottom of the cylin-
der is PA, and the downward force exerted by the atmosphere on the top is P0A. The
mass of liquid in the cylinder is M � �V � �Ah; therefore, the weight of the liquid in
the cylinder is Because the cylinder is in equilibrium, the net force act-
ing on it must be zero. Choosing upward to be the positive y direction, we see that

or

(15.4)

That is, the pressure P at a depth h below the surface of a liquid open to the
atmosphere is greater than atmospheric pressure by an amount �gh. In our
calculations and working of end-of-chapter problems, we usually take atmospheric
pressure to be

Equation 15.4 implies that the pressure is the same at all points having the same
depth, independent of the shape of the container.

In the derivation of Equation 15.4, why were we able to ignore the pressure that the liquid
exerts on the sides of the cylinder?

In view of the fact that the pressure in a fluid depends on depth and on the
value of P0 , any increase in pressure at the surface must be transmitted to every
other point in the fluid. This concept was first recognized by the French scientist
Blaise Pascal (1623–1662) and is called Pascal’s law: A change in the pressure
applied to a fluid is transmitted undiminished to every point of the fluid
and to the walls of the container.

An important application of Pascal’s law is the hydraulic press illustrated in
Figure 15.5a. A force of magnitude F1 is applied to a small piston of surface area
A1 . The pressure is transmitted through a liquid to a larger piston of surface area
A2 . Because the pressure must be the same on both sides, 
Therefore, the force F2 is greater than the force F1 by a factor A2/A1 , which is
called the force-multiplying factor. Because liquid is neither added nor removed, the
volume pushed down on the left as the piston moves down a distance d1 equals the
volume pushed up on the right as the right piston moves up a distance d2 . That is,

thus, the force-multiplying factor can also be written as d1/d2 . Note
that Hydraulic brakes, car lifts, hydraulic jacks, and forklifts all make
use of this principle (Fig. 15.5b).

A grain silo has many bands wrapped around its perimeter (Fig. 15.6). Why is the spacing
between successive bands smaller at the lower portions of the silo, as shown in the photo-
graph?

Quick Quiz 15.4

F1d1 � F2d2 .
A1d1 � A2d2 ;

P � F1/A1 � F2/A2 .

Quick Quiz 15.3

P0 � 1.00 atm � 1.013 � 105 Pa

 P � P0 � �gh

 PA � P0A � �Ahg 

PA � P0A � �Ahg � 0 

�Fy � PA � P0A � Mg � 0

Mg � �Ahg.

Variation of pressure with depth

B C DA

This arrangement of intercon-
nected tubes demonstrates that the
pressure in a liquid is the same at
all points having the same eleva-
tion. For example, the pressure is
the same at points A, B, C, and D.

QuickLab
Poke two holes in the side of a paper
or polystyrene cup—one near the
top and the other near the bottom.
Fill the cup with water and watch the
water flow out of the holes. Why does
water exit from the bottom hole at a
higher speed than it does from the
top hole?
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The Car LiftEXAMPLE 15.2
The air pressure that produces this force is

This pressure is approximately twice atmospheric pressure.
The input work (the work done by F1) is equal to the out-

put work (the work done by F2), in accordance with the prin-
ciple of conservation of energy.

1.88 � 105 PaP �
F1

A1
�

1.48 � 103 N
�(5.00 � 10�2 m)2 �

In a car lift used in a service station, compressed air exerts a
force on a small piston that has a circular cross section and a
radius of 5.00 cm. This pressure is transmitted by a liquid to a
piston that has a radius of 15.0 cm. What force must the com-
pressed air exert to lift a car weighing 13 300 N? What air
pressure produces this force?

Solution Because the pressure exerted by the compressed
air is transmitted undiminished throughout the liquid, we have

 � 1.48 � 103 N 

F1 � � A1

A2
� F2 �

�(5.00 � 10�2 m)2

�(15.0 � 10�2 m)2
 (1.33 � 104 N)

F1

F2

A2A1
d1

d2

(a)

Figure 15.5 (a) Diagram of a hydraulic press. Because the increase in pressure is the same on
the two sides, a small force Fl at the left produces a much greater force F2 at the right. (b) A ve-
hicle undergoing repair is supported by a hydraulic lift in a garage.

Figure 15.6

(b)

A Pain in the EarEXAMPLE 15.3
the eardrum; then, after estimating the eardrum’s surface
area, we can determine the force that the water exerts on it.

The air inside the middle ear is normally at atmospheric
pressure P0 . Therefore, to find the net force on the eardrum,
we must consider the difference between the total pressure at

Estimate the force exerted on your eardrum due to the water
above when you are swimming at the bottom of a pool that is
5.0 m deep.

Solution First, we must find the unbalanced pressure on
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PRESSURE MEASUREMENTS
One simple device for measuring pressure is the open-tube manometer illustrated
in Figure 15.8a. One end of a U-shaped tube containing a liquid is open to the at-
mosphere, and the other end is connected to a system of unknown pressure P.
The difference in pressure is equal to �gh; hence, The pres-
sure P is called the absolute pressure, and the difference is called the
gauge pressure. The latter is the value that normally appears on a pressure
gauge. For example, the pressure you measure in your bicycle tire is the gauge
pressure.

Another instrument used to measure pressure is the common barometer, which
was invented by Evangelista Torricelli (1608–1647). The barometer consists of a

P � P0

P � P0 � �gh.P � P0

15.3

The Force on a DamEXAMPLE 15.4
erted on a narrow horizontal strip at depth h and then inte-
grating the expression to find the total force. Let us imagine
a vertical y axis, with y � 0 at the bottom of the dam and our
strip a distance y above the bottom.

We can use Equation 15.4 to calculate the pressure at the
depth h; we omit atmospheric pressure because it acts on
both sides of the dam:

Using Equation 15.2, we find that the force exerted on the
shaded strip of area is

Therefore, the total force on the dam is

Note that the thickness of the dam shown in Figure 15.7 in-
creases with depth. This design accounts for the greater and
greater pressure that the water exerts on the dam at greater
depths.

Exercise Find an expression for the average pressure on
the dam from the total force exerted by the water on the
dam.

Answer 1
2 �gH.

1
2�gwH 2F � � P dA � �H

0
 �g(H � y)w dy �

dF � P dA � �g(H � y)w dy

dA � w dy

P � �gh � �g(H � y)

Water is filled to a height H behind a dam of width w (Fig.
15.7). Determine the resultant force exerted by the water on
the dam.

Solution Because pressure varies with depth, we cannot
calculate the force simply by multiplying the area by the pres-
sure. We can solve the problem by finding the force dF ex-

the bottom of the pool and atmospheric pressure:

We estimate the surface area of the eardrum to be approxi-
mately 1 cm2 � 1 � 10�4 m2. This means that the force on it

 � 4.9 � 104 Pa 

 � (1.00 � 103 kg/m3)(9.80 m/s2)(5.0 m)

Pbot � P0 � �gh 

is Because a force on the eardrum
of this magnitude is extremely uncomfortable, swimmers of-
ten “pop their ears” while under water, an action that pushes
air from the lungs into the middle ear. Using this technique
equalizes the pressure on the two sides of the eardrum and
relieves the discomfort.

F � (Pbot � P0)A � 5 N.

H

dy

O

h

y
w

Figure 15.7 Because pressure varies with depth, the total force ex-
erted on a dam must be obtained from the expression 
where dA is the area of the dark strip.

F � � P dA,
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long, mercury-filled tube closed at one end and inverted into an open container of
mercury (Fig. 15.8b). The closed end of the tube is nearly a vacuum, and so its
pressure can be taken as zero. Therefore, it follows that where h is the
height of the mercury column.

One atmosphere atm) of pressure is defined as the pressure that
causes the column of mercury in a barometer tube to be exactly 0.760 0 m in
height at 0°C, with At this temperature, mercury has a density
of 13.595 � 103 kg/m3; therefore,

Other than the obvious problem that occurs with freezing, why don’t we use water in a
barometer in the place of mercury?

BUOYANT FORCES AND ARCHIMEDES’S PRINCIPLE
Have you ever tried to push a beach ball under water? This is extremely difficult to
do because of the large upward force exerted by the water on the ball. The upward
force exerted by water on any immersed object is called a buoyant force. We can
determine the magnitude of a buoyant force by applying some logic and Newton’s
second law. Imagine that, instead of air, the beach ball is filled with water. If you
were standing on land, it would be difficult to hold the water-filled ball in your
arms. If you held the ball while standing neck deep in a pool, however, the force
you would need to hold it would almost disappear. In fact, the required force
would be zero if we were to ignore the thin layer of plastic of which the beach ball
is made. Because the water-filled ball is in equilibrium while it is submerged, the
magnitude of the upward buoyant force must equal its weight.

If the submerged ball were filled with air rather than water, then the upward
buoyant force exerted by the surrounding water would still be present. However,
because the weight of the water is now replaced by the much smaller weight of that
volume of air, the net force is upward and quite great; as a result, the ball is
pushed to the surface.

15.4

Quick Quiz 15.5

 � 1.013 � 105 Pa � 1 atm

P0 � �gh � (13.595 � 103 kg/m3)(9.806 65 m/s2)(0.760 0 m)

g � 9.806 65 m/s2.

(P0 � 1

P0 � �gh,

(a)

P

A B

P0

h

P = 0

P0h

(b)

Figure 15.8 Two devices for measuring pressure: (a) an open-tube manometer and (b) a mer-
cury barometer.
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The manner in which buoyant forces act is summarized by Archimedes’s
principle, which states that the magnitude of the buoyant force always equals
the weight of the fluid displaced by the object. The buoyant force acts verti-
cally upward through the point that was the center of gravity of the displaced fluid.

Note that Archimedes’s principle does not refer to the makeup of the object
experiencing the buoyant force. The object’s composition is not a factor in the
buoyant force. We can verify this in the following manner: Suppose we focus our
attention on the indicated cube of liquid in the container illustrated in Figure
15.9. This cube is in equilibrium as it is acted on by two forces. One of these forces
is the gravitational force Fg . What cancels this downward force? Apparently, the
rest of the liquid in the container is holding the cube in equilibrium. Thus, the
magnitude of the buoyant force B exerted on the cube is exactly equal to the mag-
nitude of Fg , which is the weight of the liquid inside the cube:

Now imagine that the cube of liquid is replaced by a cube of steel of the same
dimensions. What is the buoyant force acting on the steel? The liquid surrounding
a cube behaves in the same way no matter what the cube is made of. Therefore,
the buoyant force acting on the steel cube is the same as the buoyant force
acting on a cube of liquid of the same dimensions. In other words, the magni-
tude of the buoyant force is the same as the weight of the liquid cube, not the steel
cube. Although mathematically more complicated, this same principle applies to
submerged objects of any shape, size, or density.

Although we have described the magnitude and direction of the buoyant
force, we still do not know its origin. Why would a fluid exert such a strange force,
almost as if the fluid were trying to expel a foreign body? To understand why, look
again at Figure 15.9. The pressure at the bottom of the cube is greater than the
pressure at the top by an amount �gh, where h is the length of any side of the cube.
The pressure difference �P between the bottom and top faces of the cube is equal
to the buoyant force per unit area of those faces—that is, Therefore,

where V is the volume of the cube. Because the mass
of the fluid in the cube is we see that

(15.5)

where Mg is the weight of the fluid in the cube. Thus, the buoyant force is a result
of the pressure differential on a submerged or partly submerged object.

Before we proceed with a few examples, it is instructive for us to compare the
forces acting on a totally submerged object with those acting on a floating (partly
submerged) object.

Case 1: Totally Submerged Object When an object is totally submerged in a
fluid of density �f , the magnitude of the upward buoyant force is where
Vo is the volume of the object. If the object has a mass M and density �o , its weight
is equal to and the net force on it is 
Hence, if the density of the object is less than the density of the fluid, then the
downward force of gravity is less than the buoyant force, and the unconstrained
object accelerates upward (Fig. 15.10a). If the density of the object is greater than
the density of the fluid, then the upward buoyant force is less than the downward
force of gravity, and the unsupported object sinks (Fig. 15.10b).

Case 2: Floating Object Now consider an object of volume Vo in static equilib-
rium floating on a fluid—that is, an object that is only partially submerged. In this

B � Fg � (�f � �o)Vog.Fg � Mg � �oVog,

B � �fVog,

B � Fg � �Vg � Mg

M � �V,
B � (�P)A � (�gh)A � �gV,

�P � B/A.

B � Fg

Archimedes (c. 287 – 212 B.C.)
Archimedes, a Greek mathematician,
physicist, and engineer, was perhaps
the greatest scientist of antiquity. He
was the first to compute accurately
the ratio of a circle’s circumference
to its diameter, and he showed how to
calculate the volume and surface
area of spheres, cylinders, and other
geometric shapes. He is well known
for discovering the nature of the
buoyant force. 

Archimedes was also a gifted in-
ventor. One of his practical inven-
tions, still in use today, is
Archimedes’s screw – an inclined, ro-
tating, coiled tube originally used to
lift water from the holds of ships. He
also invented the catapult and de-
vised systems of levers, pulleys, and
weights for raising heavy loads. Such
inventions were successfully used to
defend his native city Syracuse dur-
ing a two-year siege by the Romans.

Archimedes’s principle

Fg B

h

Figure 15.9 The external forces
acting on the cube of liquid are the
force of gravity Fg and the buoyant
force B. Under equilibrium condi-
tions, B � F g .
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case, the upward buoyant force is balanced by the downward gravitational force
acting on the object. If Vf is the volume of the fluid displaced by the object (this
volume is the same as the volume of that part of the object that is beneath the
fluid level), the buoyant force has a magnitude Because the weight of
the object is and because we see that or

(15.6)

Under normal conditions, the average density of a fish is slightly greater than
the density of water. It follows that the fish would sink if it did not have some
mechanism for adjusting its density. The fish accomplishes this by internally regu-
lating the size of its air-filled swim bladder to balance the change in the magnitude
of the buoyant force acting on it. In this manner, fish are able to swim to various
depths. Unlike a fish, a scuba diver cannot achieve neutral buoyancy (at which the
buoyant force just balances the weight) by adjusting the magnitude of the buoyant
force B. Instead, the diver adjusts Fg by manipulating lead weights.

Steel is much denser than water. In view of this fact, how do steel ships float?

A glass of water contains a single floating ice cube (Fig. 15.11). When the ice melts, does
the water level go up, go down, or remain the same?

When a person in a rowboat in a small pond throws an anchor overboard, does the water
level of the pond go up, go down, or remain the same?

Quick Quiz 15.8

Quick Quiz 15.7

Quick Quiz 15.6

�o

�f
�

Vf

Vo

�fVf g � �oVog,Fg � B,Fg � Mg � �oVog,
B � �fVf g.

Hot-air balloons. Because hot air is
less dense than cold air, a net up-
ward force acts on the balloons.

B

Fg

(a)

B

(b)

Fg

a
a

Figure 15.10 (a) A totally submerged
object that is less dense than the fluid in
which it is submerged experiences a net
upward force. (b) A totally submerged ob-
ject that is denser than the fluid sinks.

Figure 15.11

Eureka!EXAMPLE 15.5
scale read 7.84 N in air and 6.86 N in water. What should
Archimedes have told the king?

Solution When the crown is suspended in air, the scale

Archimedes supposedly was asked to determine whether a
crown made for the king consisted of pure gold. Legend has
it that he solved this problem by weighing the crown first in
air and then in water, as shown in Figure 15.12. Suppose the
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A Titanic SurpriseEXAMPLE 15.6
ward buoyant force equals the weight of the displaced water:

where Vw , the volume of the displaced water, is
equal to the volume of the ice beneath the water (the shaded
region in Fig. 15.13b) and �w is the density of seawater,

kg/m3. Because the fraction of ice
beneath the water’s surface is

89.0%f �
Vw

Vi
�

�i

�w
�

917 kg/m3

1 030 kg/m3 � 0.890  or  

�iVi g � �wVwg,�w � 1 030

B � �wVwg,
An iceberg floating in seawater, as shown in Figure 15.13a, is
extremely dangerous because much of the ice is below the
surface. This hidden ice can damage a ship that is still a con-
siderable distance from the visible ice. What fraction of the
iceberg lies below the water level?

Solution This problem corresponds to Case 2. The weight
of the iceberg is where kg/m3 and Vi is
the volume of the whole iceberg. The magnitude of the up-

�i � 917Fg i � �iVi g,

Figure 15.12 (a) When the crown is suspended in air, the scale
reads its true weight (the buoyancy of air is negligible). 
(b) When the crown is immersed in water, the buoyant force B
reduces the scale reading to the apparent weight T2 � Fg � B.

T1 � Fg

reads the true weight (neglecting the buoyancy of
air). When it is immersed in water, the buoyant force B
reduces the scale reading to an apparent weight of

Hence, the buoyant force exerted on the crown
is the difference between its weight in air and its weight in
water:

Because this buoyant force is equal in magnitude to the
weight of the displaced water, we have where
Vw is the volume of the displaced water and �w is its density.
Also, the volume of the crown Vc is equal to the volume of the
displaced water because the crown is completely submerged.
Therefore,

Finally, the density of the crown is

From Table 15.1 we see that the density of gold is 19.3 �
103 kg/m3. Thus, Archimedes should have told the king that

 � 8.0 � 103 kg/m3 

�c �
mc

Vc
�

mc g
Vc g

�
7.84 N

(1.0 � 10�4 m3)(9.8 m/s2)

 � 1.0 � 10�4 m3

Vc � Vw �
0.98 N

g�w
�

0.98 N
(9.8 m/s2)(1 000 kg/m3)

�wgVw � 0.98 N,

B � Fg � T2 � 7.84 N � 6.86 N � 0.98 N

T2 � Fg � B.

T1 � Fg he had been cheated. Either the crown was hollow, or it was
not made of pure gold.

T1

T2

(b)(a)

B

Fg

Fg

(a) (b)

Figure 15.13 (a) Much of the vol-
ume of this iceberg is beneath the wa-
ter.
(b) A ship can be damaged even when
it is not near the exposed ice.
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FLUID DYNAMICS
Thus far, our study of fluids has been restricted to fluids at rest. We now turn our
attention to fluids in motion. Instead of trying to study the motion of each particle
of the fluid as a function of time, we describe the properties of a moving fluid at
each point as a function of time.

Flow Characteristics

When fluid is in motion, its flow can be characterized as being one of two main
types. The flow is said to be steady, or laminar, if each particle of the fluid follows
a smooth path, such that the paths of different particles never cross each other, as
shown in Figure 15.14. In steady flow, the velocity of the fluid at any point remains
constant in time.

Above a certain critical speed, fluid flow becomes turbulent; turbulent flow is ir-
regular flow characterized by small whirlpool-like regions, as shown in Figure 15.15.

The term viscosity is commonly used in the description of fluid flow to char-
acterize the degree of internal friction in the fluid. This internal friction, or viscous
force, is associated with the resistance that two adjacent layers of fluid have to mov-
ing relative to each other. Viscosity causes part of the kinetic energy of a fluid to be
converted to internal energy. This mechanism is similar to the one by which an ob-
ject sliding on a rough horizontal surface loses kinetic energy.

Because the motion of real fluids is very complex and not fully understood, we
make some simplifying assumptions in our approach. In our model of an ideal
fluid, we make the following four assumptions:

1. The fluid is nonviscous. In a nonviscous fluid, internal friction is neglected.
An object moving through the fluid experiences no viscous force.

2. The flow is steady. In steady (laminar) flow, the velocity of the fluid at each
point remains constant.

15.5

Figure 15.14 Laminar flow around an automobile in a test wind tunnel.

Figure 15.15 Hot gases from a
cigarette made visible by smoke
particles. The smoke first moves in
laminar flow at the bottom and
then in turbulent flow above.

Properties of an ideal fluid
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3. The fluid is incompressible. The density of an incompressible fluid is constant.
4. The flow is irrotational. In irrotational flow, the fluid has no angular momen-

tum about any point. If a small paddle wheel placed anywhere in the fluid does
not rotate about the wheel’s center of mass, then the flow is irrotational.

STREAMLINES AND THE EQUATION OF CONTINUITY
The path taken by a fluid particle under steady flow is called a streamline. The ve-
locity of the particle is always tangent to the streamline, as shown in Figure 15.16.
A set of streamlines like the ones shown in Figure 15.16 form a tube of flow. Note
that fluid particles cannot flow into or out of the sides of this tube; if they could,
then the streamlines would cross each other.

Consider an ideal fluid flowing through a pipe of nonuniform size, as illus-
trated in Figure 15.17. The particles in the fluid move along streamlines in steady
flow. In a time t, the fluid at the bottom end of the pipe moves a distance

If A1 is the cross-sectional area in this region, then the mass of fluid
contained in the left shaded region in Figure 15.17 is 
where � is the (nonchanging) density of the ideal fluid. Similarly, the fluid that
moves through the upper end of the pipe in the time t has a mass 
However, because mass is conserved and because the flow is steady, the mass that
crosses A1 in a time t must equal the mass that crosses A2 in the time t. That is,

or this means that

(15.7)

This expression is called the equation of continuity. It states that

A1v1 � A2v2 � constant

�A1v1t � �A2v2t ;m1 � m2,

m2 � �A2v2t.

m1 � �A1 �x1 � �A1v1t,
�x1 � v1t.

15.6

the product of the area and the fluid speed at all points along the pipe is a con-
stant for an incompressible fluid.

Equation of continuity

v

P

v1

A1

∆x1

∆x2

A2

v2

Figure 15.17 A fluid moving with steady flow through a
pipe of varying cross-sectional area. The volume of fluid
flowing through area A1 in a time interval t must equal
the volume flowing through area A2 in the same time in-
terval. Therefore, A1v 1 � A2v 2 .

Figure 15.16 A particle in lami-
nar flow follows a streamline, and
at each point along its path the par-
ticle’s velocity is tangent to the
streamline.

This equation tells us that the speed is high where the tube is constricted (small A)
and low where the tube is wide (large A). The product Av, which has the dimen-
sions of volume per unit time, is called either the volume flux or the flow rate. The
condition is equivalent to the statement that the volume of fluid
that enters one end of a tube in a given time interval equals the volume leaving
the other end of the tube in the same time interval if no leaks are present.

Av � constant

As water flows from a faucet, as shown in Figure 15.18, why does the stream of water be-
come narrower as it descends?

Quick Quiz 15.9

Figure 15.18
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BERNOULLI’S EQUATION
When you press your thumb over the end of a garden hose so that the opening be-
comes a small slit, the water comes out at high speed, as shown in Figure 15.19. Is
the water under greater pressure when it is inside the hose or when it is out in the
air? You can answer this question by noting how hard you have to push your
thumb against the water inside the end of the hose. The pressure inside the hose
is definitely greater than atmospheric pressure.

The relationship between fluid speed, pressure, and elevation was first derived
in 1738 by the Swiss physicist Daniel Bernoulli. Consider the flow of an ideal fluid
through a nonuniform pipe in a time t, as illustrated in Figure 15.20. Let us call
the lower shaded part section 1 and the upper shaded part section 2. The force ex-
erted by the fluid in section 1 has a magnitude P1A1 . The work done by this force
in a time t is where V is the volume of section 1. In
a similar manner, the work done by the fluid in section 2 in the same time t is

(The volume that passes through section 1 in a time t
equals the volume that passes through section 2 in the same time.) This work is
negative because the fluid force opposes the displacement. Thus, the net work
done by these forces in the time t is

W � (P1 � P2)V

W2 � �P2A2�x2 � �P2V.

W1 � F1�x1 � P1A1�x1 � P1V,

15.7

Niagara FallsEXAMPLE 15.7
Note that we have kept only one significant figure because
our value for the depth has only one significant figure.

Exercise A barrel floating along in the river plunges over
the Falls. How far from the base of the cliff is the barrel when
it reaches the water 49 m below?

Answer 13 m � 10 m.

Each second, 5 525 m3 of water flows over the 670-m-wide
cliff of the Horseshoe Falls portion of Niagara Falls. The wa-
ter is approximately 2 m deep as it reaches the cliff. What is
its speed at that instant?

Solution The cross-sectional area of the water as it reaches
the edge of the cliff is The
flow rate of 5 525 m3/s is equal to Av. This gives

4 m/sv �
5 525 m3/s

A
�

5 525 m3/s
1 340 m2 �

A � (670 m)(2 m) � 1 340 m2.

∆x1

∆x2

A2

v2

P2

y2

y1

A1P1

v1

Figure 15.19 The speed of water spraying
from the end of a hose increases as the size of
the opening is decreased with the thumb.

Figure 15.20 A fluid in laminar
flow through a constricted pipe.
The volume of the shaded section
on the left is equal to the volume of
the shaded section on the right.

Daniel Bernoulli (1700 – 1782)
Daniel Bernoulli, a Swiss physicist
and mathematician, made important
discoveries in fluid dynamics. Born
into a family of mathematicians, he
was the only member of the family to
make a mark in physics.

Bernoulli’s most famous work, Hy-
drodynamica, was published in 1738;
it is both a theoretical and a practical
study of equilibrium, pressure, and
speed in fluids. He showed that as the
speed of a fluid increases, its pres-
sure decreases.

In Hydrodynamica Bernoulli also
attempted the first explanation of the
behavior of gases with changing
pressure and temperature; this was
the beginning of the kinetic theory of
gases, a topic we study in Chapter 21.
(Corbis – Bettmann)
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Part of this work goes into changing the kinetic energy of the fluid, and part goes
into changing the gravitational potential energy. If m is the mass that enters one
end and leaves the other in a time t, then the change in the kinetic energy of this
mass is

The change in gravitational potential energy is

We can apply Equation 8.13,  , to this volume of fluid to obtain

If we divide each term by V and recall that this expression reduces to

Rearranging terms, we obtain

(15.8)

This is Bernoulli’s equation as applied to an ideal fluid. It is often expressed as

(15.9)

This expression specifies that, in laminar flow, the sum of the pressure (P), kinetic
energy per unit volume and gravitational potential energy per unit volume
(�gy) has the same value at all points along a streamline.

When the fluid is at rest, and Equation 15.8 becomes

This is in agreement with Equation 15.4.

P1 � P2 � �g(y2 � y1) � �gh

v1 � v2 � 0

(1
2�v2),

P � 1
2 �v2 � �g y � constant

P1 � 1
2 �v1 

2 � �g y1 � P2 � 1
2 �v2 

2 � �g y2

P1 � P2 � 1
2 �v2 

2 � 1
2�v1 

2 � �g y2 � �g y1

� � m/V,

(P1 � P2)V � 1
2mv2 

2 � 1
2mv1 

2 � mg y2 � mg y1

W � �K � �U

�U � mg y2 � mg y1

�K � 1
2mv2 

2 � 1
2mv1 

2

The Venturi TubeEXAMPLE 15.8
The horizontal constricted pipe illustrated in Figure 15.21,
known as a Venturi tube, can be used to measure the flow
speed of an incompressible fluid. Let us determine the flow
speed at point 2 if the pressure difference is known.

Solution Because the pipe is horizontal, and ap-
plying Equation 15.8 to points 1 and 2 gives

(1) P1 � 1
2 �v1 

2 � P2 � 1
2 �v2 

2

y1 � y2 ,

P1 � P2

QuickLab
Place two soda cans on their sides ap-
proximately 2 cm apart on a table.
Align your mouth at table level and
with the space between the cans.
Blow a horizontal stream of air
through this space. What do the cans
do? Is this what you expected? Com-
pare this with the force acting on a
car parked close to the edge of a road
when a big truck goes by. How does
the outcome relate to Equation 15.9?

Bernoulli’s equation

P1 P2

A2

A1

�

(a)

v1 v2
�

Figure 15.21 (a) Pressure P1 is greater
than pressure P2 because This de-
vice can be used to measure the speed of
fluid flow. (b) A Venturi tube.

v1 	 v2 .

(b)
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A Good TrickEXAMPLE 15.9
mass of a dime is and its surface area is

How hard are you blowing when the
dime rises and travels into the tumbler?

Solution Figure 15.22b indicates we must calculate the up-
ward force acting on the dime. First, note that a thin station-
ary layer of air is present between the dime and the table.
When you blow across the dime, it deflects most of the mov-
ing air from your breath across its top, so that the air above
the dime has a greater speed than the air beneath it. This
fact, together with Bernoulli’s equation, demonstrates that
the air moving across the top of the dime is at a lower pres-
sure than the air beneath the dime. If we neglect the small
thickness of the dime, we can apply Equation 15.8 to obtain

Because the air beneath the dime is almost stationary, we can
neglect the last term in this expression and write the differ-
ence as If we multiply this pres-
sure difference by the surface area of the dime, we obtain the
upward force acting on the dime. At the very least, this up-
ward force must balance the gravitational force acting on the
dime, and so, taking the density of air from Table 15.1, we
can state that

The air you blow must be moving faster than this if the up-
ward force is to exceed the weight of the dime. Practice this
trick a few times and then impress all your friends!

vabove � 11.7 m/s  

vabove �! 2mg
�A

�! 2(2.24 � 10�3 kg)(9.80 m/s2)
(1.29 kg/m3)(2.50 � 10�4 m2)

Fg � mg � (Pbeneath � Pabove)A � (1
2 �v2

above)A  

Pbeneath � Pabove � 1
2 �v2

above .

Pabove � 1
2 �v2

above � Pbeneath � 1
2 �v2

beneath

A � 2.50 � 10�4 m2.
m � 2.24 g,It is possible to blow a dime off a table and into a tumbler.

Place the dime about 2 cm from the edge of the table. Place
the tumbler on the table horizontally with its open edge
about 2 cm from the dime, as shown in Figure 15.22a. If you
blow forcefully across the top of the dime, it will rise, be
caught in the airstream, and end up in the tumbler. The 

From the equation of continuity, we find that 

(2)

Substituting this expression into equation (1) gives

A1 ! 2(P1 � P2)
�(A1 

2 � A2 

2)
  v2 �

P1 � 1
2 � � A2

A1
�

2
 v2 

2 � P2 � 1
2 �v2 

2

v1 �
A2

A1
 v2

A1v1 � A2v2 , We can use this result and the continuity equation to ob-
tain an expression for v1 . Because Equation (2)
shows us that This result, together with equation
(1), indicates that In other words, the pressure is re-
duced in the constricted part of the pipe. This result is some-
what analogous to the following situation: Consider a very
crowded room in which people are squeezed together. As
soon as a door is opened and people begin to exit, the
squeezing (pressure) is least near the door, where the motion
(flow) is greatest.

P1 
 P2 .
v2 
 v1 .

A2 	 A1 ,

(a)

Fg

(b)

2 cm2 cm

FBernoulli

Figure 15.22
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Optional Section

OTHER APPLICATIONS OF BERNOULLI’S EQUATION
The lift on an aircraft wing can be explained, in part, by the Bernoulli effect. Air-
plane wings are designed so that the air speed above the wing is greater than that
below the wing. As a result, the air pressure above the wing is less than the pres-
sure below, and a net upward force on the wing, called lift, results. 

Another factor influencing the lift on a wing is shown in Figure 15.24. The
wing has a slight upward tilt that causes air molecules striking its bottom to be de-
flected downward. This deflection means that the wing is exerting a downward
force on the air. According to Newton’s third law, the air must exert an equal and
opposite force on the wing. 

Finally, turbulence also has an effect. If the wing is tilted too much, the flow of
air across the upper surface becomes turbulent, and the pressure difference across
the wing is not as great as that predicted by Bernoulli’s equation. In an extreme
case, this turbulence may cause the aircraft to stall.

In general, an object moving through a fluid experiences lift as the result of
any effect that causes the fluid to change its direction as it flows past the object.
Some factors that influence lift are the shape of the object, its orientation with re-
spect to the fluid flow, any spinning motion it might have, and the texture of its
surface. For example, a golf ball struck with a club is given a rapid backspin, as
shown in Figure 15.25a. The dimples on the ball help “entrain” the air to follow
the curvature of the ball’s surface. This effect is most pronounced on the top half
of the ball, where the ball’s surface is moving in the same direction as the air flow.
Figure 15.25b shows a thin layer of air wrapping part way around the ball and be-
ing deflected downward as a result. Because the ball pushes the air down, the air
must push up on the ball. Without the dimples, the air is not as well entrained,

15.8

Torricelli’s LawEXAMPLE 15.10
which the liquid leaves the hole when the liquid’s level is a
distance h above the hole.

Solution Because the liquid is approximately at
rest at the top of the tank, where the pressure is P. Applying
Bernoulli’s equation to points 1 and 2 and noting that at the
hole P1 is equal to atmospheric pressure P0 , we find that

But thus, this expression reduces to

When P is much greater than P0 (so that the term 2gh can
be neglected), the exit speed of the water is mainly a function
of P. If the tank is open to the atmosphere, then and

In other words, for an open tank, the speed of liq-
uid coming out through a hole a distance h below the surface is
equal to that acquired by an object falling freely through a verti-
cal distance h. This phenomenon is known as Torricelli’s law.

v1 � !2gh.
P � P0

! 2(P � P0)

�
� 2ghv1 �

y2 � y1 � h ;

P0 � 1
2 �v1 

2 � �gy1 � P � �gy2

A2 W A1 ,

An enclosed tank containing a liquid of density � has a hole
in its side at a distance y1 from the tank’s bottom (Fig. 15.23).
The hole is open to the atmosphere, and its diameter is much
smaller than the diameter of the tank. The air above the liq-
uid is maintained at a pressure P. Determine the speed at

A2

A1

v 1
P0

h

P

y2

y1

2

1

Figure 15.23 When P is much larger than atmospheric pressure
P0 , the liquid speed as the liquid passes through the hole in the side 

of the container is given approximately by .v1 � !2(P � P0)/�

F

Figure 15.24 Streamline flow
around an airplane wing. The pres-
sure above the wing is less than the
pressure below, and a dynamic lift
upward results.
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and the golf ball does not travel as far. For the same reason, a tennis ball’s fuzz
helps the spinning ball “grab” the air rushing by and helps deflect it.

A number of devices operate by means of the pressure differentials that result
from differences in a fluid’s speed. For example, a stream of air passing over one
end of an open tube, the other end of which is immersed in a liquid, reduces the
pressure above the tube, as illustrated in Figure 15.26. This reduction in pressure
causes the liquid to rise into the air stream. The liquid is then dispersed into a fine
spray of droplets. You might recognize that this so-called atomizer is used in per-
fume bottles and paint sprayers. The same principle is used in the carburetor of a
gasoline engine. In this case, the low-pressure region in the carburetor is pro-
duced by air drawn in by the piston through the air filter. The gasoline vaporizes
in that region, mixes with the air, and enters the cylinder of the engine, where
combustion occurs.

People in buildings threatened by a tornado are often told to open the windows to mini-
mize damage. Why?

Quick Quiz 15.10

QuickLab
You can easily demonstrate the effect
of changing fluid direction by lightly
holding the back of a spoon against a
stream of water coming from a
faucet. You will see the stream “at-
tach” itself to the curvature of the
spoon and be deflected sideways. You
will also feel the third-law force ex-
erted by the water on the spoon.

(a)

(b)

Figure 15.25 (a) A golf ball is made to spin when struck by the club.
(b) The spinning ball experiences a lifting force that allows it to travel

much farther than it would if it were not spinning.

Figure 15.26 A stream of air
passing over a tube dipped into a
liquid causes the liquid to rise in
the tube.
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SUMMARY

The pressure P in a fluid is the force per unit area exerted by the fluid on a sur-
face:

(15.1)

In the SI system, pressure has units of newtons per square meter (N/m2), and 
1 N/m2 � 1 pascal (Pa).

The pressure in a fluid at rest varies with depth h in the fluid according to the
expression

(15.4)

where P0 is atmospheric pressure and � is the density of the
fluid, assumed uniform.

Pascal’s law states that when pressure is applied to an enclosed fluid, the
pressure is transmitted undiminished to every point in the fluid and to every point
on the walls of the container.

When an object is partially or fully submerged in a fluid, the fluid exerts on
the object an upward force called the buoyant force. According to Archimedes’s
principle, the magnitude of the buoyant force is equal to the weight of the fluid
displaced by the object. Be sure you can apply this principle to a wide variety of sit-
uations, including sinking objects, floating ones, and neutrally buoyant ones.

You can understand various aspects of a fluid’s dynamics by assuming that the
fluid is nonviscous and incompressible and that the fluid’s motion is a steady flow
with no rotation.

Two important concepts regarding ideal fluid flow through a pipe of nonuni-
form size are as follows:

1. The flow rate (volume flux) through the pipe is constant; this is equivalent to
stating that the product of the cross-sectional area A and the speed v at any
point is a constant. This result is expressed in the equation of continuity:

(15.7)

You can use this expression to calculate how the velocity of a fluid changes as
the fluid is constricted or as it flows into a more open area.

2. The sum of the pressure, kinetic energy per unit volume, and gravitational po-
tential energy per unit volume has the same value at all points along a stream-
line. This result is summarized in Bernoulli’s equation:

(15.9)P � 1
2�v2 � �gy � constant

A1v1 � A2v2 � constant

(�1.013 � 105 N/m2)

P � P0 � �gh

P �
F
A

QUESTIONS

pressure in your mouth and let the atmosphere move the
liquid. Explain why this is so. Can you use a straw to sip a
drink on the Moon?

4. A helium-filled balloon rises until its density becomes the
same as that of the surrounding air. If a sealed submarine
begins to sink, will it go all the way to the bottom of the
ocean or will it stop when its density becomes the same as
that of the surrounding water?

5. A fish rests on the bottom of a bucket of water while the

1. Two drinking glasses of the same weight but of different
shape and different cross-sectional area are filled to the
same level with water. According to the expression

the pressure at the bottom of both glasses
is the same. In view of this, why does one glass weigh
more than the other?

2. If the top of your head has a surface area of 100 cm2,
what is the weight of the air above your head?

3. When you drink a liquid through a straw, you reduce the

P � P0 � �gh,
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bucket is being weighed. When the fish begins to swim
around, does the weight change?

6. Does a ship ride higher in the water of an inland lake or
in the ocean? Why?

7. Lead has a greater density than iron, and both metals are
denser than water. Is the buoyant force on a lead object
greater than, less than, or equal to the buoyant force on
an iron object of the same volume?

8. The water supply for a city is often provided by reservoirs
built on high ground. Water flows from the reservoir,
through pipes, and into your home when you turn the
tap on your faucet. Why is the flow of water more rapid
out of a faucet on the first floor of a building than it is in
an apartment on a higher floor?

9. Smoke rises in a chimney faster when a breeze is blowing
than when there is no breeze at all. Use Bernoulli’s equa-
tion to explain this phenomenon.

10. If a Ping–Pong ball is above a hair dryer, the ball can be
suspended in the air column emitted by the dryer. 
Explain.

11. When ski jumpers are airborne (Fig. Q15.11), why do
they bend their bodies forward and keep their hands at
their sides?

18. Why do airplane pilots prefer to take off into the wind?
19. If you release a ball while inside a freely falling elevator,

the ball remains in front of you rather than falling to the
floor because the ball, the elevator, and you all experi-
ence the same downward acceleration g. What happens if
you repeat this experiment with a helium-filled balloon?
(This one is tricky.)

20. Two identical ships set out to sea. One is loaded with a
cargo of Styrofoam, and the other is empty. Which ship is
more submerged?

21. A small piece of steel is tied to a block of wood. When the
wood is placed in a tub of water with the steel on top, half
of the block is submerged. If the block is inverted so that
the steel is underwater, does the amount of the block sub-
merged increase, decrease, or remain the same? What
happens to the water level in the tub when the block is in-
verted?

22. Prairie dogs (Fig. Q15.22) ventilate their burrows by
building a mound over one entrance, which is open to a
stream of air. A second entrance at ground level is open
to almost stagnant air. How does this construction create
an air flow through the burrow?

Figure Q15.11

Figure Q15.22

23. An unopened can of diet cola floats when placed in a
tank of water, whereas a can of regular cola of the same
brand sinks in the tank. What do you suppose could ex-
plain this phenomenon?

24. Figure Q15.24 shows a glass cylinder containing four liq-
uids of different densities. From top to bottom, the liq-
uids are oil (orange), water (yellow), salt water (green),
and mercury (silver). The cylinder also contains, from
top to bottom, a Ping–Pong ball, a piece of wood, an egg,
and a steel ball. (a) Which of these liquids has the lowest
density, and which has the greatest? (b) What can you
conclude about the density of each object?

12. Explain why a sealed bottle partially filled with a liquid
can float.

13. When is the buoyant force on a swimmer greater—after
exhaling or after inhaling?

14. A piece of unpainted wood barely floats in a container
partly filled with water. If the container is sealed and then
pressurized above atmospheric pressure, does the wood
rise, sink, or remain at the same level? (Hint: Wood is
porous.)

15. A flat plate is immersed in a liquid at rest. For what
orientation of the plate is the pressure on its flat surface
uniform?

16. Because atmospheric pressure is about 105 N/m2 and the
area of a person’s chest is about 0.13 m2, the force of the
atmosphere on one’s chest is around 13 000 N. In view of
this enormous force, why don’t our bodies collapse?

17. How would you determine the density of an irregularly
shaped rock?
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Section 15.2 Variation of Pressure with Depth
6. (a) Calculate the absolute pressure at an ocean depth of

1 000 m. Assume the density of seawater is 1 024 kg/m3

and that the air above exerts a pressure of 101.3 kPa. 
(b) At this depth, what force must the frame around a
circular submarine porthole having a diameter of 
30.0 cm exert to counterbalance the force exerted by
the water?

7. The spring of the pressure gauge shown in Figure 15.2
has a force constant of 1 000 N/m, and the piston has a
diameter of 2.00 cm. When the gauge is lowered into
water, at what depth does the piston move in by 
0.500 cm?

8. The small piston of a hydraulic lift has a cross-sectional
area of 3.00 cm2, and its large piston has a cross-sec-
tional area of 200 cm2 (see Fig. 15.5a). What force must
be applied to the small piston for it to raise a load of
15.0 kN? (In service stations, this force is usually gener-
ated with the use of compressed air.)

Section 15.1 Pressure
1. Calculate the mass of a solid iron sphere that has a di-

ameter of 3.00 cm.
2. Find the order of magnitude of the density of the

nucleus of an atom. What does this result suggest con-
cerning the structure of matter? (Visualize a nucleus as
protons and neutrons closely packed together. Each has
mass 1.67 � 10�27 kg and radius on the order of 
10�15 m.)

3. A 50.0-kg woman balances on one heel of a pair of high-
heeled shoes. If the heel is circular and has a radius of
0.500 cm, what pressure does she exert on the floor?

4. The four tires of an automobile are inflated to a gauge
pressure of 200 kPa. Each tire has an area of 0.024 0 m2

in contact with the ground. Determine the weight of
the automobile.

5. What is the total mass of the Earth’s atmosphere? (The
radius of the Earth is 6.37 � 106 m, and atmospheric
pressure at the Earth’s surface is 1.013 � 105 N/m2.)

Figure Q15.24

Figure Q15.25

(b) Why is the ball at the left lower than the ball at the
right even though the horizontal tube has the same di-
mensions at these two points?

26. You are a passenger on a spacecraft. For your comfort,
the interior contains air just like that at the surface of the
Earth. The craft is coasting through a very empty region
of space. That is, a nearly perfect vacuum exists just out-
side the wall. Suddenly a meteoroid pokes a hole, smaller
than the palm of your hand, right through the wall next
to your seat. What will happen? Is there anything you can
or should do about it?

25. In Figure Q15.25, an air stream moves from right to left
through a tube that is constricted at the middle. Three
Ping–Pong balls are levitated in equilibrium above the
vertical columns through which the air escapes. (a) Why
is the ball at the right higher than the one in the middle?

PROBLEMS
1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems
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WEB

15. Review Problem. A solid copper ball with a diameter
of 3.00 m at sea level is placed at the bottom of the
ocean (at a depth of 10.0 km). If the density of seawater
is 1 030 kg/m3, by how much (approximately) does the
diameter of the ball decrease when it reaches bottom?
Take the bulk modulus of copper as 14.0 � 1010 N/m2.

14. The tank shown in Figure P15.14 is filled with water to a
depth of 2.00 m. At the bottom of one of the side walls
is a rectangular hatch 1.00 m high and 2.00 m wide.
The hatch is hinged at its top. (a) Determine the force
that the water exerts on the hatch. (b) Find the torque
exerted about the hinges.

9. What must be the contact area between a suction cup
(completely exhausted) and a ceiling if the cup is to
support the weight of an 80.0-kg student?

10. (a) A very powerful vacuum cleaner has a hose 2.86 cm
in diameter. With no nozzle on the hose, what is the
weight of the heaviest brick that the cleaner can lift
(Fig. P15.10)? (b) A very powerful octopus uses one
sucker of diameter 2.86 cm on each of the two shells of
a clam in an attempt to pull the shells apart. Find the
greatest force that the octopus can exert in salt water
32.3 m in depth. (Caution: Experimental verification
can be interesting, but do not drop a brick on your foot.
Do not overheat the motor of a vacuum cleaner. Do not
get an octopus mad at you.)

11. For the cellar of a new house, a hole with vertical sides
descending 2.40 m is dug in the ground. A concrete
foundation wall is built all the way across the 9.60-m
width of the excavation. This foundation wall is 0.183 m
away from the front of the cellar hole. During a rain-
storm, drainage from the street fills up the space in
front of the concrete wall but not the cellar behind the
wall. The water does not soak into the clay soil. Find the
force that the water causes on the foundation wall. For
comparison, the weight of the water is given by

2.40 m � 9.60 m � 0.183 m � 1 000 kg/m3

� 9.80 m/s2 � 41.3 kN

12. A swimming pool has dimensions 30.0 m � 10.0 m and
a flat bottom. When the pool is filled to a depth of 
2.00 m with fresh water, what is the force caused by the
water on the bottom? On each end? On each side?

13. A sealed spherical shell of diameter d is rigidly attached
to a cart that is moving horizontally with an acceleration
a, as shown in Figure P15.13. The sphere is nearly filled
with a fluid having density � and also contains one small
bubble of air at atmospheric pressure. Find an expres-
sion for the pressure P at the center of the sphere.

(a) (b)

Figure P15.10

a

Figure P15.13

Figure P15.14

2.00 m

2.00 m

1.00 m
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Section 15.3 Pressure Measurements
16. Normal atmospheric pressure is 1.013 � 105 Pa. The

approach of a storm causes the height of a mercury
barometer to drop by 20.0 mm from the normal height.
What is the atmospheric pressure? (The density of mer-
cury is 13.59 g/cm3.)

17. Blaise Pascal duplicated Torricelli’s barometer, using a
red Bordeaux wine, of density 984 kg/m3, as the work-
ing liquid (Fig. P15.17). What was the height h of the
wine column for normal atmospheric pressure? Would
you expect the vacuum above the column to be as good
as that for mercury?

in the right arm of the U-tube. (b) Given that the den-
sity of mercury is 13.6 g/cm3, what distance h does the
mercury rise in the left arm?

19. A U-tube of uniform cross-sectional area and open to
the atmosphere is partially filled with mercury. Water is
then poured into both arms. If the equilibrium configu-
ration of the tube is as shown in Figure P15.19, with

determine the value of h1 .h2 � 1.00 cm,

Section 15.4 Buoyant Forces and 
Archimedes’s Principle

20. (a) A light balloon is filled with 400 m3 of helium. At
0°C, what is the mass of the payload that the balloon
can lift? (b) In Table 15.1, note that the density of hy-
drogen is nearly one-half the density of helium. What
load can the balloon lift if it is filled with hydrogen?

21. A Styrofoam slab has a thickness of 10.0 cm and a den-
sity of 300 kg/m3. When a 75.0-kg swimmer is resting on
it, the slab floats in fresh water with its top at the same
level as the water’s surface. Find the area of the slab.

22. A Styrofoam slab has thickness h and density �S . What is
the area of the slab if it floats with its upper surface just
awash in fresh water, when a swimmer of mass m is on
top?

23. A piece of aluminum with mass 1.00 kg and density 
2 700 kg/m3 is suspended from a string and then com-
pletely immersed in a container of water (Fig. P15.23).
Calculate the tension in the string (a) before and 
(b) after the metal is immersed.

24. A 10.0-kg block of metal measuring 12.0 cm �
10.0 cm � 10.0 cm is suspended from a scale and im-
mersed in water, as shown in Figure P15.23b. The 
12.0-cm dimension is vertical, and the top of the block
is 5.00 cm from the surface of the water. (a) What are
the forces acting on the top and on the bottom of the
block? (Take (b) What is
the reading of the spring scale? (c) Show that the buoy-
ant force equals the difference between the forces at
the top and bottom of the block.

P0 � 1.013 0 � 105 N/m2.)

18. Mercury is poured into a U-tube, as shown in Figure
P15.18a. The left arm of the tube has a cross-sectional
area A1 of 10.0 cm2, and the right arm has a cross-sec-
tional area A2 of 5.00 cm2. One-hundred grams of water
are then poured into the right arm, as shown in Figure
P15.18b. (a) Determine the length of the water column

Figure P15.17

Figure P15.18

Figure P15.19

WEB

h

P0

A1

(a)

A2

Mercury

A1 A2

h

Water

(b)

h2

h1

Water
Mercury
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25. A cube of wood having a side dimension of 20.0 cm and
a density of 650 kg/m3 floats on water. (a) What is the
distance from the horizontal top surface of the cube to
the water level? (b) How much lead weight must be
placed on top of the cube so that its top is just level with
the water?

26. To an order of magnitude, how many helium-filled toy
balloons would be required to lift you? Because helium
is an irreplaceable resource, develop a theoretical an-
swer rather than an experimental answer. In your solu-
tion, state what physical quantities you take as data and
the values you measure or estimate for them.

27. A plastic sphere floats in water with 50.0% of its volume
submerged. This same sphere floats in glycerin with
40.0% of its volume submerged. Determine the densi-
ties of the glycerin and the sphere.

28. A frog in a hemispherical pod finds that he just floats
without sinking into a sea of blue-green ooze having a
density of 1.35 g/cm3 (Fig. P15.28). If the pod has a ra-
dius of 6.00 cm and a negligible mass, what is the mass
of the frog?

maintains a constant volume and that the density of air
decreases with the altitude z according to the expres-
sion where z is in meters and

is the density of air at sea level.
30. Review Problem. A long cylindrical tube of radius r is

weighted on one end so that it floats upright in a fluid
having a density �. It is pushed downward a distance x
from its equilibrium position and then released. Show
that the tube will execute simple harmonic motion if
the resistive effects of the water are neglected, and de-
termine the period of the oscillations.

31. A bathysphere used for deep-sea exploration has a ra-
dius of 1.50 m and a mass of 1.20 � 104 kg. To dive, this
submarine takes on mass in the form of seawater. Deter-
mine the amount of mass that the submarine must take
on if it is to descend at a constant speed of 1.20 m/s,
when the resistive force on it is 1 100 N in the upward
direction. Take 1.03 � 103 kg/m3 as the density of sea-
water.

32. The United States possesses the eight largest warships in
the world—aircraft carriers of the Nimitz class—and it
is building one more. Suppose that one of the ships
bobs up to float 11.0 cm higher in the water when 50
fighters take off from it at a location where 
9.78 m/s2. The planes have an average mass of 
29 000 kg. Find the horizontal area enclosed by the wa-
terline of the ship. (By comparison, its flight deck has
an area of 18 000 m2.) 

Section 15.5 Fluid Dynamics

Section 15.6 Streamlines and the Equation of Continuity

Section 15.7 Bernoulli’s Equation
33. (a) A water hose 2.00 cm in diameter is used to fill a

20.0-L bucket. If it takes 1.00 min to fill the bucket,
what is the speed v at which water moves through the
hose? (Note: 1 L � 1 000 cm3.) (b) If the hose has a noz-
zle 1.00 cm in diameter, find the speed of the water at
the nozzle.

34. A horizontal pipe 10.0 cm in diameter has a smooth re-
duction to a pipe 5.00 cm in diameter. If the pressure of
the water in the larger pipe is 8.00 � 104 Pa and the
pressure in the smaller pipe is 6.00 � 104 Pa, at what
rate does water flow through the pipes?

35. A large storage tank, open at the top and filled with wa-
ter, develops a small hole in its side at a point 16.0 m be-
low the water level. If the rate of flow from the leak is
2.50 � 10�3 m3/min, determine (a) the speed at which
the water leaves the hole and (b) the diameter of the
hole.

36. Through a pipe of diameter 15.0 cm, water is pumped
from the Colorado River up to Grand Canyon Village,
located on the rim of the canyon. The river is at an ele-
vation of 564 m, and the village is at an elevation of 
2 096 m. (a) What is the minimum pressure at which
the water must be pumped if it is to arrive at the village?

g �

�0 � 1.25 kg/m3
�air � �0e�z/8 000,

WEB

29. How many cubic meters of helium are required to lift a
balloon with a 400-kg payload to a height of 8 000 m?
(Take Assume that the balloon�He � 0.180 kg/m3.)

Figure P15.23 Problems 23 and 24.

Figure P15.28

(a)

T2

B

(b)

Mg

T1

Mg

Scale
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(b) If 4 500 m3 are pumped per day, what is the speed
of the water in the pipe? (c) What additional pressure is
necessary to deliver this flow? (Note: You may assume
that the acceleration due to gravity and the density of
air are constant over this range of elevations.)

37. Water flows through a fire hose of diameter 6.35 cm at a
rate of 0.012 0 m3/s. The fire hose ends in a nozzle with
an inner diameter of 2.20 cm. What is the speed at
which the water exits the nozzle?

38. Old Faithful Geyser in Yellowstone National Park erupts
at approximately 1-h intervals, and the height of the wa-
ter column reaches 40.0 m (Fig. P15.38). (a) Consider
the rising stream as a series of separate drops. Analyze
the free-fall motion of one of these drops to determine
the speed at which the water leaves the ground. 
(b) Treating the rising stream as an ideal fluid in
streamline flow, use Bernoulli’s equation to determine
the speed of the water as it leaves ground level. 
(c) What is the pressure (above atmospheric) in the
heated underground chamber if its depth is 175 m? You
may assume that the chamber is large compared with
the geyser’s vent.

air flow. (Assume that the air is stagnant at point A, and
take kg/m3.)

42. An airplane is cruising at an altitude of 10 km. The
pressure outside the craft is 0.287 atm; within the pas-
senger compartment, the pressure is 1.00 atm and the
temperature is 20°C. A small leak occurs in one of the
window seals in the passenger compartment. Model the
air as an ideal fluid to find the speed of the stream of
air flowing through the leak.

43. A siphon is used to drain water from a tank, as illus-
trated in Figure P15.43. The siphon has a uniform di-
ameter. Assume steady flow without friction. (a) If the
distance m, find the speed of outflow at the
end of the siphon. (b) What is the limitation on the
height of the top of the siphon above the water surface?
(For the flow of liquid to be continuous, the pressure
must not drop below the vapor pressure of the liquid.)

h � 1.00

�air � 1.25

WEB

44. A hypodermic syringe contains a medicine with the den-
sity of water (Fig. P15.44). The barrel of the syringe has a
cross-sectional area A � 2.50 � 10�5 m2, and the needle
has a cross-sectional area a � 1.00 � 10�8 m2. In the ab-
sence of a force on the plunger, the pressure everywhere
is 1 atm. A force F of magnitude 2.00 N acts on the
plunger, making the medicine squirt horizontally from
the needle. Determine the speed of the medicine as it
leaves the needle’s tip.

45. A large storage tank is filled to a height h0 . The tank is
punctured at a height h above the bottom of the tank
(Fig. P15.45). Find an expression for how far from the
tank the exiting stream lands.

(Optional)
Section 15.8 Other Applications of Bernoulli’s Equation

39. An airplane has a mass of 1.60 � 104 kg, and each wing
has an area of 40.0 m2. During level flight, the pressure
on the lower wing surface is 7.00 � 104 Pa. Determine
the pressure on the upper wing surface.

40. A Venturi tube may be used as a fluid flow meter (see
Fig. 15.21). If the difference in pressure is

kPa, find the fluid flow rate in cubic me-
ters per second, given that the radius of the outlet tube
is 1.00 cm, the radius of the inlet tube is 2.00 cm, and
the fluid is gasoline ( kg/m3).

41. A Pitot tube can be used to determine the velocity of 
air flow by measuring the difference between the total
pressure and the static pressure (Fig. P15.41). If the
fluid in the tube is mercury, whose density is 
13 600 kg/m3, and if �h � 5.00 cm, find the speed of

�Hg �

� � 700

P1 � P2 � 21.0

Figure P15.38

Figure P15.41

Figure P15.43

Mercury

vair

A

∆h

vh

y

ρ
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46. A hole is punched at a height h in the side of a con-
tainer of height h0 . The container is full of water, as
shown in Figure P15.45. If the water is to shoot as far as
possible horizontally, (a) how far from the bottom of
the container should the hole be punched? 
(b) Neglecting frictional losses, how far (initially) from
the side of the container will the water land?

ADDITIONAL PROBLEMS

47. A Ping–Pong ball has a diameter of 3.80 cm and an av-
erage density of 0.084 0 g/cm3. What force would be re-
quired to hold it completely submerged under water?

48. Figure P15.48 shows a tank of water with a valve at the
bottom. If this valve is opened, what is the maximum
height attained by the water stream exiting the right
side of the tank? Assume that m, m,
and , and that the cross-sectional area at point
A is very large compared with that at point B.

� � 30.0�
L � 2.00h � 10.0

49. A helium-filled balloon is tied to a 2.00-m-long, 
0.050 0-kg uniform string. The balloon is spherical with
a radius of 0.400 m. When released, the balloon lifts a
length h of string and then remains in equilibrium, as
shown in Figure P15.49. Determine the value of h. The
envelope of the balloon has a mass of 0.250 kg.

51. The true weight of an object is measured in a vacuum,
where buoyant forces are absent. An object of volume V
is weighed in air on a balance with the use of weights of
density �. If the density of air is �air and the balance
reads show that the true weight Fg is

52. Evangelista Torricelli was the first to realize that we live
at the bottom of an ocean of air. He correctly surmised
that the pressure of our atmosphere is attributable to
the weight of the air. The density of air at 0°C at the
Earth’s surface is 1.29 kg/m3. The density decreases
with increasing altitude (as the atmosphere thins). On
the other hand, if we assume that the density is constant

Fg � Fg
 � �V �
Fg


�g
� �airg

Fg
,

50. Water is forced out of a fire extinguisher by air pres-
sure, as shown in Figure P15.50. How much gauge air
pressure in the tank (above atmospheric) is required
for the water jet to have a speed of 30.0 m/s when the
water level is 0.500 m below the nozzle?

Figure P15.44

Figure P15.45 Problems 45 and 46.

A

a

F v

h 0
h

 θ

A

h

Valve
L B

Figure P15.48

Figure P15.49

Figure P15.50

He

h

0.500 m

v
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dam about an axis through O is . Show that the
effective line of action of the total force exerted by the
water is at a distance above O.

58. In about 1657 Otto von Guericke, inventor of the air
pump, evacuated a sphere made of two brass hemi-
spheres. Two teams of eight horses each could pull the
hemispheres apart only on some trials, and then “with
greatest difficulty,” with the resulting sound likened to a
cannon firing (Fig. P15.58). (a) Show that the force F

1
3H

1
6 �gwH 3

55. A 1.00-kg beaker containing 2.00 kg of oil (density �
916.0 kg/m3) rests on a scale. A 2.00-kg block of iron is
suspended from a spring scale and completely sub-
merged in the oil, as shown in Figure P15.55. Deter-
mine the equilibrium readings of both scales.

56. A beaker of mass mb containing oil of mass m0
(density � �0) rests on a scale. A block of iron of mass
mFe is suspended from a spring scale and completely
submerged in the oil, as shown in Figure P15.55. Deter-
mine the equilibrium readings of both scales.

57. Review Problem. With reference to Figure 15.7, show
that the total torque exerted by the water behind the

54. A light spring of constant N/m rests vertically
on a table (Fig. P15.54a). A 2.00-g balloon is filled with
helium (density � 0.180 kg/m3) to a volume of 5.00 m3

and is then connected to the spring, causing it to
stretch as shown in Figure P15.54b. Determine the ex-
tension distance L when the balloon is in equilibrium.

k � 90.0

(1.29 kg/m3) up to some altitude h, and zero above that
altitude, then h would represent the thickness of our at-
mosphere. Use this model to determine the value of h
that gives a pressure of 1.00 atm at the surface of the
Earth. Would the peak of Mt. Everest rise above the sur-
face of such an atmosphere?

53. A wooden dowel has a diameter of 1.20 cm. It floats in
water with 0.400 cm of its diameter above water level
(Fig. P15.53). Determine the density of the dowel.

Figure P15.53

Figure P15.54

Figure P15.55 Problems 55 and 56.

0.400 cm

0.80 cm

k k

(a) (b)

L

RF

P

F

P0

Figure P15.58 The colored engraving, dated 1672, illustrates Otto
von Guericke’s demonstration of the force due to air pressure as per-
formed before Emperor Ferdinand III in 1657. (WEB
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he achieves maximum possible suction. The walls of the
tubular straw do not collapse. (a) Find the maximum
height through which he can lift the water. (b) Still
thirsty, the Man of Steel repeats his attempt on the
Moon, which has no atmosphere. Find the difference
between the water levels inside and outside the straw.

64. Show that the variation of atmospheric pressure with al-
titude is given by where P0 is at-
mospheric pressure at some reference level and
�0 is the atmospheric density at this level. Assume that
the decrease in atmospheric pressure with increasing al-
titude is given by Equation 15.4, so that 
and assume that the density of air is proportional to the
pressure.

65. A cube of ice whose edge measures 20.0 mm is floating
in a glass of ice-cold water with one of its faces parallel
to the water’s surface. (a) How far below the water sur-
face is the bottom face of the block? (b) Ice-cold ethyl
alcohol is gently poured onto the water’s surface to
form a layer 5.00 mm thick above the water. The alco-
hol does not mix with the water. When the ice cube
again attains hydrostatic equilibrium, what is the dis-
tance from the top of the water to the bottom face of
the block? (c) Additional cold ethyl alcohol is poured
onto the water’s surface until the top surface of the al-
cohol coincides with the top surface of the ice cube (in

dP/dy � ��g,

y � 0,
� � �0g /P0 ,P � P0e��h,

62. Review Problem. A uniform disk with a mass of 
10.0 kg and a radius of 0.250 m spins at 300 rev/min on
a low-friction axle. It must be brought to a stop in 
1.00 min by a brake pad that makes contact with the
disk at an average distance of 0.220 m from the axis.
The coefficient of friction between the pad and the disk
is 0.500. A piston in a cylinder with a diameter of 
5.00 cm presses the brake pad against the disk. Find the
pressure that the brake fluid in the cylinder must have.

63. Figure P15.63 shows Superman attempting to drink wa-
ter through a very long straw. With his great strength,

required to pull the evacuated hemispheres apart is
where R is the radius of the hemispheres

and P is the pressure inside the hemispheres, which is
much less than P0 . (b) Determine the force if

and 
59. In 1983 the United States began coining the cent piece

out of copper-clad zinc rather than pure copper. The
mass of the old copper cent is 3.083 g, whereas that of
the new cent is 2.517 g. Calculate the percent of zinc
(by volume) in the new cent. The density of copper is
8.960 g/cm3, and that of zinc is 7.133 g/cm3. The new
and old coins have the same volume.

60. A thin spherical shell with a mass of 4.00 kg and a diam-
eter of 0.200 m is filled with helium (density �
0.180 kg/m3). It is then released from rest on the bot-
tom of a pool of water that is 4.00 m deep. (a) Neglect-
ing frictional effects, show that the shell rises with con-
stant acceleration and determine the value of that
acceleration. (b) How long does it take for the top of
the shell to reach the water’s surface?

61. An incompressible, nonviscous fluid initially rests in the
vertical portion of the pipe shown in Figure P15.61a,
where When the valve is opened, the fluid
flows into the horizontal section of the pipe. What is the
speed of the fluid when all of it is in the horizontal sec-
tion, as in Figure P15.61b? Assume that the cross-sec-
tional area of the entire pipe is constant.

L � 2.00 m.

R � 0.300 m.P � 0.100P0

�R2(P0 � P),

Figure P15.61

Figure P15.63

Valve
closed

L

(a)

Valve
opened

L

v

(b)



486 C H A P T E R  1 5 Fluid Mechanics

hydrostatic equilibrium). How thick is the required
layer of ethyl alcohol?

66. Review Problem. A light balloon filled with helium
with a density of 0.180 kg/m3 is tied to a light string of
length m. The string is tied to the ground,
forming an “inverted” simple pendulum, as shown in
Figure P15.66a. If the balloon is displaced slightly from
its equilibrium position as shown in Figure P15.66b, 
(a) show that the ensuing motion is simple harmonic
and (b) determine the period of the motion. Take the
density of air to be 1.29 kg/m3 and ignore any energy
loss due to air friction.

L � 3.00

Figure P15.66

Figure P15.68

Figure P15.69

Air Air
He

g g

He

L L
 θ

(a) (b)

67. The water supply of a building is fed through a main
6.00-cm-diameter pipe. A 2.00-cm-diameter faucet tap
located 2.00 m above the main pipe is observed to fill a
25.0-L container in 30.0 s. (a) What is the speed at
which the water leaves the faucet? (b) What is the gauge
pressure in the 6-cm main pipe? (Assume that the
faucet is the only “leak” in the building.)

68. The spirit-in-glass thermometer, invented in Florence, Italy,
around 1654, consists of a tube of liquid (the spirit)
containing a number of submerged glass spheres with
slightly different masses (Fig. P15.68). At sufficiently
low temperatures, all the spheres float, but as the tem-
perature rises, the spheres sink one after the other. The
device is a crude but interesting tool for measuring tem-
perature. Suppose that the tube is filled with ethyl alco-
hol, whose density is 0.789 45 g/cm3 at 20.0°C and de-
creases to 0.780 97 g/cm3 at 30.0°C. (a) If one of the
spheres has a radius of 1.000 cm and is in equilibrium
halfway up the tube at 20.0°C, determine its mass. 
(b) When the temperature increases to 30.0°C, what
mass must a second sphere of the same radius have to
be in equilibrium at the halfway point? (c) At 30.0°C
the first sphere has fallen to the bottom of the tube.
What upward force does the bottom of the tube exert
on this sphere?

69. A U-tube open at both ends is partially filled with water
(Fig. P15.69a). Oil having a density of 750 kg/m3 is
then poured into the right arm and forms a column

cm in height (Fig. P15.69b). (a) DetermineL � 5.00

P0

Water

(a) (b) (c)

h
L

Oil

L

v Shield

the difference h in the heights of the two liquid sur-
faces. (b) The right arm is shielded from any air motion
while air is blown across the top of the left arm until the
surfaces of the two liquids are at the same height (Fig.
P15.69c). Determine the speed of the air being blown
across the left arm. (Take the density of air as 
1.29 kg/m3.)
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ANSWERS TO QUICK QUIZZES

15.5 Because water is so much less dense than mercury, the
column for a water barometer would have to be

m high, and such a column is incon-
veniently tall. 

15.6 The entire hull of a ship is full of air, and the density of
air is about one-thousandth the density of water.
Hence, the total weight of the ship equals the weight of
the volume of water that is displaced by the portion of
the ship that is below sea level.

15.7 Remains the same. In effect, the ice creates a “hole” in
the water, and the weight of the water displaced from
the hole is the same as all the weight of the cube. 
When the cube changes from ice to water, the water
just fills the hole.

15.8 Goes down because the anchor displaces more water
while in the boat than it does in the pond. While it is in
the boat, the anchor can be thought of as a floating ob-
ject that displaces a volume of water weighing as much
as it does. When the anchor is thrown overboard, it
sinks and displaces a volume of water equal to its own
volume. Because the density of the anchor is greater
than that of water, the volume of water that weighs the
same as the anchor is greater than the volume of the
anchor.

15.9 As the water falls, its speed increases. Because the flow
rate Av must remain constant at all cross sections (see
Eq. 15.7), the stream must become narrower as the
speed increases.

15.10 The rapidly moving air characteristic of a tornado is at a
pressure below atmospheric pressure. The stationary air
inside the building remains at atmospheric pressure.
The pressure difference results in an outward force on
the roof and walls, and this force can be great enough
to lift the roof off the building. Opening the windows
helps to equalize the inside and outside pressures.

h � P0/�g � 10.3

15.1 You would be better off with the basketball player. Al-
though weight is distributed over the larger surface area,
equal to about half of the total surface area of the
sneaker sole, the pressure (F/A) that he applies is rela-
tively small. The woman’s lesser weight is distributed
over the very small cross-sectional area of the spiked
heel. Some museums make women in high-heeled shoes
wear slippers or special heel attachments so that they do
not damage the wood floors.

15.2 If the professor were to try to support his entire weight
on a single nail, the pressure exerted on his skin would
be his entire weight divided by the very small surface
area of the nail point. This extremely great pressure
would cause the nail to puncture his skin. However, if
the professor distributes his weight over several hundred
nails, as shown in the photograph, the pressure exerted
on his skin is considerably reduced because the surface
area that supports his weight is now the total surface
area of all the nail points. (Lying on the bed of nails is
much more comfortable than sitting on the bed, and
standing on the bed without shoes is definitely not rec-
ommended. Do not lie on a bed of nails unless you have
been shown how to do so safely.)

15.3 Because the horizontal force exerted by the outside
fluid on an element of the cylinder is equal and oppo-
site the horizontal force exerted by the fluid on another
element diametrically opposite the first, the net force on
the cylinder in the horizontal direction is zero.

15.4 If you think of the grain stored in the silo as a fluid,
then the pressure it exerts on the walls increases with in-
creasing depth. The spacing between bands is smaller at
the lower portions so that the greater outward forces act-
ing on the walls can be overcome. The silo on the right
shows another way of accomplishing the same thing:
double banding at the bottom.
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A simple seismograph can be con-
structed with a spring-suspended pen
that draws a line on a slowly unrolling
strip of paper. The paper is mounted on a
structure attached to the ground. During
an earthquake, the pen remains nearly
stationary while the paper shakes be-
neath it. How can a few jagged lines on a
piece of paper allow scientists at a seis-
mograph station to determine the dis-
tance to the origin of an earthquake?
(Ken M. Johns/Photo Researchers, Inc.)
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ost of us experienced waves as children when we dropped a pebble into a
pond. At the point where the pebble hits the water’s surface, waves are cre-
ated. These waves move outward from the creation point in expanding cir-

cles until they reach the shore. If you were to examine carefully the motion of a
leaf floating on the disturbed water, you would see that the leaf moves up, down,
and sideways about its original position but does not undergo any net displace-
ment away from or toward the point where the pebble hit the water. The water
molecules just beneath the leaf, as well as all the other water molecules on the
pond’s surface, behave in the same way. That is, the water wave moves from the
point of origin to the shore, but the water is not carried with it.

An excerpt from a book by Einstein and Infeld gives the following remarks
concerning wave phenomena:1

A bit of gossip starting in Washington reaches New York [by word of mouth]
very quickly, even though not a single individual who takes part in spreading it
travels between these two cities. There are two quite different motions in-
volved, that of the rumor, Washington to New York, and that of the persons
who spread the rumor. The wind, passing over a field of grain, sets up a wave
which spreads out across the whole field. Here again we must distinguish be-
tween the motion of the wave and the motion of the separate plants, which un-
dergo only small oscillations... The particles constituting the medium perform
only small vibrations, but the whole motion is that of a progressive wave. The
essentially new thing here is that for the first time we consider the motion of
something which is not matter, but energy propagated through matter.

The world is full of waves, the two main types being mechanical waves and elec-
tromagnetic waves. We have already mentioned examples of mechanical waves:
sound waves, water waves, and “grain waves.” In each case, some physical medium
is being disturbed—in our three particular examples, air molecules, water mole-
cules, and stalks of grain. Electromagnetic waves do not require a medium to propa-
gate; some examples of electromagnetic waves are visible light, radio waves, televi-
sion signals, and x-rays. Here, in Part 2 of this book, we study only mechanical waves.

The wave concept is abstract. When we observe what we call a water wave, what
we see is a rearrangement of the water’s surface. Without the water, there would
be no wave. A wave traveling on a string would not exist without the string. Sound
waves could not travel through air if there were no air molecules. With mechanical
waves, what we interpret as a wave corresponds to the propagation of a disturbance
through a medium.

M

1 A. Einstein and L. Infeld, The Evolution of Physics, New York, Simon & Schuster, 1961. Excerpt from
“What Is a Wave?”

Interference patterns produced by outward-
spreading waves from many drops of liquid
falling into a body of water.
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The mechanical waves discussed in this chapter require (1) some source of
disturbance, (2) a medium that can be disturbed, and (3) some physical connec-
tion through which adjacent portions of the medium can influence each other. We
shall find that all waves carry energy. The amount of energy transmitted through a
medium and the mechanism responsible for that transport of energy differ from
case to case. For instance, the power of ocean waves during a storm is much
greater than the power of sound waves generated by a single human voice.

BASIC VARIABLES OF WAVE MOTION
Imagine you are floating on a raft in a large lake. You slowly bob up and down as
waves move past you. As you look out over the lake, you may be able to see the in-
dividual waves approaching. The point at which the displacement of the water
from its normal level is highest is called the crest of the wave. The distance from
one crest to the next is called the wavelength � (Greek letter lambda). More gen-
erally, the wavelength is the minimum distance between any two identical
points (such as the crests) on adjacent waves, as shown in Figure 16.1.

If you count the number of seconds between the arrivals of two adjacent
waves, you are measuring the period T of the waves. In general, the period is the
time required for two identical points (such as the crests) of adjacent waves
to pass by a point.

The same information is more often given by the inverse of the period, which
is called the frequency f. In general, the frequency of a periodic wave is the num-
ber of crests (or troughs, or any other point on the wave) that pass a given
point in a unit time interval. The maximum displacement of a particle of the
medium is called the amplitude A of the wave. For our water wave, this represents
the highest distance of a water molecule above the undisturbed surface of the wa-
ter as the wave passes by.

Waves travel with a specific speed, and this speed depends on the properties of
the medium being disturbed. For instance, sound waves travel through room-
temperature air with a speed of about 343 m/s (781 mi/h), whereas they travel
through most solids with a speed greater than 343 m/s.

DIRECTION OF PARTICLE DISPLACEMENT
One way to demonstrate wave motion is to flick one end of a long rope that is un-
der tension and has its opposite end fixed, as shown in Figure 16.2. In this man-
ner, a single wave bump (called a wave pulse) is formed and travels along the rope
with a definite speed. This type of disturbance is called a traveling wave, and Fig-
ure 16.2 represents four consecutive “snapshots” of the creation and propagation
of the traveling wave. The rope is the medium through which the wave travels.
Such a single pulse, in contrast to a train of pulses, has no frequency, no period,
and no wavelength. However, the pulse does have definite amplitude and definite
speed. As we shall see later, the properties of this particular medium that deter-
mine the speed of the wave are the tension in the rope and its mass per unit
length. The shape of the wave pulse changes very little as it travels along the rope.2

As the wave pulse travels, each small segment of the rope, as it is disturbed,
moves in a direction perpendicular to the wave motion. Figure 16.3 illustrates this

16.2

16.1

λ

y

λ

x

Figure 16.1 The wavelength � of
a wave is the distance between adja-
cent crests, adjacent troughs, or
any other comparable adjacent
identical points.

2 Strictly speaking, the pulse changes shape and gradually spreads out during the motion. This effect is
called dispersion and is common to many mechanical waves, as well as to electromagnetic waves. We do
not consider dispersion in this chapter.
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Compare this with another type of wave—one moving down a long, stretched
spring, as shown in Figure 16.4. The left end of the spring is pushed briefly to the
right and then pulled briefly to the left. This movement creates a sudden compres-
sion of a region of the coils. The compressed region travels along the spring (to
the right in Figure 16.4). The compressed region is followed by a region where the
coils are extended. Notice that the direction of the displacement of the coils is par-
allel to the direction of propagation of the compressed region.

Figure 16.2 A wave pulse traveling
down a stretched rope. The shape of
the pulse is approximately unchanged
as it travels along the rope.

A traveling wave that causes the particles of the disturbed medium to move per-
pendicular to the wave motion is called a transverse wave.

Transverse wave

point for one particular segment, labeled P. Note that no part of the rope ever
moves in the direction of the wave.

Figure 16.3 A pulse traveling on a
stretched rope is a transverse wave. The di-
rection of motion of any element P of the
rope (blue arrows) is perpendicular to the
direction of wave motion (red arrows).

Figure 16.4 A longitudinal wave along a stretched spring. The displacement of the coils is in
the direction of the wave motion. Each compressed region is followed by a stretched region.

Compressed Compressed

StretchedStretched

λ

λ

A traveling wave that causes the particles of the medium to move parallel to the
direction of wave motion is called a longitudinal wave.

Longitudinal wave

Sound waves, which we shall discuss in Chapter 17, are another example of
longitudinal waves. The disturbance in a sound wave is a series of high-pressure
and low-pressure regions that travel through air or any other material medium.

P

P

P

P
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Some waves in nature exhibit a combination of transverse and longitudinal
displacements. Surface water waves are a good example. When a water wave travels
on the surface of deep water, water molecules at the surface move in nearly circu-
lar paths, as shown in Figure 16.5. Note that the disturbance has both transverse
and longitudinal components. The transverse displacement is seen in Figure 16.5
as the variations in vertical position of the water molecules. The longitudinal dis-
placement can be explained as follows: As the wave passes over the water’s surface,
water molecules at the crests move in the direction of propagation of the wave,
whereas molecules at the troughs move in the direction opposite the propagation.
Because the molecule at the labeled crest in Figure 16.5 will be at a trough after
half a period, its movement in the direction of the propagation of the wave will be
canceled by its movement in the opposite direction. This holds for every other wa-
ter molecule disturbed by the wave. Thus, there is no net displacement of any wa-
ter molecule during one complete cycle. Although the molecules experience no net
displacement, the wave propagates along the surface of the water.

The three-dimensional waves that travel out from the point under the Earth’s
surface at which an earthquake occurs are of both types—transverse and longitu-
dinal. The longitudinal waves are the faster of the two, traveling at speeds in the
range of 7 to 8 km/s near the surface. These are called P waves, with “P” standing
for primary because they travel faster than the transverse waves and arrive at a seis-
mograph first. The slower transverse waves, called S waves (with “S” standing for
secondary), travel through the Earth at 4 to 5 km/s near the surface. By recording
the time interval between the arrival of these two sets of waves at a seismograph,
the distance from the seismograph to the point of origin of the waves can be deter-
mined. A single such measurement establishes an imaginary sphere centered on
the seismograph, with the radius of the sphere determined by the difference in ar-
rival times of the P and S waves. The origin of the waves is located somewhere on
that sphere. The imaginary spheres from three or more monitoring stations lo-
cated far apart from each other intersect at one region of the Earth, and this re-
gion is where the earthquake occurred.

(a) In a long line of people waiting to buy tickets, the first person leaves and a pulse of 
motion occurs as people step forward to fill the gap. As each person steps forward, the 
gap moves through the line. Is the propagation of this gap transverse or longitudinal? 
(b) Consider the “wave” at a baseball game: people stand up and shout as the wave arrives
at their location, and the resultant pulse moves around the stadium. Is this wave transverse
or longitudinal?

Quick Quiz 16.1

Figure 16.5 The motion of water molecules on the surface of deep water in which a wave is
propagating is a combination of transverse and longitudinal displacements, with the result that
molecules at the surface move in nearly circular paths. Each molecule is displaced both horizon-
tally and vertically from its equilibrium position.

Trough

Wave motion

Crest

QuickLab
Make a “telephone” by poking a small
hole in the bottom of two paper cups,
threading a string through the holes,
and tying knots in the ends of the
string. If you speak into one cup
while pulling the string taut, a friend
can hear your voice in the other cup.
What kind of wave is present in the
string?
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ONE-DIMENSIONAL TRAVELING WAVES
Consider a wave pulse traveling to the right with constant speed v on a long, taut
string, as shown in Figure 16.6. The pulse moves along the x axis (the axis of the
string), and the transverse (vertical) displacement of the string (the medium) is
measured along the y axis. Figure 16.6a represents the shape and position of the
pulse at time At this time, the shape of the pulse, whatever it may be, can be
represented as That is, y, which is the vertical position of any point on the
string, is some definite function of x. The displacement y, sometimes called the
wave function, depends on both x and t. For this reason, it is often written y(x, t),
which is read “y as a function of x and t.” Consider a particular point P on the
string, identified by a specific value of its x coordinate. Before the pulse arrives at
P, the y coordinate of this point is zero. As the wave passes P, the y coordinate of
this point increases, reaches a maximum, and then decreases to zero. Therefore,
the wave function y represents the y coordinate of any point P of the
medium at any time t.

Because its speed is v, the wave pulse travels to the right a distance vt in a time
t (see Fig. 16.6b). If the shape of the pulse does not change with time, we can rep-
resent the wave function y for all times after Measured in a stationary refer-
ence frame having its origin at O, the wave function is

(16.1)

If the wave pulse travels to the left, the string displacement is

(16.2)

For any given time t, the wave function y as a function of x defines a curve rep-
resenting the shape of the pulse at this time. This curve is equivalent to a “snap-
shot” of the wave at this time. For a pulse that moves without changing shape, the
speed of the pulse is the same as that of any feature along the pulse, such as the
crest shown in Figure 16.6. To find the speed of the pulse, we can calculate how far
the crest moves in a short time and then divide this distance by the time interval.
To follow the motion of the crest, we must substitute some particular value, say x0 ,
in Equation 16.1 for Regardless of how x and t change individually, we must
require that in order to stay with the crest. This expression therefore
represents the equation of motion of the crest. At the crest is at at ax � x0 ;t � 0,

x � vt � x0

x � vt.

y � f(x � vt)

y � f(x � vt)

t � 0.

y � f(x).
t � 0.

16.3

A

y

(a) Pulse at t = 0

O

vt

x

v

O

y

x

v
P

(b) Pulse at time t

P

Figure 16.6 A one-dimensional wave pulse traveling to the right with a speed v. (a) At 
the shape of the pulse is given by (b) At some later time t, the shape remains un-
changed and the vertical displacement of any point P of the medium is given by y � f(x � vt ).

y � f (x).
t � 0,

Wave traveling to the right

Wave traveling to the left


