For thousands of years the spinning
Earth provided a natural standard for our
measurements of time. However, since
1972 we have added more than 20 “leap
seconds” to our clocks to keep them
synchronized to the Earth. Why are such
adjustments needed? What does it take
to be a good standard?  (Don Mason/The
Stock Market and NASA)
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titative measurements. The main objective of physics is to find the limited num-
ber of fundamental laws that govern natural phenomena and to use them to
develop theories that can predict the results of future experiments. The funda-
mental laws used in developing theories are expressed in the language of mathe-
matics, the tool that provides a bridge between theory and experiment.

When a discrepancy between theory and experiment arises, new theories must
be formulated to remove the discrepancy. Many times a theory is satisfactory only
under limited conditions; a more general theory might be satisfactory without
such limitations. For example, the laws of motion discovered by Isaac Newton
(1642-1727) in the 17th century accurately describe the motion of bodies at nor-
mal speeds but do not apply to objects moving at speeds comparable with the
speed of light. In contrast, the special theory of relativity developed by Albert Ein-
stein (1879-1955) in the early 1900s gives the same results as Newton’s laws at low
speeds but also correctly describes motion at speeds approaching the speed of
light. Hence, Einstein’s is a more general theory of motion.

Classical physics, which means all of the physics developed before 1900, in-
cludes the theories, concepts, laws, and experiments in classical mechanics, ther-
modynamics, and electromagnetism.

Important contributions to classical physics were provided by Newton, who de-
veloped classical mechanics as a systematic theory and was one of the originators
of calculus as a mathematical tool. Major developments in mechanics continued in
the 18th century, but the fields of thermodynamics and electricity and magnetism
were not developed until the latter part of the 19th century, principally because
before that time the apparatus for controlled experiments was either too crude or
unavailable.

A new era in physics, usually referred to as modern physics, began near the end
of the 19th century. Modern physics developed mainly because of the discovery
that many physical phenomena could not be explained by classical physics. The
two most important developments in modern physics were the theories of relativity
and quantum mechanics. Einstein’s theory of relativity revolutionized the tradi-
tional concepts of space, time, and energy; quantum mechanics, which applies to
both the microscopic and macroscopic worlds, was originally formulated by a num-
ber of distinguished scientists to provide descriptions of physical phenomena at
the atomic level.

Scientists constantly work at improving our understanding of phenomena and
fundamental laws, and new discoveries are made every day. In many research
areas, a great deal of overlap exists between physics, chemistry, geology, and
biology, as well as engineering. Some of the most notable developments are
(1) numerous space missions and the landing of astronauts on the Moon,
(2) microcircuitry and high-speed computers, and (3) sophisticated imaging tech-
niques used in scientific research and medicine. The impact such developments
and discoveries have had on our society has indeed been great, and it is very likely
that future discoveries and developments will be just as exciting and challenging
and of great benefit to humanity.

! ike all other sciences, physics is based on experimental observations and quan-

1.1 _~ STANDARDS OF LENGTH, MASS, AND TIME

The laws of physics are expressed in terms of basic quantities that require a clear def-
inition. In mechanics, the three basic quantities are length (L), mass (M), and time
(T). All other quantities in mechanics can be expressed in terms of these three.



T

CHAPTER 1 Physics and Measurements

If we are to report the results of a measurement to someone who wishes to re-
produce this measurement, a standard must be defined. It would be meaningless if
a visitor from another planet were to talk to us about a length of 8 “glitches” if we
do not know the meaning of the unit glitch. On the other hand, if someone famil-
iar with our system of measurement reports that a wall is 2 meters high and our
unit of length is defined to be 1 meter, we know that the height of the wall is twice
our basic length unit. Likewise, if we are told that a person has a mass of 75 kilo-
grams and our unit of mass is defined to be 1 kilogram, then that person is 75
times as massive as our basic unit.! Whatever is chosen as a standard must be read-
ily accessible and possess some property that can be measured reliably—measure-
ments taken by different people in different places must yield the same result.

In 1960, an international committee established a set of standards for length,
mass, and other basic quantities. The system established is an adaptation of the
metric system, and it is called the SI system of units. (The abbreviation SI comes
from the system’s French name “Systéme International.”) In this system, the units
of length, mass, and time are the meter, kilogram, and second, respectively. Other
SI standards established by the committee are those for temperature (the kelvin),
electric current (the ampere), luminous intensity (the candela), and the amount of
substance (the mole). In our study of mechanics we shall be concerned only with
the units of length, mass, and time.

Length

In A.D. 1120 the king of England decreed that the standard of length in his coun-
try would be named the yard and would be precisely equal to the distance from the
tip of his nose to the end of his outstretched arm. Similarly, the original standard
for the foot adopted by the French was the length of the royal foot of King Louis
XIV. This standard prevailed until 1799, when the legal standard of length in
France became the meter, defined as one ten-millionth the distance from the equa-
tor to the North Pole along one particular longitudinal line that passes through
Paris.

Many other systems for measuring length have been developed over the years,
but the advantages of the French system have caused it to prevail in almost all
countries and in scientific circles everywhere. As recently as 1960, the length of the
meter was defined as the distance between two lines on a specific platinum-—
iridium bar stored under controlled conditions in France. This standard was aban-
doned for several reasons, a principal one being that the limited accuracy with
which the separation between the lines on the bar can be determined does not
meet the current requirements of science and technology. In the 1960s and 1970s,
the meter was defined as 1 650 763.73 wavelengths of orange-red light emitted
from a krypton-86 lamp. However, in October 1983, the meter (m) was redefined
as the distance traveled by light in vacuum during a time of 1/299 792 458
second. In effect, this latest definition establishes that the speed of light in vac-
uum is precisely 299 792 458 m per second.

Table 1.1 lists approximate values of some measured lengths.

! The need for assigning numerical values to various measured physical quantities was expressed by
Lord Kelvin (William Thomson) as follows: “I often say that when you can measure what you are speak-
ing about, and express it in numbers, you should know something about it, but when you cannot ex-
press it in numbers, your knowledge is of a meagre and unsatisfactory kind. It may be the beginning of
knowledge but you have scarcely in your thoughts advanced to the state of science.”

T

1.1 Standards of Length, Mass, and Time

TABLE 1.1 Approximate Values of Some Measured Lengths

Length (m)

Distance from the Earth to most remote known quasar 1.4 x 10%
Distance from the Earth to most remote known normal galaxies 9 X 10%
Distance from the Earth to nearest large galaxy

(M 31, the Andromeda galaxy) 2 X 1022
Distance from the Sun to nearest star (Proxima Centauri) 4 X 1016
One lightyear 9.46 X 10'°
Mean orbit radius of the Earth about the Sun 1.50 X 101
Mean distance from the Earth to the Moon 3.84 x 108
Distance from the equator to the North Pole 1.00 X 107
Mean radius of the Earth 6.37 X 10°
Typical altitude (above the surface) of a satellite orbiting the Earth 2 X 10°
Length of a football field 9.1 x 10!
Length of a housefly 5x 1073
Size of smallest dust particles ~107*
Size of cells of most living organisms ~107°
Diameter of a hydrogen atom ~10710
Diameter of an atomic nucleus ~1071*
Diameter of a proton ~1071°

Mass

The basic SI unit of mass, the kilogram (kg), is defined as the mass of a spe-

cific platinum-iridium alloy cylinder kept at the International Bureau of

Weights and Measures at Sévres, France. This mass standard was established in

1887 and has not been changed since that time because platinum—iridium is an

unusually stable alloy (Fig. 1.1a). A duplicate of the Sévres cylinder is kept at the

National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland.
Table 1.2 lists approximate values of the masses of various objects.

Time

Before 1960, the standard of time was defined in terms of the mean solar day for the
year 1900.2 The mean solar second was originally defined as (%) (%) (%4) of a mean
solar day. The rotation of the Earth is now known to vary slightly with time, how-
ever, and therefore this motion is not a good one to use for defining a standard.

In 1967, consequently, the second was redefined to take advantage of the high
precision obtainable in a device known as an atomic clock (Fig. 1.1b). In this device,
the frequencies associated with certain atomic transitions can be measured to a
precision of one part in 10'2. This is equivalent to an uncertainty of less than one
second every 30 000 years. Thus, in 1967 the SI unit of time, the second, was rede-
fined using the characteristic frequency of a particular kind of cesium atom as the
“reference clock.” The basic SI unit of time, the second (s), is defined as 9 192
631 770 times the period of vibration of radiation from the cesium-133
atom.? To keep these atomic clocks—and therefore all common clocks and

2 One solar day is the time interval between successive appearances of the Sun at the highest point it
reaches in the sky each day.

3 Period is defined as the time interval needed for one complete vibration.

(web|

Visit the Bureau at www.bipm.fr or the
National Institute of Standards at

www.NIST.gov

TABLE 1.2

Masses of Various Bodies

(Approximate Values)

Body Mass (kg)

Visible ~10°
Universe

Milky Way 7 x 1041
galaxy

Sun 1.99 X 103

Farth 5.98 X 102

Moon 7.36 X 102

Horse ~10°

Human ~10%

Frog ~107!

Mosquito ~107°

Bacterium ~10715

Hydrogen 1.67 X 10727
atom

Electron 9.11 X 1073
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Figure 1.1 (Top) The National Standard Kilogram No.
20, an accurate copy of the International Standard Kilo-
gram kept at Sévres, France, is housed under a double bell
jar in a vault at the National Institute of Standards and
Technology (NIST). (Bottom) The primary frequency stan-
dard (an atomic clock) at the NIST. This device keeps
time with an accuracy of about 3 millionths of a second
per year. (Courtesy of National Institute of Standards and Technology,
U.S. Department of Commerce)

watches that are set to them—synchronized, it has sometimes been necessary to
add leap seconds to our clocks. This is not a new idea. In 46 B.C. Julius Caesar be-
gan the practice of adding extra days to the calendar during leap years so that the
seasons occurred at about the same date each year.

Since Einstein’s discovery of the linkage between space and time, precise mea-
surement of time intervals requires that we know both the state of motion of the
clock used to measure the interval and, in some cases, the location of the clock as
well. Otherwise, for example, global positioning system satellites might be unable
to pinpoint your location with sufficient accuracy, should you need rescuing.

Approximate values of time intervals are presented in Table 1.3.

In addition to SI, another system of units, the British engineering system (some-
times called the conventional system), is still used in the United States despite accep-
tance of SI by the rest of the world. In this system, the units of length, mass, and

1.1 Standards of Length, Mass, and Time

TABLE 1.3 Approximate Values of Some Time Intervals

Interval (s)

Age of the Universe 5 X 1017
Age of the Earth 1.3 x 107
Average age of a college student 6.3 X 10°
One year 3.16 X 107
One day (time for one rotation of the Earth about its axis) 8.64 x 10*
Time between normal heartbeats 8x 107!
Period of audible sound waves ~1073
Period of typical radio waves ~10°¢
Period of vibration of an atom in a solid ~1071®
Period of visible light waves ~1071°
Duration of a nuclear collision ~10"22
Time for light to cross a proton ~10"2

time are the foot (ft), slug, and second, respectively. In this text we shall use SI
units because they are almost universally accepted in science and industry. We
shall make some limited use of British engineering units in the study of classical
mechanics.

In addition to the basic SI units of meter, kilogram, and second, we can also
use other units, such as millimeters and nanoseconds, where the prefixes milli-and
nano- denote various powers of ten. Some of the most frequently used prefixes
for the various powers of ten and their abbreviations are listed in Table 1.4. For

TABLE 1.4 Prefixes for Sl Units

Power Prefix Abbreviation
107 yocto y
1072 zepto z
10718 atto a
10710 femto f
10712 pico P
1079 nano n
1076 micro I
1073 milli m
1072 centi c
107! deci d
10! deka da
10% kilo k
100 mega M
109 giga G
10'2 tera T
1015 peta P
108 exa E
102 zetta VA
10%* yotta Y




Quark
composition
of a proton

Neutron

nucleus

Nucleus

Gold
atoms

Gold
cube

Figure 1.2 Levels of organization
in matter. Ordinary matter consists
of atoms, and at the center of each
atom is a compact nucleus consist-
ing of protons and neutrons. Pro-
tons and neutrons are composed of
quarks. The quark composition of
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example, 1073 m is equivalent to 1 millimeter (mm), and 10> m corresponds
to 1 kilometer (km). Likewise, 1 kg is 103 grams (g), and 1 megavolt (MV) is
106 volts (V).

1.2 _~ THE BUILDING BLOCKS OF MATTER

A 1-kg cube of solid gold has a length of 3.73 cm on a side. Is this cube nothing
but wall-to-wall gold, with no empty space? If the cube is cut in half, the two pieces
still retain their chemical identity as solid gold. But what if the pieces are cut again
and again, indefinitely? Will the smaller and smaller pieces always be gold? Ques-
tions such as these can be traced back to early Greek philosophers. Two of them —
Leucippus and his student Democritus—could not accept the idea that such cut-
tings could go on forever. They speculated that the process ultimately must end
when it produces a particle that can no longer be cut. In Greek, atomos means “not
sliceable.” From this comes our English word atom.

Let us review briefly what is known about the structure of matter. All ordinary
matter consists of atoms, and each atom is made up of electrons surrounding a
central nucleus. Following the discovery of the nucleus in 1911, the question
arose: Does it have structure? That is, is the nucleus a single particle or a collection
of particles? The exact composition of the nucleus is not known completely even
today, but by the early 1930s a model evolved that helped us understand how the
nucleus behaves. Specifically, scientists determined that occupying the nucleus are
two basic entities, protons and neutrons. The proton carries a positive charge, and a
specific element is identified by the number of protons in its nucleus. This num-
ber is called the atomic number of the element. For instance, the nucleus of a hy-
drogen atom contains one proton (and so the atomic number of hydrogen is 1),
the nucleus of a helium atom contains two protons (atomic number 2), and the
nucleus of a uranium atom contains 92 protons (atomic number 92). In addition
to atomic number, there is a second number characterizing atoms—mass num-
ber, defined as the number of protons plus neutrons in a nucleus. As we shall see,
the atomic number of an element never varies (i.e., the number of protons does
not vary) but the mass number can vary (i.e., the number of neutrons varies). Two
or more atoms of the same element having different mass numbers are isotopes
of one another.

The existence of neutrons was verified conclusively in 1932. A neutron has no
charge and a mass that is about equal to that of a proton. One of its primary pur-
poses is to act as a “glue” that holds the nucleus together. If neutrons were not
present in the nucleus, the repulsive force between the positively charged particles
would cause the nucleus to come apart.

But is this where the breaking down stops? Protons, neutrons, and a host of
other exotic particles are now known to be composed of six different varieties of
particles called quarks, which have been given the names of up, down, strange,
charm, bottom, and top. The up, charm, and top quarks have charges of +§ that of
the proton, whereas the down, strange, and bottom quarks have charges of 7%
that of the proton. The proton consists of two up quarks and one down quark
(Fig. 1.2), which you can easily show leads to the correct charge for the proton.
Likewise, the neutron consists of two down quarks and one up quark, giving a net
charge of zero.

1.3 Density

1.3 _~ DENSITY

A property of any substance is its density p (Greek letter rho), defined as the
amount of mass contained in a unit volume, which we usually express as mass per
unit volume:

m
= (1.1)
For example, aluminum has a density of 2.70 g/cms, and lead has a density of
11.8 g/cm®. Therefore, a piece of aluminum of volume 10.0 cm® has a mass of
27.0 g, whereas an equivalent volume of lead has a mass of 113 g. A list of densities
for various substances is given Table 1.5.

The difference in density between aluminum and lead is due, in part, to their
different atomic masses. The atomic mass of an element is the average mass of one
atom in a sample of the element that contains all the element’s isotopes, where the
relative amounts of isotopes are the same as the relative amounts found in nature.
The unit for atomic mass is the atomic mass unit (u), where 1 u = 1.660 540 2 X
10?7 kg. The atomic mass of lead is 207 u, and that of aluminum is 27.0 u. How-
ever, the ratio of atomic masses, 207 u/27.0 u = 7.67, does not correspond to the
ratio of densities, (11.3 g/cm?®)/(2.70 g/cm®) = 4.19. The discrepancy is due to
the difference in atomic separations and atomic arrangements in the crystal struc-
ture of these two substances.

The mass of a nucleus is measured relative to the mass of the nucleus of the
carbon-12 isotope, often written as 12¢, (This isotope of carbon has six protons
and six neutrons. Other carbon isotopes have six protons but different numbers of
neutrons.) Practically all of the mass of an atom is contained within the nucleus.
Because the atomic mass of *C is defined to be exactly 12 u, the proton and neu-
tron each have a mass of about 1 u.

One mole (mol) of a substance is that amount of the substance that con-
tains as many particles (atoms, molecules, or other particles) as there are
atoms in 12 g of the carbon-12 isotope. One mole of substance A contains the
same number of particles as there are in 1 mol of any other substance B. For ex-
ample, 1 mol of aluminum contains the same number of atoms as 1 mol of lead.

TABLE 1.5 Densities of Various

Substances
Substance Density p aao® kg/ms)
Gold 19.3
Uranium 18.7
Lead 11.3
Copper 8.92
Iron 7.86
Aluminum 2.70
Magnesium 1.75
Water 1.00
Air 0.0012

A table of the letters in the Greek
alphabet is provided on the back
endsheet of this textbook.
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Experiments have shown that this number, known as Avogadro’s number, Ny, is
N, = 6.022 137 X 10% particles/mol

Avogadro’s number is defined so that 1 mol of carbon-12 atoms has a mass of
exactly 12 g. In general, the mass in 1 mol of any element is the element’s atomic
mass expressed in grams. For example, 1 mol of iron (atomic mass = 55.85 u) has
a mass of 55.85 g (we say its molar mass is 55.85 g/mol), and 1 mol of lead (atomic
mass = 207 u) has a mass of 207 g (its molar mass is 207 g/mol). Because there
are 6.02 X 102 particles in 1 mol of any element, the mass per atom for a given el-
ement is

molar mass

Matom = T (1.2)

For example, the mass of an iron atom is
55.85 g/mol

Fe = =9.28 X 10" % g/at
Mre 6.02 X 102 atoms/mol 2 g/atom

ExXAMPLE 1.1 How Many Atoms in the Cube?

A solid cube of aluminum (density 2.7 g/cm®) has a volume ~ minum (27 g) contains 6.02 X 10%* atoms:
of 0.20 cm®. How many aluminum atoms are contained in the

cube? Mo N
27g 0.54 ¢
Solution Since density equals mass per unit volume, the 6.02 X 1023 atoms N
mass m of the cube is 27¢g 054 g
m=pV=(27g/cm?(0.20 cm® = 0.54 g (0.54 g) (6.02 X 1023 atoms)
N= = 1.2 X 10* atoms

To find the number of atoms N in this mass of aluminum, we 27g
can set up a proportion using the fact that one mole of alu-

1.4 _~ DIMENSIONAL ANALYSIS

The word dimension has a special meaning in physics. It usually denotes the physi-
cal nature of a quantity. Whether a distance is measured in the length unit feet or
the length unit meters, it is still a distance. We say the dimension—the physical
nature—of distance is length.

The symbols we use in this book to specify length, mass, and time are L, M,
and T, respectively. We shall often use brackets [ ] to denote the dimensions of a
physical quantity. For example, the symbol we use for speed in this book is v, and
in our notation the dimensions of speed are written [v] = L/T. As another exam-
ple, the dimensions of area, for which we use the symbol A, are [A] = 12, The di-
mensions of area, volume, speed, and acceleration are listed in Table 1.6.

In solving problems in physics, there is a useful and powerful procedure called
dimensional analysis. This procedure, which should always be used, will help mini-
mize the need for rote memorization of equations. Dimensional analysis makes
use of the fact that dimensions can be treated as algebraic quantities. That is,
quantities can be added or subtracted only if they have the same dimensions. Fur-
thermore, the terms on both sides of an equation must have the same dimensions.

1.4 Dimensional Analysis

TABLE 1.6 Dimensions and Common Units of Area, Volume,
Speed, and Acceleration

Area Volume Speed Acceleration
System 15} (159) (L/T) (L/T?)
SI m? m? m/s m/s?
British engineering fi2 ft® ft/s ft/s?

By following these simple rules, you can use dimensional analysis to help deter-
mine whether an expression has the correct form. The relationship can be correct
only if the dimensions are the same on both sides of the equation.

To illustrate this procedure, suppose you wish to derive a formula for the dis-
tance x traveled by a car in a time ¢ if the car starts from rest and moves with con-
stant acceleration a. In Chapter 2, we shall find that the correct expression is
x= %atQ. Let us use dimensional analysis to check the validity of this expression.
The quantity x on the left side has the dimension of length. For the equation to be
dimensionally correct, the quantity on the right side must also have the dimension
of length. We can perform a dimensional check by substituting the dimensions for
acceleration, L/T?, and time, T, into the equation. That is, the dimensional form
of the equation x = %atz is

L
L=75 P=1L
The units of time squared cancel as shown, leaving the unit of length.

A more general procedure using dimensional analysis is to set up an expres-

sion of the form

x & g™

where n and m are exponents that must be determined and the symbol « indicates
a proportionality. This relationship is correct only if the dimensions of both sides
are the same. Because the dimension of the left side is length, the dimension of
the right side must also be length. That is,

[a"t™] = L = LT

Because the dimensions of acceleration are L/T? and the dimension of time is T,

(oo

LrTm2n =1

we have

Because the exponents of L and T must be the same on both sides, the dimen-
sional equation is balanced under the conditions m — 2n =0, n =1, and m = 2.
Returning to our original expression x © a"t"ye conclude that x « a?This result
differs by a factor of 2 from the correct expression, which is x = %atg. Because the
factor é is dimensionless, there is no way of determining it using dimensional
analysis.

11
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True or False: Dimensional analysis can give you the numerical value of constants of propor-
tionality that may appear in an algebraic expression.

EXAMPLE 1.2  Analysis of an Equation

Show that the expression v = at is dimensionally correct, — The same table gives us L/T? for the dimensions of accelera-
where v represents speed, a acceleration, and ¢ a time inter- tion, and so the dimensions of at are

val.

Solution For the speed term, we have from Table 1.6

1
[v] = — .
T correct. Try it and see!)

[t]*(i>7fl‘
ol =\7z)® =7

Therefore, the expression is dimensionally correct. (If the ex-
pression were given as v = at?, it would be dimensionally in-

EXAMPLE 1.3  Analysis of a Power Law

Suppose we are told that the acceleration a of a particle mov-
ing with uniform speed vin a circle of radius ris proportional
to some power of 7, say 7", and some power of v, say v". How
can we determine the values of n and m?

This dimensional equation is balanced under the conditions
ntm=1 and m=2

Therefore n = — 1, and we can write the acceleration expres-

Solution Let us take ato be

a= kr'"v

sion as

2

— v*

m a=kr = k—
r

where kis a dimensionless constant of proportionality. Know-  when we discuss uniform circular motion later, we shall see
ing the dimensions of ¢, , and v, we see that the dimensional  hat & = 1 if a consistent set of units is used. The constant k

equation must be

L/T? = L*(L/T)" = L n/Tn

would not equal 1 if, for example, v were in km/h and you
wanted @ in m/s’.

QuickLab -

Estimate the weight (in pounds) of
two large bottles of soda pop. Note
that 1 L of water has a mass of about
1 kg. Use the fact that an object
weighing 2.2 1b has a mass of 1 kg.
Find some bathroom scales and
check your estimate.

1.5 _~ CONVERSION OF UNITS

Sometimes it is necessary to convert units from one system to another. Conversion
factors between the SI units and conventional units of length are as follows:

1mi=1609m = 1.609 km 1ft = 0.304 8 m = 30.48 cm
1m = 39.37in. = 3.281 ft lin. = 0.0254 m = 2.54 cm (exactly)

A more complete list of conversion factors can be found in Appendix A.

Units can be treated as algebraic quantities that can cancel each other. For ex-
ample, suppose we wish to convert 15.0 in. to centimeters. Because 1 in. is defined
as exactly 2.54 cm, we find that

15.0in. = (15.0 in) (2.54 cm/in) = 38.1 cm
This works because multiplying by (2‘1-’?:_'") is the same as multiplying by 1, because
the numerator and denominator describe identical things.

1.6 Estimates and Order-of-Magnitude Calculations

Research Triangle Park 3| 5
Durham 11

(Left) This road sign near Raleigh, North Carolina, shows distances in miles and kilometers. How
accurate are the conversions? (Billy E. Barnes/Stock Boston).

(Right) This vehicle’s speedometer gives speed readings in miles per hour and in kilometers per
hour. Try confirming the conversion between the two sets of units for a few readings of the dial.
(Paul Silverman /Fund L Ph iphs)

EXAMPLE 1.4 The Density of a Cube

The mass of a solid cube is 856 g, and each edge has a length
of 5.35 cm. Determine the density p of the cube in basic SI

m=856g X 103 kg/g = 0.856 kg

units.

. Therefore,
Solution Because 1 g= 1073 kg and 1 cm = 1072 m, the 0.856 k
mass m and volume Vin basic SI units are p= mo_ 000 X8

Vo 153X 1074 m?

13

V=1%= (535 cn X 1072 m/cn)®
= (535X 107%m® = 1.53 X 10™*m?

= 559 X 10° kg/m?

1.6_~ ESTIMATES AND ORDER-OF-
MAGNITUDE CALCULATIONS

It is often useful to compute an approximate answer to a physical problem even
where little information is available. Such an approximate answer can then be
used to determine whether a more accurate calculation is necessary. Approxima-
tions are usually based on certain assumptions, which must be modified if greater
accuracy is needed. Thus, we shall sometimes refer to the order of magnitude of a
certain quantity as the power of ten of the number that describes that quantity. If,
for example, we say that a quantity increases in value by three orders of magni-
tude, this means that its value is increased by a factor of 10% = 1000. Also, if a
quantity is given as 3 X 103, we say that the order of magnitude of that quantity is
10? (or in symbolic form, 3 X 10% ~ 10%). Likewise, the quantity 8 X 107 ~ 10°%.
The spirit of order-of-magnitude calculations, sometimes referred to as
“guesstimates” or “ball-park figures,” is given in the following quotation: “Make an
estimate before every calculation, try a simple physical argument . . . before
every derivation, guess the answer to every puzzle. Courage: no one else needs to
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know what the guess is.”  Inaccuracies caused by guessing too low for one number
are often canceled out by other guesses that are too high. You will find that with
practice your guesstimates get better and better. Estimation problems can be fun
to work as you freely drop digits, venture reasonable approximations for unknown
numbers, make simplifying assumptions, and turn the question around into some-

thing you can answer in your head.

EXAMPLE 1.5 Breaths in a Lifetime

Estimate the number of breaths taken during an average life
span.

Solution We shall start by guessing that the typical life
span is about 70 years. The only other estimate we must make
in this example is the average number of breaths that a per-
son takes in 1 min. This number varies, depending on
whether the person is exercising, sleeping, angry, serene, and
so forth. To the nearest order of magnitude, we shall choose
10 breaths per minute as our estimate of the average. (This is
certainly closer to the true value than 1 breath per minute or
100 breaths per minute.) The number of minutes in a year is

approximately

min
=6 X 10° min

Lyt x 4002255 5 05 1 6
y day

Notice how much simpler it is to multiply 400 X 25 than it
is to work with the more accurate 365 X 24. These approxi-
mate values for the number of days in a year and the number
of hours in a day are close enough for our purposes. Thus, in
70 years there will be (70yr)(6 X 10° min/yr) = 4 X 107
min. At a rate of 10 breaths/min, an individual would take

4 X 10® breaths in a lifetime.

EXAMPLE 1.6 It's a Long Way to San Jose

Estimate the number of steps a person would take walking
from New York to Los Angeles.

Solution Without looking up the distance between these
two cities, you might remember from a geography class that
they are about 3 000 mi apart. The next approximation we
must make is the length of one step. Of course, this length
depends on the person doing the walking, but we can esti-
mate that each step covers about 2 ft. With our estimated step
size, we can determine the number of steps in 1 mi. Because
this is a rough calculation, we round 5 280 ft/mi to 5 000
ft/mi. (What percentage error does this introduce?) This
conversion factor gives us

5 000 £t/mi

= 2500 steps/mi
2 ft/step 2 steps/mi

Now we switch to scientific notation so that we can do the
calculation mentally:

(8 X 10% mi) (2.5 X 103 steps/mi) = 7.5 X 106 steps
~ 107 steps

So if we intend to walk across the United States, it will take us
on the order of ten million steps. This estimate is almost cer-
tainly too small because we have not accounted for curving
roads and going up and down hills and mountains. Nonethe-
less, it is probably within an order of magnitude of the cor-
rect answer.

EXAMPLE 1.7 How Much Gas Do We Use?

Estimate the number of gallons of gasoline used each year by
all the cars in the United States.

Solution There are about 270 million people in the
United States, and so we estimate that the number of cars in
the country is 100 million (guessing that there are between
two and three people per car). We also estimate that the aver-

age distance each car travels per year is 10 000 mi. If we as-
sume a gasoline consumption of 20 mi/gal or 0.05 gal/mi,
then each car uses about 500 gal/yr. Multiplying this by the
total number of cars in the United States gives an estimated
)10

total consumption of 5 X 10" gal ~ 101 gal.

4 E. Taylor and J. A. Wheeler, Spacetime Physics, San Francisco, W. H. Freeman & Company, Publishers,

1966, p. 60.

1.7 Significant Figures

1.7 _~ SIGNIFICANT FIGURES

When physical quantities are measured, the measured values are known only to
within the limits of the experimental uncertainty. The value of this uncertainty can
depend on various factors, such as the quality of the apparatus, the skill of the ex-
perimenter, and the number of measurements performed.

Suppose that we are asked to measure the area of a computer disk label using
a meter stick as a measuring instrument. Let us assume that the accuracy to which
we can measure with this stick is = 0.1 cm. If the length of the label is measured to
be 5.5 cm, we can claim only that its length lies somewhere between 5.4 cm and
5.6 cm. In this case, we say that the measured value has two significant figures.
Likewise, if the label’s width is measured to be 6.4 cm, the actual value lies be-
tween 6.3 cm and 6.5 cm. Note that the significant figures include the first esti-
mated digit. Thus we could write the measured values as (5.5 = 0.1) cm and
(6.4 = 0.1) cm.

Now suppose we want to find the area of the label by multiplying the two mea-
sured values. If we were to claim the area is (5.5 cm) (6.4 cm) = 35.2 cm?, our an-
swer would be unjustifiable because it contains three significant figures, which is
greater than the number of significant figures in either of the measured lengths. A
good rule of thumb to use in determining the number of significant figures that
can be claimed is as follows:

When multiplying several quantities, the number of significant figures in the
final answer is the same as the number of significant figures in the least accurate
of the quantities being multiplied, where “least accurate” means “having the
lowest number of significant figures.” The same rule applies to division.

Applying this rule to the multiplication example above, we see that the answer
for the area can have only two significant figures because our measured lengths
have only two significant figures. Thus, all we can claim is that the area is 35 cm?,
realizing that the value can range between (5.4 cm)(6.3 cm) = 34 cm? and
(5.6 cm) (6.5 cm) = 36 cm?.

Zeros may or may not be significant figures. Those used to position the deci-
mal point in such numbers as 0.03 and 0.007 5 are not significant. Thus, there are
one and two significant figures, respectively, in these two values. When the zeros
come after other digits, however, there is the possibility of misinterpretation. For
example, suppose the mass of an object is given as 1 500 g. This value is ambigu-
ous because we do not know whether the last two zeros are being used to locate
the decimal point or whether they represent significant figures in the measure-
ment. To remove this ambiguity, it is common to use scientific notation to indicate
the number of significant figures. In this case, we would express the mass as 1.5 X
10° g if there are two significant figures in the measured value, 1.50 X 10% g if
there are three significant figures, and 1.500 X 10% g if there are four. The same
rule holds when the number is less than 1, so that 2.3 X 107 has two significant
figures (and so could be written 0.000 23) and 2.30 X 107* has three significant
figures (also written 0.000 230). In general, a significant figure is a reliably
known digit (other than a zero used to locate the decimal point).

For addition and subtraction, you must consider the number of decimal places
when you are determining how many significant figures to report.
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QuickLab —

Determine the thickness of a page
from this book. (Note that numbers
that have no measurement errors—
like the count of a number of
pages—do not affect the significant
figures in a calculation.) In terms of
significant figures, why is it better to
measure the thickness of as many
pages as possible and then divide by
the number of sheets?




16

CHAPTER 1 Physics and Measurements

When numbers are added or subtracted, the number of decimal places in the
result should equal the smallest number of decimal places of any term in the
sum.

For example, if we wish to compute 123 + 5.35, the answer given to the correct num-
ber of significant figures is 128 and not 128.35. If we compute the sum 1.000 1 +
0.000 3 = 1.000 4, the result has five significant figures, even though one of the terms
in the sum, 0.000 3, has only one significant figure. Likewise, if we perform the sub-
traction 1.002 — 0.998 = 0.004, the result has only one significant figure even though
one term has four significant figures and the other has three. In this book, most of
the numerical examples and end-of-chapter problems will yield answers hav-
ing three significant figures. When carrying out estimates we shall typically work
with a single significant figure.

Suppose you measure the position of a chair with a meter stick and record that the center
of the seat is 1.043 860 564 2 m from a wall. What would a reader conclude from this

Problems

SUMMARY

The three fundamental physical quantities of mechanics are length, mass, and
time, which in the SI system have the units meters (m), kilograms (kg), and sec-
onds (s), respectively. Prefixes indicating various powers of ten are used with these
three basic units. The density of a substance is defined as its mass per unit volume.
Different substances have different densities mainly because of differences in their
atomic masses and atomic arrangements.

The number of particles in one mole of any element or compound, called
Avogadro’s number, Ny, is 6.02 X 1023,

The method of dimensional analysis is very powerful in solving physics prob-
lems. Dimensions can be treated as algebraic quantities. By making estimates and
making order-of-magnitude calculations, you should be able to approximate the
answer to a problem when there is not enough information available to completely
specify an exact solution.

When you compute a result from several measured numbers, each of which
has a certain accuracy, you should give the result with the correct number of signif-
icant figures.

17

recorded measurement?

EXAMPLE 1.8  The Area of a Rectangle

A rectangular plate has a length of (21.3 + 0.2) cm and a
width of (9.80 = 0.1) cm. Find the area of the plate and the
uncertainty in the calculated area.

Solution
Area = {w = (21.3 £ 0.2 cm) X (9.80 = 0.1 cm)

~ (21.3 X 9.80 + 21.3 X 0.1 * 0.2 X 9.80) cm?

~ (209 = 4) cm?

Because the input data were given to only three significant
figures, we cannot claim any more in our result. Do you see
why we did not need to multiply the uncertainties 0.2 cm and
0.1 cm?

EXAMPLE 1.9 - Installing a Carpet

A carpet is to be installed in a room whose length is measured
to be 12.71 m and whose width is measured to be 3.46 m. Find
the area of the room.

Solution If you multiply 12.71 m by .46 m on your calcu-
lator, you will get an answer of 43.976 6 m?. How many of
these numbers should you claim? Our rule of thumb for mul-
tiplication tells us that you can claim only the number of sig-
nificant figures in the least accurate of the quantities being
measured. In this example, we have only three significant fig-
ures in our least accurate measurement, so we should express

our final answer as  44.0 m%.

Note that in reducing 43.976 6 to three significant figures
for our answer, we used a general rule for rounding off num-
bers that states that the last digit retained (the 9 in this exam-
ple) is increased by 1 if the first digit dropped (here, the 7) is
5 or greater. (A technique for avoiding error accumulation is
to delay rounding of numbers in a long calculation until you
have the final result. Wait until you are ready to copy the an-
swer from your calculator before rounding to the correct
number of significant figures.)

QUESTIONS

1. In this chapter we described how the Earth’s daily rotation
on its axis was once used to define the standard unit of
time. What other types of natural phenomena could serve
as alternative time standards?

[2] Suppose that the three fundamental standards of the met-
ric system were length, density, and time rather than
length, mass, and time. The standard of density in this sys-
tem is to be defined as that of water. What considerations
about water would you need to address to make sure that
the standard of density is as accurate as possible?

3. Ahand is defined as 4 in.; a foot is defined as 12 in. Why
should the hand be any less acceptable as a unit than the
foot, which we use all the time?

Express the following quantities using the prefixes given in

PROBLEMS

Table 1.4: (a) 3 X 107*m (b) 5 X 107°s
(c) 72 X 10? g.

@ Suppose that two quantities A and B have different dimen-
sions. Determine which of the following arithmetic opera-
tions could be physically meaningful: (a) A + B (b) A/B
(c) B— A (d) AB.

What level of accuracy is implied in an order-of-magnitude
calculation?

7. Do an order-of-magnitude calculation for an everyday situ-
ation you might encounter. For example, how far do you
walk or drive each day?

8. Estimate your age in seconds.

9. Estimate the mass of this textbook in kilograms. If a scale is
available, check your estimate.

1, 2, 3 = straightforward, intermediate, challenging D = full solution available in the Student Solutions Manual and Study Guide

WeB = solution posted at http://www.saunderscollege.com/physics/ [] = Computer useful in solving problem \I"’

l:l = paired numerical/symbolic problems

= Interactive Physics

Section 1.3 Density
1. The standard kilogram is a platinum —iridium cylinder
39.0 mm in height and 39.0 mm in diameter. What is
the density of the material?
2. The mass of the planet Saturn (Fig. P1.2) is 5.64 X
102 kg, and its radius is 6.00 X 107 m. Calculate its
density.

3. How many grams of copper are required to make a hol-
low spherical shell having an inner radius of 5.70 cm
and an outer radius of 5.75 cm? The density of copper
is 8.92 g/cmg.

4. What mass of a material with density p is required to
make a hollow spherical shell having inner radius 7, and
outer radius ro?

5. Iron has molar mass 55.8 g/mol. (a) Find the volume
of 1 mol of iron. (b) Use the value found in (a) to de-
termine the volume of one iron atom. (c) Calculate
the cube root of the atomic volume, to have an esti-
mate for the distance between atoms in the solid.

(d) Repeat the calculations for uranium, finding its
molar mass in the periodic table of the elements in
Appendix C.
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THE WIZARD OF ID

YOU MADE AN ERROR ON THE LLUNAR.
ECLIPSE... A MISTAKE IN CALCULATING

“THE RELAT IVE SPFED...A VALUE T
.THE' FIFTH PDWER/ RATHER THAN Cl{BEl

Pouus ciae @2 v

By permission of John Hart and Field Enterprises, Inc.

Figure P1.2 A view of Saturn from Voyager 2. (Courtesy of NASA)

6. Two spheres are cut from a certain uniform rock. One

has radius 4.50 cm. The mass of the other is five times
greater. Find its radius.

weB Calculate the mass of an atom of (a) helium, (b) iron,

and (c) lead. Give your answers in atomic mass units
and in grams. The molar masses are 4.00, 55.9, and

207 g/mol, respectively, for the atoms given.

On your wedding day your lover gives you a gold ring of
mass 3.80 g. Fifty years later its mass is 3.35 g. As an av-
erage, how many atoms were abraded from the ring
during each second of your marriage? The molar mass
of gold is 197 g/mol.

. A small cube of iron is observed under a microscope.

The edge of the cube is 5.00 X 1075 cm long. Find (a)
the mass of the cube and (b) the number of iron atoms
in the cube. The molar mass of iron is 55.9 g/mol, and
its density is 7.86 g/cm?.

. A structural I-beam is made of steel. A view of its cross-

section and its dimensions are shown in Figure P1.10.

—
1.00 cm

36.0 cm

1.00 cm

Figure P1.10

Physics and Measurements

(a) What is the mass of a section 1.50 m long? (b) How
many atoms are there in this section? The density of
steel is 7.56 X 10% kg/nﬁ

11. A child at the beach digs a hole in the sand and, using a
pail, fills it with water having a mass of 1.20 kg. The mo-
lar mass of water is 18.0 g/mol. (a) Find the number of
water molecules in this pail of water. (b) Suppose the
quantity of water on the Earth is 1.32 X 10%! kg and re-
mains constant. How many of the water molecules in
this pail of water were likely to have been in an equal
quantity of water that once filled a particular claw print
left by a dinosaur?

Section 1.4 Dimensional Analysis

12. The radius rof a circle inscribed in any triangle whose

sides are @, b, and cis given by

r=1[(s=a(s=b(s— o/s]"?
where sis an abbreviation for (a + b + ¢) /2. Check this
formula for dimensional consistency.

The displacement of a particle moving under uniform
acceleration is some function of the elapsed time and
the acceleration. Suppose we write this displacement
s = ka™t", where kis a dimensionless constant. Show by
dimensional analysis that this expression is satisfied if
m = 1and n = 2. Can this analysis give the value of k?

14. The period T of a simple pendulum is measured in time
units and is described by

T=2m \’ﬁ
g

where ¢ is the length of the pendulum and gis the free-
fall acceleration in units of length divided by the square
of time. Show that this equation is dimensionally correct.
Which of the equations below are dimensionally cor-
rect?

(@) v=1vy+ ax

(b) y = (2m) cos(kx), where k = 2 m!

16. Newton’s law of universal gravitation is represented by

_ GMm
==

]

r

Here Fis the gravitational force, M and m are masses,
and ris a length. Force has the SI units kg- m/s?. What
are the SI units of the proportionality constant G?

wes The consumption of natural gas by a company satisfies
the empirical equation V= 1.50¢ + 0.008 00¢2, where V
is the volume in millions of cubic feet and ¢ the time in
months. Express this equation in units of cubic feet and
seconds. Put the proper units on the coefficients. As-
sume a month is 30.0 days.

Section 1.5 Conversion of Units
18. Suppose your hair grows at the rate 1/32 in. per day.
Find the rate at which it grows in nanometers per sec-
ond. Since the distance between atoms in a molecule is

on the order of 0.1 nm, your answer suggests how
rapidly layers of atoms are assembled in this protein syn-
thesis.

- A rectangular building lot is 100 ft by 150 ft. Determine

21.

22.

23.

27.

28.

the area of this lot in m?.

. An auditorium measures 40.0 m X 20.0 m X 12.0 m.

The density of air is 1.20 kg/m?> What are (a) the vol-
ume of the room in cubic feet and (b) the weight of air
in the room in pounds?

Assume that it takes 7.00 min to fill a 30.0-gal gasoline
tank. (a) Calculate the rate at which the tank is filled in
gallons per second. (b) Calculate the rate at which the
tank is filled in cubic meters per second. (c) Determine
the time, in hours, required to fill a 1-cubic-meter vol-
ume at the same rate. (1 U.S. gal = 231 in.%)

A creature moves at a speed of 5.00 furlongs per fort-
night (not a very common unit of speed). Given that

1 furlong = 220 yards and 1 fortnight = 14 days, deter-
mine the speed of the creature in meters per second.
What kind of creature do you think it might be?

A section of land has an area of 1 mi® and contains

640 acres. Determine the number of square meters in

1 acre.

. A quart container of ice cream is to be made in the

form of a cube. What should be the length of each edge
in centimeters? (Use the conversion 1 gal = 3.786 L.)
A solid piece of lead has a mass of 23.94 g and a volume
of 2.10 cm®. From these data, calculate the density of
lead in SI units (kg/mﬂ).

. An astronomical unit (AU) is defined as the average dis-

tance between the Earth and the Sun. (a) How many as-
tronomical units are there in one lightyear? (b) Deter-
mine the distance from the Earth to the Andromeda
galaxy in astronomical units.

The mass of the Sun is 1.99 X 103 kg, and the mass of
an atom of hydrogen, of which the Sun is mostly com-
posed, is 1.67 X 102 kg. How many atoms are there in
the Sun?

(a) Find a conversion factor to convert from miles per
hour to kilometers per hour. (b) In the past, a federal
law mandated that highway speed limits would be

55 mi/h. Use the conversion factor of part (a) to find
this speed in kilometers per hour. (¢) The maximum
highway speed is now 65 mi/h in some places. In kilo-
meters per hour, how much of an increase is this over
the 55-mi/h limit?

At the time of this book’s printing, the U. S. national
debt is about $6 trillion. (a) If payments were made at
the rate of $1 000/s, how many years would it take to pay
off a $6-trillion debt, assuming no interest were charged?
(b) A dollar bill is about 15.5 cm long. If six trillion dol-
lar bills were laid end to end around the Earth’s equator,
how many times would they encircle the Earth? Take the
radius of the Earth at the equator to be 6 378 km.

(Note: Before doing any of these calculations, try to
guess at the answers. You may be very surprised.)

30.

Problems 19

(a) How many seconds are there in a year? (b) If one
micrometeorite (a sphere with a diameter of 1.00 X
107 m) strikes each square meter of the Moon each
second, how many years will it take to cover the Moon
to a depth of 1.00 m? (Hint: Consider a cubic box on
the Moon 1.00 m on a side, and find how long it will
take to fill the box.)

weB One gallon of paint (volume = 3.78 X 107% m?) covers

32.

33.

34

an area of 25.0 m?. What is the thickness of the paint on
the wall?

A pyramid has a height of 481 ft, and its base covers an
area of 13.0 acres (Fig. P1.32). If the volume of a pyra-
mid is given by the expression V= %Bh, where Bis the
area of the base and 4 is the height, find the volume of
this pyramid in cubic meters. (1 acre = 43 560 ft?)

Figure P1.32 Problems 32 and 33.

The pyramid described in Problem 32 contains approxi-
mately two million stone blocks that average 2.50 tons
each. Find the weight of this pyramid in pounds.
Assuming that 70% of the Earth’s surface is covered
with water at an average depth of 2.3 mi, estimate the
mass of the water on the Earth in kilograms.

. The amount of water in reservoirs is often measured in

acre-feet. One acre-foot is a volume that covers an area
of 1 acre to a depth of 1 ft. An acre is an area of

43 560 ft%. Find the volume in SI units of a reservoir
containing 25.0 acre-ft of water.

. A hydrogen atom has a diameter of approximately

1.06 X 1071 m, as defined by the diameter of the
spherical electron cloud around the nucleus. The hy-
drogen nucleus has a diameter of approximately

2.40 X 1071 m. (a) For a scale model, represent the di-
ameter of the hydrogen atom by the length of an Amer-
ican football field (100 yards = 300 ft), and determine
the diameter of the nucleus in millimeters. (b) The
atom is how many times larger in volume than its
nucleus?

The diameter of our disk-shaped galaxy, the Milky Way,

is about 1.0 X 10° lightyears. The distance to Messier
31 —which is Andromeda, the spiral galaxy nearest to
the Milky Way—is about 2.0 million lightyears. If a scale
model represents the Milky Way and Andromeda galax-
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ies as dinner plates 25 cm in diameter, determine the
distance between the two plates.

The mean radius of the Earth is 6.37 X 10% m, and that
of the Moon is 1.74 X 10% cm. From these data calcu-
late (a) the ratio of the Earth’s surface area to that of
the Moon and (b) the ratio of the Earth’s volume to
that of the Moon. Recall that the surface area of a
sphere is 4712 and that the volume of a sphere is % .

wes One cubic meter (1.00 m?) of aluminum has a mass of

40.

2.70 X 103 kg, and 1.00 m? of iron has a mass of

7.86 X 10° kg. Find the radius of a solid aluminum
sphere that balances a solid iron sphere of radius 2.00
cm on an equal-arm balance.

Let py; represent the density of aluminum and pg, that
of iron. Find the radius of a solid aluminum sphere that
balances a solid iron sphere of radius 7. on an equal-
arm balance.

Section 1.6 Estimates and Order-of-
Magnitude Calculations

weB Estimate the number of Ping-Pong balls that would fit

42.

43.

44.

45.

46.

47.

48.

into an average-size room (without being crushed). In
your solution state the quantities you measure or esti-
mate and the values you take for them.

McDonald’s sells about 250 million packages of French
fries per year. If these fries were placed end to end, esti-
mate how far they would reach.

An automobile tire is rated to last for 50 000 miles. Esti-
mate the number of revolutions the tire will make in its
lifetime.

Approximately how many raindrops fall on a 1.0-acre
lot during a 1.0-in. rainfall?

Grass grows densely everywhere on a quarter-acre plot
of land. What is the order of magnitude of the number
of blades of grass on this plot of land? Explain your rea-
soning. (1 acre = 43 560 ft%.)

Suppose that someone offers to give you $1 billion if
you can finish counting it out using only one-dollar
bills. Should you accept this offer? Assume you can
count one bill every second, and be sure to note that
you need about 8 hours a day for sleeping and eating
and that right now you are probably at least 18 years
old.

Compute the order of magnitude of the mass of a bath-
tub half full of water and of the mass of a bathtub half
full of pennies. In your solution, list the quantities you
take as data and the value you measure or estimate for
each.

Soft drinks are commonly sold in aluminum containers.
Estimate the number of such containers thrown away or
recycled each year by U.S. consumers. Approximately
how many tons of aluminum does this represent?

.| To an order of magnitude, how many piano tuners are

there in New York City? The physicist Enrico Fermi was
famous for asking questions like this on oral Ph.D. qual-

ifying examinations and for his own facility in making
order-of-magnitude calculations.

Section 1.7 Significant Figures

50.

51.

52.

53.

54.

55.

56.

57.

58.

Determine the number of significant figures in the fol-
lowing measured values: (a) 23 cm (b) 3.589 s

(c) 4.67 X 10> m/s (d) 0.003 2 m.

The radius of a circle is measured to be 10.5 = 0.2 m.
Calculate the (a) area and (b) circumference of the cir-
cle and give the uncertainty in each value.

Carry out the following arithmetic operations: (a) the
sum of the measured values 756, 37.2, 0.83, and 2.5;

(b) the product 0.003 2 X 356.3; (c) the product

5.620 X .

The radius of a solid sphere is measured to be (6.50 =
0.20) cm, and its mass is measured to be (1.85 = 0.02)
kg. Determine the density of the sphere in kilograms
per cubic meter and the uncertainty in the density.
How many significant figures are in the following num-
bers: (a) 78.9 = 0.2, (b) 3.788 X 10, (c) 2.46 X 1079,
and (d) 0.005 3?

A farmer measures the distance around a rectangular
field. The length of the long sides of the rectangle is
found to be 38.44 m, and the length of the short sides is
found to be 19.5 m. What is the total distance around
the field?

Asidewalk is to be constructed around a swimming

pool that measures (10.0 = 0.1) m by (17.0 * 0.1) m.

If the sidewalk is to measure (1.00 = 0.01) m wide by
(9.0 = 0.1) cm thick, what volume of concrete is needed,
and what is the approximate uncertainty of this volume?

ADDITIONAL PROBLEMS

In a situation where data are known to three significant
digits, we write 6.379 m = 6.38 m and 6.374 m =

6.37 m. When a number ends in 5, we arbitrarily choose
to write 6.375 m = 6.38 m. We could equally well write
6.375 m = 6.37 m, “rounding down” instead of “round-
ing up,” since we would change the number 6.375 by
equal increments in both cases. Now consider an order-
of-magnitude estimate, in which we consider factors
rather than increments. We write 500 m ~ 10> m be-
cause 500 differs from 100 by a factor of 5 whereas it dif-
fers from 1000 by only a factor of 2. We write 437 m ~
10* m and 305 m ~ 10? m. What distance differs from
100 m and from 1000 m by equal factors, so that we
could equally well choose to represent its order of mag-
nitude either as ~ 102 m or as ~ 10> m?

When a droplet of oil spreads out on a smooth water
surface, the resulting “oil slick” is approximately one
molecule thick. An oil droplet of mass 9.00 X 1077 kg
and density 918 kg/m? spreads out into a circle of ra-
dius 41.8 cm on the water surface. What is the diameter
of an oil molecule?

59.

o 6o.

62.

[63]

The basic function of the carburetor of an automobile
is to “atomize” the gasoline and mix it with air to pro-
mote rapid combustion. As an example, assume that
30.0 cm?® of gasoline is atomized into Nspherical
droplets, each with a radius of 2.00 X 107° m. What is
the total surface area of these Nspherical droplets?

In physics it is important to use mathematical approxi-
mations. Demonstrate for yourself that for small angles
(<20°)

tan a = sina = a = wa'/180°

where «a is in radians and @’ is in degrees. Use a calcula-
tor to find the largest angle for which tan @ may be ap-
proximated by sin « if the error is to be less than 10.0%.
A high fountain of water is located at the center of a cir-
cular pool as in Figure P1.61. Not wishing to get his feet
wet, a student walks around the pool and measures its
circumference to be 15.0 m. Next, the student stands at
the edge of the pool and uses a protractor to gauge the
angle of elevation of the top of the fountain to be 55.0°.
How high is the fountain?

Figure P1.61

Assume that an object covers an area A and has a uni-
form height 4. If its cross-sectional area is uniform over
its height, then its volume is given by V= Ah. (a) Show
that V = Ah is dimensionally correct. (b) Show that the
volumes of a cylinder and of a rectangular box can be
written in the form V = Ah, identifying A in each case.
(Note that A, sometimes called the “footprint” of the
object, can have any shape and that the height can be
replaced by average thickness in general.)

A useful fact is that there are about 7 X 107 s in one
year. Find the percentage error in this approximation,
where “percentage error” is defined as

| Assumed value — true value| % 100%

True value

Problems 21

64. A crystalline solid consists of atoms stacked up in a re-
peating lattice structure. Consider a crystal as shown in
Figure P1.64a. The atoms reside at the corners of cubes
of side L = 0.200 nm. One piece of evidence for the
regular arrangement of atoms comes from the flat sur-
faces along which a crystal separates, or “cleaves,” when
it is broken. Suppose this crystal cleaves along a face di-
agonal, as shown in Figure P1.64b. Calculate the spac-
ing d between two adjacent atomic planes that separate
when the crystal cleaves.

(b)
Figure P1.64

65. A child loves to watch as you fill a transparent plastic
bottle with shampoo. Every horizontal cross-section of
the bottle is a circle, but the diameters of the circles all
have different values, so that the bottle is much wider in
some places than in others. You pour in bright green
shampoo with constant volume flow rate 16.5 cm®/s. At
what rate is its level in the bottle rising (a) at a point
where the diameter of the bottle is 6.30 cm and (b) ata
point where the diameter is 1.35 cm?
As a child, the educator and national leader Booker T.
Washington was given a spoonful (about 12.0 cm?®) of
molasses as a treat. He pretended that the quantity in-
creased when he spread it out to cover uniformly all of
a tin plate (with a diameter of about 23.0 cm). How
thick a layer did it make?
Assume there are 100 million passenger cars in the
United States and that the average fuel consumption is
20 mi/gal of gasoline. If the average distance traveled
by each car is 10 000 mi/yr, how much gasoline would
be saved per year if average fuel consumption could be
increased to 25 mi/gal?
68. One cubic centimeter of water has a mass of 1.00 X
1072 kg. (a) Determine the mass of 1.00 m® of water.
(b) Assuming biological substances are 98% water, esti-

66.
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mate the mass of a cell that has a diameter of 1.0 um, a
human kidney, and a fly. Assume that a kidney is
roughly a sphere with a radius of 4.0 cm and that a
fly is roughly a cylinder 4.0 mm long and 2.0 mm in
diameter.

69. The distance from the Sun to the nearest star is 4 X
10'® m. The Milky Way galaxy is roughly a disk of diame-
ter ~ 10?' m and thickness ~ 10! m. Find the order of
magnitude of the number of stars in the Milky Way. As-
sume the 4 X 10'%m distance between the Sun and the
nearest star is typical.

70. The data in the following table represent measurements
of the masses and dimensions of solid cylinders of alu-

ANSWERS TO QUICK QUIZZES

1.1 False. Dimensional analysis gives the units of the propor-
tionality constant but provides no information about its
numerical value. For example, experiments show that
doubling the radius of a solid sphere increases its mass
8-fold, and tripling the radius increases the mass 27-fold.
Therefore, its mass is proportional to the cube of its ra-
dius. Because m &« r?‘we can write m = kr>. Dimen-
sional analysis shows that the proportionality constant &
must have units kg/mg, but to determine its numerical
value requires either experimental data or geometrical
reasoning.

THE WIZARD OF ID

Physics and Measurements

minum, copper, brass, tin, and iron. Use these data to
calculate the densities of these substances. Compare
your results for aluminum, copper, and iron with those
given in Table 1.5.

Diameter
Substance Mass (g) (cm) Length (cm)
Aluminum 51.5 2.52 3.75
Copper 56.3 1.23 5.06
Brass 94.4 1.54 5.69
Tin 69.1 1.75 3.74
Iron 216.1 1.89 9.77

1.2 Reporting all these digits implies you have determined
the location of the center of the chair’s seat to the near-
est =0.000 000 000 1 m. This roughly corresponds to
being able to count the atoms in your meter stick be-
cause each of them is about that size! It would probably
be better to record the measurement as 1.044 m: this in-
dicates that you know the position to the nearest mil-
limeter, assuming the meter stick has millimeter mark-
ings on its scale.

By Parker and Hart

YOU MADE AN ERROR ON THE LUNAR
ECLIF5E...A MISTAKE IN CALCULATING

fuus D daae XN

By permission of John Hart and Fleld Enterprises, Inc.

IMPOSSIBLE! I F THAT

“THE RELATIVE SPFED... A VALUE T© BE N AL.
THE FIFTH POWER, RATHER THAN CUBED. /| DARKNESS AT THIS
\ D VERY MOMEN. -
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Motion in One Dimension

Chapter Outline

In a moment the arresting cable will be
pulled taut, and the 140-mi/h landing of
this F/A-18 Hornet on the aircraft carrier
USS Nimitz will be brought to a sudden
conclusion. The pilot cuts power to the
engine, and the plane is stopped in less
than 2s. If the cable had not been suc-
cessfully engaged, the pilot would have
had to take off quickly before reaching
the end of the flight deck. Can the motion
of the plane be described quantitatively
in a way that is useful to ship and aircraft
designers and to pilots learning to land
on a “postage stamp?” (Courtesy of the
USS Nimitz/U.S. Navy)

c h a pt e r

2.1 Displacement, Velocity, and Speed
2.2 Instantaneous Velocity and Speed
2.3 Acceleration

2.4 Motion Diagrams

2.5 One-Dimensional Motion with
Constant Acceleration

2.6 Freely Falling Objects
2.7 (Optional) Kinematic Equations

Derived from Calculus

GOAL Problem-Solving Steps
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TABLE 2.1

Position of the Car at
Various Times

Position t(s) x(m)
® 0 30
10 52
© 20 38
© 30 0
® 40 —37
® 50 —-53

CHAPTER 2 Motion in One Dimension

space and time while ignoring the agents that caused that motion. This por-

tion of classical mechanics is called kinematics. (The word kinematics has the
same root as cinema. Can you see why?) In this chapter we consider only motion in
one dimension. We first define displacement, velocity, and acceleration. Then, us-
ing these concepts, we study the motion of objects traveling in one dimension with
a constant acceleration.

From everyday experience we recognize that motion represents a continuous
change in the position of an object. In physics we are concerned with three types
of motion: translational, rotational, and vibrational. A car moving down a highway
is an example of translational motion, the Earth’s spin on its axis is an example of
rotational motion, and the back-and-forth movement of a pendulum is an example
of vibrational motion. In this and the next few chapters, we are concerned only
with translational motion. (Later in the book we shall discuss rotational and vibra-
tional motions.)

In our study of translational motion, we describe the moving object as a parti-
cle regardless of its size. In general, a particle is a point-like mass having infini-
tesimal size. For example, if we wish to describe the motion of the Earth around
the Sun, we can treat the Earth as a particle and obtain reasonably accurate data
about its orbit. This approximation is justified because the radius of the Earth’s or-
bit is large compared with the dimensions of the Earth and the Sun. As an exam-
ple on a much smaller scale, it is possible to explain the pressure exerted by a gas
on the walls of a container by treating the gas molecules as particles.

As a first step in studying classical mechanics, we describe motion in terms of

2.1 _~ DISPLACEMENT, VELOCITY, AND SPEED

The motion of a particle is completely known if the particle’s position in space is
known at all times. Consider a car moving back and forth along the x axis, as shown
in Figure 2.1a. When we begin collecting position data, the car is 30 m to the right
of a road sign. (Let us assume that all data in this example are known to two signifi-
cant figures. To convey this information, we should report the initial position as
3.0 X 10! m. We have written this value in this simpler form to make the discussion
easier to follow.) We start our clock and once every 10 s note the car’s location rela-
tive to the sign. As you can see from Table 2.1, the car is moving to the right (which
we have defined as the positive direction) during the first 10 s of motion, from posi-
tion ® to position ®. The position values now begin to decrease, however, because
the car is backing up from position ® through position ®. In fact, at ®, 30 s after
we start measuring, the car is alongside the sign we are using as our origin of coordi-
nates. It continues moving to the left and is more than 50 m to the left of the sign
when we stop recording information after our sixth data point. A graph of this infor-
mation is presented in Figure 2.1b. Such a plot is called a position—time graph.

If a particle is moving, we can easily determine its change in position. The dis-
placement of a particle is defined as its change in position. As it moves from
an initial position x; to a final position x;, its displacement is given by x,— x;. We
use the Greek letter delta (A) to denote the change in a quantity. Therefore, we
write the displacement, or change in position, of the particle as

Ax=x,— x; (2.1)

From this definition we see that Axis positive if xis greater than x; and negative if
xsis less than x;.



2.1 Displacement, Velocity, and Speed

A very easy mistake to make is not to recognize the difference between dis-
placement and distance traveled (Fig. 2.2). A baseball player hitting a home run
travels a distance of 360 ft in the trip around the bases. However, the player’s dis-
placement is zero because his final and initial positions are identical.

Displacement is an example of a vector quantity. Many other physical quanti-
ties, including velocity and acceleration, also are vectors. In general, a vector is a
physical quantity that requires the specification of both direction and mag-
nitude. By contrast, a scalar is a quantity that has magnitude and no direc-
tion. In this chapter, we use plus and minus signs to indicate vector direction. We
can do this because the chapter deals with one-dimensional motion only; this
means that any object we study can be moving only along a straight line. For exam-
ple, for horizontal motion, let us arbitrarily specify to the right as being the posi-
tive direction. It follows that any object always moving to the right undergoes a

@
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Figure 2.1 (a) A car moves back
and forth along a straight line
taken to be the x axis. Because we
are interested only in the car’s
translational motion, we can treat it
as a particle. (b) Position—time
graph for the motion of the
“particle.”
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Average velocity

@
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Figure 2.2 Bird’s-eye view of a baseball
diamond. A batter who hits a home run
travels 360 ft as he rounds the bases, but his
displacement for the round trip is zero.
(Mark C. Burnett/Photo Researchers, Inc.)

positive displacement + Ax, and any object moving to the left undergoes a negative
displacement — Ax. We shall treat vectors in greater detail in Chapter 3.

There is one very important point that has not yet been mentioned. Note that
the graph in Figure 2.1b does not consist of just six data points but is actually a
smooth curve. The graph contains information about the entire 50-s interval during
which we watched the car move. It is much easier to see changes in position from
the graph than from a verbal description or even a table of numbers. For example, it
is clear that the car was covering more ground during the middle of the 50-s interval
than at the end. Between positions © and ©), the car traveled almost 40 m, but dur-
ing the last 10 s, between positions ® and ®, it moved less than half that far. A com-
mon way of comparing these different motions is to divide the displacement Ax that
occurs between two clock readings by the length of that particular time interval At
This turns out to be a very useful ratio, one that we shall use many times. For conve-
nience, the ratio has been given a special name — average velocity. The average ve-
locity v, of a particle is defined as the particle’s displacement Ax divided by
the time interval At during which that displacement occurred:

Ax
U= (2.2)
where the subscript x indicates motion along the x axis. From this definition we
see that average velocity has dimensions of length divided by time (L/T)—meters
per second in SI units.

Although the distance traveled for any motion is always positive, the average ve-
locity of a particle moving in one dimension can be positive or negative, depending
on the sign of the displacement. (The time interval A¢is always positive.) If the co-
ordinate of the particle increases in time (that s, if x,> x;), then Ax is positive and
v, = Ax/At is positive. This case corresponds to motion in the positive x direction.
If the coordinate decreases in time (that is, if x;< x;), then Ax is negative and
hence v, is negative. This case corresponds to motion in the negative x direction.
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We can interpret average velocity geometrically by drawing a straight line be-
tween any two points on the position—time graph in Figure 2.1b. This line forms
the hypotenuse of a right triangle of height Ax and base At The slope of this line

60 —

60

is the ratio Ax/At. For example, the line between positions ® and ® has a slope 40
equal to the average velocity of the car between those two times, (52 m — 30 m)/ ®
(10s — 0) =2.2m/s. 20
In everyday usage, the terms speed and velocity are interchangeable. In physics,
however, there is a clear distinction between these two quantities. Consider a 0
marathon runner who runs more than 40 km, yet ends up at his starting point. His
average velocity is zero! Nonetheless, we need to be able to quantify how fast he -20
was running. A slightly different ratio accomplishes this for us. The average
speed of a particle, a scalar quantity, is defined as the total distance trav- _40
eled divided by the total time it takes to travel that distance:
. 60 \ | | ! T s
Average Speed = M Average speed 0 10 20 30 40 50 ©
total time (a) (b)

The SI unit of average speed is the same as the unit of average velocity: meters
per second. However, unlike average velocity, average speed has no direction and
hence carries no algebraic sign.

Knowledge of the average speed of a particle tells us nothing about the details
of the trip. For example, suppose it takes you 8.0 h to travel 280 km in your car.
The average speed for your trip is 35 km/h. However, you most likely traveled at
various speeds during the trip, and the average speed of 35 km/h could result
from an infinite number of possible speed values.

Figure 2.3 (a) Graph representing the motion of the car in Figure 2.1. (b) An enlargement of
the upper left-hand corner of the graph shows how the blue line between positions ® and
approaches the green tangent line as point ® gets closer to point ®.

car parked alongside the road in front of you. In other words, you would like to be
able to specify your velocity just as precisely as you can specify your position by not-
ing what is happening at a specific clock reading—that is, at some specific instant.
It may not be immediately obvious how to do this. What does it mean to talk about
how fast something is moving if we “freeze time” and talk only about an individual
instant? This is a subtle point not thoroughly understood until the late 1600s. At
that time, with the invention of calculus, scientists began to understand how to de-
scribe an object’s motion at any moment in time.

To see how this is done, consider Figure 2.3a. We have already discussed the
average velocity for the interval during which the car moved from position @ to

EXAMPLE 2.1 Calculating the Variables of Motion

Find the displacement, average velocity, and average speed of ~ magnitude as the supplied data. A quick look at Figure 2.1a
the car in Figure 2.1a between positions ® and ®. indicates that this is the correct answer.
It is difficult to estimate the average velocity without com-

Solution The units of displacement must be meters, and
the numerical result should be of the same order of magni-
tude as the given position data (which means probably not 10
or 100 times bigger or smaller). From the position—time
graph given in Figure 2.1b, note that x4 = 30 m at t, = 0s

pleting the calculation, but we expect the units to be meters
per second. Because the car ends up to the left of where we
started taking data, we know the average velocity must be
negative. From Equation 2.2,

position ® (given by the slope of the dark blue line) and for the interval during
which it moved from ® to ® (represented by the slope of the light blue line).
Which of these two lines do you think is a closer approximation of the initial veloc-
ity of the car? The car starts out by moving to the right, which we defined to be the

and that xp = =53 m at # = 50 s. Using these values along 7, = Ax TN X% positive direction. Therefore, being positive, the value of the average velocity dur-

with the definition of displacement, Equation 2.1, we find At b=l lF = In ing the ® to ® interval is probably closer to the initial value than is the value of

that _ ~58m-30m _ —-8m _ 17 m/s the average velocity during the ® to ® interval, which we determined to be nega-
50s — 0s 50s ’

Ax=xg—x4=-53m—30m= —83m

This result means that the car ends up 83 m in the negative
direction (to the left, in this case) from where it started. This
number has the correct units and is of the same order of

We find the car’s average speed for this trip by adding the
distances traveled and dividing by the total time:
22m + 52m + 53 m

Ave ed = -~~~ TP 7 = 9
verage speed 50 s 2.5m/s

Definition of instantaneous
velocity

tive in Example 2.1. Now imagine that we start with the dark blue line and slide
point ® to the left along the curve, toward point ®), as in Figure 2.3b. The line be-
tween the points becomes steeper and steeper, and as the two points get extremely
close together, the line becomes a tangent line to the curve, indicated by the green
line on the graph. The slope of this tangent line represents the velocity of the car
at the moment we started taking data, at point ®. What we have done is determine
the instantaneous velocity at that moment. In other words, the instantaneous veloc-
ity v, equals the limiting value of the ratio Ax/At as At approaches zero:!

2.2 _~ INSTANTANEOUS VELOCITY AND SPEED @ v, = lim Ax (2.3)
33 a0 At '

Often we need to know the velocity of a particle at a particular instant in time,
rather than over a finite time interval. For example, even though you might want
to calculate your average velocity during a long automobile trip, you would be es-
pecially interested in knowing your velocity at the instant you noticed the police

! Note that the displacement Ax also approaches zero as At approaches zero. As Ax and At become
smaller and smaller, the ratio Ax/A¢ approaches a value equal to the slope of the line tangent to the
X-versus-1 curve.
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In calculus notation, this limit is called the derivative of x with respect to ¢, written
dx/dt:
Ax dx

= lim — = 2.4
U= 0 A dt 2.4

The instantaneous velocity can be positive, negative, or zero. When the slope
of the position—time graph is positive, such as at any time during the first 10 s in
Figure 2.3, v, is positive. After point ®, v, is negative because the slope is negative.
At the peak, the slope and the instantaneous velocity are zero.

From here on, we use the word welocity to designate instantaneous velocity.
When it is average velocity we are interested in, we always use the adjective average.

The instantaneous speed of a particle is defined as the magnitude of its
velocity. As with average speed, instantaneous speed has no direction associated
with it and hence carries no algebraic sign. For example, if one particle has a
velocity of + 25 m/s along a given line and another particle has a velocity of
— 25 m/s along the same line, both have a speed? of 25 m/s.

EXAMPLE 2.2  Average and Instantaneous Velocity

A particle moves along the x axis. Its x coordinate varies with off)

29

ly=1g= 1s. Using Equation 2.1, with x = — 4/ + 212, we ob-
tain for the first displacement

Axpop = X — X; = xg — X
[=4(1) +2(1)?] = [—4(0) + 2(0)?]

= —2m

To calculate the displacement during the second time in- = +8m

terval, weset ;= (g = lsand {{= ip = 3 s

Axgp = %, — x; = xp — X tion—time graph.

2 As with velocity, we drop the adjective for instantaneous speed: “Speed” means instantaneous speed.
3 Simply to make it easier to read, we write the empirical equation as x = —4¢ + 2¢% rather than as
x= (—4.00m/s)t + (2.00 m/s?)¢**. When an equation summarizes measurements, consider its coef-
ficients to have as many significant digits as other data quoted in a problem. Consider its coefficients to
have the units required for dimensional consistency. When we start our clocks at ¢ = 0 s, we usually do
not mean to limit the precision to a single digit. Consider any zero value in this book to have as many
significant figures as you need.

time according to the expression x = — 4t + 242, where x is in 10

meters and ¢ is in seconds.® The position—time graph for this

motion is shown in Figure 2.4. Note that the particle moves in 8

the negative x direction for the first second of motion, is at rest N

at the moment ¢ = 15, and moves in the positive x direction o Slope = 4 m/s

for t > 1s. (a) Determine the displacement of the particle in

the time intervals t = 0to ¢ = lsand = 1sto = 3s. Slope =2 m/s
2

Solution During the first time interval, we have a negative ®

slope and hence a negative velocity. Thus, we know that the 0

displacement between ® and ® must be a negative number 3

having units of meters. Similarly, we expect the displacement

between ® and ®© to be positive. 4

In the first time interval, we set =1y =0 and 0 1

i(s)

Figure 2.4 Position—time graph for a particle having an x coordi-
nate that varies in time according to the expression x = — 4t + 2¢%

=[—4(3) +2(3)% — [-4() +2(1)?]

These displacements can also be read directly from the posi-
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(b) Calculate the average velocity during these two time
intervals.

Solution In the first time interval, A¢= ty— ;= 1lp —
tp = 1. Therefore, using Equation 2.2 and the displacement
calculated in (a), we find that

_ Axpp —2m
Uya—B) = o = = —2m/s
HA—B) At 1s d

In the second time interval, At = 2 s; therefore,

_ Axg_p 8m
UyB—D) = T = 9s = +4m/s

These values agree with the slopes of the lines joining these
points in Figure 2.4.

(c) Find the instantaneous velocity of the particle at ¢ =
25s.

Solution Certainly we can guess that this instantaneous ve-
locity must be of the same order of magnitude as our previ-
ous results, that is, around 4 m/s. Examining the graph, we
see that the slope of the tangent at position © is greater than
the slope of the blue line connecting points ® and ®. Thus,
we expect the answer to be greater than 4 m/s. By measuring
the slope of the position—time graph at ¢ = 2.5 s, we find that

v, = +6m/s

2.3 _~ ACCELERATION

In the last example, we worked with a situation in which the velocity of a particle
changed while the particle was moving. This is an extremely common occurrence.
(How constant is your velocity as you ride a city bus?) It is easy to quantify changes
in velocity as a function of time in exactly the same way we quantify changes in po-
sition as a function of time. When the velocity of a particle changes with time, the
particle is said to be accelerating. For example, the velocity of a car increases when
you step on the gas and decreases when you apply the brakes. However, we need a
better definition of acceleration than this.

Suppose a particle moving along the x axis has a velocity v,; at time # and a ve-
locity vy at time iy, as in Figure 2.5a.

The average acceleration of the particle is defined as the change in velocity Av,
divided by the time interval A¢ during which that change occurred:

Average acceleration

A Usf ~ Vi
a, == (2.5)
At 4=

As with velocity, when the motion being analyzed is one-dimensional, we can
use positive and negative signs to indicate the direction of the acceleration. Be-
cause the dimensions of velocity are L/T and the dimension of time is T, accelera-

Figure 2.5 (a) A “particle” mov-
ing along the xaxis from ® to
has velocity vy, at t = t;and velocity
vy at t = . (b) Velocity—time

graph for the particle moving in a ® -‘é,=~"@')" .
straight line. The slope of the blue . .
straight line connecting ® and ! s
is the average acceleration in the U= Ui vty

time interval At = ¢, — ;. (a)




2.3 Acceleration

tion has dimensions of length divided by time squared, or L/T2. The SI unit of ac-
celeration is meters per second squared (m/s?). It might be easier to interpret
these units if you think of them as meters per second per second. For example,
suppose an object has an acceleration of 2 m/s%. You should form a mental
image of the object having a velocity that is along a straight line and is increasing
by 2 m/s during every 1-s interval. If the object starts from rest, you should be
able to picture it moving at a velocity of +2 m/s after 1 s, at +4 m/s after 2 s, and
S0 on.

In some situations, the value of the average acceleration may be different over
different time intervals. It is therefore useful to define the instantaneous acceleration
as the limit of the average acceleration as At approaches zero. This concept is anal-
ogous to the definition of instantaneous velocity discussed in the previous section.
If we imagine that point ® is brought closer and closer to point ® in Figure 2.5a
and take the limit of Av,/At as At approaches zero, we obtain the instantaneous
acceleration:

. Av, dv,
=N T4 2.8

aX

That is, the instantaneous acceleration equals the derivative of the velocity
with respect to time, which by definition is the slope of the velocity—time graph
(Fig. 2.5b). Thus, we see that just as the velocity of a moving particle is the slope of
the particle’s x-¢ graph, the acceleration of a particle is the slope of the particle’s
v,-t graph. One can interpret the derivative of the velocity with respect to time as the
time rate of change of velocity. If a, is positive, then the acceleration is in the positive
x direction; if a, is negative, then the acceleration is in the negative x direction.

From now on we shall use the term acceleration to mean instantaneous accel-
eration. When we mean average acceleration, we shall always use the adjective
average.

Because v, = dx/dt, the acceleration can also be written

dv, _i(dx)_ d?x
i

dt

“TTa T a 2.7)
That is, in one-dimensional motion, the acceleration equals the second derivative of
x with respect to time.

Figure 2.6 illustrates how an acceleration—time graph is related to a
velocity—time graph. The acceleration at any time is the slope of the velocity—time
graph at that time. Positive values of acceleration correspond to those points in
Figure 2.6a where the velocity is increasing in the positive x direction. The acceler-
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Instantaneous acceleration

Figure 2.6 Instantaneous accel-
eration can be obtained from the
v,-t graph. (a) The velocity—time
graph for some motion. (b) The
acceleration—time graph for the
same motion. The acceleration
given by the a,-t graph for any
value of ¢ equals the slope of the
line tangent to the v,-t graph at the
same value of ¢.
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ation reaches a maximum at time ¢a, when the slope of the velocity—time graph is
a maximum. The acceleration then goes to zero at time #z, when the velocity is a
maximum (that is, when the slope of the v,-t graph is zero). The acceleration is
negative when the velocity is decreasing in the positive x direction, and it reaches

its most negative value at time #c.

CONCEPTUAL EXAMPLE 2.3  Graphical Relationships Between x, v,, and a,

The position of an object moving along the x axis varies with
time as in Figure 2.7a. Graph the velocity versus time and the
acceleration versus time for the object.

Solution The velocity at any instant is the slope of the tan-
gent to the x-t graph at that instant. Between ¢= 0 and
t = Ip, the slope of the x-f graph increases uniformly, and so
the velocity increases linearly, as shown in Figure 2.7b. Be-
tween I and (g, the slope of the x-/ graph is constant, and so
the velocity remains constant. At fp, the slope of the x-¢ graph
is zero, so the velocity is zero at that instant. Between (p and
te, the slope of the x-t graph and thus the velocity are nega-
tive and decrease uniformly in this interval. In the interval (g
to t¢, the slope of the x-t graph is still negative, and at f it
goes to zero. Finally, after ¢, the slope of the x-f graph is
zero, meaning that the object is at rest for ¢ > .

The acceleration at any instant is the slope of the tangent
to the v,-t graph at that instant. The graph of acceleration
versus time for this object is shown in Figure 2.7c. The accel-
eration is constant and positive between 0 and 7y, where the
slope of the v,-t graph is positive. It is zero between 5 and tg
and for ¢ > tg because the slope of the v,-t graph is zero at
these times. It is negative between g and # because the slope
of the v,-t graph is negative during this interval.

Figure 2.7 (a) Position—time graph for an object moving along
the xaxis. (b) The velocity—time graph for the object is obtained by
measuring the slope of the position—time graph at each instant.

(c) The acceleration—time graph for the object is obtained by mea-
suring the slope of the velocity—time graph at each instant.
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| Quick Quiz 2.1 g

Make a velocity—time graph for the car in Figure 2.1a and use your graph to determine
whether the car ever exceeds the speed limit posted on the road sign (30 km/h).

EXAMPLE 2.4  Average and Instantaneous Acceleration

The velocity of a particle moving along the x axis varies in
time according to the expression v, = (40 — 5¢2) m/s, where
tis in seconds. (a) Find the average acceleration in the time
interval t=0tot=2.0s.

Solution Figure 2.8 is a v,-¢ graph that was created from
the velocity versus time expression given in the problem state-
ment. Because the slope of the entire v,-/ curve is negative,
we expect the acceleration to be negative.
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the x axis according to the expression v, = (40 — 5¢%) m/s. The ac-
celeration at ¢ = 2 s is equal to the slope of the blue tangent line at
that time. A—=0 At

Av,

Therefore, at t = 2.0 s,

We find the velocities at ; = (4 = 0 and ;= g = 2.0 s by
substituting these values of ¢ into the expression for the ve-
locity:

v = (40 — 5ig?) m/s = [40 — 5(2.0)] m/s = +20m/s  Angentat®.

terval At = (g — (p = 2.0sis tion 2.5.

namely, that the average acceleration, which is represented by
the slope of the line (not shown) joining the initial and final
points on the velocity—time graph, is negative.

Solution The velocity at any time ¢ is vy
5¢%) m/s, and the velocity at any later time ¢ + Atis

Therefore, the change in velocity over the time interval At is

Dividing this expression by At and taking the limit of the re-

v, (m/s) a.= Uxf ~ i =
x
40 tr—t;
- . 2
o 10 m/s
2 Slope =20 m/s? The negative sign is consistent with our expectations—
10
0 «(s) (b) Determine the acceleration at ¢t = 2.0 s.
-10
90 vy =40 = 5(¢+ A)? = 40 — 52 — 10t At — 5(A)?
=30
0 1 2 3 4 Av, = vy — vy = [~ 100 At — 5(A)? m/s
Figure 2.8 The velocity—time graph for a particle moving along sult as Az approaches zero gives the acceleration at any time ¢

a, = lim — = Alim“ (=10t — 5Af) = —10¢ m/s?
—

a, = (—10)(2.0) m/s? =

‘What we have done by comparing the average acceleration
during the interval between ® and (—10 m/s?) with the
instantaneous value at ® (—20 m/s?) is compare the slope of
vea = (40 — 51,%) m/s = [40 — 5(0)2] m/s = +40 m/s the line (not shown) joining @ and ® with the slope of the

Note that the acceleration is not constant in this example.
Therefore, the average acceleration in the specified time in- Situations involving constant acceleration are treated in Sec-

So far we have evaluated the derivatives of a function by starting with the defi-
nition of the function and then taking the limit of a specific ratio. Those of you fa-
miliar with calculus should recognize that there are specific rules for taking deriva-
tives. These rules, which are listed in Appendix B.6, enable us to evaluate
derivatives quickly. For instance, one rule tells us that the derivative of any con-
stant is zero. As another example, suppose x is proportional to some power of ¢,
such as in the expression

x = At"
where A and n are constants. (This is a very common functional form.) The deriva-
tive of x with respect to ¢is
dx
X Al
dt

Applying this rule to Example 2.4, in which v, = 40 — 5(%, we find that a, =
dv,/dt = — 10t

CHAPTER 2 Motion in One Dimension

2.4 _~ MOTION DIAGRAMS

The concepts of velocity and acceleration are often confused with each other, but
in fact they are quite different quantities. It is instructive to use motion diagrams
to describe the velocity and acceleration while an object is in motion. In order not
to confuse these two vector quantities, for which both magnitude and direction
are important, we use red for velocity vectors and violet for acceleration vectors, as
shown in Figure 2.9. The vectors are sketched at several instants during the mo-
tion of the object, and the time intervals between adjacent positions are assumed
to be equal. This illustration represents three sets of strobe photographs of a car
moving from left to right along a straight roadway. The time intervals between
flashes are equal in each diagram.

In Figure 2.9a, the images of the car are equally spaced, showing us that the
car moves the same distance in each time interval. Thus, the car moves with con-
stant positive velocity and has zero acceleration.

In Figure 2.9b, the images become farther apart as time progresses. In this
case, the velocity vector increases in time because the car’s displacement between
adjacent positions increases in time. The car is moving with a positive velocity and a
positive acceleration.

In Figure 2.9¢, we can tell that the car slows as it moves to the right because its
displacement between adjacent images decreases with time. In this case, the car
moves to the right with a constant negative acceleration. The velocity vector de-
creases in time and eventually reaches zero. From this diagram we see that the ac-
celeration and velocity vectors are not in the same direction. The car is moving
with a positive velocity but with a negative acceleration.

You should be able to construct motion diagrams for a car that moves initially
to the left with a constant positive or negative acceleration.

vV - —_— —_— — —

b pellg-ol="g =g =2o.
A —  — —_— —_— —_—
YV — —_— —_— —_ ->

© o—ra b——0  lo—"0 o=—0lo—0._
a R ] R ] — — —

g:ﬁFigure 2.9 (a) Motion diagram for a car moving at constant velocity (zero acceleration).

(b) Motion diagram for a car whose constant acceleration is in the direction of its velocity. The
velocity vector at each instant is indicated by a red arrow, and the constant acceleration by a vio-
let arrow. (c) Motion diagram for a car whose constant acceleration is in the direction opposite the
velocity at each instant.
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[ Quick Quiz 2.2 4

(a) If a car is traveling eastward, can its acceleration be westward? (b) If a car is slowing
down, can its acceleration be positive?

2.5 _~ ONE-DIMENSIONAL MOTION WITH
CONSTANT ACCELERATION

If the acceleration of a particle varies in time, its motion can be complex and diffi-
cult to analyze. However, a very common and simple type of one-dimensional mo-
tion is that in which the acceleration is constant. When this is the case, the average
acceleration over any time interval equals the instantaneous acceleration at any in-
stant within the interval, and the velocity changes at the same rate throughout the
motion.

If we replace a, by a, in Equation 2.5 and take ¢; = 0 and {sto be any later time
t, we find that

Uxf — Ui
t

a, =
or

Upp= Uy T Oyt (for constant a,) (2.8)
This powerful expression enables us to determine an object’s velocity at any time
t if we know the object’s initial velocity and its (constant) acceleration. A
velocity—time graph for this constant-acceleration motion is shown in Figure
2.10a. The graph is a straight line, the (constant) slope of which is the acceleration
ay; this is consistent with the fact that a, = dv,/dt is a constant. Note that the slope
is positive; this indicates a positive acceleration. If the acceleration were negative,
then the slope of the line in Figure 2.10a would be negative.

When the acceleration is constant, the graph of acceleration versus time (Fig.
2.10b) is a straight line having a slope of zero.

[ Quick Quiz 2.3 4

Describe the meaning of each term in Equation 2.8.

Slope =0

(b)

Figure 2.10 An object moving along the x axis with constant acceleration a,. (a) The
velocity—time graph. (b) The acceleration—time graph. (c) The position—time graph.

Velocity as a function of time

()

35

36

Displacement as a function of
velocity and time

Uy ay,

t t
(b) (e)
U, a,
A .

(c) (f)

Figure 2.11 Parts (a), (b), and
(c) are v,-t graphs of objects in
one-dimensional motion. The pos-
sible accelerations of each object as
a function of time are shown in
scrambled order in (d), (e), and

().
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Because velocity at constant acceleration varies linearly in time according to
Equation 2.8, we can express the average velocity in any time interval as the arith-
metic mean of the initial velocity v,; and the final velocity v,

vy t vy

= a 2 (for constant a,) (2.9)
Note that this expression for average velocity applies only in situations in which the
acceleration is constant.

We can now use Equations 2.1, 2.2, and 2.9 to obtain the displacement of any
object as a function of time. Recalling that Ax in Equation 2.2 represents x; — x;,
and now using ¢in place of At (because we take ¢; = 0), we can say

Xp— X = Uyt = %(vx, + vt (for constant a,) (2.10)

We can obtain another useful expression for displacement at constant acceler-

ation by substituting Equation 2.8 into Equation 2.10:

1
Xy X = §(vx; + vy T oad)t
xp— x; = vt + Sa (2.11)

The position—time graph for motion at constant (positive) acceleration shown in
Figure 2.10c is obtained from Equation 2.11. Note that the curve is a parabola. The
slope of the tangent line to this curve at ¢ = ¢; = 0 equals the initial velocity v,;, and
the slope of the tangent line at any later time  equals the velocity at that time, v,.

We can check the validity of Equation 2.11 by moving the x; term to the right-
hand side of the equation and differentiating the equation with respect to time:

dx; d 1 0
Uy = ? = ; x; + vyt + ;uxt = vyt ayl
Finally, we can obtain an expression for the final velocity that does not contain

a time interval by substituting the value of ¢ from Equation 2.8 into Equation 2.10:
1 Uyf — Uxi) .Ux/2 - v
— x; = —(v,; + =
Xp— X; 9 (Vi vxj)( a 2a,

vxfz =y 2+ 2a,(x; = x;) (for constant a,) (2.12)

For motion at zero acceleration, we see from Equations 2.8 and 2.11 that

Uf = Ui = Ux when a, = 0
Xp— X = Uyl b

That is, when acceleration is zero, velocity is constant and displacement changes
linearly with time.

In Figure 2.11, match each v,-t graph with the a,-t graph that best describes the motion.

Equations 2.8 through 2.12 are ki tic expr that may be used to
solve any problem involving one-dimensional motion at constant accelera-
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TABLE 2.2 Kinematic Equations for Motion in a Straight Line

Under Constant Acceleration

Equation

Information Given by Equation

Uy = Uyi +1 ayt

X = x; = 5(vy +‘ vx/?l

Xy ; x; =9v”t + §axt2
Uyt = Uyt 2a,(xp — X))

Velocity as a function of time

Displacement as a function of velocity and time
Displacement as a function of time

Velocity as a function of displacement

Note: Motion is along the x axis.

tion. Keep in mind that these relationships were derived from the definitions of
velocity and acceleration, together with some simple algebraic manipulations and

the requirement that the acceleration be constant.

The four kinematic equations used most often are listed in Table 2.2 for con-
venience. The choice of which equation you use in a given situation depends on
what you know beforehand. Sometimes it is necessary to use two of these equations
to solve for two unknowns. For example, suppose initial velocity v,; and accelera-
tion a, are given. You can then find (1) the velocity after an interval ¢ has elapsed,
using v,; = vy; + a,t, and (2) the displacement after an interval ¢ has elapsed, us-
ing xp— x; = vyt + %a,tz. You should recognize that the quantities that vary dur-

ing the motion are velocity, displacement, and time.

You will get a great deal of practice in the use of these equations by solving a
number of exercises and problems. Many times you will discover that more than
one method can be used to obtain a solution. Remember that these equations of
kinematics cannot be used in a situation in which the acceleration varies with time.

They can be used only when the acceleration is constant.

CONCEPTUAL EXAMPLE 2.5

Consider the following one-dimensional motions: (a) A ball
thrown directly upward rises to a highest point and falls back
into the thrower’s hand. (b) A race car starts from rest and
speeds up to 100 m/s. (c) A spacecraft drifts through space at
constant velocity. Are there any points in the motion of these
objects at which the instantaneous velocity is the same as the
average velocity over the entire motion? If so, identify the
point(s).

Solution (a) The average velocity for the thrown ball is
zero because the ball returns to the starting point; thus its
displacement is zero. (Remember that average velocity is de-

The Velocity of Different Objects

fined as Ax/At.) There is one point at which the instanta-
neous velocity is zero—at the top of the motion.

(b) The car’s average velocity cannot be evaluated unambigu-
ously with the information given, but it must be some value
between 0 and 100 m/s. Because the car will have every in-
stantaneous velocity between 0 and 100 m/s at some time
during the interval, there must be some instant at which the
instantaneous velocity is equal to the average velocity.

(c) Because the spacecraft’s instantaneous velocity is con-
stant, its instantaneous velocity at any time and its average ve-
locity over any time interval are the same.

EXAMPLE 2.6  Entering the Traffic Flow

(a) Estimate your average acceleration as you drive up the en-

trance ramp to an interstate highway.

Solution This problem involves more than our usual
amount of estimating! We are trying to come up with a value

of ay, but that value is hard to guess directly. The other three
variables involved in kinematics are position, velocity, and
time. Velocity is probably the easiest one to approximate. Let
us assume a final velocity of 100 km/h, so that you can merge
with traffic. We multiply this value by 1 000 to convert kilome-

ters to meters and then divide by 3 600 to convert hours to
seconds. These two calculations together are roughly equiva-
lent to dividing by 3. In fact, let us just say that the final veloc-
ity is vy~ 30 m/s. (Remember, you can get away with this
type of approximation and with dropping digits when per-
forming mental calculations. If you were starting with British
units, you could approximate 1 mi/h as roughly
0.5 m/s and continue from there.)

Now we assume that you started up the ramp at about one-
third your final velocity, so that v,; = 10 m/s. Finally, we as-
sume that it takes about 10 s to get from v,; to vy, basing this
guess on our previous experience in automobiles. We can
then find the acceleration, using Equation 2.8:

Uy~ Uy 30m/s — 10m/s

= = = 9 2
a, ; 105 2m/s

Granted, we made many approximations along the way, but
this type of mental effort can be surprisingly useful and often
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yields results that are not too different from those derived
from careful measurements.

(b) How far did you go during the first half of the time in-
terval during which you accelerated?

Solution We can calculate the distance traveled during
the first 5 s from Equation 2.11:

xp— ;= vt + 30,0 = (10m/s) (55) + 5(2m/s?) (55)?

=50m+ 25m= 75m

This result indicates that if you had not accelerated, your ini-
tial velocity of 10 m/s would have resulted in a 50-m move-
ment up the ramp during the first 5 s. The additional 25 m is
the result of your increasing velocity during that interval.

Do not be afraid to attempt making educated guesses and
doing some fairly drastic number rounding to simplify mental
calculations. Physicists engage in this type of thought analysis
all the time.

EXAMPLE 2.7

A jet lands on an aircraft carrier at 140 mi/h (=63 m/s).
(a) What is its acceleration if it stops in 2.0 s?

Carrier Landing

Solution We define our x axis as the direction of motion
of the jet. A careful reading of the problem reveals that in ad-
dition to being given the initial speed of 63 m/s, we also
know that the final speed is zero. We also note that we are
not given the displacement of the jet while it is slowing
down. Equation 2.8 is the only equation in Table 2.2 that does
not involve displacement, and so we use it to find the accelera-
tion:

Uef T Vi 0—63m/s
t 20s

a, =

= —31m/s?

(b) What is the displacement of the plane while it is stop-
ping?

Solution We can now use any of the other three equations
in Table 2.2 to solve for the displacement. Let us choose
Equation 2.10:

xp— ;= g(vy + v )t = 563 m/s + 0)(2.05) = 63m

If the plane travels much farther than this, it might fall into
the ocean. Although the idea of using arresting cables to en-
able planes to land safely on ships originated at about the
time of the First World War, the cables are still a vital part of
the operation of modern aircraft carriers.

EXAMPLE 2.8 ~ Watch Out for the Speed Limit!

A car traveling at a constant speed of 45.0 m/s passes a
trooper hidden behind a billboard. One second after the
speeding car passes the billboard, the trooper sets out
from the billboard to catch it, accelerating at a constant
rate of 3.00 m/s?. How long does it take her to overtake the
car?

Solution A careful reading lets us categorize this as a con-
stant-acceleration problem. We know that after the 1-s delay
in starting, it will take the trooper 15 additional seconds to
accelerate up to 45.0 m/s. Of course, she then has to con-
tinue to pick up speed (at a rate of 3.00 m/s per second) to

catch up to the car. While all this is going on, the car contin-
ues to move. We should therefore expect our result to be well
over 15s. A sketch (Fig. 2.12) helps clarify the sequence of
events.

First, we write expressions for the position of each vehicle
as a function of time. It is convenient to choose the position
of the billboard as the origin and to set tg = 0 as the time the
trooper begins moving. At that instant, the car has already
traveled a distance of 45.0 m because it has traveled at a con-
stant speed of v, = 45.0 m/s for 1 s. Thus, the initial position
of the speeding car is xg = 45.0 m.

Because the car moves with constant speed, its accelera-
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Uy ear = 45.0 m /s

Xtrooper

Figure 2,12 A speeding car passes a hidden police officer.
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The trooper starts from rest at ¢ = 0 and accelerates at

time interval ¢ can be found from Equation 2.11:

xp=x;t vt t+ éa,ct2

Qg car=0 . 3.00 m/s? away from the origin. Hence, her position after any
Gy wooper = 3.00 m/5?
ty=—1.00s =0 o=?
® ©

=0+ 0l + Ja® = 5(3.00 m/s%)

The trooper overtakes the car at the instant her position
matches that of the car, which is position ©:

i — i .. m Xtrooper = Xcar
i i i 1 9\ /9
i o o e 3(3.00m/s%) (= = 45.0 m + (45.0 m/s)¢
ﬁﬁ_ This gives the quadratic equation

1.50¢% — 45.0t — 45.0 = 0

The positive solution of this equationis t = 31.0s

tion is zero, and applying Equation 2.11 (with a, = 0) gives
for the car’s position at any time #:

Xear = X8 T Ugeqrl = 45.0 m + (45.0 m/s)¢

A quick check shows that at ¢ = 0, this expression gives the
car’s correct initial position when the trooper begins to
move: X, = xg = 45.0 m. Looking at limiting cases to see
whether they yield expected values is a very useful way to
make sure that you are obtaining reasonable results.

(For help in solving quadratic equations, see Appendix B.2.)
Note that in this 31.0-s time interval, the trooper tra-
vels a distance of about 1440 m. [This distance can be calcu-
lated from the car’s constant speed: (45.0 m/s)(31 + 1) s =
1440 m.]

Exercise This problem can be solved graphically. On the
same graph, plot position versus time for each vehicle, and
from the intersection of the two curves determine the time at
which the trooper overtakes the car.

2.6_~ FREELY FALLING OBJECTS

It is now well known that, in the absence of air resistance, all objects dropped
near the Earth’s surface fall toward the Earth with the same constant acceleration
under the influence of the Earth’s gravity. It was not until about 1600 that this
conclusion was accepted. Before that time, the teachings of the great philos-
opher Aristotle (384-322 B.C.) had held that heavier objects fall faster than lighter
ones.

It was the Italian Galileo Galilei (1564-1642) who originated our present-
day ideas concerning falling objects. There is a legend that he demonstrated the
law of falling objects by observing that two different weights dropped simultane-
ously from the Leaning Tower of Pisa hit the ground at approximately the same
time. Although there is some doubt that he carried out this particular experi-
ment, it is well established that Galileo performed many experiments on objects
moving on inclined planes. In his experiments he rolled balls down a slight in-
cline and measured the distances they covered in successive time intervals. The
purpose of the incline was to reduce the acceleration; with the acceleration re-
duced, Galileo was able to make accurate measurements of the time intervals. By
gradually increasing the slope of the incline, he was finally able to draw conclu-
sions about freely falling objects because a freely falling ball is equivalent to a
ball moving down a vertical incline.

Astronaut David Scott released a

hammer and a feather simultane-
ously, and they fell in unison to the
lunar surface. (Courtesy of NASA)
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QuickLab -

Use a pencil to poke a hole in the
bottom of a paper or polystyrene cup.
Cover the hole with your finger and
fill the cup with water. Hold the cup
up in front of you and release it. Does
water come out of the hole while the
cup is falling? Why or why not?

Definition of free fall

Free-fall acceleration
g=9.80m/s?
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You might want to try the following experiment. Simultaneously drop a coin
and a crumpled-up piece of paper from the same height. If the effects of air resis-
tance are negligible, both will have the same motion and will hit the floor at the
same time. In the idealized case, in which air resistance is absent, such motion is
referred to as free fall. If this same experiment could be conducted in a vacuum, in
which air resistance is truly negligible, the paper and coin would fall with the same
acceleration even when the paper is not crumpled. On August 2, 1971, such a
demonstration was conducted on the Moon by astronaut David Scott. He simulta-
neously released a hammer and a feather, and in unison they fell to the lunar sur-
face. This demonstration surely would have pleased Galileo!

When we use the expression freely falling object, we do not necessarily refer to
an object dropped from rest. A freely falling object is any object moving
freely under the influence of gravity alone, regardless of its initial motion.
Objects thrown upward or downward and those released from rest are all
falling freely once they are released. Any freely falling object experiences
an acceleration directed downward, regardless of its initial motion.

We shall denote the magnitude of the fiee-fall acceleration by the symbol g. The
value of gnear the Earth’s surface decreases with increasing altitude. Furthermore,
slight variations in g occur with changes in latitude. It is common to define “up” as
the + y direction and to use y as the position variable in the kinematic equations.
At the Earth’s surface, the value of g is approximately 9.80 m/s% Unless stated
otherwise, we shall use this value for g when performing calculations. For making
quick estimates, use g = 10 m/s%

If we neglect air resistance and assume that the free-fall acceleration does not
vary with altitude over short vertical distances, then the motion of a freely falling
object moving vertically is equivalent to motion in one dimension under constant
acceleration. Therefore, the equations developed in Section 2.5 for objects moving
with constant acceleration can be applied. The only modification that we need to
make in these equations for freely falling objects is to note that the motion is in
the vertical direction (the y direction) rather than in the horizontal (x) direction
and that the acceleration is downward and has a magnitude of 9.80 m/s2. Thus, we
always take ay,= —g=—-9.80 m/s%, where the minus sign means that the accelera-
tion of a freely falling object is downward. In Chapter 14 we shall study how to deal
with variations in g with altitude.

CONCEPTUAL EXAMPLE 2.9

A sky diver jumps out of a hovering helicopter. A few seconds
later, another sky diver jumps out, and they both fall along
the same vertical line. Ignore air resistance, so that both sky
divers fall with the same acceleration. Does the difference in
their speeds stay the same throughout the fall? Does the verti-
cal distance between them stay the same throughout the fall?
If the two divers were connected by a long bungee cord,
would the tension in the cord increase, lessen, or stay the
same during the fall?

Solution At any given instant, the speeds of the divers are
different because one had a head start. In any time interval

The Daring Sky Divers

At after this instant, however, the two divers increase their
speeds by the same amount because they have the same accel-
eration. Thus, the difference in their speeds remains the
same throughout the fall.

The first jumper always has a greater speed than the sec-
ond. Thus, in a given time interval, the first diver covers a
greater distance than the second. Thus, the separation dis-
tance between them increases.

Once the distance between the divers reaches the length
of the bungee cord, the tension in the cord begins to in-
crease. As the tension increases, the distance between the
divers becomes greater and greater.




EXAMPLE 2.10

A ball is tossed straight up at 25 m/s. Estimate its velocity at
1-s intervals.

Solution Let us choose the upward direction to be posi-
tive. Regardless of whether the ball is moving upward or
downward, its vertical velocity changes by approximately
—10 m/s for every second it remains in the air. It starts out at
25 m/s. After 1 s has elapsed, it is still moving upward but at
15 m/s because its acceleration is downward (downward ac-
celeration causes its velocity to decrease). After another sec-
ond, its upward velocity has dropped to 5 m/s. Now comes
the tricky part—after another half second, its velocity is zero.
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Describing the Motion of a Tossed Ball

The ball has gone as high as it will go. After the last half of
this 1-s interval, the ball is moving at —5 m/s. (The minus
sign tells us that the ball is now moving in the negative direc-
tion, that is, downward. Its velocity has changed from +5 m/s
to —5 m/s during that 1-s interval. The change in velocity is
still =5 — [+5] = =10 m/s in that second.) It continues
downward, and after another 1 s has elapsed, it is falling at a
velocity of —15 m/s. Finally, after another 1 s, it has reached
its original starting point and is moving downward at
—25 m/s. If the ball had been tossed vertically off a cliff so
that it could continue downward, its velocity would continue
to change by about —10 m/s every second.

CONCEPTUAL EXAMPLE 2.11

A tennis ball is dropped from shoulder height (about 1.5 m)
and bounces three times before it is caught. Sketch graphs of
its position, velocity, and acceleration as functions of time,
with the + y direction defined as upward.

Solution For our sketch let us stretch things out horizon-
tally so that we can see what is going on. (Even if the ball
were moving horizontally, this motion would not affect its ver-
tical motion.)

From Figure 2.13 we see that the ball is in contact with the
floor at points ®, ®, and ®. Because the velocity of the ball
changes from negative to positive three times during these
bounces, the slope of the position—time graph must change
in the same way. Note that the time interval between bounces
decreases. Why is that?

During the rest of the ball’s motion, the slope of the
velocity—time graph should be —9.80 m/s?. The accelera-
tion—time graph is a horizontal line at these times because
the acceleration does not change when the ball is in free fall.
When the ball is in contact with the floor, the velocity
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Figure 2.13 (a) A ball is dropped from a height of 1.5 m and
bounces from the floor. (The horizontal motion is not considered
here because it does not affect the vertical motion.) (b) Graphs of
position, velocity, and acceleration versus time.

Follow the Bouncing Ball

changes substantially during a very short time interval, and so
the acceleration must be quite great. This corresponds to the
very steep upward lines on the velocity—time graph and to
the spikes on the acceleration—time graph.
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Which values represent the ball’s velocity and acceleration at points ®, ©, and ® in Figure

2.13?

(a) vy=0,ay=0

(b) v, = 0, a, = 9.80 m/s?
(c) v, =0,a,=—9.80m/s?
(d) v = —9.80 m/s, ay, = 0

EXAMPLE 2.12 Not a Bad Throw for a Rookie!

A stone thrown from the top of a building is given an initial
velocity of 20.0 m/s straight upward. The building is 50.0 m
high, and the stone just misses the edge of the roof on its way
down, as shown in Figure 2.14. Using t4 = 0 as the time the
stone leaves the thrower’s hand at position ®, determine
(a) the time at which the stone reaches its maximum height,
(b) the maximum height, (c) the time at which the stone re-
turns to the height from which it was thrown, (d) the velocity
of the stone at this instant, and (e) the velocity and position
of the stone at £ = 5.00 s.

Solution (a) As the stone travels from @ to ®, its velocity
must change by 20 m/s because it stops at ®. Because gravity
causes vertical velocities to change by about 10 m/s for every
second of free fall, it should take the stone about 2's to go
from @ to ® in our drawing. (In a problem like this, a sketch
definitely helps you organize your thoughts.) To calculate the
time tg at which the stone reaches maximum height, we use
Equation 2.8, U8 = Uya + ayl, noting that vyp = 0 and setting
the start of our clock readings at 4 = 0:

20.0 m/s + (—9.80 m/s?) ¢t =0

20.0 m/s
(= tg=—° 904
8= ggomys | 204

Our estimate was pretty close.

(b) Because the average velocity for this first interval is
10 m/s (the average of 20 m/s and 0 m/s) and because it
travels for about 2 s, we expect the stone to travel about 20 m.
By substituting our time interval into Equation 2.11, we can
find the maximum height as measured from the position of
the thrower, where we set y; = ya = 0:

= 19
Ymax = VB = Uya L+ gayl

g = (20.0 m/s)(2.04s) + %(—9.80 m/s?) (2.04s)?

=

= 204m

Our free-fall estimates are very accurate.

(c) There is no reason to believe that the stone’s motion
from ® to © is anything other than the reverse of its motion
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tg=2.04s
yp=20.4m
v5=0
1 =4.08
=0 © ° 0 s
Yo
=0

v, =-20.0 m/s

Jp=—225s

500 U5 =-29.0 m/s

t£=5.83s
ye=-50.0m
® ve= -37.1m/s

Figure 2.14 Position and velocity versus time for a freely falling
stone thrown initially upward with a velocity v,; = 20.0 m/s.
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from ® to ®. Thus, the time needed for it to go from @ to
© should be twice the time needed for it to go from ® to ®.
When the stone is back at the height from which it was
thrown (position ©), the y coordinate is again zero. Using
Equation 2.11, with y,= y¢c = Oand y; = yp = 0, we obtain
Yo = YA = vy L+ gayl?
0 = 20.0¢ — 4.90¢2

This is a quadratic equation and so has two solutions for
t = tc. The equation can be factored to give

#(20.0 — 4.907) = 0
One solution is ¢ = 0, corresponding to the time the stone
starts its motion. The other solution is ¢ = 4.08s, which is

the solution we are after. Notice that it is double the value we
calculated for #g.

(d) Again, we expect everything at © to be the same as it
is at @, except that the velocity is now in the opposite direc-
tion. The value for ¢ found in (c) can be inserted into Equa-
tion 2.8 to give

vye = vya + ayt = 20.0m/s + (—9.80 m/s%) (4.08 s)

= —20.0m/s

The velocity of the stone when it arrives back at its original
height is equal in magnitude to its initial velocity but oppo-
site in direction. This indicates that the motion is symmetric.

(e) For this part we consider what happens as the stone
falls from position ®, where it had zero vertical velocity, to

position ®. Because the elapsed time for this part of the
motion is about 3 s, we estimate that the acceleration due
to gravity will have changed the speed by about 30 m/s.
We can calculate this from Equation 2.8, where we take
L= 1lp— tg:

vyp = vyg + ayt = 0m/s + (-9.80 m/s?)(5.00 s — 2.04's)

= —29.0m/s

We could just as easily have made our calculation between
positions ® and © by making sure we use the correct time in-
terval, t = tp — tp = 5.00s:

vyp = vya + ayt = 20.0m/s + (—9.80 m/s?)(5.00 s)
= —29.0m/s

To demonstrate the power of our kinematic equations, we
can use Equation 2.11 to find the position of the stone at
tp = 5.00 s by considering the change in position between a
different pair of positions, © and ©. In this case, the time is
ip — lg:

1
Yo = yo t vycl + ga,l?
=0m + (—20.0m/s)(5.00 s — 4.08 s)
+ 5(—9.80 m/s2) (5.00 s — 4.08 )2

—225m

Exercise Find (a) the velocity of the stone just before it hits
the ground at ® and (b) the total time the stone is in the air.

Answer (a) —37.1m/s (b)5.83s

Optional Section

2.7 _~ KINEMATIC EQUATIONS DERIVED FROM CALCULUS

This is an optional section that assumes the reader is familiar with the techniques
of integral calculus. If you have not yet studied integration in your calculus course,
you should skip this section or cover it after you become familiar with integration.

The velocity of a particle moving in a straight line can be obtained if its position
as a function of time is known. Mathematically, the velocity equals the derivative of
the position coordinate with respect to time. It is also possible to find the displace-
ment of a particle if its velocity is known as a function of time. In calculus, the proce-
dure used to perform this task is referred to either as integration or as finding the
antiderivative. Graphically, it is equivalent to finding the area under a curve.

Suppose the v,-f graph for a particle moving along the x axis is as shown in
Figure 2.15. Let us divide the time interval ¢; — ¢; into many small intervals, each of
duration At,. From the definition of average velocity we see that the displacement
during any small interval, such as the one shaded in Figure 2.15, is given by
Ax, = v,, At,, where 7, is the average velocity in that interval. Therefore, the dis-
placement during this small interval is simply the area of the shaded rectangle.

Definite integral
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Area=7,,At,

Uxn

i Ny i
At

bn

Figure 2.15 Velocity versus time for a particle moving along the x axis. The area of the shaded
rectangle is equal to the displacement Ax in the time interval At,, while the total area under the
curve is the total displacement of the particle.

The total displacement for the interval {; — ¢; is the sum of the areas of all the rec-
tangles:

Ax =Y, 7, At,

where the symbol 3 (upper case Greek sigma) signifies a sum over all terms. In
this case, the sum is taken over all the rectangles from ¢; to #r. Now, as the intervals
are made smaller and smaller, the number of terms in the sum increases and the
sum approaches a value equal to the area under the velocity—time graph. There-
fore, in the limit n — %, or At, — 0, the displacement is

Ax= lim Y, v, As, (2.13)
A0

or
Displacement = area under the v,-t graph

Note that we have replaced the average velocity 7, with the instantaneous velocity
Uy, in the sum. As you can see from Figure 2.15, this approximation is clearly valid
in the limit of very small intervals. We conclude that if we know the v,-¢ graph for
motion along a straight line, we can obtain the displacement during any time in-
terval by measuring the area under the curve corresponding to that time interval.

The limit of the sum shown in Equation 2.13 is called a definite integral and
is written

i
Altl,,lllﬂsn’ v AL, = J; v (1) dt (2.14)
where v,(t) denotes the velocity at any time f If the explicit functional form of
v,(¢) is known and the limits are given, then the integral can be evaluated.
Sometimes the v,-¢ graph for a moving particle has a shape much simpler than
that shown in Figure 2.15. For example, suppose a particle moves at a constant ve-
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x Uy = Vy; = constant Figure 2.16 The velocity—time curve
for a particle moving with constant veloc-

AL ity v,;. The displacement of the particle
o during the time interval ¢, — ¢; is equal to

the area of the shaded rectangle.
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locity v,;. In this case, the v,-f graph is a horizontal line, as shown in Figure 2.16,
and its displacement during the time interval At is simply the area of the shaded
rectangle:

Ax = v,At (when v, = v,; = constant)

As another example, consider a particle moving with a velocity that is propor-
tional to ¢, as shown in Figure 2.17. Taking v, = a,f, where a, is the constant of pro-
portionality (the acceleration), we find that the displacement of the particle dur-
ing the time interval { = 0 to ¢ = 1, is equal to the area of the shaded triangle in
Figure 2.17:

1 1
Ax = 5(1p) (a,da) = gaxia?

Kinematic Equations

We now use the defining equations for acceleration and velocity to derive two of
our kinematic equations, Equations 2.8 and 2.11.
The defining equation for acceleration (Eq. 2.6),

dt

may be written as dv, = a,dt or, in terms of an integral (or antiderivative), as

vx=faxdl+ G,

i
I
|
_ |
U= ad I
I
[N

|
|
|
I

} Figure 2.17 The velocity—time curve for a

particle moving with a velocity that is propor-

Ia ! tional to the time.
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where C; is a constant of integration. For the special case in which the acceleration
is constant, the a, can be removed from the integral to give

v, = d"f dt+ Cy = aut + C (2.15)
The value of C; depends on the initial conditions of the motion. If we take v, = v,;
when ¢ = 0 and substitute these values into the last equation, we have
vy = a(0) + G
G = vy

Calling v, = v, the velocity after the time interval ¢ has passed and substituting
this and the value just found for C; into Equation 2.15, we obtain kinematic Equa-
tion 2.8:

Uy = Uyt ayd (for constant a,)
Now let us consider the defining equation for velocity (Eq. 2.4):

dr
dt

v, =
We can write this as dx = v,dt or in integral form as

xZJ’vxler Co

where Cy is another constant of integration. Because v, = v,y = vy; + a,, this ex-
pression becomes

x = J' (v + at)ydt + Cy

x:jvxidt+ a,jtdt+ Cy

X = vt + %axtz + Co
To find Cy, we make use of the initial condition that x = x; when ¢ = 0. This gives
Cy = x;. Therefore, after substituting xfor x, we have
xp= X+ vl + %axﬂ (for constant a,)

Once we move x; to the left side of the equation, we have kinematic Equation 2.11.
Recall that x; — x; is equal to the displacement of the object, where w; is its initial
position.



Besides what you might expect to learn about physics concepts, a very valuable skill
you should hope to take away from your physics course is the ability to solve compli-
cated problems. The way physicists approach complex situations and break them
down into manageable pieces is extremely useful. We have developed a memory aid to
help you easily recall the steps required for successful problem solving. When working

on problems, the secret is to keep your GOAL in mind!

GOAL PROBLEM~-SOLVING STEPS

Gather information

The first thing to do when approaching a problem is to understand the situation.
Carefully read the problem statement, looking for key phrases like “at rest” or
“freely falls.” What information is given? Exactly what is the question asking? Don’t
forget to gather information from your own experiences and common sense. What
should a reasonable answer look like? You wouldn’t expect to calculate the speed
of an automobile to be 5 X 10°m/s. Do you know what units to expect? Are there
any limiting cases you can consider? What happens when an angle approaches 0°
or 90° or when a mass becomes huge or goes to zero? Also make sure you carefully
study any drawings that accompany the problem.

Organizeyour approach

Once you have a really good idea of what the problem is about, you need to think
about what to do next. Have you seen this type of question before? Being able to
classify a problem can make it much easier to lay out a plan to solve it. You should
almost always make a quick drawing of the situation. Label important events with
circled letters. Indicate any known values, perhaps in a table or directly on your
sketch.

Anal_yze the problem

Because you have already categorized the problem, it should not be too difficult to
select relevant equations that apply to this type of situation. Use algebra (and cal-
culus, if necessary) to solve for the unknown variable in terms of what is given.
Substitute in the appropriate numbers, calculate the result, and round it to the
proper number of significant figures.

Learn from your efforts

This is the most important part. Examine your numerical answer. Does it meet
your expectations from the first step? What about the algebraic form of the re-
sult—before you plugged in numbers? Does it make sense? (Try looking at the
variables in it to see whether the answer would change in a physically meaningful
way if they were drastically increased or decreased or even became zero.) Think
about how this problem compares with others you have done. How was it similar?
In what critical ways did it differ? Why was this problem assigned? You should have
learned something by doing it. Can you figure out what?

When solving complex problems, you may need to identify a series of subprob-
lems and apply the GOAL process to each. For very simple problems, you probably
don’t need GOAL at all. But when you are looking at a problem and you don’t
know what to do next, remember what the letters in GOAL stand for and use that
as a guide.

47

48

CHAPTER 2 Motion in One Dimension

SUMMARY

After a particle moves along the x axis from some initial position x; to some final
position x;, its displacement is
Ax= ;= x; (2.1)

The average velocity of a particle during some time interval is the displace-
ment Ax divided by the time interval Az during which that displacement occurred:

_ _ Ax

Uy = E (22)

The average speed of a particle is equal to the ratio of the total distance it
travels to the total time it takes to travel that distance.

The instantaneous velocity of a particle is defined as the limit of the ratio
Ax/Atas Atapproaches zero. By definition, this limit equals the derivative of x with
respect to ¢, or the time rate of change of the position:
Ax dx

= — = 2.4
U= A0 A dt 24
The instantaneous speed of a particle is equal to the magnitude of its velocity.
The average acceleration of a particle is defined as the ratio of the change in
its velocity Av, divided by the time interval A¢ during which that change occurred:
Av, Usf — Uni

a,= == 2.5
Y’ =t 2:5)

The instantaneous acceleration is equal to the limit of the ratio Av,/At as
At approaches 0. By definition, this limit equals the derivative of v, with respect to
t, or the time rate of change of the velocity:
Av, dv,

=i = 2.6
= A% A dt 2.6

a

The equations of kinematics for a particle moving along the x axis with uni-
form acceleration a, (constant in magnitude and direction) are

Uy = v+ oayt (2.8)
Xy % = U= (v + vt (2.10)
Xp— X = vl + %a,f (2.11)

-uxfz =92+ 2a,(x; = x;) (2.12)

You should be able to use these equations and the definitions in this chapter to an-
alyze the motion of any object moving with constant acceleration.

An object falling freely in the presence of the Earth’s gravity experiences a
free-fall acceleration directed toward the center of the Earth. If air resistance is ne-
glected, if the motion occurs near the surface of the Earth, and if the range of the
motion is small compared with the Earth’s radius, then the free-fall acceleration g
is constant over the range of motion, where gis equal to 9.80 m/s2.

Complicated problems are best approached in an organized manner. You
should be able to recall and apply the steps of the GOAL strategy when you need
them.



QUESTIONS

1.

Average velocity and instantaneous velocity are generally
different quantities. Can they ever be equal for a specific

type of motion? Explain.

2. If the average velocity is nonzero for some time interval,
does this mean that the instantaneous velocity is never
zero during this interval? Explain.

3. If the average velocity equals zero for some time interval Az

and if v,(4) is a continuous function, show that the instan-

taneous velocity must go to zero at some time in this inter-
val. (A sketch of x versus ¢ might be useful in your proof.)

Is it possible to have a situation in which the velocity and

acceleration have opposite signs? If so, sketch a

velocity—time graph to prove your point.

5. If the velocity of a particle is nonzero, can its acceleration
be zero? Explain.

6. If the velocity of a particle is zero, can its acceleration be
nonzero? Explain.

7. Can an object having constant acceleration ever stop and
stay stopped?

8. Astone is thrown vertically upward from the top of a build-
ing. Does the stone’s displacement depend on the location
of the origin of the coordinate system? Does the stone’s ve-
locity depend on the origin? (Assume that the coordinate
system is stationary with respect to the building.) Explain.

A student at the top of a building of height % throws one
ball upward with an initial speed vy, and then throws a
second ball downward with the same initial speed. How
do the final speeds of the balls compare when they reach
the ground?

10. Can the magnitude of the instantaneous velocity of an ob-
ject ever be greater than the magnitude of its average ve-
locity? Can it ever be less?

f the average velocity of an object is zero in some time in-
terval, what can you say about the displacement of the ob-
ject for that interval?

12. A rapidly growing plant doubles in height each week. At
the end of the 25th day, the plant reaches the height of a
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Figure 02.16
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16.
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building. At what time was the plant one-fourth the

height of the building?

Two cars are moving in the same direction in parallel lanes
along a highway. At some instant, the velocity of car A ex-
ceeds the velocity of car B. Does this mean that the acceler-
ation of car A is greater than that of car B? Explain.

An apple is dropped from some height above the Earth’s
surface. Neglecting air resistance, how much does the ap-
ple’s speed increase each second during its descent?
Consider the following combinations of signs and values
for velocity and acceleration of a particle with respect to a
one-dimensional x axis:

Velocity Acceleration
a. Positive Positive

b. Positive Negative

c. Positive Zero

d. Negative Positive

c. Negative Negative

f. Negative Zero

g. Zero Positive

h. Zero Negative

Describe what the particle is doing in each case, and
give a real-life example for an automobile on an east-west
one-dimensional axis, with east considered to be the posi-
tive direction.

A pebble is dropped into a water well, and the splash is
heard 16 s later, as illustrated in Figure Q2.16. Estimate the
distance from the rim of the well to the water’s surface.

. Average velocity is an entirely contrived quantity, and

other combinations of data may prove useful in other
contexts. For example, the ratio At/Ax, called the “slow-
ness” of a moving object, is used by geophysicists when
discussing the motion of continental plates. Explain what
this quantity means.

By John Hart
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PROBLEMS

1, 2, 3 = straightforward, intermediate, challenging D = full solution available in the Student Solutions Manual and Study Guide

WeB = solution posted at http://www.saunderscollege.com/physics/ E = Computer useful in solving problem \"3‘ = Interactive Physics

l:l = paired numerical/symbolic problems

Section 2.1 Displacement, Velocity, and Speed

1. The position of a pinewood derby car was observed at
various times; the results are summarized in the table
below. Find the average velocity of the car for (a) the
first second, (b) the last 3 s, and (c) the entire period
of observation.

6. A person first walks at a constant speed v along a
straight line from A to Band then back along the line
from Bto A at a constant speed vy. What are (a) her av-
erage speed over the entire trip and (b) her average ve-
locity over the entire trip?

tion 2.2 | Velocity and Speed
j‘ (m) 8 ?3 gg 22; 3?3 "?3 7. Att=1.00s, a particle moving with constant velocity is
) : . o . o located at x = —3.00 m, and at ¢ = 6.00 s the particle is

2. A motorist drives north for 35.0 min at 85.0 km/h and
then stops for 15.0 min. He then continues north, trav-
eling 130 km in 2.00 h. (a) What is his total displace-
ment? (b) What is his average velocity?

The displacement versus time for a certain particle mov-
ing along the x axis is shown in Figure P2.3. Find the av-
erage velocity in the time intervals (a) 0 to 2's, (b) 0 to
4s,(c)2sto4s,(d)4sto7s,(e) 0to8s.

x(m)

-
T

=
>

o

Figure P2.3 Problems 3 and 11.

4. A particle moves according to the equation x = 10¢2,
where x is in meters and ¢is in seconds. (a) Find the av-
erage velocity for the time interval from 2.0 s to 3.0 s.
(b) Find the average velocity for the time interval from
20sto2.1s.

A person walks first at a constant speed of 5.00 m/s
along a straight line from point A to point Band then
back along the line from B to A at a constant speed of
3.00 m/s. What are (a) her average speed over the entire
trip and (b) her average velocity over the entire trip?

located at x = 5.00 m. (a) From this information, plot
the position as a function of time. (b) Determine the
velocity of the particle from the slope of this graph.
8. The position of a particle moving along the x axis varies
in time according to the expression x = 3¢2 where xis
in meters and ¢is in seconds. Evaluate its position (a) at
t=3.00sand (b) at 3.00 s + At. (c) Evaluate the limit
of Ax/Atas Atapproaches zero to find the velocity at
t=3.00s.
A position—time graph for a particle moving along the
x axis is shown in Figure P2.9. (a) Find the average
velocity in the time interval t = 1.5sto ¢t = 4.0s.
(b) Determine the instantaneous velocity at t = 2.0 s by
measuring the slope of the tangent line shown in the
graph. (c) At what value of tis the velocity zero?

x(m)
12
10

8

Us)

Figure P2.9

10. (a) Use the data in Problem 1 to construct a smooth
graph of position versus time. (b) By constructing tan-
gents to the x(¢) curve, find the instantaneous velocity
of the car at several instants. (c) Plot the instantaneous
velocity versus time and, from this, determine the aver-
age acceleration of the car. (d) What was the initial ve-
locity of the car?



11. Find the instantaneous velocity of the particle described

in Figure P2.3 at the following times: (a) t = 1.0's,
(b) t=3.0s,(c) t=45s,and (d) t = 7.5s.

Section 2.3 Acceleration
12. A particle is moving with a velocity of 60.0 m/s in the

positive x direction at ¢ = 0. Between ¢ = 0 and ¢ =
15.0 s, the velocity decreases uniformly to zero. What
was the acceleration during this 15.0-s interval? What is
the significance of the sign of your answer?

13. A 50.0-g superball traveling at 25.0 m/s bounces off a

brick wall and rebounds at 22.0 m/s. A high-speed cam-
era records this event. If the ball is in contact with the
wall for 3.50 ms, what is the magnitude of the average
acceleration of the ball during this time interval? (Note:
1ms=10"3s)

14. A particle starts from rest and accelerates as shown in

Figure P2.14. Determine: (a) the particle’s speed at
t=10sand at t = 20 s, and (b) the distance traveled in
the first 20 s.

ay(m/s?)

2.0

t(s)

T T
5.0 10.0 15.0 20.0

.

Figure P2.14

15. A velocity—time graph for an object moving along the x

axis is shown in Figure P2.15. (a) Plot a graph of the ac-
celeration versus time. (b) Determine the average accel-
eration of the object in the time intervals ¢ = 5.00 s to
t=150sand t=0to ¢t =20.0s.

16. A student drives a moped along a straight road as de-

scribed by the velocity—time graph in Figure P2.16.
Sketch this graph in the middle of a sheet of graph pa-
per. (a) Directly above your graph, sketch a graph of
the position versus time, aligning the time coordinates
of the two graphs. (b) Sketch a graph of the accelera-
tion versus time directly below the v,-¢ graph, again
aligning the time coordinates. On each graph, show the
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Figure P2.16

numerical values of xand a, for all points of inflection.
(c) What is the acceleration at ¢t = 6 s? (d) Find the po-
sition (relative to the starting point) at ¢ = 6 s. (e) What
is the moped’s final position at ¢ = 9 s?

wes A particle moves along the x axis according to the equa-

18.

19.

tion x = 2.00 + 3.00¢ — ¢2, where xis in meters and ¢ is
in seconds. At £ = 3.00 s, find (a) the position of the
particle, (b) its velocity, and (c) its acceleration.

An object moves along the x axis according to the equa-
tion x = (3.00¢2 — 2.00¢ + 3.00) m. Determine

(a) the average speed between ¢ = 2.00 sand ¢t = 3.00 s,
(b) the instantaneous speed at ¢t = 2.00 s and at { =
3.00 s, (c) the average acceleration between ¢ = 2.00 s
and ¢t = 3.00 s, and (d) the instantaneous acceleration
att=2.00sand ¢ = 3.00s.

Figure P2.19 shows a graph of v, versus 7 for the motion
of a motorcyclist as he starts from rest and moves along
the road in a straight line. (a) Find the average acceler-
ation for the time interval ¢ = 0 to ¢t = 6.00 s. (b) Esti-
mate the time at which the acceleration has its greatest
positive value and the value of the acceleration at that
instant. (c) When is the acceleration zero? (d) Estimate
the maximum negative value of the acceleration and
the time at which it occurs.
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Section 2.4 Motion Diagrams

20.

Draw motion diagrams for (a) an object moving to the
right at constant speed, (b) an object moving to the
right and speeding up at a constant rate, (c) an object
moving to the right and slowing down at a constant
rate, (d) an object moving to the left and speeding up
ata constant rate, and (e) an object moving to the left
and slowing down at a constant rate. (f) How would
your drawings change if the changes in speed were not
uniform; that is, if the speed were not changing at a
constant rate?

Section 2.5 One-Dimensional Motion with

Constant Acceleration

21. Jules Verne in 1865 proposed sending people to the

22.

23.

24.

Moon by firing a space capsule from a 220-m-long can-
non with a final velocity of 10.97 km/s. What would
have been the unrealistically large acceleration experi-
enced by the space travelers during launch? Compare
your answer with the free-fall acceleration, 9.80 m/s?.

A certain automobile manufacturer claims that its super-
deluxe sports car will accelerate from rest to a speed of
42.0 m/s in 8.00 s. Under the (improbable) assumption
that the acceleration is constant, (a) determine the ac-
celeration of the car. (b) Find the distance the car trav-
els in the first 8.00 s. (c) What is the speed of the car
10.0 s after it begins its motion, assuming it continues to
move with the same acceleration?

A truck covers 40.0 m in 8.50 s while smoothly slowing
down to a final speed of 2.80 m/s. (a) Find its original
speed. (b) Find its acceleration.

The minimum distance required to stop a car moving at
35.0 mi/h is 40.0 ft. What is the minimum stopping dis-
tance for the same car moving at 70.0 mi/h, assuming
the same rate of acceleration?

[25.] A body moving with uniform acceleration has a velocity

26.

of 12.0 cm/s in the positive x direction when its x coor-
dinate is 3.00 cm. If its x coordinate 2.00 s later is — 5.00
cm, what is the magnitude of its acceleration?

Figure P2.26 represents part of the performance data
of a car owned by a proud physics student. (a) Calcu-
late from the graph the total distance traveled.

(b) What distance does the car travel between the
times ¢t = 10 s and ¢ = 40 s? (c) Draw a graph of its ac-
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Figure P2.26

celeration versus time between (= 0 and ¢ = 50 s.

(d) Write an equation for x as a function of time for
each phase of the motion, represented by (i) 0a, (ii)
ab, (iii) be. (e) What is the average velocity of the car
between ¢ = 0 and ¢ = 50 s?

A particle moves along the x axis. Its position is given by
the equation x = 2.00 + 3.00¢ — 4.00¢? with x in meters
and ¢ in seconds. Determine (a) its position at the in-
stant it changes direction and (b) its velocity when it re-
turns to the position it had at ¢ = 0.

The initial velocity of a body is 5.20 m/s. What is its veloc-
ity after 2.50 s (a) if it accelerates uniformly at 3.00 m/s>
and (b) if it accelerates uniformly at — 3.00 m/s*?

A drag racer starts her car from rest and accelerates at
10.0 m/s? for the entire distance of 400 m (% mi). (a) How
long did it take the race car to travel this distance?

(b) What is the speed of the race car at the end of the run?
A car is approaching a hill at 30.0 m/s when its engine
suddenly fails, just at the bottom of the hill. The car
moves with a constant acceleration of — 2.00 m/s? while
coasting up the hill. (a) Write equations for the position
along the slope and for the velocity as functions of time,
taking x = 0 at the bottom of the hill, where v; =

30.0 m/s. (b) Determine the maximum distance the car
travels up the hill.

A jet plane lands with a speed of 100 m/s and can accel-

32.

erate at a maximum rate of — 5.00 m/s? as it comes to
rest. (a) From the instant the plane touches the runway,
what is the minimum time it needs before it can come
to rest? (b) Can this plane land at a small tropical island
airport where the runway is 0.800 km long?

The driver of a car slams on the brakes when he sees a
tree blocking the road. The car slows uniformly with an
acceleration of —5.60 m/s? for 4.20 s, making straight
skid marks 62.4 m long ending at the tree. With what
speed does the car then strike the tree?

Help! One of our equations is missing! We describe con-
stant-acceleration motion with the variables and para-
MELers vy, Uy, Ay, I, and x; — x;. Of the equations in
Table 2.2, the first does not involve x;— x;. The second
does not contain a,, the third omits Vygs and the last
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Figure P2.37 (Left) Col. John Stapp on rocket sled. (Courtesy of the U.S. Air Force)
(Right) Col. Stapp’s face is contorted by the stress of rapid negative acceleration. (Photri, Inc.)

leaves out & So to complete the set there should be an
equation not involving v,;. Derive it from the others.
Use it to solve Problem 32 in one step.

. An indestructible bullet 2.00 cm long is fired straight

through a board that is 10.0 cm thick. The bullet strikes
the board with a speed of 420 m/s and emerges with a
speed of 280 m/s. (a) What is the average acceleration
of the bullet as it passes through the board? (b) What is
the total time that the bullet is in contact with the
board? (c) What thickness of board (calculated to

0.1 cm) would it take to stop the bullet, assuming

the bullet’s acceleration through all parts of the board
is the same?

A truck on a straight road starts from rest, accelerating
at 2.00 m/s? until it reaches a speed of 20.0 m/s. Then
the truck travels for 20.0 s at constant speed until the
brakes are applied, stopping the truck in a uniform
manner in an additional 5.00 s. (a) How long is the
truck in motion? (b) What is the average velocity of the
truck for the motion described?

. A train is traveling down a straight track at 20.0 m/s

when the engineer applies the brakes. This results in an
acceleration of — 1.00 m/s? as long as the train is in mo-
tion. How far does the train move during a 40.0-s time
interval starting at the instant the brakes are applied?
For many years the world’s land speed record was held
by Colonel John P. Stapp, USAF (Fig. P2.37). On March
19, 1954, he rode a rocket-propelled sled that moved
down the track at 632 mi/h. He and the sled were safely
brought to rest in 1.40 s. Determine (a) the negative ac-
celeration he experienced and (b) the distance he trav-
eled during this negative acceleration.

An electron in a cathode-ray tube (CRT) accelerates
uniformly from 2.00 X 10* m/s to 6.00 X 10° m/s over
1.50 cm. (a) How long does the electron take to travel
this 1.50 cm? (b) What is its acceleration?

A ball starts from rest and accelerates at 0.500 m/s>
while moving down an inclined plane 9.00 m long.
When it reaches the bottom, the ball rolls up another
plane, where, after moving 15.0 m, it comes to rest.

40.

(a) What is the speed of the ball at the bottom of the
first plane? (b) How long does it take to roll down

the first plane? (c) What is the acceleration along the
second plane? (d) What is the ball’s speed 8.00 m along
the second plane?

Speedy Sue, driving at 30.0 m/s, enters a one-lane tun-
nel. She then observes a slow-moving van 155 m ahead
traveling at 5.00 m/s. Sue applies her brakes but can ac-
celerate only at —2.00 m/s? because the road is wet.
‘Will there be a collision? If so, determine how far into
the tunnel and at what time the collision occurs. If not,
determine the distance of closest approach between
Sue’s car and the van.

Section 2.6 Freely Falling Objects

Note: In all problems in this section, ignore the effects of air
resistance.

c':izu.

42.

A golf ball is released from rest from the top of a very
tall building. Calculate (a) the position and (b) the ve-
locity of the ball after 1.00 s, 2.00 s, and 3.00 s.

Every morning at seven o’clock

There’s twenty terriers drilling on the rock.

The boss comes around and he says, “Keep still

And bear down heavy on the cast-iron drill

And drill, ye terriers, drill.” And drill, ye terriers, drill.

1t’s work all day for sugar in your tea . . .

And drill, ye terriers, drill.

One day a premature blast went off
And a mile in the air went big Jim Goff. And dnill . . .

Then when next payday came around

Jim Goff a dollar short was found.

When he asked what for, came this reply:

“You were docked for the time you were up in the sky.” And
drill . . .

—American folksong

‘What was Goff’s hourly wage? State the assumptions you
make in computing it.
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A student throws a set of keys vertically upward to her
sorority sister, who is in a window 4.00 m above. The
keys are caught 1.50 s later by the sister’s outstretched
hand. (a) With what initial velocity were the keys
thrown? (b) What was the velocity of the keys just be-
fore they were caught?

A ball is thrown directly downward with an initial speed
of 8.00 m/s from a height of 30.0 m. How many sec-
onds later does the ball strike the ground?

Emily challenges her friend David to catch a dollar bill as
follows: She holds the bill vertically, as in Figure P2.45,
with the center of the bill between David’s index finger
and thumb. David must catch the bill after Emily releases
it without moving his hand downward. If his reaction
time is 0.2 s, will he succeed? Explain your reasoning.

Figure P2.45  (George Semple)

A ball is dropped from rest from a height 4 above the
ground. Another ball is thrown vertically upward from
the ground at the instant the first ball is released. Deter-
mine the speed of the second ball if the two balls are to
meet at a height 4/2 above the ground.

A baseball is hit so that it travels straight upward after
being struck by the bat. A fan observes that it takes

3.00 s for the ball to reach its maximum height. Find
() its initial velocity and (b) the maximum height it
reaches.

A woman is reported to have fallen 144 ft from the 17th
floor of a building, landing on a metal ventilator box,
which she crushed to a depth of 18.0 in. She suffered
only minor injuries. Calculate (a) the speed of the
woman just before she collided with the ventilator box,
(b) her average acceleration while in contact with the
box, and (c) the time it took to crush the box.

wes [49.] A daring ranch hand sitting on a tree limb wishes to

drop vertically onto a horse galloping under the tree.
The speed of the horse is 10.0 m/s, and the distance
from the limb to the saddle is 3.00 m. (a) What must be
the horizontal distance between the saddle and limb
when the ranch hand makes his move? (b) How long is
he in the air?

50. A ball thrown vertically upward is caught by the thrower

after 20.0 s. Find (a) the initial velocity of the ball and
(b) the maximum height it reaches.

51. A ball is thrown vertically upward from the ground with

an initial speed of 15.0 m/s. (a) How long does it take
the ball to reach its maximum altitude? (b) What is its
maximum altitude? (c) Determine the velocity and ac-
celeration of the ball at ¢t = 2.00 s.

52. The height of a helicopter above the ground is given by

h = 3.006%, where his in meters and ¢is in seconds. Af-
ter 2.00 s, the helicopter releases a small mailbag. How
long after its release does the mailbag reach the
ground?

(Optional)
2.7 Kinematic Equations Derived from Calculus

.| Automotive engineers refer to the time rate of change

of acceleration as the “jerk.” If an object moves in one
dimension such that its jerk J is constant, (a) determine
expressions for its acceleration a,, velocity v,, and posi-
tion x, given that its initial acceleration, speed, and posi-
tion are ay;, vy;, and x;, respectively. (b) Show that

a2 = a2 + (v, — v,).

54. The speed of a bullet as it travels down the barrel of a ri-

fle toward the opening is given by the expression

v= (=50 X 107 + (3.0 X 10%)¢, where vis in me-
ters per second and (is in seconds. The acceleration of
the bullet just as it leaves the barrel is zero. (a) Deter-
mine the acceleration and position of the bullet as a
function of time when the bullet is in the barrel.

(b) Determine the length of time the bullet is acceler-
ated. (c) Find the speed at which the bullet leaves the
barrel. (d) What is the length of the barrel?

55. The acceleration of a marble in a certain fluid is pro-

portional to the speed of the marble squared and is
given (in SI units) by a = — 3.000? for v > 0. If the mar-
ble enters this fluid with a speed of 1.50 m/s, how long
will it take before the marble’s speed is reduced to half
of its initial value?

ADDITIONAL PROBLEMS

56. A motorist is traveling at 18.0 m/s when he sees a deer

in the road 38.0 m ahead. (a) If the maximum negative
acceleration of the vehicle is — 4.50 m/s?, what is the
maximum reaction time A¢ of the motorist that will al-
low him to avoid hitting the deer? (b) If his reaction
time is actually 0.300 s, how fast will he be traveling
when he hits the deer?



57.

58.

.

i 60.

61.

62.

Another scheme to catch the roadrunner has failed. A
safe falls from rest from the top of a 25.0-m-high cliff to-
ward Wile E. Coyote, who is standing at the base. Wile
first notices the safe after it has fallen 15.0 m. How long
does he have to get out of the way?

A dog’s hair has been cut and is now getting longer by
1.04 mm each day. With winter coming on, this rate of
hair growth is steadily increasing by 0.132 mm/day
every week. By how much will the dog’s hair grow dur-
ing five weeks?

A test rocket is fired vertically upward from a well. A cat-
apult gives it an initial velocity of 80.0 m/s at ground
level. Subsequently, its engines fire and it accelerates
upward at 4.00 m/s? until it reaches an altitude of

1000 m. At that point its engines fail, and the rocket
goes into free fall, with an acceleration of — 9.80 m/s2.
(a) How long is the rocket in motion above the ground?
(b) What is its maximum altitude? (¢) What is its veloc-
ity just before it collides with the Earth? (Hint: Consider
the motion while the engine is operating separate from
the free-fall motion.)

A motorist drives along a straight road at a constant
speed of 15.0 m/s. Just as she passes a parked motorcy-
cle police officer, the officer starts to accelerate at

2.00 m/s? to overtake her. Assuming the officer main-
tains this acceleration, (a) determine the time it takes
the police officer to reach the motorist. Also find

(b) the speed and (c) the total displacement of the
officer as he overtakes the motorist.

In Figure 2.10a, the area under the velocity—time curve
between the vertical axis and time ¢ (vertical dashed
line) represents the displacement. As shown, this area
consists of a rectangle and a triangle. Compute their ar-
eas and compare the sum of the two areas with the ex-
pression on the righthand side of Equation 2.11.

A commuter train travels between two downtown sta-
tions. Because the stations are only 1.00 km apart, the
train never reaches its maximum possible cruising
speed. The engineer minimizes the time ¢ between the
two stations by accelerating at a rate a; = 0.100 m/s*
for a time #; and then by braking with acceleration

ay = —0.500 m/s? for a time #5. Find the minimum
time of travel and the time #;.

In a 100-m race, Maggie and Judy cross the finish line in

64.

a dead heat, both taking 10.2 s. Accelerating uniformly,
Maggie took 2.00 s and Judy 3.00 s to attain maximum
speed, which they maintained for the rest of the race.
(a) What was the acceleration of each sprinter?

(b) What were their respective maximum speeds?

(c) Which sprinter was ahead at the 6.00-s mark, and by
how much?

A hard rubber ball, released at chest height, falls to

the pavement and bounces back to nearly the same
height. When it is in contact with the pavement, the
lower side of the ball is temporarily flattened. Suppose
the maximum depth of the dent is on the order of

65.

66.
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1 cm. Compute an order-of-magnitude estimate for

the maximum acceleration of the ball while it is in con-
tact with the pavement. State your assumptions, the
quantities you estimate, and the values you estimate for
them.

A teenager has a car that speeds up at 3.00 m/s? and
slows down at — 4.50 m/s%. On a trip to the store, he ac-
celerates from rest to 12.0 m/s, drives at a constant
speed for 5.00 s, and then comes to a momentary stop
at an intersection. He then accelerates to 18.0 m/s,
drives at a constant speed for 20.0 s, slows down for
2.67 s, continues for 4.00 s at this speed, and then
comes to a stop. (a) How long does the trip take?

(b) How far has he traveled? (c) What is his average
speed for the trip? (d) How long would it take to walk
to the store and back if he walks at 1.50 m/s?

Arock is dropped from rest into a well. (a) If the sound
of the splash is heard 2.40 s later, how far below the top
of the well is the surface of the water? The speed of
sound in air (at the ambient temperature) is 336 m/s.
(b) If the travel time for the sound is neglected, what
percentage error is introduced when the depth of the
well is calculated?

g An inquisitive physics student and mountain climber
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climbs a 50.0-m cliff that overhangs a calm pool of wa-
ter. He throws two stones vertically downward, 1.00 s
apart, and observes that they cause a single splash. The
first stone has an initial speed of 2.00 m/s. (a) How
long after release of the first stone do the two stones hit
the water? (b) What was the initial velocity of the sec-
ond stone? (c) What is the velocity of each stone at the
instant the two hit the water?

A car and train move together along parallel paths at
25.0 m/s, with the car adjacent to the rear of the train.
Then, because of a red light, the car undergoes a uni-
form acceleration of — 2.50 m/s? and comes to rest. It
remains at rest for 45.0 s and then accelerates back to a
speed of 25.0 m/s at a rate of 2.50 m/s2. How far be-
hind the rear of the train is the car when it reaches the
speed of 25.0 m/s, assuming that the speed of the train
has remained 25.0 m/s?

Kathy Kool buys a sports car that can accelerate at the

.

rate of 4.90 m/s2. She decides to test the car by racing
with another speedster, Stan Speedy. Both start from
rest, but experienced Stan leaves the starting line 1.00 s
before Kathy. If Stan moves with a constant acceleration
of 3.50 m/s? and Kathy maintains an acceleration of
4.90 m/s2, find (a) the time it takes Kathy to overtake
Stan, (b) the distance she travels before she catches up
with him, and (c) the speeds of both cars at the instant
she overtakes him.

To protect his food from hungry bears, a boy scout
raises his food pack with a rope that is thrown over a
tree limb at height /4 above his hands. He walks away
from the vertical rope with constant velocity vy, hold-
ing the free end of the rope in his hands (Fig. P2.70).
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Figure P2.70

(a) Show that the speed v of the food pack is

x(x% + h2)"1/2 Uhoy, Where xis the distance he has
walked away from the vertical rope. (b) Show that the
acceleration a of the food pack is h%(x? + h?)~%/2 vbo)fl.
(c) What values do the acceleration and velocity have
shortly after he leaves the point under the pack

(x = 0)? (d) What values do the pack’s velocity and ac-
celeration approach as the distance x continues to in-
crease?

C‘iﬂ. In Problem 70, let the height 2 equal 6.00 m and the

speed vp0y equal 2.00 m/s. Assume that the food pack
starts from rest. (a) Tabulate and graph the speed—time
graph. (b) Tabulate and graph the acceleration—time
graph. (Let the range of time be from 0 to 5.00 s and
the time intervals be 0.500 s.)

] 72. Astronauts on a distant planet toss a rock into the air.

With the aid of a camera that takes pictures at a steady
rate, they record the height of the rock as a function of
time as given in Table P2.72. (a) Find the average veloc-
ity of the rock in the time interval between each mea-
surement and the next. (b) Using these average veloci-

ANSWERS TO QUICK QUIZZES

2.1 Your graph should look something like the one in (a).

2.

)

This v,-t graph shows that the maximum speed is

about 5.0 m/s, which is 18 km/h (= 11 mi/h), and

so the driver was not speeding. Can you derive the accel-
eration—time graph from the velocity—time graph? It
should look something like the one in (b).

(a) Yes. This occurs when the car is slowing down, so that
the direction of its acceleration is opposite the direction
of its motion. (b) Yes. If the motion is in the direction

TABLE P2.72 Height of a Rock versus Time

Time (s) Height (m) Time (s) Height (m)
0.00 5.00 2.75 7.62
0.25 5.75 3.00 7.25
0.50 6.40 3.25 6.77
0.75 6.94 3.50 6.20
1.00 7.38 3.75 5.52
1.25 7.72 4.00 4.73
1.50 7.96 4.25 3.85
1.75 8.10 4.50 2.86
2.00 8.13 4.75 1.77
2.25 8.07 5.00 0.58
2.50 7.90

ties to approximate instantaneous velocities at the mid-
points of the time intervals, make a graph of velocity as
a function of time. Does the rock move with constant
acceleration? If so, plot a straight line of best fit on the
graph and calculate its slope to find the acceleration.

5.? Two objects, A and B, are connected by a rigid rod that

has a length L. The objects slide along perpendicular
guide rails, as shown in Figure P2.73. If A slides to the
left with a constant speed v, find the speed of Bwhen
a = 60.0°.

chosen as negative, a positive acceleration causes a de-
crease in speed.

2.3 The left side represents the final velocity of an object.

The first term on the right side is the velocity that the ob-
ject had initially when we started watching it. The second
term is the change in that initial velocity that is caused by
the acceleration. If this second term is positive, then the
initial velocity has increased (v, > v,;). If this term is neg-
ative, then the initial velocity has decreased (v, < v,;).
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2.4 Graph (a) has a constant slope, indicating a constant ac-
celeration; this is represented by graph (e).
Graph (b) represents a speed that is increasing con-
stantly but not at a uniform rate. Thus, the acceleration must
be increasing, and the graph that best indicates this is (d).
Graph (c) depicts a velocity that first increases at a
constant rate, indicating constant acceleration. Then the
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(b)

velocity stops increasing and becomes constant, indicat-
ing zero acceleration. The best match to this situation is
graph (f).

2.5 (c). As can be seen from Figure 2.13b, the ball is at rest for
an infinitesimally short time at these three points.
Nonetheless, gravity continues to act even though the ball
is instantaneously not moving.



*PUZZLE

When this honeybee gets back to its
hive, it will tell the other bees how to re-
turn to the food it has found. By moving
in a special, very precisely defined pat-
tern, the bee conveys to other workers
the information they need to find a flower
bed. Bees communicate by “speaking in
vectors.” What does the bee have to tell
the other bees in order to specify where
the flower bed is located relative to the
hive? (E. Webber/Visuals Unlimited)
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Vectors

Chapter Outline

3.1 Coordinate Systems
3.2 Vector and Scalar Quantities
3.3 Some Properties of Vectors

3.4 Components of a Vector and Unit
Vectors

3.1 Coordinate Systems

e often need to work with physical quantities that have both numerical and

directional properties. As noted in Section 2.1, quantities of this nature are

represented by vectors. This chapter is primarily concerned with vector alge-

bra and with some general properties of vector quantities. We discuss the addition

and subtraction of vector quantities, together with some common applications to

physical situations.

Vector quantities are used throughout this text, and it is therefore imperative

that you master both their graphical and their algebraic properties.

3.1 _~ COORDINATE SYSTEMS

Many aspects of physics deal in some form or other with locations in space. In
Chapter 2, for example, we saw that the mathematical description of an object’s
motion requires a method for describing the object’s position at various times.
This description is accomplished with the use of coordinates, and in Chapter 2 we
used the cartesian coordinate system, in which horizontal and vertical axes inter-
sect at a point taken to be the origin (Fig. 3.1). Cartesian coordinates are also
called rectangular coordinates.

@ Sometimes it is more convenient to represent a point in a plane by its plane po-
22 ar coordinates (r, ), as shown in Figure 3.2a. In this polar coordinate system, r is the

distance from the origin to the point having cartesian coordinates (x, y), and 6 is
the angle between r and a fixed axis. This fixed axis is usually the positive x axis,
and 6 is usually measured counterclockwise from it. From the right triangle in Fig-
ure 3.2b, we find that sin 6 = y/rand that cos § = x/7. (A review of trigonometric
functions is given in Appendix B.4.) Therefore, starting with the plane polar coor-
dinates of any point, we can obtain the cartesian coordinates, using the equations

x = rcos 6 (3.1)
y = rsin 6 (3.2)

Furthermore, the definitions of trigonometry tell us that
an 6= > (3.3)
X

r=\x2 + y2 (3.4)

These four expressions relating the coordinates (x, y) to the coordinates (7, )
apply only when 6 is defined, as shown in Figure 3.2a—in other words, when posi-
tive 6 is an angle measured counterclockwise from the positive x axis. (Some scientific
calculators perform conversions between cartesian and polar coordinates based on
these standard conventions.) If the reference axis for the polar angle 6 is chosen
to be one other than the positive x axis or if the sense of increasing 6 is chosen dif-
ferently, then the expressions relating the two sets of coordinates will change.

Would the honeybee at the beginning of the chapter use cartesian or polar coordinates
when specifying the location of the flower? Why? What is the honeybee using as an origin of
coordinates?

o (x, )

Qo
(-3, 4) P- (5,3)

[0

Figure 3.1 Designation of points
in a cartesian coordinate system.
Every point is labeled with coordi-
nates (x, y).

y
(€%}
T,
\9
g ¥
(a)
sinG:%
cosB:% r
Y
tan 6=

(b)

Figure 3.2 (a) The plane polar
coordinates of a point are repre-
sented by the distance rand the an-
gle 6, where 6 is measured counter-
clockwise from the positive x axis.
(b) The right triangle used to re-
late (x, y) to (1, 6).

You may want to read Talking Apes
and Dancing Bees (1997) by Betsy
Wyckoff.
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EXAMPLE 3.1

The cartesian coordinates of a

polar coordinates of this point.

y(m)

—-3.50, -2.50

are given.

(x, ) = (—3.50, —2.50) m, as shown in Figure 3.3. Find the

CHAPTER 3 Vectors

Polar Coordinates

point in the xy plane are  Solution

r=Va? + 52 =V(=350m)2 + (—250m)? = 4.30m

Note that you must use the signs of x and y to find that the
point lies in the third quadrant of the coordinate system.
Thatis, # = 216° and not 35.5°.

Figure 3.3 Finding polar coordinates when cartesian coordinates

3.2 _~ VECTOR AND SCALAR QUANTITIES

@7 As noted in Chapter 2, some physical quantities are scalar quantities whereas oth-
23 ers are vector quantities. When you want to know the temperature outside so that

Figure 3.4 As a particle moves
from ® to ® along an arbitrary
path represented by the broken
line, its displacement is a vector
quantity shown by the arrow drawn

from ® to ®.

you will know how to dress, the only information you need is a number and the
unit “degrees C” or “degrees F.” Temperature is therefore an example of a scalar
quantity, which is defined as a quantity that is completely specified by a number
and appropriate units. That is,

A scalar quantity is specified by a single value with an appropriate unit and has
no direction.

Other examples of scalar quantities are volume, mass, and time intervals. The
rules of ordinary arithmetic are used to manipulate scalar quantities.

If you are getting ready to pilot a small plane and need to know the wind ve-
locity, you must know both the speed of the wind and its direction. Because direc-
tion is part of the information it gives, velocity is a vector quantity, which is de-
fined as a physical quantity that is completely specified by a number and
appropriate units plus a direction. That is,

A vector quantity has both magnitude and direction.

Another example of a vector quantity is displacement, as you know from Chap-
ter 2. Suppose a particle moves from some point ® to some point ® along a
straight path, as shown in Figure 3.4. We represent this displacement by drawing
an arrow from ® to ®, with the tip of the arrow pointing away from the starting
point. The direction of the arrowhead represents the direction of the displace-
ment, and the length of the arrow represents the magnitude of the displacement.
If the particle travels along some other path from ® to ®, such as the broken line
in Figure 3.4, its displacement is still the arrow drawn from ® to ®.

3.3 Some Properties of Vectors
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(a) The number of apples in the basket is one example of a scalar quantity. Can you think of
other examples? (Superstock) (b) Jennifer pointing to the right. A vector quantity is one that must
be specified by both magnitude and direction. (Photo by Ray Serway) (c) An anemometer is a de-
vice meteorologists use in weather forecasting. The cups spin around and reveal the magnitude
of the wind velocity. The pointer indicates the direction. (Courtesy of Peet Bros. Company, 1308 Doris
Avenue, Ocean, NJ 07712)

In this text, we use a boldface letter, such as A, to represent a vector quantity.
Another common method for vector notation that you should be aware of is the
use of an arrow over a letter, such as A. The magnitude of the vector A is written
either A or |A|. The magnitude of a vector has physical units, such as meters for
displacement or meters per second for velocity.

3.3 _~ SOME PROPERTIES OF VECTORS

Equality of Two Vectors

For many purposes, two vectors A and B may be defined to be equal if they have
the same magnitude and point in the same direction. Thatis, A = B onlyif A = B
and if A and B point in the same direction along parallel lines. For example, all
the vectors in Figure 3.5 are equal even though they have different starting points.
This property allows us to move a vector to a position parallel to itself in a diagram
without affecting the vector.

Adding Vectors

(@ The rules for adding vectors are conveniently described by geometric methods. To
24 add vector B to vector A, first draw vector A, with its magnitude represented by a

convenient scale, on graph paper and then draw vector B to the same scale with its
tail starting from the tip of A, as shown in Figure 3.6. The resultant vector R =
A + B is the vector drawn from the tail of A to the tip of B. This procedure is
known as the triangle method of addition.

For example, if you walked 3.0 m toward the east and then 4.0 m toward the
north, as shown in Figure 3.7, you would find yourself 5.0 m from where you

Figure 3.5 These four vectors are
equal because they have equal
lengths and point in the same di-
rection.

Figure 3.6 When vector B is
added to vector A, the resultant R
is the vector that runs from the tail
of A to the tip of B.
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Commutative law

Figure 3.9 (a) In this construc-
tion, the resultant R is the diagonal
of a parallelogram having sides A
and B. (b) This construction shows
that A + B = B + A—in other
words, that vector addition is com-
mutative.
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4.0 m

3.0m

g’Figure 3.7 Vector addition. Walk-
ing first 3.0 m due east and then
4.0 m due north leaves you |R| =
5.0 m from your starting point.

Figure 3.8 Geometric con-
struction for summing four vec-
tors. The resultant vector R is by
definition the one that completes

the polygon.

started, measured at an angle of 53° north of east. Your total displacement is the
vector sum of the individual displacements.

A geometric construction can also be used to add more than two vectors. This
is shown in Figure 3.8 for the case of four vectors. The resultant vector R = A +
B + C + D is the vector that completes the polygon. In other words, R is the
vector drawn from the tail of the first vector to the tip of the last vector.

An alternative graphical procedure for adding two vectors, known as the par-
allelogram rule of addition, is shown in Figure 3.9a. In this construction, the
tails of the two vectors A and B are joined together and the resultant vector R is
the diagonal of a parallelogram formed with A and B as two of its four sides.

When two vectors are added, the sum is independent of the order of the addi-
tion. (This fact may seem trivial, but as you will see in Chapter 11, the order is im-
portant when vectors are multiplied). This can be seen from the geometric con-
struction in Figure 3.9b and is known as the commutative law of addition:

A+B=B+A (3.5)

When three or more vectors are added, their sum is independent of the way in
which the individual vectors are grouped together. A geometric proof of this rule

Commutative Law

3.3 Some Properties of Vectors

Associative Law

for three vectors is given in Figure 3.10. This is called the associative law of addi-
tion:
A+B+C) =A+B)+C (3.6)

In summary, a vector quantity has both magnitude and direction and also
obeys the laws of vector addition as described in Figures 3.6 to 3.10. When two
or more vectors are added together, all of them must have the same units. It would
be meaningless to add a velocity vector (for example, 60 km/h to the east) to a dis-
placement vector (for example, 200 km to the north) because they represent dif-
ferent physical quantities. The same rule also applies to scalars. For example, it
would be meaningless to add time intervals to temperatures.

Negative of a Vector

The negative of the vector A is defined as the vector that when added to A gives
zero for the vector sum. That is, A + (—A) = 0. The vectors A and — A have the
same magnitude but point in opposite directions.

Subtracting Vectors

The operation of vector subtraction makes use of the definition of the negative of
a vector. We define the operation A — B as vector — B added to vector A:

A-B=A+ (-B) 3.7)

The geometric construction for subtracting two vectors in this way is illustrated in
Figure 3.11a.

Another way of looking at vector subtraction is to note that the difference
A — B between two vectors A and B is what you have to add to the second vector
to obtain the first. In this case, the vector A — B points from the tip of the second
vector to the tip of the first, as Figure 3.11b shows.

Vector Subtraction

7
¢
’
.
. B
¢

A ’

A
(a) (b)
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Figure 3.10 Geometric construc-
tions for verifying the associative
law of addition.

Associative law

Figure 3.11 (a) This construc-
tion shows how to subtract vector B
from vector A. The vector — B is
equal in magnitude to vector B and
points in the opposite direction. To
subtract B from A, apply the rule of
vector addition to the combination
of A and — B: Draw A along some
convenient axis, place the tail of

— B at the tip of A, and C is the dif-
ference A — B. (b) A second way
of looking at vector subtraction.
The difference vector C = A — B is
the vector that we must add to B to
obtain A.
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EXAMPLE 3.2  AVacation Trip

A car travels 20.0 km due north and then 35.0 km in a direc-
tion 60.0° west of north, as shown in Figure 3.12. Find the
magnitude and direction of the car’s resultant displacement.

Solution In this example, we show two ways to find the re-
sultant of two vectors. We can solve the problem geometri-
cally, using graph paper and a protractor, as shown in Figure
3.12. (In fact, even when you know you are going to be carry-

ing out a calculation, you should sketch the vectors to check
your results.) The displacement R is the resultant when the
two individual displacements A and B are added.

To solve the problem algebraically, we note that the magni-
tude of R can be obtained from the law of cosines as applied
to the triangle (see Appendix B.4). With 6 = 180° — 60° =
120° and R? = A% + B% — 2AB cos 6, we find that

R="A2 + B2 — 2ABcosf)

=/(20.0 km)2 + (35.0 km)2 — 2(20.0 km) (35.0 km)cos 120°

ment vector R = A + B.

Figure 3.12 Graphical method for finding the resultant displace-

= 482km

The direction of R measured from the northerly direction
can be obtained from the law of sines (Appendix B.4):

sin B sin 6
B R
in B = 2 sin g = 20D G190 = 0.620
sin B = Rsm = 182 km sin = 0.629
B= 389°

The resultant displacement of the car is 48.2 km in a direc-
tion 38.9° west of north. This result matches what we found
graphically.

=

g"Figure 3.13 Anyvector A lying in
the xy plane can be represented by
avector A, lying along the x axis
and by a vector A, lying along the y
axis, where A = A, + A,.

- . . .
¥ (2’ The geometric method of adding vectors is not recommended whenever great ac-

25 curacy is required or in three-dimensional problems. In this section, we describe a

Multiplying a Vector by a Scalar

If vector A is multiplied by a positive scalar quantity m, then the product mA is
a vector that has the same direction as A and magnitude mA. If vector A is
multiplied by a negative scalar quantity — m, then the product — mA is directed op-
posite A. For example, the vector 5A is five times as long as A and points in the
same direction as A; the vector — %A is one-third the length of A and points in the
direction opposite A.

| Quick Quiz 3.2 g

If vector B is added to vector A, under what condition does the resultant vector A + B have
magnitude A + B? Under what conditions is the resultant vector equal to zero?

3.4 _~ COMPONENTS OF A VECTOR AND UNIT VECTORS

method of adding vectors that makes use of the projections of vectors along coordi-
nate axes. These projections are called the components of the vector. Any vector
can be completely described by its components.

Consider a vector A lying in the xy plane and making an arbitrary angle 6 with
the positive x axis, as shown in Figure 3.13. This vector can be expressed as the

3.4 Components of a Vector and Unit Vectors

sum of two other vectors A, and A,. From Figure 3.13, we see that the three vec-
tors form a right triangle and that A = A, + A,. (If you cannot see why this equal-
ity holds, go back to Figure 3.9 and review the parallelogram rule.) We shall often
refer to the “components of a vector A,” written A, and A, (without the boldface
notation). The component A, represents the projection of A along the x axis, and
the component A, represents the projection of A along the y axis. These compo-
nents can be positive or negative. The component A, is positive if A, points in the
positive x direction and is negative if A, points in the negative x direction. The
same is true for the component A,.

From Figure 3.13 and the definition of sine and cosine, we see that cos 0 =
A,/Aand thatsin § = A,/A. Hence, the components of A are

A, = Acosf (3.8)
Ay = Asinf (3.9)

These components form two sides of a right triangle with a hypotenuse of length
A. Thus, it follows that the magnitude and direction of A are related to its compo-

nents through the expressions
A=7VA2 + A}? (3.10)

- (Av>
0 = tan~ ' — (3.11)
Ay

Note that the signs of the components 4, and 4, depend on the angle 6.
For example, if 6 = 120°, then A, is negative and Ay is positive. If § = 225°, then
both A, and A, are negative. Figure 3.14 summarizes the signs of the components
when A lies in the various quadrants.

When solving problems, you can specify a vector A either with its components
Ay and A or with its magnitude and direction A and 6.

| Quick Quiz 3.3 g

Can the component of a vector ever be greater than the magnitude of the vector?

Suppose you are working a physics problem that requires resolving a vector
into its components. In many applications it is convenient to express the compo-
nents in a coordinate system having axes that are not horizontal and vertical but are
still perpendicular to each other. If you choose reference axes or an angle other
than the axes and angle shown in Figure 3.13, the components must be modified
accordingly. Suppose a vector B makes an angle 6’ with the x' axis defined in Fig-
ure 3.15. The components of B along the x' and y" axes are By = B cos 6" and
By = Bsin 6, as specified by Equations 3.8 and 3.9. The magnitude and direction
of B are obtained from expressions equivalent to Equations 3.10 and 3.11. Thus,
we can express the components of a vector in any coordinate system that is conve-
nient for a particular situation.

Unit Vectors

Vector quantities often are expressed in terms of unit vectors. A unit vector is a
dimensionless vector having a magnitude of exactly 1. Unit vectors are used
to specify a given direction and have no other physical significance. They are used
solely as a convenience in describing a direction in space. We shall use the symbols
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Components of the vector A
Magnitude of A
Direction of A
A, negative | A, positive
A, positive A, positive
63
A, negative | A, positive

Ay negative Ay negative

Figure 3.14 The signs of the
components of a vector A depend
on the quadrant in which the vec-
tor is located.

Figure 3.15 The component vec-
tors of B in a coordinate system
that is tilted.
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Position vector

(b)

Figure 3.16 (a) The unit vectors
i, j, and k are directed along the x,
3, and z axes, respectively. (b) Vec-
tor A = A + Ajlying in the xy
plane has components A, and 4,.

CHAPTER 3 Vectors

i, j, and k to represent unit vectors pointing in the positive x, y, and z directions,
respectively. The unit vectors i, j, and k form a set of mutually perpendicular vec-
tors in a right-handed coordinate system, as shown in Figure 3.16a. The magnitude
of each unit vector equals 1; that s, |i| = |j| = |k| = 1.

Consider a vector A lying in the xy plane, as shown in Figure 3.16b. The prod-
uct of the component A, and the unit vector i is the vector A,i, which lies on the x
axis and has magnitude |A,|. (The vector A is an alternative representation of
vector A,.) Likewise, A,j is a vector of magnitude \Ay\ lying on the y axis. (Again,
vector A,j is an alternative representation of vector A,.) Thus, the unit-vector no-
tation for the vector A is

A=A+ Aj (3.12)

For example, consider a point lying in the xy plane and having cartesian coordi-
nates (x, y), as in Figure 3.17. The point can be specified by the position vector r,
which in unit—vector form is given by

r=xi+)j (3.13)

This notation tells us that the components of r are the lengths x and y.

Now let us see how to use components to add vectors when the geometric
method is not sufficiently accurate. Suppose we wish to add vector B to vector A,
where vector B has components B, and B,. All we do is add the x and y compo-
nents separately. The resultant vector R = A + B is therefore

R = (Ad+ A)j) + (Bd + Bj)

or
R = (A, + B)i + (A, + B)j (3.14)
Because R = R,i + R,j, we see that the components of the resultant vector are
R, = A, + B,
(3.15)
Ry = Ay + B},
y
y TTTTTTTTTTT A
(x.3) T 1
B R |
B
: |
A B S A } }
A
Y A | !
) | x
e—o 4X—>}+BX+
X
@] R,

Figure 3.17 The point whose
cartesian coordinates are (x, y) can
be represented by the position vec-
torr = xi + yj.

Figure 3.18 This geometric construction
for the sum of two vectors shows the rela-
tionship between the components of the re-
sultant R and the components of the indi-
vidual vectors.

3.4 Components of a Vector and Unit Vectors

We obtain the magnitude of R and the angle it makes with the x axis from its com-
ponents, using the relationships

R=VRZ+ R2=\(A,+ B)2+ (4, + B)? (3.16)
g B _Ath 317)
tan 7Rx7Ax+Bx .

We can check this addition by components with a geometric construction, as
shown in Figure 3.18. Remember that you must note the signs of the components
when using either the algebraic or the geometric method.

At times, we need to consider situations involving motion in three compo-
nent directions. The extension of our methods to three-dimensional vectors is
straightforward. If A and B both have x, y, and z components, we express them in
the form

A=Ai+Aj+Ak (3.18)
B = Bi + B,j + Bk (3.19)

The sum of A and B is
R = (A, + B)i+ (A + B)j + (4, + B)k (3.20)

Note that Equation 3.20 differs from Equation 3.14: in Equation 3.20, the resultant
vector also has a zcomponent R, = A, + B,.

If one component of a vector is not zero, can the magnitude of the vector be zero? Explain.

| Quick Quiz 3.5 4

If A + B = 0, what can you say about the components of the two vectors?

Problem-Solving Hints
Adding Vectors
‘When you need to add two or more vectors, use this step-by-step procedure:

Select a coordinate system that is convenient. (Try to reduce the number of
components you need to find by choosing axes that line up with as many
vectors as possible.)

Draw a labeled sketch of the vectors described in the problem.

Find the xand y components of all vectors and the resultant components
(the algebraic sum of the components) in the x and y directions.

If necessary, use the Pythagorean theorem to find the magnitude of the re-
sultant vector and select a suitable trigonometric function to find the angle
that the resultant vector makes with the x axis.
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QuickLab -~

Write an expression for the vector de-
scribing the displacement of a fly that
moves from one corner of the floor
of the room that you are in to the op-
posite corner of the room, near the
ceiling.
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EXAMPLE 3.3

Find the sum of two vectors A and B lying in the xy plane and
given by

A= (2.0i + 2.0j) m and

The Sum of Two Vectors

B = (2.0i — 4.0j) m

Solution Comparing this expression for A with the gen-
cral expression A = A,i + A j, we see that A, = 2.0 m and
that A} = 2.0 m. Likewise, B, = 2.0 m and By = —4.0 m. We
obtain the resultant vector R, using Equation 3.14:
R=A+B=(20+20)im+ (20 — 40)jm
= (4.0i — 2.0)) m

or

R,=40m R,=—=20m

The magnitude of R is given by Equation 3.16:
R= \/R.«? + Ry? = \/(4.0 m)? + (—2.0m)2 = \/%m

= 45m

We can find the direction of R from Equation 3.17:

R, —2.0m
tan f = — = ———= —0.50
R, 4.0 m
Your calculator likely gives the answer —27° for 6=
tan~!(—0.50). This answer is correct if we interpret it to
mean 27° clockwise from the x axis. Our standard form has
been to quote the angles measured counterclockwise from

the + xaxis, and that angle for this vectoris = 333°.

EXAMPLE 3.4  The Resultant Displacement

A particle undergoes three consecutive displacements: d; =
(15i + 30 + 12k) cm, dy = (23i — 14j — 5.0k) cm, and
d3 = (— 13i + 15j) cm. Find the components of the resultant
displacement and its magnitude.

Solution Rather than looking at a sketch on flat paper, vi-
sualize the problem as follows: Start with your fingertip at the
front left corner of your horizontal desktop. Move your fin-
gertip 15 cm to the right, then 30 cm toward the far side of
the desk, then 12 cm vertically upward, then 23 cm to the
right, then 14 cm horizontally toward the front edge of the
desk, then 5.0 cm vertically toward the desk, then 13 cm to
the left, and (finally!) 15 cm toward the back of the desk. The

mathematical calculation keeps track of this motion along
the three perpendicular axes:

R=d; +dy +ds
= (15423 — 13)icm + (30 — 14 + 15)j cm
+ (12 = 5.0 + 0O)k cm
= (25i + 31j + 7.0k) cm
The resultant displacement has components R, = 25 cm,
Ry = 31 cm, and R, = 7.0 cm. Its magnitude is

R=7\R?+ R?+ R?

= (25 cm)? + (31 cm)? + (7.0 cm)2 = 40 cm

EXAMPLE 3.5 ~ Taking a Hike

A hiker begins a trip by first walking 25.0 km southeast from
her car. She stops and sets up her tent for the night. On the sec-
ond day, she walks 40.0 km in a direction 60.0° north of east, at
which point she discovers a forest ranger’s tower. (a) Deter-
mine the components of the hiker’s displacement for each day.

Solution If we denote the displacement vectors on the
first and second days by A and B, respectively, and use the car
as the origin of coordinates, we obtain the vectors shown in
Figure 3.19. Displacement A has a magnitude of 25.0 km and
is directed 45.0° below the positive x axis. From Equations 3.8
and 3.9, its components are

A, = Acos(—45.0°) = (25.0km)(0.707) = 17.7km

Ay = Asin(—45.0°) = — (25.0 km)(0.707) = —17.7km

y(km) N
\\'%{9—712
20 S
Tower
10 R
x(km)
CarN Ja5.0020 /30 40 50
-1 B
O A 60,0°
20 Tent

Figure 3.19 The total displacement of the hiker is the vector
R=A+B.
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The negative value of A indicates that the hiker walks in the
negative y direction on the first day. The signs of A, and A,
also are evident from Figure 3.19.

The second displacement B has a magnitude of 40.0 km
and is 60.0° north of east. Its components are

B, = Bcos 60.0° = (40.0 km) (0.500) = 20.0 km

B, = Bsin 60.0° = (40.0 km) (0.866) = 34.6 km

(b) Determine the components of the hiker’s resultant
displacement R for the trip. Find an expression for R in
terms of unit vectors.

Solution The resultant displacement for the trip R = A + B
has components given by Equation 3.15:

R,=A,+ B,=17.7km + 20.0 km = 37.7 km

Ry=A,+ B,= —17.7km + 346 km = 16.9 km
In unit—vector form, we can write the total displacement as
R = (37.7i + 16.9j) km

Exercise Determine the magnitude and direction of the to-
tal displacement.

Answer 41.3 km, 24.1° north of east from the car.

EXAMPLE 3.6

A commuter airplane takes the route shown in Figure 3.20.
First, it flies from the origin of the coordinate system shown
to city A, located 175 km in a direction 30.0° north of east.
Next, it flies 153 km 20.0° west of north to city B. Finally, it
flies 195 km due west to city C. Find the location of city C rel-
ative to the origin.

Let's Fly Away!

Solution It is convenient to choose the coordinate system
shown in Figure 3.20, where the x axis points to the east and
the y axis points to the north. Let us denote the three consec-
utive displacements by the vectors a, b, and ¢. Displacement a
has a magnitude of 175 km and the components

ay = acos(30.0°) = (175 km) (0.866) = 152 km

a, = asin(30.0°) = (175 km) (0.500) = 87.5 km

y(km)

?‘
C 950
c ‘ B
200 &
150
R
100
0 a
30.0 Ledes
50 100 150 200

Figure 3.20 The airplane starts at the origin, flies first to city A,
then to city B, and finally to city C.

Displacement b, whose magnitude is 153 km, has the compo-
nents

b, = bcos(110°) = (153 km) (—0.342) = —52.3 km
b, = bsin(110°) = (153 km) (0.940) = 144 km

Finally, displacement ¢, whose magnitude is 195 km, has the
components

¢, = ¢cos(180°) = (195 km)(—1) = —195 km
¢, = ¢sin(180°) = 0

Therefore, the components of the position vector R from the
starting point to city C are

R, = a,+ b, + ¢, = 152 km — 52.3 km — 195 km

= —953km

Ry=ay+ by+ ¢,=87.5km + 144 km + 0

= 232km

In unit-vector notation, R = (—95.3i + 232j) km. That

is, the airplane can reach city C from the starting point by
first traveling 95.3 km due west and then by traveling 232 km
due north.

Exercise Find the magnitude and direction of R.

Answer 251 km, 22.3° west of north.
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Figure 3.22 The addition of the
two vectors A, and A, gives vector A.
Note that A, = Ajdand A, = Aj,
where A, and A, are the z:};m};uﬁrnm of
vector A.

QUESTIONS

1. Two vectors have unequal magnitudes. Can their sum be

zero? Explain.

CHAPTER 3 Vectors

(a) (b)

Figure 3.21 (a) Vector addition by the triangle method. (b) Vector addition by the
parallelogram rule.

SUMMARY

Scalar quantities are those that have only magnitude and no associated direc-
tion. Vector quantities have both magnitude and direction and obey the laws of
vector addition.

We can add two vectors A and B graphically, using either the triangle method
or the parallelogram rule. In the triangle method (Fig. 3.21a), the resultant vector
R = A + B runs from the tail of A to the tip of B. In the parallelogram method
(Fig. 3.21b), R is the diagonal of a parallelogram having A and B as two of its sides.
You should be able to add or subtract vectors, using these graphical methods.

The x component A, of the vector A is equal to the projection of A along the x
axis of a coordinate system, as shown in Figure 3.22, where A, = A cos 6. The y
component A, of A is the projection of A along the y axis, where A; = A sin 6. Be
sure you can determine which trigonometric functions you should use in all situa-
tions, especially when 6 is defined as something other than the counterclockwise
angle from the positive x axis.

If a vector A has an x component A, and a y component A,, the vector can be
expressed in unit-vector form as A = A,i + A,j. In this notation, i is a unit vector
pointing in the positive x direction, and j is a unit vector pointing in the positive y
direction. Because i and j are unit vectors, |i| = [j| = 1.

We can find the resultant of two or more vectors by resolving all vectors into
their x and y components, adding their resultant x and y components, and then
using the Pythagorean theorem to find the magnitude of the resultant vector. We
can find the angle that the resultant vector makes with respect to the x axis by us-
ing a suitable trigonometric function.

B is zero, what can you conclude about these two vectors?
6. Can the magnitude of a vector have a negative value? Ex-

»N

5.

. Can the magnitude of a particle’s displacement be greater

than the distance traveled? Explain.

. The magnitudes of two vectors A and B are A = 5 units

and B = 2 units. Find the largest and smallest values possi-
ble for the resultant vector R = A + B.

Vector A lies in the xy plane. For what orientations of vec-
tor A will both of its components be negative? For what
orientations will its components have opposite signs?

If the component of vector A along the direction of vector

7.

8.

plain.

Which of the following are vectors and which are not:
force, temperature, volume, ratings of a television show,
height, velocity, age?

Under what circumstances would a nonzero vector lying in
the xy plane ever have components that are equal in mag-
nitude?

Is it possible to add a vector quantity to a scalar quantity?

Explain.

PROBLEMS

1, 2, 3 = straightforward, intermediate, challenging D = full solution available in the Student Solutions Manual and Study Guide
WeB = solution posted at http://www.saunderscollege.com/physics/ g = Computer useful in solving problem \'3 = Interactive Physics

W =

paired numerical/symbolic problems
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Sect

ion 3.1 Coordinate Sy

wee The polar coordinates of a point are r = 5.50 m and

6 = 240°. What are the cartesian coordinates of this
point?

. Two points in the xy plane have cartesian coordinates

(2.00, —4.00) m and (— 3.00, 3.00) m. Determine
(a) the distance between these points and (b) their po-
lar coordinates.

. If the cartesian coordinates of a point are given by (2, y)

and its polar coordinates are (7, 30°), determine yand r.

. Two points in a plane have polar coordinates (2.50 m,

30.0°) and (3.80 m, 120.0°). Determine (a) the carte-
sian coordinates of these points and (b) the distance
between them.

A fly lands on one wall of a room. The lower left-hand
corner of the wall is selected as the origin of a two-
dimensional cartesian coordinate system. If the fly is lo-
cated at the point having coordinates (2.00, 1.00) m,
(a) how far is it from the corner of the room? (b) what
is its location in polar coordinates?

. If the polar coordinates of the point (x, y) are (r, 6),

determine the polar coordinates for the points
(@) (=% ), (b) (—2x, —2y), and (c) (3x, —3y).

Section 3.2 \Vector and Scalar Quantities

Section 3.3 Some Properties of Vectors

7.

8.

An airplane flies 200 km due west from city A to city B
and then 300 km in the direction 30.0° north of west
from city B to city C. (a) In straight-line distance, how
far is city C from city A? (b) Relative to city A, in what
direction is city C?

A pedestrian moves 6.00 km east and then 13.0 km
north. Using the graphical method, find the magnitude
and direction of the resultant displacement vector.

A surveyor measures the distance across a straight river

10

11.

by the following method: Starting directly across from a
tree on the opposite bank, she walks 100 m along the
riverbank to establish a baseline. Then she sights across
to the tree. The angle from her baseline to the tree is
35.0°. How wide is the river?

A plane flies from base camp to lake A, a distance of
280 km at a direction 20.0° north of east. After drop-
ping off supplies, it flies to lake B, which is 190 km and
30.0° west of north from lake A. Graphically determine
the distance and direction from lake B to the base
camp.

Vector A has a magnitude of 8.00 units and makes an
angle of 45.0° with the positive x axis. Vector B also has
a magnitude of 8.00 units and is directed along the neg-

12.

18.

ative x axis. Using graphical methods, find (a) the vec-
tor sum A + B and (b) the vector difference A — B.

A force F; of magnitude 6.00 units acts at the origin in a
direction 30.0° above the positive x axis. A second force
F, of magnitude 5.00 units acts at the origin in the di-
rection of the positive y axis. Find graphically the mag-
nitude and direction of the resultant force Fy + Fy.

A person walks along a circular path of radius 5.00 m. If
the person walks around one half of the circle, find

(a) the magnitude of the displacement vector and

(b) how far the person walked. (c) What is the magni-
tude of the displacement if the person walks all the way
around the circle?

. A dog searching for a bone walks 3.50 m south, then

8.20 m at an angle 30.0° north of east, and finally

15.0 m west. Using graphical techniques, find the dog’s
resultant displacement vector.

Each of the displacement vectors A and B shown in Fig-
ure P3.15 has a magnitude of 3.00 m. Find graphically
(a) A+ B, (b)A— B, (c) B— A, (d) A — 2B. Report
all angles counterclockwise from the positive x axis.

3.00 m A
©
o

30.0°

Figure P3.15 Problems 15 and 39.

. Arbitrarily define the “instantaneous vector height” of a

person as the displacement vector from the point
halfway between the feet to the top of the head. Make
an order-of-magnitude estimate of the total vector
height of all the people in a city of population 100 000
(a) at 10 a.m. on a Tuesday and (b) at 5 a.m. on a Satur-
day. Explain your reasoning.

A roller coaster moves 200 ft horizontally and then rises

135 ft at an angle of 30.0° above the horizontal. It then
travels 135 ft at an angle of 40.0° downward. What is its
displacement from its starting point? Use graphical
techniques.

The driver of a car drives 3.00 km north, 2.00 km north-
east (45.0° east of north), 4.00 km west, and then
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3.00 km southeast (45.0° east of south). Where does he
end up relative to his starting point? Work out your an-
swer graphically. Check by using components. (The car
is not near the North Pole or the South Pole.)
19. Fox Mulder is trapped in a maze. To find his way out, he
walks 10.0 m, makes a 90.0° right turn, walks 5.00 m,
makes another 90.0° right turn, and walks 7.00 m. What
is his displacement from his initial position? 24.

Section 3.4 Components of a Vector and Unit Vectors
20. Find the horizontal and vertical components of the 100-m W&
displacement of a superhero who flies from the top of a

tall building following the path shown in Figure P3.20.
26.

27.

28.

Figure P3.20
29.
21. A person walks 25.0° north of east for 3.10 km. How far
would she have to walk due north and due east to arrive
at the same location? 30.
22. While exploring a cave, a spelunker starts at the en-
trance and moves the following distances: She goes
75.0 m north, 250 m east, 125 m at an angle 30.0° north
of east, and 150 m south. Find the resultant displace-
ment from the cave entrance.
23. In the assembly operation illustrated in Figure P3.23, a
robot first lifts an object upward along an arc that forms 39.
one quarter of a circle having a radius of 4.80 cm and

34.

36.

Figure P3.23

lying in an east—west vertical plane. The robot then
moves the object upward along a second arc that forms
one quarter of a circle having a radius of 3.70 cm and
lying in a north—south vertical plane. Find (a) the mag-
nitude of the total displacement of the object and

(b) the angle the total displacement makes with the
vertical.

Vector B has x, y, and zcomponents of 4.00, 6.00, and
3.00 units, respectively. Calculate the magnitude of B
and the angles that B makes with the coordinate axes.
A vector has an x component of — 25.0 units and a y
component of 40.0 units. Find the magnitude and di-
rection of this vector.

A map suggests that Atlanta is 730 mi in a direction
5.00° north of east from Dallas. The same map shows
that Chicago is 560 mi in a direction 21.0° west of north
from Atlanta. Assuming that the Earth is flat, use this in-
formation to find the displacement from Dallas to
Chicago.

A displacement vector lying in the xy plane has a magni-
tude of 50.0 m and is directed at an angle of 120° to the
positive x axis. Find the x and y components of this vec-
tor and express the vector in unit—vector notation.

If A = 2.00i + 6.00j and B = 3.00i — 2.00j, (a) sketch
the vector sum C = A + B and the vector difference

D = A — B. (b) Find solutions for C and D, first in
terms of unit vectors and then in terms of polar coordi-
nates, with angles measured with respect to the + x axis.
Find the magnitude and direction of the resultant of
three displacements having x and y components (3.00,
2.00) m, (—5.00, 3.00) m, and (6.00, 1.00) m.

Vector A has xand y components of —8.70 cm and

15.0 cm, respectively; vector B has x and y components
of 13.2 cm and — 6.60 cm, respectively. IfA — B +

3C = 0, what are the components of C?

Consider two vectors A = 3i — 2jand B = —i — 4j.
Calculate (a) A + B, (b) A — B, (c) |A + B|,

(d) |A — B], (e) the directions of A + Band A — B.

A boy runs 3.00 blocks north, 4.00 blocks northeast, and
5.00 blocks west. Determine the length and direction of
the displacement vector that goes from the starting
point to his final position.

Obtain expressions in component form for the position
vectors having polar coordinates (a) 12.8 m, 150°;

(b) 3.30 cm, 60.0% (c) 22.0 in., 215°.

Consider the displacement vectors A = (3i + 3j) m,

B = (i — 4j) m, and C = (—2i + 5j) m. Use the com-
ponent method to determine (a) the magnitude and di-
rection of the vector D = A + B + C and (b) the mag-
nitude and direction of E= —A — B + C.

A particle undergoes the following consecutive displace-
ments: 3.50 m south, 8.20 m northeast, and 15.0 m west.
‘What is the resultant displacement?

In a game of American football, a quarterback takes the
ball from the line of scrimmage, runs backward for 10.0
yards, and then sideways parallel to the line of scrim-
mage for 15.0 yards. At this point, he throws a forward
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38.

39.

40.

41.

pass 50.0 yards straight downfield perpendicular to the
line of scrimmage. What is the magnitude of the foot-
ball’s resultant displacement?

The helicopter view in Figure P3.37 shows two people
pulling on a stubborn mule. Find (a) the single force
that is equivalent to the two forces shown and (b) the
force that a third person would have to exert on the
mule to make the resultant force equal to zero. The
forces are measured in units of newtons.

Figure P3.37

A novice golfer on the green takes three strokes to sink
the ball. The successive displacements are 4.00 m to the
north, 2.00 m northeast, and 1.00 m 30.0° west of south.
Starting at the same initial point, an expert golfer could
make the hole in what single displacement?

Find the xand y components of the vectors A and B
shown in Figure P3.15; then derive an expression for
the resultant vector A + B in unit—vector notation.

You are standing on the ground at the origin of a coor-
dinate system. An airplane flies over you with constant
velocity parallel to the x axis and at a constant height of
7.60 X 10° m. At ¢ = 0, the airplane is directly above
you, so that the vector from you to it is given by Py =
(7.60 X 10% m)j. At t = 30.0 s, the position vector lead-
ing from you to the airplane is Py = (8.04 X 10> m)i +
(7.60 X 10% m)j. Determine the magnitude and orienta-
tion of the airplane’s position vector at { = 45.0 s.

A particle undergoes two displacements. The first has a
magnitude of 150 cm and makes an angle of 120° with
the positive x axis. The resultant displacement has a mag-
nitude of 140 cm and is directed at an angle of 35.0° to
the positive x axis. Find the magnitude and direction of
the second displacement.

42.

Problems 73

Vectors A and B have equal magnitudes of 5.00. If the
sum of A and B is the vector 6.00 j, determine the angle
between A and B.

43.| The vector A has x, y, and z components of 8.00, 12.0,
Yy p

44.

45.

46.

47.

48.

and — 4.00 units, respectively. (a) Write a vector expres-
sion for A in unit—vector notation. (b) Obtain a
unit—vector expression for a vector B one-fourth the
length of A pointing in the same direction as A. (c) Ob-
tain a unit—vector expression for a vector C three times
the length of A pointing in the direction opposite the
direction of A.

Instructions for finding a buried treasure include the
following: Go 75.0 paces at 240°, turn to 135° and walk
125 paces, then travel 100 paces at 160°. The angles are
measured counterclockwise from an axis pointing to
the east, the + x direction. Determine the resultant dis-
placement from the starting point.

Given the displacement vectors A = (3i — 4j + 4k) m
and B = (2i + 3j — 7k) m, find the magnitudes of the
vectors (a) C = A + Band (b) D = 2A — B, also ex-
pressing each in terms of its x, y, and z components.

A radar station locates a sinking ship at range 17.3 km
and bearing 136° clockwise from north. From the same
station a rescue plane is at horizontal range 19.6 km,
153° clockwise from north, with elevation 2.20 km.

(a) Write the vector displacement from plane to ship,
letting i represent east, j north, and k up. (b) How far
apart are the plane and ship?

As it passes over Grand Bahama Island, the eye of a hur-
ricane is moving in a direction 60.0° north of west with
aspeed of 41.0 km/h. Three hours later, the course of
the hurricane suddenly shifts due north and its speed
slows to 25.0 km/h. How far from Grand Bahama is the
eye 4.50 h after it passes over the island?

(a) Vector E has magnitude 17.0 cm and is directed
27.0° counterclockwise from the + x axis. Express it in
unit—vector notation. (b) Vector F has magnitude

17.0 cm and is directed 27.0° counterclockwise from the
+ y axis. Express it in unit—vector notation. (c) Vector
G has magnitude 17.0 cm and is directed 27.0° clockwise
from the + yaxis. Express it in unit—vector notation.

Vector A has a negative x component 3.00 units in

50.

length and a positive y component 2.00 units in length.
(a) Determine an expression for A in unit—vector nota-
tion. (b) Determine the magnitude and direction of A.
(c) What vector B, when added to vector A, gives a re-
sultant vector with no x component and a negative y
component 4.00 units in length?

An airplane starting from airport A flies 300 km east,
then 350 km at 30.0° west of north, and then 150 km
north to arrive finally at airport B. (a) The next day, an-
other plane flies directly from airport A to airport B in a
straight line. In what direction should the pilot travel in
this direct flight? (b) How far will the pilot travel in this
direct flight? Assume there is no wind during these
flights.
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wes Three vectors are oriented as shown in Figure P3.51,
where |A| = 20.0 units, |B| = 40.0 units, and

|C€] = 30.0 units. Find (a) the xand y components of
the resultant vector (expressed in unit—vector notation)
and (b) the magnitude and direction of the resultant
vector.

y
B
A
45.0°
X
o 45.0°
C
Figure P3.51

52. If A = (6.00i — 8.00j) units, B = (—8.00i + 3.00j)
units, and C = (26.0i + 19.0j) units, determine a and b
such that ¢A + B + G = 0.

ADDITIONAL PROBLEMS

53. Two vectors A and B have precisely equal magnitudes.
For the magnitude of A + B to be 100 times greater
than the magnitude of A — B, what must be the angle
between them?

54. Two vectors A and B have precisely equal magnitudes.
For the magnitude of A + B to be greater than the
magnitude of A — B by the factor n, what must be the
angle between them?

55. Avector is given by R = 2.00i + 1.00j + 3.00k. Find
(a) the magnitudes of the x, y, and z components,
(b) the magnitude of R, and (c) the angles between R
and the x, y, and z axes.
56. Find the sum of these four vector forces: 12.0 N to the
right at 35.0° above the horizontal, 31.0 N to the left at
55.0° above the horizontal, 8.40 N to the left at 35.0° be-
low the horizontal, and 24.0 N to the right at 55.0° be-
low the horizontal. (Hint: Make a drawing of this situa-
tion and select the best axes for xand y so that you have
the least number of components. Then add the vectors,
using the component method.)
A person going for a walk follows the path shown in Fig-
ure P3.57. The total trip consists of four straight-line
paths. At the end of the walk, what is the person’s resul-
tant displacement measured from the starting point?
58. In general, the instantaneous position of an object is
specified by its position vector P leading from a fixed

59.

60.

Start | 100 m

300 m

Figure P3.57

origin to the location of the object. Suppose that for a
certain object the position vector is a function of time,
given by P = 4i + 3j — 2¢j, where Pis in meters and ¢is
in seconds. Evaluate dP/di. What does this derivative
represent about the object?

A jet airliner, moving initially at 300 mi/h to the east,
suddenly enters a region where the wind is blowing at
100 mi/h in a direction 30.0° north of east. What are
the new speed and direction of the aircraft relative to
the ground?

A pirate has buried his treasure on an island with five
trees located at the following points: A (30.0 m,

—20.0 m), B(60.0 m, 80.0 m), C(— 10.0 m, — 10.0 m),
D(40.0 m, — 30.0 m), and E (= 70.0 m, 60.0 m). All
points are measured relative to some origin, as in Fig-
ure P3.60. Instructions on the map tell you to start at A
and move toward B, but to cover only one-half the dis-
tance between A and B. Then, move toward C, covering
one-third the distance between your current location
and C. Next, move toward D, covering one-fourth the
distance between where you are and D. Finally, move to-
ward E, covering one-fifth the distance between you and
E, stop, and dig. (a) What are the coordinates of the
point where the pirate’s treasure is buried? (b) Re-

Figure P3.60

arrange the order of the trees, (for instance, B(30.0 m,
—20.0 m), A(60.0 m, 80.0 m), E(—10.0 m, — 10.0 m),
C(40.0 m, —30.0 m), and D(— 70.0 m, 60.0 m), and re-
peat the calculation to show that the answer does not
depend on the order of the trees.

61. A rectangular parallelepiped has dimensions a, b, and ¢,
as in Figure P3.61. (a) Obtain a vector expression for
the face diagonal vector R;. What is the magnitude of
this vector? (b) Obtain a vector expression for the body
diagonal vector Ry. Note that Ry, ¢k, and Ry make a
right triangle, and prove that the magnitude of Ry is

Na? + b2 + 2
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ANSWERS TO QUICK QUIZZES

3.1 The honeybee needs to communicate to the other honey-
bees how far it is to the flower and in what direction they
must fly. This is exactly the kind of information that polar
coordinates convey, as long as the origin of the coordi-
nates is the beehive.

The resultant has magnitude A + Bwhen vector A is ori-
ented in the same direction as vector B. The resultant
vector is A + B = 0 when vector A is oriented in the di-
rection opposite vector Band A = B.

No. In two dimensions, a vector and its components form
aright triangle. The vector is the hypotenuse and must be

3.

N

3.

o

Answers to Quick Quizzes 75

62. A point lying in the xy plane and having coordinates
(x, y) can be described by the position vector given by
r = xi + yj. (a) Show that the displacement vector for a
particle moving from (x;, y;) to (x9, y9) is given by
d = (xo — x1)i + (y2 — y1)j. (b) Plot the position vec-
tors ry and ry and the displacement vector d, and verify
by the graphical method thatd =1, — r;.

63. A point Pis described by the coordinates (x, y) with re-
spect to the normal cartesian coordinate system shown
in Figure P3.63. Show that (', y'), the coordinates of
this point in the rotated coordinate system, are related
to (x, y) and the rotation angle a by the expressions

x' = xcosa + ysina

y = —«xsina + ycosa
y
oP
¥
\ ’
\\ X
-
\ -7
\ e
\ o
o ; *
Figure P3.63

longer than either side. Problem 61 extends this concept
to three dimensions.
3.4 No. The magnitude of a vector A is equal to

VA2 + A)? + A2 Therefore, if any component is non-
zero, A cannot be zero. This generalization of the Pythag-
orean theorem is left for you to prove in Problem 61.

3.5 The fact that A + B = 0 tells you that A = — B. There-
fore, the components of the two vectors must have oppo-
site signs and equal magnitudes: A, = — By, Ay = — By,

and A, = — B,.



This airplane is used by NASA for astro-
naut training. When it flies along a cer-
tain curved path, anything inside the
plane that is not strapped down begins to
float. What causes this strange effect?
(NASA)

web|

For more information on microgravity in
general and on this airplane, visit
http://microgravity. msfc.nasa.gov/
and http://www.jsc.nasa.gov/coop/
ke135/ke135. html
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Motion in Two Dimensions

Chapter Outline

4.1 The Displacement, Velocity, and 4.4 Uniform Circular Motion

Acceleration Vectors 4.5 Tangential and Radial Acceleration

4.2 Two-Dimensional Motion with

v 4.6 Relative Velocity and Relative
Constant Acceleration

Acceleration
4.3 Projectile Motion

4.1 The Displacement, Velocity, and Acceleration Vectors

n this chapter we deal with the kinematics of a particle moving in two dimen-
sions. Knowing the basics of two-dimensional motion will allow us to examine —
in future chapters—a wide variety of motions, ranging from the motion of satel-

lites in orbit to the motion of electrons in a uniform electric field. We begin by
studying in greater detail the vector nature of displacement, velocity, and accelera-
tion. As in the case of one-dimensional motion, we derive the kinematic equations
for two-dimensional motion from the fundamental definitions of these three quan-
tities. We then treat projectile motion and uniform circular motion as special cases
of motion in two dimensions. We also discuss the concept of relative motion,
which shows why observers in different frames of reference may measure different
displacements, velocities, and accelerations for a given particle.

4.1 - THE DISPLACEMENT, VELOCITY, AND
ACCELERATION VECTORS

In Chapter 2 we found that the motion of a particle moving along a straight line is
completely known if its position is known as a function of time. Now let us extend
this idea to motion in the xy plane. We begin by describing the position of a parti-
cle by its position vector r, drawn from the origin of some coordinate system to the
particle located in the xy plane, as in Figure 4.1. At time ¢; the particle is at point
®, and at some later time ¢ it is at point ®. The path from @ to ® is not neces-
sarily a straight line. As the particle moves from ® to in the time interval
At = t;— t;, its position vector changes from r; to r. As we learned in Chapter 2,
displacement is a vector, and the displacement of the particle is the difference be-
tween its final position and its initial position. We now formally define the dis-
placement vector Ar for the particle of Figure 4.1 as being the difference be-
tween its final position vector and its initial position vector:

Ar = T (4.1)

The direction of Ar is indicated in Figure 4.1. As we see from the figure, the mag-
nitude of Ar is less than the distance traveled along the curved path followed by
the particle.

As we saw in Chapter 2, it is often useful to quantify motion by looking at the
ratio of a displacement divided by the time interval during which that displace-
ment occurred. In two-dimensional (or three-dimensional) kinematics, everything
is the same as in one-dimensional kinematics except that we must now use vectors
rather than plus and minus signs to indicate the direction of motion.

We define the average velocity of a particle during the time interval At as the
displacement of the particle divided by that time interval:

Ar

E (4.2)

V=

Multiplying or dividing a vector quantity by a scalar quantity changes only the mag-
nitude of the vector, not its direction. Because displacement is a vector quantity
and the time interval is a scalar quantity, we conclude that the average velocity is a
vector quantity directed along Ar.

Note that the average velocity between points is independent of the path taken.
This is because average velocity is proportional to displacement, which depends
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Path of
particle

£

Figure 4.1 A particle moving in
the xy plane is located with the po-
sition vector r drawn from the ori-
gin to the particle. The displace-
ment of the particle as it moves
from ® to ® in the time interval
At = t;— t;is equal to the vector
Ar =r;— 1.

Displacement vector

Average velocity
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Figure 4.2  As a particle moves be-
tween two points, its average velocity is
in the direction of the displacement vec-
tor Ar. As the end point of the path is
moved from ® to ®' to ®’, the respec-
tive displacements and corresponding
time intervals become smaller and
smaller. In the limit that the end point
approaches ®, At approaches zero, and
the direction of Ar approaches that of
the line tangent to the curve at ®. By
definition, the instantaneous velocity at
® is in the direction of this tangent
line.

Y Direction of v at @
/

0

only on the initial and final position vectors and not on the path taken. As we did
with one-dimensional motion, we conclude that if a particle starts its motion at
some point and returns to this point via any path, its average velocity is zero for
this trip because its displacement is zero.

Consider again the motion of a particle between two points in the xy plane, as
shown in Figure 4.2. As the time interval over which we observe the motion be-
comes smaller and smaller, the direction of the displacement approaches that of
the line tangent to the path at ®.

The instantaneous velocity v is defined as the limit of the average velocity
Ar/Atas Atapproaches zero:
Ar _ dr

ve=fm o = “3)

That is, the instantaneous velocity equals the derivative of the position vector with
respect to time. The direction of the instantaneous velocity vector at any point in a
particle’s path is along a line tangent to the path at that point and in the direction
of motion (Fig. 4.3).

The magnitude of the instantaneous velocity vector v = |v| is called the speed,
which, as you should remember, is a scalar quantity.

or

Figure 4.3 A particle moves
\7 from position ® to position ®.
e Its velocity vector changes from
v; to vy The vector diagrams at
the upper right show two ways
of determining the vector Av
0 from the initial and final
velocities.

4.2 Two-Dimensional Motion with Constant Acceleration

As a particle moves from one point to another along some path, its instanta-
neous velocity vector changes from v; at time £ to vy at time #. Knowing the veloc-
ity at these points allows us to determine the average acceleration of the particle:

The average acceleration of a particle as it moves from one position to an-
other is defined as the change in the instantaneous velocity vector Av divided by
the time A¢ during which that change occurred:

VT Vi Av

=t At

a

(4.4)

Because it is the ratio of a vector quantity Av and a scalar quantity A, we conclude
that average acceleration a is a vector quantity directed along Av. As indicated in
Figure 4.3, the direction of Av is found by adding the vector — v; (the negative of
v;) to the vector vy, because by definition Av = v, — v;.

When the average acceleration of a particle changes during different time in-
tervals, it is useful to define its instantaneous acceleration a:

The instantaneous acceleration a is defined as the limiting value of the ratio
Av/Atas At approaches zero:
Av dv

= lim — = — 4.5
a= o At dt 14.5)

(@ In other words, the instantaneous acceleration equals the derivative of the velocity
35 vector with respect to time.

It is important to recognize that various changes can occur when a particle ac-
celerates. First, the magnitude of the velocity vector (the speed) may change with
time as in straight-line (one-dimensional) motion. Second, the direction of the ve-
locity vector may change with time even if its magnitude (speed) remains constant,
as in curved-path (two-dimensional) motion. Finally, both the magnitude and the
direction of the velocity vector may change simultaneously.

The gas pedal in an automobile is called the accelerator. (a) Are there any other controls in an
automobile that can be considered accelerators? (b) When is the gas pedal not an accelerator?

4.2_~ TWO-DIMENSIONAL MOTION WITH
CONSTANT ACCELERATION
Let us consider two-dimensional motion during which the acceleration remains

constant in both magnitude and direction.
The position vector for a particle moving in the xy plane can be written

r=xi+)yj (4.6)
where x, y, and r change with time as the particle moves while i and j remain con-

stant. If the position vector is known, the velocity of the particle can be obtained
from Equations 4.3 and 4.6, which give

v=ud+vj (4.7)

Average acceleration

Instantaneous acceleration
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Velocity vector as a function of time

Position vector as a function of
time
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Because a is assumed constant, its components a, and ay also are constants. There-
fore, we can apply the equations of kinematics to the x and y components of the
velocity vector. Substituting v,; = v,; + a,l and vy = v); + a;¢ into Equation 4.7 to
determine the final velocity at any time ¢, we obtain

V= (v T a )i+ (vy; + ayd)j

= (vl + vy§) + (ad + ayj)t

v,=v; + at (4.8)
This result states that the velocity of a particle at some time ¢ equals the vector sum
of its initial velocity v; and the additional velocity at acquired in the time ¢ as a re-
sult of constant acceleration.

Similarly, from Equation 2.11 we know that the x and y coordinates of a parti-
cle moving with constant acceleration are
xp=x;+ vt + éaxtQ Y=yt ot éa)ﬂ
Substituting these expressions into Equation 4.6 (and labeling the final position
vector ry) gives
1 9\ e 1 9\
rp= (% + vt + gad)i+ (y; + vyt + 5a,0%)j
. . . . 1, . .
= (xid + i) + (vl + v+ 5(ad + a2

=1+ vit + jai® (4.9)

Ty
This equation tells us that the displacement vector Ar = r; — r; is the vector sum
of a displacement v;z arising from the initial velocity of the particle and a displace-
ment %a# resulting from the uniform acceleration of the particle.

Graphical representations of Equations 4.8 and 4.9 are shown in Figure 4.4.
For simplicity in drawing the figure, we have taken r; = 0 in Figure 4.4a. That is,
we assume the particle is at the origin at ¢ = ¢; = 0. Note from Figure 4.4a that r/is
generally not along the direction of either v; or a because the relationship be-
tween these quantities is a vector expression. For the same reason, from Figure
4.4b we see that v/is generally not along the direction of v; or a. Finally, note that
vrand ryare generally not in the same direction.

y y
ayt v,
1,2 5 at
o Gy vy,
2 %y r el V
r al
Uyi v;
£
it Vil
2 Uyi ayt
Uyl %axt2
|
X7 Uy
(a) (b)

Figure 4.4 Vector representations and components of (a) the displacement and (b) the veloc-
ity of a particle moving with a uniform acceleration a. To simplify the drawing, we have set r; = 0.

4.2 Two-Dimensional Motion with Constant Acceleration

Because Equations 4.8 and 4.9 are vector expressions, we may write them in
component form:

vi=v;+at [v"/: va tad (4.8a)

vy = vyt oayt
X=X + vyt + %a,f

r=r;+vi+ iar® { (4.9a)

- 1. .2
Y=yt vyt +ogag
These components are illustrated in Figure 4.4. The component form of the equa-
tions for vyand ryshow us that two-dimensional motion at constant acceleration is
equivalent to two independent motions—one in the x direction and one in the y di-
rection—having constant accelerations a, and a,.
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EXAMPLE 4.1 ~ Motion in a Plane

A particle starts from the origin at ¢ = 0 with an initial veloc-
ity having an x component of 20 m/s and a y component of
— 15 m/s. The particle moves in the xy plane with an x com-
ponent of acceleration only, given by a, = 4.0 m/s2. (a) De-
termine the components of the velocity vector at any time
and the total velocity vector at any time.

Solution After carefully reading the problem, we realize
we can set v,; = 20 m/s, vy = 15 m/s, a, = 4.0 m/s?, and
a, = 0. This allows us to sketch a rough motion diagram of
the situation. The x component of velocity starts at 20 m/s
and increases by 4.0 m/s every second. The y component of
velocity never changes from its initial value of —15 m/s.
From this information we sketch some velocity vectors as
shown in Figure 4.5. Note that the spacing between successive
images increases as time goes on because the velocity is in-
creasing.
The equations of kinematics give

V= U T oad = (20 + 4.00) m/s
vy = Uyt oagt = —15m/s + 0= —15m/s
Therefore,

e vx/i + v}/j = [(20 + 4.00)i — 15§j] m/s

Figure 4.5 Motion diagram for the particle.

We could also obtain this result using Equation 4.8 di-
rectly, noting that a = 4.0i m/s? and v; = (20i — 15j) m/s.
According to this result, the x component of velocity in-
creases while the y component remains constant; this is con-
sistent with what we predicted. After a long time, the x com-
ponent will be so great that the y component will be
negligible. If we were to extend the object’s path in Figure
4.5, eventually it would become nearly parallel to the x axis. It
is always helpful to make comparisons between final answers
and initial stated conditions.

(b) Calculate the velocity and speed of the particle at { =
5.0s.

Solution With ¢ = 5.0 s, the result from part (a) gives
v, =1{[20 + 4.0(5.0)]i — 15§} m/s = (40i — 15j) m/s

This result tells us that at (= 5.0s, v,y = 40 m/s and v, =
—15 m/s. Knowing these two components for this two-
dimensional motion, we can find both the direction and the
magnitude of the velocity vector. To determine the angle 6
that v makes with the x axis at ¢ = 5.0 s, we use the fact that
tan 0 = v,/ vy

Uyp —15
0= tan~! ( ﬂ) = tan"! <7m/s) = =21°
Uy 40 m/s

where the minus sign indicates an angle of 21° below the pos-
itive x axis. The speed is the magnitude of v;:

o=yl =Vo,2+ u,2 =402 + (—15)2m/s = 43m/s

In looking over our result, we notice that if we calculate v
from the xand y components of v;, we find that v, > v;.Does
this make sense?

(c) Determine the x and y coordinates of the particle at
any time Zand the position vector at this time.



Solution Because x; =

Xp= vyt + gad® = (20t + 2.06%) m

Y= vt = (=15 m
Therefore, the position vector at any time ¢is

= x/i + y/' = [(20¢+ 2.06%)i — 154§] m
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= 0at ¢t = 0, Equation 2.11 gives  (Alternatively, we could obtain r,by applying Equation 4.9 di-

rectly, with v; = (20i — 15j) m/s and a = 4.0i m/s% Try it!)
Thus, for example, at t=5.0s, x=150m, y = — 75 m, and
r;= (150i — 75j) m. The magnitude of the displacement of
the particle from the origin at ¢ = 5.0 s is the magnitude of r;
at this time:

= lrl = V(150)2 + (=75)2m = 170 m

Note that this is not the distance that the particle travels in
this time! Can you determine this distance from the available
data?

Assumptions of projectile motion

Horizontal position component

Vertical position component

4.3 _~ PROJECTILE MOTION

Anyone who has observed a baseball in motion (or, for that matter, any other ob-
ject thrown into the air) has observed projectile motion. The ball moves in a
curved path, and its motion is simple to analyze if we make two assumptions:
(1) the free-fall acceleration g is constant over the range of motion and is directed
downward,! and (2) the effect of air resistance is neglig‘ible.2 With these assump-
tions, we find that the path of a projectile, which we call its trajectory, is always a
parabola. We use these assumptions throughout this chapter.

To show that the trajectory of a projectile is a parabola, let us choose our refer-
ence frame such that the y direction is vertical and positive is upward. Because air
resistance is neglected, we know that a, = —g (as in one-dimensional free fall)
and that a, = 0. Furthermore, let us assume that at { = 0, the projectile leaves the
origin (x; = y; = 0) with speed v;, as shown in Figure 4.6. The vector v, makes an
angle 6, with the horizontal, where 6; is the angle at which the projectile leaves the

(@ origin. From the definitions of the cosine and sine functions we have
35

cos 0; = v,/ v; sin 0; = v,;/v;
Therefore, the initial xand y components of velocity are
Uy, = v;cos 6; v

yi = v;sin 6;

Substituting the x component into Equation 4.9a with x; = 0 and a, = 0, we find
that

X7 = vyt = (v cos )1 (4.10)
Repeating with the y component and using y; = 0 and a; = — g, we obtain
V= vyt + %ayt2 = (v;sin 6,)t — %gﬂ (4.11)

Next, we solve Equation 4.10 for ¢ = x¢/(v; cos 6;) and substitute this expression
for tinto Equation 4.11; this gives

_ _ g 2
y = (tan 6)x < 902 col 0, )x (4.12)

! This assumption is reasonable as long as the range of motion is small compared with the radius of the
Earth (6.4 X 10° m). In effect, this assumption is equivalent to assuming that the Earth is flat over the
range of motion considered.

2 This assumption is generally not justified, especially at high velocities. In addition, any spin imparted
to a projectile, such as that applied when a pitcher throws a curve ball, can give rise to some very inter-
esting effects associated with aerodynamic forces, which will be discussed in Chapter 15.

4.3 Projectile Motion

c':iFigure 4.6 The parabolic path of a projectile that leaves the origin with a velocity v;. The veloc-

ity vector v changes with time in both magnitude and direction. This change is the result of accel-
eration in the negative y direction. The x component of velocity remains constant in time be-
cause there is no acceleration along the horizontal direction. The y component of velocity is zero
at the peak of the path.

This equation is valid for launch angles in the range 0 < 6; < 7/2. We have left
the subscripts off the x and y because the equation is valid for any point (x, y)
along the path of the projectile. The equation is of the form y = ax — bx?, which is
the equation of a parabola that passes through the origin. Thus, we have shown
that the trajectory of a projectile is a parabola. Note that the trajectory is com-
pletely specified if both the initial speed v; and the launch angle 6; are known.

The vector expression for the position vector of the projectile as a function of
time follows directly from Equation 4.9, withr; = 0 and a = g:

r=vi+ gt

This expression is plotted in Figure 4.7.

2
78!

il (%)

0 X

Figure 4.7 The position vector r of a projectile whose initial velocity at the origin is v;. The vec-
tor v;t would be the displacement of the projectile if gravity were absent, and the vector %gt2 is its
vertical displacement due to its downward gravitational acceleration.
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A welder cuts holes through a heavy metal
construction beam with a hot torch. The
sparks generated in the process follow para-
bolic paths.

QuickLab -~

Place two tennis balls at the edge of a
tabletop. Sharply snap one ball hori-
zontally off the table with one hand
while gently tapping the second ball
off with your other hand. Compare
how long it takes the two to reach the
floor. Explain your results.
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Multiflash exposure of a tennis
player executing a forehand swing.
Note that the ball follows a para-
bolic path characteristic of a pro-
jectile. Such photographs can be
used to study the quality of sports
equipment and the performance of
an athlete.

CHAPTER 4  Motion in Two Dimensions

It is interesting to realize that the motion of a particle can be considered the
superposition of the term v;t, the displacement if no acceleration were present,
and the term %gtz, which arises from the acceleration due to gravity. In other
words, if there were no gravitational acceleration, the particle would continue to
move along a straight path in the direction of v;. Therefore, the vertical distance
%ng through which the particle “falls” off the straightline path is the same dis-
tance that a freely falling body would fall during the same time interval. We con-
clude that projectile motion is the superposition of two motions: (1) con-
stant-velocity motion in the horizontal direction and (2) free-fall motion in
the vertical direction. Except for ¢, the time of flight, the horizontal and vertical
components of a projectile’s motion are completely independent of each other.

zontal components are all the same: 20 m/s. Because the ver-
tical motion is free fall, the vertical components of the veloc-
ity vectors change, second by second, from 40 m/s to roughly
30, 20, and 10 m/s in the upward direction, and then to
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about 4 s to go up and another 4 s to come back down, for a
total time of flight of approximately 8 s. Because the horizon-
tal component of velocity is 20 m/s, and because the ball
travels at this speed for 8 s, it ends up approximately 160 m

0 m/s. Subsequently, its velocity becomes 10, 20, 30, and  from its starting point.
40 m/s in the downward direction. Thus it takes the ball

EXAMPLE 4.2

A ball is thrown in such a way that its initial vertical and hori-
zontal components of velocity are 40 m/s and 20 m/s, re-
spectively. Estimate the total time of flight and the distance
the ball is from its starting point when it lands.

Approximating Projectile Motion

Solution We start by remembering that the two velocity
components are independent of each other. By considering
the vertical motion first, we can determine how long the ball
remains in the air. Then, we can use the time of flight to esti-
mate the horizontal distance covered.

A motion diagram like Figure 4.8 helps us organize what
we know about the problem. The acceleration vectors are all
the same, pointing downward with a magnitude of nearly
10 m/s2. The velocity vectors change direction. Their hori-

BELASESE
1) | 1‘1\

7

b

Figure 4.8 Motion diagram for a projectile.

-
P

Horizontal Range and Maximum Height of a Projectile

Let us assume that a projectile is fired from the origin at ¢; = 0 with a positive v); com-
ponent, as shown in Figure 4.9. Two points are especially interesting to analyze: the
peak point ®, which has cartesian coordinates (R/2, k), and the point ®, which has
coordinates (R, 0). The distance Ris called the horizontal range of the projectile, and
the distance % 1is its maximum height. Let us find hand Rin terms of v;, ;, and g.

We can determine 4 by noting that at the peak, v, = 0. Therefore, we can use
Equation 4.8a to determine the time 7, it takes the projectile to reach the peak:

Uy =y + ayl
0 = v;sin 6; — gip
v, sin 6;
A= T
g
Substituting this expression for ¢4 into the y part of Equation 4.9a and replacing

Y7 = yawith A, we obtain an expression for % in terms of the magnitude and direc-
tion of the initial velocity vector:

. v;sin @, | (v;sin6;)?
h = (v;sin 6;) — 38
) g

v sin? 6
h=——"—"—+ (4.13)
2

The range Ris the horizontal distance that the projectile travels in twice the time
it takes to reach its peak, that is, in a time (g = 21,. Using the x part of Equation 4.9a,
noting that v,; = v, = v; cos 6;, and setting R = xg at t = 215, we find that

R = v,lg = (v;cos 0;)21p
2v;sin 6; 20,2 sin 6; cos 0;
g g

Using the identity sin 20 = 2 sin 6 cos 6 (see Appendix B.4), we write R in the
more compact form

= (v;cos 6;)

9 .
R= v;~sin 26; (4.14)
g
Keep in mind that Equations 4.13 and 4.14 are useful for calculating 7 and R
only if v; and 6; are known (which means that only v; has to be specified) and if
the projectile lands at the same height from which it started, as it does in Fig-
ure 4.9.
The maximum value of R from Equation 4.14 is Ry, = v;?/g This result fol-
lows from the fact that the maximum value of sin 26; is 1, which occurs when 26; =
90°. Therefore, Ris a maximum when 6; = 45°.

vya =0
®
Vi
h
Ve |
R !

Figure 4.9 A projectile fired

from the origin at ¢; = 0 with an
initial velocity v;. The maximum
height of the projectile is 4, and
the horizontal range is R. At ®, the
peak of the trajectory, the particle
has coordinates (R/2, h).

Maximum height of projectile

Range of projectile
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QuickLab >~

To carry out this investigation, you
need to be outdoors with a small ball,
such as a tennis ball, as well as a wrist-
watch. Throw the ball straight up as
hard as you can and determine the
initial speed of your throw and the
approximate maximum height of the
ball, using only your watch. What
happens when you throw the ball at
some angle 6 # 90°? Does this
change the time of flight (perhaps
because it is easier to throw)? Can
you still determine the maximum
height and initial speed?

CHAPTER 4 Motion in Two Dimensions

y(m)

150 [~
v;=50m/s

x(m)

50 100 150 200 250

Figure 4.10 A projectile fired from the origin with an initial speed of 50 m/s at various angles
of projection. Note that complementary values of 6; result in the same value of x (range of the
projectile).

Figure 4.10 illustrates various trajectories for a projectile having a given initial
speed but launched at different angles. As you can see, the range is a maximum
for 6; = 45°. In addition, for any 6, other than 45°, a point having cartesian coordi-
nates (R, 0) can be reached by using either one of two complementary values of 6,
such as 75° and 15°. Of course, the maximum height and time of flight for one of
these values of 6; are different from the maximum height and time of flight for the
complementary value.

Quick Quiz 4.2

As a projectile moves in its parabolic path, is there any point along the path where the ve-
locity and acceleration vectors are (a) perpendicular to each other? (b) parallel to each
other? (c) Rank the five paths in Figure 4.10 with respect to time of flight, from the shortest
to the longest.

Problem-Solving Hints
Projectile Motion

We suggest that you use the following approach to solving projectile motion
problems:

® Select a coordinate system and resolve the initial velocity vector into xand y
components.

¢ Follow the techniques for solving constant-velocity problems to analyze the
horizontal motion. Follow the techniques for solving constant-acceleration
problems to analyze the vertical motion. The x and y motions share the
same time of flight ¢

EXAMPLE 4.3  The Long-Jump

A longjumper leaves the ground at an angle of 20.0° above
the horizontal and at a speed of 11.0 m/s. (a) How far does
he jump in the horizontal direction? (Assume his motion is
equivalent to that of a particle.)

Solution Because the initial speed and launch angle are
given, the most direct way of solving this problem is to use
the range formula given by Equation 4.14. However, it is
more instructive to take a more general approach and use
Figure 4.9. As before, we set our origin of coordinates at the

In a longjump event, 1993 United States champion Mike Powell
can leap horizontal distances of at least 8 m.
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takeoff point and label the peak as ® and the landing point
as ®. The horizontal motion is described by Equation 4.10:

xp= xg = (v;cos B)t g = (11.0 m/s) (cos 20.0°)t »

The value of xg can be found if the total time of the jump
is known. We are able to find tg by remembering that
ay = — g and by using the y part of Equation 4.8a. We also
note that at the top of the jump the vertical component of ve-
locity vy is zero:

Uy = Uya = v;sin 60, — giy
0 = (11.0 m/s) sin 20.0° — (9.80 m/s%) (5
tp=0.384s

This is the time needed to reach the top of the jump. Be-
cause of the symmetry of the vertical motion, an identical
time interval passes before the jumper returns to the ground.

Therefore, the total time in the air is tg = 24 = 0.768 s. Sub-
stituting this value into the above expression for x; gives

xp= xg = (11.0 m/s) (cos 20.0°) (0.768 s) = 7.94 m

This is a reasonable distance for a world-class athlete.

(b) What is the maximum height reached?
Solution We find the maximum height reached by using
Equation 4.11:

Ymax = Y& = (v;sin 01, — 35gt,°
= (11.0 m/s) (sin 20.0°) (0.384 s)
—3(9.80 m/s2) (0.384 5)*

0.722 m

Treating the longjumper as a particle is an oversimplifica-
tion. Nevertheless, the values obtained are reasonable.

Exercise To check these calculations, use Equations 4.13
and 4.14 to find the maximum height and horizontal range.

EXAMPLE 4.4

In a popular lecture demonstration, a projectile is fired at a
target in such a way that the projectile leaves the gun at the
same time the target is dropped from rest, as shown in Figure
4.11. Show that if the gun is initially aimed at the stationary
target, the projectile hits the target.

A Bull's-Eye Every Time

Solution We can argue that a collision results under the
conditions stated by noting that, as soon as they are released,
the projectile and the target experience the same accelera-

tion a, = — g First, note from Figure 4.11b that the initial y
coordinate of the target is x tan 6; and that it falls through a
distance %gt? in a time . Therefore, the y coordinate of the
target at any moment after release is

— 1,9
yT = xrtan 0; — 58t

Now if we use Equation 4.9a to write an expression for the y
coordinate of the projectile at any moment, we obtain

— 1,9
yp = xptan 0; — 58t
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Target 7]
/
-
&7 Y
[L02d | 1,2
&o// | 2 &
o !
S Y xp tan 6;
Point of
collision T
- ) .

Figure 4.11 (a) Multiflash photograph of projectile—target demonstration. If the gun is aimed directly at the target and is fired at the same
instant the target begins to fall, the projectile will hit the target. Note that the velocity of the projectile (red arrows) changes in direction and
magnitude, while the downward acceleration (violet arrows) remains constant. (Central Scientific Company.) (b) Schematic diagram of the pro-
jectile—target demonstration. Both projectile and target fall through the same vertical distance in a time ¢ because both experience the same

acceleration a, = — g

Thus, by comparing the two previous equations, we see that
when the y coordinates of the projectile and target are the
same, their x coordinates are the same and a collision results.
That is, when yp = yr, xp = x1. You can obtain the same re-
sult, using expressions for the position vectors for the projec-
tile and target.

Note that a collision will not always take place owing to a
further restriction: A collision can result only when
v;sin 0; = \gd/2, where d is the initial elevation of the target
above the floor. If v; sin 6; is less than this value, the projectile
will strike the floor before reaching the target.

&

EXAMPLE 4.5  That's Quite an Arm!

A stone is thrown from the top of a building upward at an
angle of 30.0° to the horizontal and with an initial speed of
20.0 m/s, as shown in Figure 4.12. If the height of the build-
ing is 45.0 m, (a) how long is it before the stone hits the
ground?

Solution We have indicated the various parameters in Fig-
ure 4.12. When working problems on your own, you should
always make a sketch such as this and label it.

The initial x and y components of the stone’s velocity are

v, = v;cos 0; = (20.0 m/s) (cos 30.0°) = 17.3 m/s

vy,; = v;sin 6; = (20.0 m/s) (sin 30.0°) = 10.0 m/s

i
To find ¢, we can use y,= vl + %a),t2 (Eq. 4.9a) with
V= —45.0 m, a, =g and vy = 10.0 m/s (there is a minus
sign on the numerical value of y,because we have chosen the
top of the building as the origin):

—45.0m = (10.0 m/s)¢ — 5(9.80 m/s?) (2
Solving the quadratic equation for ¢ gives, for the positive

root, t = 4.22s. Does the negative root have any physical

y v;=20.0 m/s

0.0 | g .

7! 0,=30.0° .

45.0 m R

f xr

Figure 4.12

meaning? (Can you think of another way of finding ¢ from
the information given?)

(b) What is the speed of the stone just before it strikes the
ground?

Solution We can use Equation 4.8a, vy = vy +oayl, with
t=4.22's to obtain the y component of the velocity just be-
fore the stone strikes the ground:
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v,y = 10.0m/s — (9.80 m/s%) (4.22s) = —31.4m/s

The negative sign indicates that the stone is moving down-
ward. Because v, = v,; = 17.3 m/s, the required speed is

o=Vu 2+ v, 2 =V(17.3)2 + (=314 m/s = 35.9m/s

Exercise  Where does the stone strike the ground?

Answer 73.0 m from the base of the building.

3l

EXAMPLE 4.6  The Stranded Explorers

An Alaskan rescue plane drops a package of emergency ra-
tions to a stranded party of explorers, as shown in Figure
4.13. If the plane is traveling horizontally at 40.0 m/s and is
100 m above the ground, where does the package strike the
ground relative to the point at which it was released?

Solution For this problem we choose the coordinate sys-
tem shown in Figure 4.13, in which the origin is at the point
of release of the package. Consider first the horizontal mo-
tion of the package. The only equation available to us for
finding the distance traveled along the horizontal direction is
x;= vyt (Eq. 4.92). The initial x component of the package

y
- 4().0 M /5

100 m

> .
s f“-."—i‘k‘l’
Tt

Y

Figure 4.13

velocity is the same as that of the plane when the package is
released: 40.0 m/s. Thus, we have

xp= (40.0 m/s)t

If we know ¢, the length of time the package is in the air,
then we can determine x;, the distance the package travels in
the horizontal direction. To find (, we use the equations that
describe the vertical motion of the package. We know that at
the instant the package hits the ground, its y coordinate is
yy= —100 m. We also know that the initial vertical compo-
nent of the package velocity vy; is zero because at the mo-
ment of release, the package had only a horizontal compo-
nent of velocity.

From Equation 4.9a, we have

1
= —agl®
—100m = —1(9.80 m/s2) 12
(=452

Substitution of this value for the time of flight into the
equation for the x coordinate gives

x;= (40.0 m/s)(4.52s) = 181 m

The package hits the ground 181 m to the right of the drop
point.

Exercise  What are the horizontal and vertical components
of the velocity of the package just before it hits the ground?

Answer vy = 40.0 m/s; v, = —44.3 m/s.

Exercise Where is the plane when the package hits the
ground? (Assume that the plane does not change its speed or
course.)

Answer Directly over the package.




EXAMPLE 4.7  The End of the Ski Jump

A ski jumper leaves the ski track moving in the horizontal di-
rection with a speed of 25.0 m/s, as shown in Figure 4.14.
The landing incline below him falls off with a slope of 35.0°.
Where does he land on the incline?

Solution It is reasonable to expect the skier to be air-
borne for less than 10 s, and so he will not go farther than
250 m horizontally. We should expect the value of d, the dis-
tance traveled along the incline, to be of the same order of
magnitude. It is convenient to select the beginning of the
jump as the origin (x; = 0, y; = 0). Because v,; = 25.0 m/s
and vy; = 0, the x and y component forms of Equation 4.9a
are

(1) xp= vyl = (25.0m/s)¢
@) y= 34,0 = —59.80 m/s?) 2

From the right triangle in Figure 4.14, we see that the
Jjumper’s x and y coordinates at the landing point are x;=

25.0 m/s
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d cos 35.0° and y, = —d sin 35.0°. Substituting these relation-
ships into (1) and (2), we obtain

(3)  dcos35.0° = (25.0 m/s)(
(4)  —dsin35.0° = —3(9.80 m/s%) 2

Solving (3) for ¢ and substituting the result into (4), we find
that d = 109 m. Hence, the x and y coordinates of the point
at which he lands are

xp = dcos 35.0° = (109 m) cos 35.0° = 89.3 m
yy= —dsin 35.0° = — (109 m) sin 35.0° = —62.5m

Exercise Determine how long the jumper is airborne and
his vertical component of velocity just before he lands.

Answer 3.57s; —35.0m/s.

Figure 4.14

s

) ‘What would have occurred if the skier in the last example happened to be car-

“™ rying a stone and let go of it while in midair? Because the stone has the same ini-

tial velocity as the skier, it will stay near him as he moves—that is, it floats along-
side him. This is a technique that NASA uses to train astronauts. The plane
pictured at the beginning of the chapter flies in the same type of projectile path
that the skier and stone follow. The passengers and cargo in the plane fall along-

4.4 Uniform Circular Motion

Figure 4.15 This multiflash photo-
graph of two balls released simultane-
ously illustrates both free fall (red ball)
and projectile motion (yellow ball). The
yellow ball was projected horizontally,
while the red ball was released from
rest. (Richard Megna/Fundamental Pho-
tographs)

side each other; that is, they have the same trajectory. An astronaut can release a
piece of equipment and it will float freely alongside her hand. The same thing
happens in the space shuttle. The craft and everything in it are falling as they orbit
the Earth.

4.4 _~ UNIFORM CIRCULAR MOTION

o) Figure 4.16a shows a car moving in a circular path with constant linear speed wv.
- . . . . 0 i) . .
36 Such motion is called uniform circular motion. Because the car’s direction of mo-

tion changes, the car has an acceleration, as we learned in Section 4.1. For any mo-
tion, the velocity vector is tangent to the path. Consequently, when an object moves
in a circular path, its velocity vector is perpendicular to the radius of the circle.

We now show that the acceleration vector in uniform circular motion is always
perpendicular to the path and always points toward the center of the circle. An ac-

Figure 4.16 (a) A car moving along a circular path at constant speed experiences uniform cir-
cular motion. (b) As a particle moves from ® to ®), its velocity vector changes from v; to vy

(c) The construction for determining the direction of the change in velocity Av, which is toward
the center of the circle for small Ar.
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QuickLab >~

Armed with nothing but a ruler and
the knowledge that the time between
images was 1/30 s, find the horizon-
tal speed of the yellow ball in Figure
4.15. (Hint: Start by analyzing the mo-
tion of the red ball. Because you
know its vertical acceleration, you can
calibrate the distances depicted in
the photograph. Then you can find
the horizontal speed of the yellow
ball.)
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celeration of this nature is called a centripetal (center-seeking) acceleration, and
its magnitude is

(4.15)

where ris the radius of the circle and the notation a, is used to indicate that the
centripetal acceleration is along the radial direction.

To derive Equation 4.15, consider Figure 4.16b, which shows a particle first at
point ® and then at point ®. The particle is at ® at time ¢, and its velocity at that
time is v;. It is at ® at some later time #;, and its velocity at that time is v.. Let us as-
sume here that v; and v/ differ only in direction; their magnitudes (speeds) are the
same (that is, v; = v; = v). To calculate the acceleration of the particle, let us be-
gin with the defining equation for average acceleration (Eq. 4.4):

Av
L= At

This equation indicates that we must subtract v; from v/, being sure to treat them
as vectors, where Av = A\l is the change in the velocity. Because v; + Av = Vi
we can find the vector Av, using the vector triangle in Figure 4.16c.

Now consider the triangle in Figure 4.16b, which has sides Arand r. This trian-
gle and the one in Figure 4.16c, which has sides Av and v, are similar. This fact en-
ables us to write a relationship between the lengths of the sides:

Av _ Ar

v r

This equation can be solved for Av and the expression so obtained substituted into
a = Av/At (Eq. 4.4) to give

vAr

rAt

a =

Now imagine that points ® and in Figure 4.16b are extremely close to-
gether. In this case Av points toward the center of the circular path, and because
the acceleration is in the direction of Av, it too points toward the center. Further-
more, as ® and ® approach each other, At approaches zero, and the ratio Ar/A¢
approaches the speed v. Hence, in the limit At — 0, the magnitude of the acceler-
ation is

Thus, we conclude that in uniform circular motion, the acceleration is directed to-
ward the center of the circle and has a magnitude given by v/, where v is the
speed of the particle and ris the radius of the circle. You should be able to show
that the dimensions of a, are L/T2. We shall return to the discussion of circular
motion in Section 6.1.

4.5_~ TANGENTIAL AND RADIAL ACCELERATION

4.5 Tangential and Radial Acceleration

s Path of a
~TTTTS particle L
N

® « AN 7 a

Figure 4.17 The motion of a particle along an arbitrary curved path lying in the xy plane. If
the velocity vector v (always tangent to the path) changes in direction and magnitude, the com-
ponent vectors of the acceleration a are a tangential component @, and a radial component a,.

celeration vector a changes from point to point. This vector can be resolved into
two component vectors: a radial component vector a, and a tangential component
vector a,. Thus, a can be written as the vector sum of these component vectors:
a=a,ta, (4.16)
The tangential acceleration causes the change in the speed of the particle. It
is parallel to the instantaneous velocity, and its magnitude is
d|v|

“== (4.17)

The radial acceleration arises from the change in direction of the velocity
vector as described earlier and has an absolute magnitude given by

a, = — (4.18)
r

where ris the radius of curvature of the path at the point in question. Because a,
and a, are mutually perpendicular component vectors of a, it follows that
a=a,?+ a’. As in the case of uniform circular motion, a, in nonuniform circu-
lar motion always points toward the center of curvature, as shown in Figure 4.17.
Also, at a given speed, a, is large when the radius of curvature is small (as at points
® and ® in Figure 4.17) and small when ris large (such as at point ©). The direc-
tion of a, is either in the same direction as v (if v is increasing) or opposite v (if v
is decreasing).

In uniform circular motion, where v is constant, @, = 0 and the acceleration is
always completely radial, as we described in Section 4.4. (Note: Eq. 4.18 is identical
to Eq. 4.15.) In other words, uniform circular motion is a special case of motion
along a curved path. Furthermore, if the direction of v does not change, then
there is no radial acceleration and the motion is one-dimensional (in this case,
a, = 0, but @, may not be zero).

(a) Draw a motion diagram showing velocity and acceleration vectors for an object moving
with constant speed counterclockwise around a circle. Draw similar diagrams for an object
moving counterclockwise around a circle but (b) slowing down at constant tangential accel-
eration and (c) speeding up at constant tangential acceleration.

Total acceleration

Tangential acceleration

Radial acceleration

93

(@ Now let us consider a particle moving along a curved path where the velocity
36 changes both in direction and in magnitude, as shown in Figure 4.17. As is always
the case, the velocity vector is tangent to the path, but now the direction of the ac-

It is convenient to write the acceleration of a particle moving in a circular path
in terms of unit vectors. We do this by defining the unit vectors r and 6 shown in
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a=a, +a

4

<
e

() (b)

Figure 4.18 (a) Descriptions of the unit vectors ¥ and 6. (b) The total acceleration a of a parti-
cle moving along a curved path (which at any instant is part of a circle of radius 7) is the sum of
radial and tangential components. The radial component is directed toward the center of curva-
ture. If the tangential component of acceleration becomes zero, the particle follows uniform cir-
cular motion.

Figure 4.18a, where I is a unit vector lying along t})c radius vector and directed ra-
dially outward from the center of the circle and  is a unit vector tangent to the
circle. The direction of @ is in the direction of increasing 6, where 6 is measured
counterclockwise from the positive x axis. Note that both f and @ “move along with
the particle” and so vary in time. Using this notation, we can express the total ac-
celeration as

dlv| » v,

60— —r (4.19)
dt r

a=a,ta,=

These vectors are described in Figure 4.18b. The negative sign on the v%/rterm in
Equation 4.19 indicates that the radial acceleration is always directed radially in-
ward, opposite t.

] Quick uis 4.4 8

Based on your experience, draw a motion diagram showing the position, velocity, and accel-
eration vectors for a pendulum that, from an initial position 45° to the right of a central ver-
tical line, swings in an arc that carries it to a final position 45° to the left of the central verti-
cal line. The arc is part of a circle, and you should use the center of this circle as the origin
for the position vectors.

EXAMPLE 4.8 The Swinging Ball

A ball tied to the end of a string 0.50 m in length swings in a
vertical circle under the influence of gravity, as shown in Fig-
ure 4.19. When the string makes an angle § = 20° with the
vertical, the ball has a speed of 1.5 m/s. (a) Find the magni-
tude of the radial component of acceleration at this instant.

Solution The diagram from the answer to Quick Quiz 4.4
(p. 109) applies to this situation, and so we have a good idea
of how the acceleration vector varies during the motion. Fig-

ure 4.19 lets us take a closer look at the situation. The radial
acceleration is given by Equation 4.18. With v = 1.5 m/s and
r = 0.50 m, we find that

v? (1.5 m/s)?

= 4, 2
r 050m SEE

a, =

(b) What is the magnitude of the tangential acceleration
when 6 = 20°?

4.6 Relative Velocity and Relative Acceleration

ponent of g tangent to the circle). Therefore, at 6 = 20°,

a, = gsin 20° = 3.4 m/s2.

(c) Find the magnitude and direction of the total acceler-
ation aat § = 20°.

Solution Because a = a, + a;, the magnitude of a at § =
20° is

a=Va2+ a2 =V(45)2 + (34)%m/s> = 5.6m/s

If ¢ is the angle between a and the string, then
e (84 m/s2> _ .
=tan ' —=tn!(-"——%]= 37
4 an a, n < 45 m/s?

Note that a, a,, and a, all change in direction and magni-
tude as the ball swings through the circle. When the ball is at
its lowest elevation (6 = 0), @, = 0 because there is no tan-

minimum because v is now a minimum. Finally, in the two  component a,.

gential (_:()mp()nc'nt of g at this angle; also, a, is a maximum be- Figure 4.19 Motion of a ball suspended by a string of length .
cause v is a maximum. If the ball has enough speed to reach  The ball swings with nonuniform circular motion in a vertical plane,
its highest position (6 = 180°), then g, is again zero but a,isa  and its acceleration a has a radial component @, and a tangential
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Solution When the ball is at an angle 6 to the vertical, it horizontal positions (§ = 90° and 270°), |a,| = gand 4, has a
has a tangential acceleration of magnitude gsin 6 (the com-  value between its minimum and maximum values.

4.6_~ RELATIVE VELOCITY AND RELATIVE ACCELERATION

In this section, we describe how observations made by different observers in differ-
ent frames of reference are related to each other. We find that observers in differ-
ent frames of reference may measure different displacements, velocities, and accel-
erations for a given particle. That is, two observers moving relative to each other
generally do not agree on the outcome of a measurement.

:o:\ For example, suppose two cars are moving in the same direction with speeds
37 of 50 mi/h and 60 mi/h. To a passenger in the slower car, the speed of the faster

car is 10 mi/h. Of course, a stationary observer will measure the speed of the faster
car to be 60 mi/h, not 10 mi/h. Which observer is correct? They both are! This
simple example demonstrates that the velocity of an object depends on the frame
of reference in which it is measured.

Suppose a person riding on a skateboard (observer A) throws a ball in such a
way that it appears in this person’s frame of reference to move first straight upward
and then straight downward along the same vertical line, as shown in Figure 4.20a.
A stationary observer B sees the path of the ball as a parabola, as illustrated in Fig-
ure 4.20b. Relative to observer B, the ball has a vertical component of velocity (re-
sulting from the initial upward velocity and the downward acceleration of gravity)
and a horizontal component.

Another example of this concept that of is a package dropped from an air-
plane flying with a constant velocity; this is the situation we studied in Example
4.6. An observer on the airplane sees the motion of the package as a straight line
toward the Earth. The stranded explorer on the ground, however, sees the trajec-
tory of the package as a parabola. If, once it drops the package, the airplane con-
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Figure 4.20 (a) Observer A on a moving vehicle throws a ball upward and sees it rise and fall
in a straight-line path. (b) Stationary observer B sees a parabolic path for the same ball.

tinues to move horizontally with the same velocity, then the package hits the
ground directly beneath the airplane (if we assume that air resistance is ne-
glected)!

In a more general situation, consider a particle located at point ® in Figure
4.21. Imagine that the motion of this particle is being described by two observers,
one in reference frame S, fixed relative to the Earth, and another in reference
frame S, moving to the right relative to S (and therefore relative to the Earth)
with a constant velocity vy. (Relative to an observer in §’, S moves to the left with a
velocity —vy.) Where an observer stands in a reference frame is irrelevant in this
discussion, but for purposes of this discussion let us place each observer at her or
his respective origin.

We label the position of the particle relative to the S frame with the position
vector r and that relative to the S’ frame with the position vector r’, both after
some time ¢. The vectors r and r’ are related to each other through the expression
r=r'+ vyt,or

r=r— vy (4.20)

r Figure 4.21 A particle located at ® is
described by two observers, one in the
fixed frame of reference S, and the other
in the frame S, which moves to the right

0 Vol o with a constant velocity vy. The vector r is
the particle’s position vector relative to S,

and r' is its position vector relative to §'.

S
Yo

4.6 Relative Velocity and Relative Acceleration

The woman standing on the beltway sees the walking man pass by at a slower speed than the
woman standing on the stationary floor does.

That is, after a time ¢, the §’ frame is displaced to the right of the S frame by an
amount vyl.

If we differentiate Equation 4.20 with respect to time and note that vy is con-
stant, we obtain

a _dr
a a0
vV =v-—yv (4.21)

where v’ is the velocity of the particle observed in the §' frame and v is its velocity
observed in the S frame. Equations 4.20 and 4.21 are known as Galilean transfor-
mation equations. They relate the coordinates and velocity of a particle as mea-
sured in a frame fixed relative to the Earth to those measured in a frame moving
with uniform motion relative to the Earth.

Although observers in two frames measure different velocities for the particle,
they measure the same acceleration when v;, is constant. We can verify this by taking
the time derivative of Equation 4.21:

av'  dv dv,

dt dt dt

Because v, is constant, dvy/di = 0. Therefore, we conclude that a’ = a because
a’ = dv'/dt and a = dv/dt. That is, the acceleration of the particle measured
by an observer in the Earth’s frame of reference is the same as that mea-
sured by any other observer moving with constant velocity relative to the
Earth’s frame.

A passenger in a car traveling at 60 mi/h pours a cup of coffee for the tired driver. Describe
the path of the coffee as it moves from a Thermos bottle into a cup as seen by (a) the pas-
senger and (b) someone standing beside the road and looking in the window of the car as
it drives past. (c) What happens if the car accelerates while the coffee is being poured?

Galilean velocity transformation
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EXAMPLE 4.9 ~ ABoat Crossing a River

A boat heading due north crosses a wide river with a speed of
10.0 km/h relative to the water. The water in the river has a uni-
form speed of 5.00 km/h due east relative to the Earth. Deter-
mine the velocity of the boat relative to an observer standing on
either bank.

Solution We know V> the velocity of the boat relative to
the river, and v,g, the velocity of the river relative to the Earth.
What we need to find is vy, the velocity of the boat relative to
the Earth. The relationship between these three quantities is

VbE = Vi T Vi

The terms in the equation must be manipulated as vector
quantities; the vectors are shown in Figure 4.22. The quantity
V18 due north, vig is due east, and the vector sum of the
two, Vi, is at an angle 6, as defined in Figure 4.22. Thus, we
can find the speed vy, of the boat relative to the Earth by us-
ing the Pythagorean theorem:

vpe = Vop2 + v,62 = V(10.0)% + (5.00)% km/h

= 11.2km/h

The direction of vy is

v, 5.00
0= -1 'L>:, ’1<7>:‘6.6°
tan ( o tan 100 2

The boat is moving at a speed of 11.2 km/h in the direction
26.6° east of north relative to the Earth.

Exercise If the width of the river is 3.0 km, find the time it
takes the boat to cross it.

Answer 18 min.

Figure 4.22

EXAMPLE 4.10 ~ Which Way Should We Head?

If the boat of the preceding example travels with the same
speed of 10.0 km/h relative to the river and is to travel
due north, as shown in Figure 4.23, what should its heading
be?

Solution Asin the previous example, we know v, and the
magnitude of the vector v, and we want vy, to be directed
across the river. Figure 4.23 shows that the boat must head
upstream in order to travel directly northward across the
river. Note the difference between the triangle in Figure 4.22
and the one in Figure 4.23 —specifically, that the hypotenuse
in Figure 4.23 is no longer vi. Therefore, when we use the
Pythagorean theorem to find vy, this time, we obtain

o = Vou,? — 062 = V(10.0)2 — (5.00)2 km/h = 8.66 km/h

Now that we know the magnitude of vy, we can find the di-
rection in which the boat is heading:

6= tan"! ( s ) = tan"! <ﬁ> = 30.0°
UpE 8.66

The boat must steer a course 30.0° west of north.

Exercise If the width of the river is 3.0 km, find the time it
takes the boat to cross it.

Answer 21 min.

Figure 4.23

Summary

SUMMARY

If a particle moves with constant acceleration a and has velocity v; and position r; at
t = 0, its velocity and position vectors at some later time ¢ are

v,=v;+al (4.8)
=1+ vi+ tar? (4.9)

For two-dimensional motion in the xy plane under constant acceleration, each of
these vector expressions is equivalent to two component expressions—one for the
motion in the x direction and one for the motion in the y direction. You should be
able to break the two-dimensional motion of any object into these two compo-
nents.

Projectile motion is one type of two-dimensional motion under constant ac-
celeration, where a, = 0 and a, = — g It is useful to think of projectile motion as
the superposition of two motions: (1) constant-velocity motion in the x direction
and (2) free-fall motion in the vertical direction subject to a constant downward
acceleration of magnitude g = 9.80 m/s% You should be able to analyze the mo-
tion in terms of separate horizontal and vertical components of velocity, as shown
in Figure 4.24.

A particle moving in a circle of radius r with constant speed v is in uniform
circular motion. It undergoes a centripetal (or radial) acceleration a, because the
direction of v changes in time. The magnitude of a, is

a =" (4.18)

and its direction is always toward the center of the circle.

If a particle moves along a curved path in such a way that both the magnitude
and the direction of v change in time, then the particle has an acceleration vector
that can be described by two component vectors: (1) a radial component vector a,
that causes the change in direction of v and (2) a tangential component vector
a, that causes the change in magnitude of v. The magnitude of a, is ©%/7, and the
magnitude of a, is d|v|/dt You should be able to sketch motion diagrams for an
object following a curved path and show how the velocity and acceleration vectors
change as the object’s motion varies.

The velocity v of a particle measured in a fixed frame of reference S can be re-
lated to the velocity v’ of the same particle measured in a moving frame of refer-
ence S’ by

vV=v-yv (4.21)

where v is the velocity of §" relative to S. You should be able to translate back and
forth between different frames of reference.

am————— _
’¢" ~“~~ U= Uy; = v;CO86; y
—_— Yyi g
s )
b f l
N | «~—— x—————>|
Projectile motion Horizontal Vertical motion
is equivalent to... motion at and... at constant
constant velocity acceleration

Figure 4.24 Analyzing projectile motion in terms of horizontal and vertical components.
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QUESTIONS

1. Can an object accelerate if its speed is constant? Can an

object accelerate if its velocity is constant?

2. If the average velocity of a particle is zero in some time in-

terval, what can you say about the displacement of the

particle for that interval?

If you know the position vectors of a particle at two points

along its path and also know the time it took to get from

one point to the other, can you determine the particle’s
instantaneous velocity? Its average velocity? Explain.

4. Describe a situation in which the velocity of a particle is

always perpendicular to the position vector.

Explain whether or not the following particles have an ac-

celeration: (a) a particle moving in a straight line with

constant speed and (b) a particle moving around a curve
with constant speed.

6. Correct the following statement: “The racing car rounds
the turn at a constant velocity of 90 mi/h.”

7. Determine which of the following moving objects have an
approximately parabolic trajectory: (a) a ball thrown in
an arbitrary direction, (b) a jet airplane, (c) a rocket leav-
ing the launching pad, (d) a rocket whose engines fail a
few minutes after launch, (e) a tossed stone moving to
the bottom of a pond.

8. Arock is dropped at the same instant that a ball at the
same initial elevation is thrown horizontally. Which will
have the greater speed when it reaches ground level?

A spacecraft drifts through space at a constant velocity.
Suddenly, a gas leak in the side of the spacecraft causes a
constant acceleration of the spacecraft in a direction per-
pendicular to the initial velocity. The orientation of the
spacecraft does not change, and so the acceleration re-
mains perpendicular to the original direction of the ve-
locity. What is the shape of the path followed by the
spacecraft in this situation?

10. A ball is projected horizontally from the top of a building.
One second later another ball is projected horizontally
from the same point with the same velocity. At what point
in the motion will the balls be closest to each other? Will
the first ball always be traveling faster than the second
ball? How much time passes between the moment the
first ball hits the ground and the moment the second one
hits the ground? Can the horizontal projection velocity of
the second ball be changed so that the balls arrive at the
ground at the same time?

11. A student argues that as a satellite orbits the FEarth in a
circular path, the satellite moves with a constant velocity

12

13,

—_
>

15.

16.

17.

20,

21.

22.

23.

and therefore has no acceleration. The professor claims
that the student is wrong because the satellite must have a
centripetal acceleration as it moves in its circular orbit.
What is wrong with the student’s argument?

What is the fundamental difference between the unit vec-
tors  and § and the unit vectors i and j?

At the end of its arc, the velocity of a pendulum is zero. Is
its acceleration also zero at this point?

If a rock is dropped from the top of a sailboat’s mast, will
it hit the deck at the same point regardless of whether the
boat is at rest or in motion at constant velocity?

A stone is thrown upward from the top of a building.
Does the stone’s displacement depend on the location of
the origin of the coordinate system? Does the stone’s ve-
locity depend on the location of the origin?

Is it possible for a vehicle to travel around a curve without
accelerating? Explain.

A baseball is thrown with an initial velocity of (10i + 15j)
m/s. When it reaches the top of its trajectory, what are

(a) its velocity and (b) its acceleration? Neglect the effect
of air resistance.

. An object moves in a circular path with constant speed v.

(a) Is the velocity of the object constant? (b) Is its acceler-
ation constant? Explain.

.] A projectile is fired at some angle to the horizontal with

some initial speed v;, and air resistance is neglected. Is
the projectile a freely falling body? What is its accelera-
tion in the vertical direction? What is its acceleration in
the horizontal direction?

A projectile is fired at an angle of 30° from the horizontal
with some initial speed. Firing at what other projectile an-
gle results in the same range if the initial speed is the
same in both cases? Neglect air resistance.

A projectile is fired on the Earth with some initial velocity.
Another projectile is fired on the Moon with the same ini-
tial velocity. If air resistance is neglected, which projectile
has the greater range? Which reaches the greater alti-
tude? (Note that the free-fall acceleration on the Moon is
about 1.6 m/s%.)

As a projectile moves through its parabolic trajectory,
which of these quantities, if any, remain constant:

(a) speed, (b) acceleration, (c) horizontal component of
velocity, (d) vertical component of velocity?

A passenger on a train that is moving with constant veloc-
ity drops a spoon. What is the acceleration of the spoon
relative to (a) the train and (b) the Earth?

PR

OBLEMS

Problems 101

1, 2, 3 = straightforward, intermediate, challenging D = full solution available in the Student Solutions Manual and Study Guide

WeB = solution posted at http://www.saunderscollege.com/physics/ g = Computer useful in solving problem \F

]

= paired numerical/symbolic problems

= Interactive Physics

Section 4.1 The Displ Velocity, and Accel
Vectors

WeB @ A motorist drives south at 20.0 m/s for 3.00 min, then

2

3

4

turns west and travels at 25.0 m/s for 2.00 min, and fi-
nally travels northwest at 30.0 m/s for 1.00 min. For this
6.00-min trip, find (a) the total vector displacement,

(b) the average speed, and (c) the average velocity. Use
a coordinate system in which east is the positive x axis.

. Suppose that the position vector for a particle is given
ast = xi + yj, with x = at + band y = > + d, where
a=1.00m/s,b=1.00m, ¢c= 0.125m/s?, and d = 1.00
m. (a) Calculate the average velocity during the time in-
terval from ¢ = 2.00 s to ¢ = 4.00 s. (b) Determine the
velocity and the speed at ¢ = 2.00 s.

. A golf ball is hit off a tee at the edge of a cliff. Its xand y
coordinates versus time are given by the following ex-
pressions:

x= (18.0 m/s)t
and
y = (4.00 m/s)t — (4.90 m/s?) 2

(a) Write a vector expression for the ball’s position as a
function of time, using the unit vectors i and j. By taking
derivatives of your results, write expressions for (b) the
velocity vector as a function of time and (c) the accelera-
tion vector as a function of time. Now use unit vector no-
tation to write expressions for (d) the position, (e) the
velocity, and (f) the acceleration of the ball, all at
t=3.00s.

. The coordinates of an object moving in the xy plane
vary with time according to the equations

x = —(5.00 m) sin wt

and
y = (400m) — (5.00 m)cos wt

where ¢is in seconds and o has units of seconds ™.

(a) Determine the components of velocity and compo-
nents of acceleration at ¢ = 0. (b) Write expressions for
the position vector, the velocity vector, and the accelera-
tion vector at any time ¢ > 0. (c) Describe the path of
the object on an xy graph.

Section 4.2 Two-Dimensional Motion
with Constant Acceleration

5.

. At ¢ = 0, a particle moving in the xy plane with constant
acceleration has a velocity of v; = (3.00i — 2.00j) m/s
when it is at the origin. At ¢ = 3.00 s, the particle’s ve-
locity is v = (9.00i + 7.00j) m/s. Find (a) the accelera-
tion of the particle and (b) its coordinates at any time .

6.

The vector position of a particle varies in time accord-
ing to the expression r = (3.00i — 6.00[2j) m. (a) Find
expressions for the velocity and acceleration as func-
tions of time. (b) Determine the particle’s position and
velocity at £ = 1.00 s.

A fish swimming in a horizontal plane has velocity

v; = (4.00i + 1.00j) m/s at a point in the ocean whose
displacement from a certain rock is r; = (10.0i — 4.00j)
m. After the fish swims with constant acceleration for
20.0 s, its velocity is v = (20.0i — 5.00j) m/s. (a) What
are the components of the acceleration? (b) What is the
direction of the acceleration with respect to the unit vec-
tor i? (c) Where is the fish at ¢ = 25.0 s if it maintains its
original acceleration and in what direction is it moving?
A particle initially located at the origin has an accelera-
tion of a = 3.00j m/s* and an initial velocity of v; =
5.00i m/s. Find (a) the vector position and velocity at
any time ¢and (b) the coordinates and speed of the
particle at ¢ = 2.00 s.

Section 4.3 Projectile Motion
(Neglect air resistance in all problems and take g =
9.80 m/s2)

wes |9.| In a local bar, a customer slides an empty beer mug

down the counter for a refill. The bartender is momen-
tarily distracted and does not see the mug, which slides
off the counter and strikes the floor 1.40 m from the
base of the counter. If the height of the counter is

0.860 m, (a) with what velocity did the mug leave the
counter and (b) what was the direction of the mug’s
velocity just before it hit the floor?

In a local bar, a customer slides an empty beer mug
down the counter for a refill. The bartender is momen-
tarily distracted and does not see the mug, which slides
off the counter and strikes the floor at distance d from
the base of the counter. If the height of the counter is A,
(a) with what velocity did the mug leave the counter
and (b) what was the direction of the mug’s velocity just
before it hit the floor?

. One strategy in a snowball fight is to throw a first snow-

ball at a high angle over level ground. While your oppo-
nent is watching the first one, you throw a second one
at a low angle and timed to arrive at your opponent be-
fore or at the same time as the first one. Assume both
snowballs are thrown with a speed of 25.0 m/s. The first
one is thrown at an angle of 70.0° with respect to the
horizontal. (a) At what angle should the second (low-
angle) snowball be thrown if it is to land at the same
point as the first? (b) How many seconds later should
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the second snowball be thrown if it is to land at the
same time as the first?

A tennis player standing 12.6 m from the net hits the
ball at 3.00° above the horizontal. To clear the net, the
ball must rise at least 0.330 m. If the ball just clears the
net at the apex of its trajectory, how fast was the ball
moving when it left the racket?

An artillery shell is fired with an initial velocity of

300 m/s at 55.0° above the horizontal. It explodes on a
mountainside 42.0 s after firing. What are the xand y
coordinates of the shell where it explodes, relative to its
firing point?

An astronaut on a strange planet finds that she can
jump a maximum horizontal distance of 15.0 m if her
initial speed is 3.00 m/s. What is the free-fall accelera-
tion on the planet?

A projectile is fired in such a way that its horizontal

range is equal to three times its maximum height. What
is the angle of projection? Give your answer to three sig-
nificant figures.

. A ball is tossed from an upper-story window of a build-

ing. The ball is given an initial velocity of 8.00 m/s at an
angle of 20.0° below the horizontal. It strikes the
ground 3.00 s later. (a) How far horizontally from the
base of the building does the ball strike the ground?

(b) Find the height from which the ball was thrown.

(c) How long does it take the ball to reach a point

10.0 m below the level of launching?

. A cannon with a muzzle speed of 1 000 m/s is used to

start an avalanche on a mountain slope. The target is

2 000 m from the cannon horizontally and 800 m above
the cannon. At what angle, above the horizontal, should
the cannon be fired?

. Consider a projectile that is launched from the origin of

an xy coordinate system with speed v; at initial angle 6;
above the horizontal. Note that at the apex of its trajec-
tory the projectile is moving horizontally, so that the
slope of its path is zero. Use the expression for the tra-
jectory given in Equation 4.12 to find the x coordinate
that corresponds to the maximum height. Use this x co-
ordinate and the symmetry of the trajectory to deter-
mine the horizontal range of the projectile.

wes S.? |E| A placekicker must kick a football from a point 36.0 m

20.

(about 40 yards) from the goal, and half the crowd
hopes the ball will clear the crossbar, which is 3.05 m
high. When kicked, the ball leaves the ground with a
speed of 20.0 m/s at an angle of 53.0° to the horizontal.
(a) By how much does the ball clear or fall short of
clearing the crossbar? (b) Does the ball approach the
crossbar while still rising or while falling?

A firefighter 50.0 m away from a burning building di-
rects a stream of water from a fire hose at an angle of
30.0° above the horizontal, as in Figure P4.20. If the
speed of the stream is 40.0 m/s, at what height will the
water strike the building?

Figure P4.20 Problems 20 and 21. (Frederick McKinney/FPG Interna-

21. A firefighter a distance d from a burning building di-

rects a stream of water from a fire hose at angle 6; above
the horizontal as in Figure P4.20. If the initial speed of
the stream is v;, at what height % does the water strike
the building?

22. A soccer player kicks a rock horizontally off a cliff

40.0 m high into a pool of water. If the player hears the
sound of the splash 3.00 s later, what was the initial
speed given to the rock? Assume the speed of sound in
air to be 343 m/s.

23. A basketball star covers 2.80 m horizontally in a jump to

dunk the ball (Fig. P4.23). His motion through space
can be modeled as that of a particle at a point called his
center of mass (which we shall define in Chapter 9). His
center of mass is at elevation 1.02 m when he leaves the
floor. It reaches a maximum height of 1.85 m above the
floor and is at elevation 0.900 m when he touches down
again. Determine (a) his time of flight (his “hang
time”), (b) his horizontal and (c) vertical velocity com-
ponents at the instant of takeoff, and (d) his takeoff an-
gle. (e) For comparison, determine the hang time of a
whitetail deer making a jump with center-of-mass eleva-
tions y; = 1.20 m, ypay = 2.50 m, y,= 0.700 m.

Figure P4.23 (Top, Ron Chapple/FPG International;
bottom, Bill Lea/Dembinsky Photo Associates)
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Section 4.4 Uniform Circular Motion
24. The orbit of the Moon about the Earth is approximately

circular, with a mean radius of 3.84 X 108 m. It takes
27.3 days for the Moon to complete one revolution
about the Earth. Find (a) the mean orbital speed of the
Moon and (b) its centripetal acceleration.

wes The athlete shown in Figure P4.25 rotates a 1.00-kg dis-

cus along a circular path of radius 1.06 m. The maximum
speed of the discus is 20.0 m/s. Determine the magni-
tude of the maximum radial acceleration of the discus.

Figure P4.25 (Sam Sargent/Liaison International)

26. From information on the endsheets of this book, com-

pute, for a point located on the surface of the Earth at
the equator, the radial acceleration due to the rotation
of the Earth about its axis.

27. A tire 0.500 m in radius rotates at a constant rate of

200 rev/min. Find the speed and acceleration of a small
stone lodged in the tread of the tire (on its outer edge).
(Hint: In one revolution, the stone travels a distance
equal to the circumference of its path, 27r.)

28. During liftoff, Space Shuttle astronauts typically feel ac-

celerations up to 1.4g, where g = 9.80 m/s?. In their
training, astronauts ride in a device where they experi-
ence such an acceleration as a centripetal acceleration.
Specifically, the astronaut is fastened securely at the end
of a mechanical arm that then turns at constant speed
in a horizontal circle. Determine the rotation rate, in
revolutions per second, required to give an astronaut a
centripetal acceleration of 1.40g while the astronaut
moves in a circle of radius 10.0 m.

29. Young David who slew Goliath experimented with slings

before tackling the giant. He found that he could re-
volve a sling of length 0.600 m at the rate of 8.00 rev/s.
If he increased the length to 0.900 m, he could revolve
the sling only 6.00 times per second. (a) Which rate of
rotation gives the greater speed for the stone at the end
of the sling? (b) What is the centripetal acceleration of
the stone at 8.00 rev/s? (c) What is the centripetal ac-
celeration at 6.00 rev/s?
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30. The astronaut orbiting the Earth in Figure P4.30 is
preparing to dock with a Westar VI satellite. The satel-
lite is in a circular orbit 600 km above the Earth’s sur-
face, where the free-fall acceleration is 8.21 m/s%. The
radius of the Earth is 6 400 km. Determine the speed of
the satellite and the time required to complete one or-
bit around the Earth.

Figure P4.30 (Courtesy of NASA)

Section 4.5 T

@ A train slows down as it rounds a sharp horizontal
curve, slowing from 90.0 km/h to 50.0 km/h in the
15.0 s that it takes to round the curve. The radius of the
curve is 150 m. Compute the acceleration at the mo-
ment the train speed reaches 50.0 km/h. Assume that
the train slows down at a uniform rate during the 15.0-s
interval.

32. An automobile whose speed is increasing at a rate of
0.600 m/s? travels along a circular road of radius 20.0 m.
When the instantaneous speed of the automobile is 4.00
m/s, find (a) the tangential acceleration component,
(b) the radial acceleration component, and (c) the
magnitude and direction of the total acceleration.

Figure P4.33 shows the total acceleration and velocity of
a particle moving clockwise in a circle of radius 2.50 m

ial and Radial Acceleration

Figure P4.33

at a given instant of time. At this instant, find (a) the ra-
dial acceleration, (b) the speed of the particle, and
(c) its tangential acceleration.

34. A student attaches a ball to the end of a string 0.600 m
in length and then swings the ball in a vertical circle.
The speed of the ball is 4.30 m/s at its highest point
and 6.50 m/s at its lowest point. Find the acceleration
of the ball when the string is vertical and the ball is at
(a) its highest point and (b) its lowest point.

35. A ball swings in a vertical circle at the end of a rope
1.50 m long. When the ball is 36.9° past the lowest point
and on its way up, its total acceleration is (— 22.5i +
20.2§) m/s%. At that instant, (a) sketch a vector diagram
showing the components of this acceleration, (b) deter-
mine the magnitude of its radial acceleration, and
(c) determine the speed and velocity of the ball.

Section 4.6 Relative Velocity and Relative Accel

36. Heather in her Corvette accelerates at the rate of
(3.00i — 2.00§) m/s%, while Jill in her Jaguar accelerates
at (1.00i + 3.00j) m/s?. They both start from rest at the
origin of an xy coordinate system. After 5.00 s, (a) what
is Heather’s speed with respect to Jill, (b) how far apart
are they, and (c) what is Heather’s acceleration relative
to Jill?

A river has a steady speed of 0.500 m/s. A student swims

upstream a distance of 1.00 km and swims back to the

starting point. If the student can swim at a speed of

1.20 m/s in still water, how long does the trip take?

Compare this with the time the trip would take if the

water were still.

How long does it take an automobile traveling in the

left lane at 60.0 km/h to pull alongside a car traveling

in the right lane at 40.0 km/h if the cars’ front bumpers
are initially 100 m apart?

The pilot of an airplane notes that the compass indi-

cates a heading due west. The airplane’s speed relative

to the air is 150 km/h. If there is a wind of 30.0 km/h
toward the north, find the velocity of the airplane rela-
tive to the ground.

40. Two swimmers, Alan and Beth, start at the same point in
a stream that flows with a speed v. Both move at the
same speed ¢ (¢ > v) relative to the stream. Alan swims
downstream a distance L and then upstream the same
distance. Beth swims such that her motion relative to
the ground is perpendicular to the banks of the stream.
She swims a distance L in this direction and then back.
The result of the motions of Alan and Beth is that they
both return to the starting point. Which swimmer re-
turns first? (Note: First guess at the answer.)

41. A child in danger of drowning in a river is being carried
downstream by a current that has a speed of 2.50 km/h.
The child is 0.600 km from shore and 0.800 km up-
stream of a boat landing when a rescue boat sets out.

(a) If the boat proceeds at its maximum speed of
20.0 km/h relative to the water, what heading relative to
the shore should the pilot take? (b) What angle does

38,

39,

the boat velocity make with the shore? (c) How long

does it take the boat to reach the child?
42. A bolt drops from the ceiling of a train car that is accel-
erating northward at a rate of 2.50 m/s%. What is the ac-
celeration of the bolt relative to (a) the train car and
(b) the Earth?
A science student is riding on a flatcar of a train travel-
ing along a straight horizontal track at a constant speed
of 10.0 m/s. The student throws a ball into the air along
a path that he judges to make an initial angle of 60.0°
with the horizontal and to be in line with the track. The
student’s professor, who is standing on the ground
nearby, observes the ball to rise vertically. How high
does she see the ball rise?

ADDITIONAL PROBLEMS

44. Aball is thrown with an initial speed v;at an angle 6, with
the horizontal. The horizontal range of the ball is R, and
the ball reaches a maximum height R/6. In terms of R
and g, find (a) the time the ball is in motion, (b) the
ball’s speed at the peak of its path, (c) the initial vertical
component of its velocity, (d) its initial speed, and (e) the
angle 0;. (f) Suppose the ball is thrown at the same initial
speed found in part (d) but at the angle appropriate for
reaching the maximum height. Find this height. (g) Sup-
pose the ball is thrown at the same initial speed but at the
angle necessary for maximum range. Find this range.

45. As some molten metal splashes, one droplet flies off to
the east with initial speed v; at angle 6, above the hori-
zontal, and another droplet flies off to the west with the
same speed at the same angle above the horizontal, as
in Figure P4.45. In terms of v; and 6, find the distance
between the droplets as a function of time.

Figure P4.45

46. A ball on the end of a string is whirled around in a hori-
zontal circle of radius 0.300 m. The plane of the circle
is 1.20 m above the ground. The string breaks and the
ball lands 2.00 m (horizontally) away from the point on
the ground directly beneath the ball’s location when
the string breaks. Find the radial acceleration of the
ball during its circular motion.

47. A projectile is fired up an incline (incline angle ¢) with
an initial speed v; at an angle 6, with respect to the hori-
zontal (6; > ¢), as shown in Figure P4.47. (a) Show that
the projectile travels a distance d up the incline, where

d= 202 cos 0;sin(0; — ¢)
gcos® ¢

48.

50.

51
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Path of the projectile
e

Figure P4.47

(b) For what value of 6;is d a maximum, and what is
that maximum value of d?

A student decides to measure the muzzle velocity of the
pellets from his BB gun. He points the gun horizontally.
On a vertical wall a distance x away from the gun, a tar-
get is placed. The shots hit the target a vertical distance
y below the gun. (a) Show that the vertical displacement
component of the pellets when traveling through the
air is given by y = Ax?, where A is a constant. (b) Ex-
press the constant A in terms of the initial velocity and
the free-fall acceleration. (c) If x = 3.00 m and y =
0.210 m, what is the initial speed of the pellets?

.| A’ home run is hit in such a way that the baseball just

clears a wall 21.0 m high, located 130 m from home
plate. The ball is hit at an angle of 35.0° to the horizon-
tal, and air resistance is negligible. Find (a) the initial
speed of the ball, (b) the time it takes the ball to reach
the wall, and (c) the velocity components and the speed
of the ball when it reaches the wall. (Assume the ball is
hit at a height of 1.00 m above the ground.)

An astronaut standing on the Moon fires a gun so that
the bullet leaves the barrel initially moving in a horizon-
tal direction. (a) What must be the muzzle speed of the
bullet so that it travels completely around the Moon and
returns to its original location? (b) How long does this
trip around the Moon take? Assume that the free-fall ac-
celeration on the Moon is one=sixth that on the Earth.

. A pendulum of length 1.00 m swings in a vertical plane

(Fig. 4.19). When the pendulum is in the two horizontal
positions 6 = 90° and 6 = 270°, its speed is 5.00 m/s.

(a) Find the magnitude of the radial acceleration and
tangential acceleration for these positions. (b) Draw a
vector diagram to determine the direction of the total ac-
celeration for these two positions. (c) Calculate the mag-
nitude and direction of the total acceleration.

A basketball player who is 2.00 m tall is standing on the
floor 10.0 m from the basket, as in Figure P4.52. If he
shoots the ball at a 40.0° angle with the horizontal, at
what initial speed must he throw so that it goes through
the hoop without striking the backboard? The basket
height is 3.05 m.

A particle has velocity components

v, = +4m/s vy = —(6m/s)t+ 4m/s

Calculate the speed of the particle and the direction

6 = tan"! (v,/v,) of the velocity vector at ¢ = 2.00 s.
When baseball players throw the ball in from the out-
field, they usually allow it to take one bounce before it
reaches the infielder on the theory that the ball arrives
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10.0 m

Figure P4.52

sooner that way. Suppose that the angle at which a
bounced ball leaves the ground is the same as the angle
at which the outfielder launched it, as in Figure P4.54,
but that the ball’s speed after the bounce is one half of
what it was before the bounce. (a) Assuming the ball is
always thrown with the same initial speed, at what angle
0 should the ball be thrown in order to go the same dis-
tance D with one bounce (blue path) as a ball thrown
upward at 45.0° with no bounce (green path)? (b) De-
termine the ratio of the times for the one-bounce and
no-bounce throws.

55.

57.

Figure P4.54

A boy can throw a ball a maximum horizontal distance
of 40.0 m on a level field. How far can he throw the
same ball vertically upward? Assume that his muscles
give the ball the same speed in each case.

. A boy can throw a ball a maximum horizontal distance

of Ron alevel field. How far can he throw the same ball
vertically upward? Assume that his muscles give the ball
the same speed in each case.

A stone at the end of a sling is whirled in a vertical cir-
cle of radius 1.20 m at a constant speed v; = 1.50 m/s
as in Figure P4.57. The center of the string is 1.50 m
above the ground. What is the range of the stone if it is
released when the sling is inclined at 30.0° with the hor-
izontal (a) at A? (b) at B? What is the acceleration of
the stone (c) just before it is released at A? (d) just after
itis released at A?

58.
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Figure P4.57

A quarterback throws a football straight toward a re-
ceiver with an initial speed of 20.0 m/s, at an angle of
30.0° above the horizontal. At that instant, the receiver
is 20.0 m from the quarterback. In what direction and
with what constant speed should the receiver run to
catch the football at the level at which it was thrown?

A bomber is flying horizontally over level terrain, with a

60.

speed of 275 m/s relative to the ground, at an altitude
of 3 000 m. Neglect the effects of air resistance. (a) How
far will a bomb travel horizontally between its release
from the plane and its impact on the ground? (b) If the
plane maintains its original course and speed, where
will it be when the bomb hits the ground? (c) At what
angle from the vertical should the telescopic bombsight
be set so that the bomb will hit the target seen in the
sight at the time of release?

A person standing at the top of a hemispherical rock of
radius R kicks a ball (initially at rest on the top of the
rock) to give it horizontal velocity v; as in Figure P4.60.
(a) What must be its minimum initial speed if the ball is
never to hit the rock after it is kicked? (b) With this ini-
tial speed, how far from the base of the rock does the
ball hit the ground?

Figure P4.60

A hawk is flying horizontally at 10.0 m/s in a straight

62.

63.

64.

line, 200 m above the ground. A mouse it has been car-
rying struggles free from its grasp. The hawk continues
on its path at the same speed for 2.00 s before attempt-
ing to retrieve its prey. To accomplish the retrieval, it
dives in a straight line at constant speed and recaptures
the mouse 3.00 m above the ground. (a) Assuming no
air resistance, find the diving speed of the hawk.

(b) What angle did the hawk make with the horizontal
during its descent? (c) For how long did the mouse “en-
joy” free fall?

A truck loaded with cannonball watermelons stops sud-
denly to avoid running over the edge of a washed-out
bridge (Fig. P4.62). The quick stop causes a number of
melons to fly off the truck. One melon rolls over the
edge with an initial speed v; = 10.0 m/s in the horizon-
tal direction. A cross-section of the bank has the shape
of the bottom half of a parabola with its vertex at the
edge of the road, and with the equation y* = 16x,
where xand yare measured in meters. What are the x
and y coordinates of the melon when it splatters on the
bank?

Problems 107

wes ‘ A car is parked on a steep incline overlooking the

5366.

Figure P4.62

A catapult launches a rocket at an angle of 53.0° above
the horizontal with an initial speed of 100 m/s. The
rocket engine immediately starts a burn, and for 3.00 s
the rocket moves along its initial line of motion with an
acceleration of 30.0 m/s2. Then its engine fails, and the
rocket proceeds to move in free fall. Find (a) the maxi-

mum altitude reached by the rocket, (b) its total time of

flight, and (c) its horizontal range.

A river flows with a uniform velocity v. A person in a
motorboat travels 1.00 km upstream, at which time she
passes a log floating by. Always with the same throttle
setting, the boater continues to travel upstream for an-
other 60.0 min and then returns downstream to her
starting point, which she reaches just as the same log
does. Find the velocity of the river. (Hint: The time of
travel of the boat after it meets the log equals the time
of travel of the log.)

ocean, where the incline makes an angle of 37.0° below
the horizontal. The negligent driver leaves the car in
neutral, and the parking brakes are defective. The car
rolls from rest down the incline with a constant acceler-
ation of 4.00 m/s?, traveling 50.0 m to the edge of a ver-
tical cliff. The cliff is 30.0 m above the ocean. Find

(a) the speed of the car when it reaches the edge of the
cliff and the time it takes to get there, (b) the velocity of
the car when it lands in the ocean, (c) the total time the
car is in motion, and (d) the position of the car when it
lands in the ocean, relative to the base of the cliff.

The determined coyote is out once more to try to cap-
ture the elusive roadrunner. The coyote wears a pair of
Acme jet-powered roller skates, which provide a con-
stant horizontal acceleration of 15.0 m/s? (Fig. P4.66).
The coyote starts off at rest 70.0 m from the edge of a
cliff at the instant the roadrunner zips past him in the
direction of the cliff. (a) If the roadrunner moves with
constant speed, determine the minimum speed he must
have to reach the cliff before the coyote. At the brink of
the cliff, the roadrunner escapes by making a sudden
turn, while the coyote continues straight ahead. (b) If
the cliff is 100 m above the floor of a canyon, determine
where the coyote lands in the canyon (assume his skates
remain horizontal and continue to operate when he is
in “flight”). (c) Determine the components of the coy-
ote’s impact velocity.

Chicken
Delightus
o

Coyoté
7 Stupidus

Figure P4.66

A skier leaves the ramp of a ski jump with a velocity of

10.0 m/s, 15.0° above the horizontal, as in Figure P4.67.
The slope is inclined at 50.0°, and air resistance is negli-
gible. Find (a) the distance from the ramp to where the
Jjumper lands and (b) the velocity components just be-
fore the landing. (How do you think the results might
be affected if air resistance were included? Note that
jumpers lean forward in the shape of an airfoil, with
their hands at their sides, to increase their distance.
Why does this work?)
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10.0 m/s

Figure P4.67

v;=250m/s v

68.

69.

igo.

Two soccer players, Mary and Jane, begin running from
nearly the same point at the same time. Mary runs in an
casterly direction at 4.00 m/s, while Jane takes off in a
direction 60.0° north of east at 5.40 m/s. (a) How long
is it before they are 25.0 m apart? (b) What is the veloc-
ity of Jane relative to Mary? (c) How far apart are they
after 4.00 s?

Do not hurt yourself; do not strike your hand against
anything. Within these limitations, describe what you do
to give your hand a large acceleration. Compute an or-
der-of-magnitude estimate of this acceleration, stating
the quantities you measure or estimate and their values.
An enemy ship is on the western side of a mountain is-
land, as shown in Figure P4.70. The enemy ship can ma-
neuver to within 2 500 m of the 1 800-m-high mountain
peak and can shoot projectiles with an initial speed of
250 m/s. If the eastern shoreline is horizontally 300 m
from the peak, what are the distances from the eastern
shore at which a ship can be safe from the bombard-
ment of the enemy ship?

Figure P4.70

ANSWERS TO QUICK QUIZZES

4.1 (a) Because acceleration occurs whenever the velocity

4

changes in any way—with an increase or decrease in
speed, a change in direction, or both—the brake pedal
can also be considered an accelerator because it causes
the car to slow down. The steering wheel is also an accel-
erator because it changes the direction of the velocity
vector. (b) When the car is moving with constant speed,
the gas pedal is not causing an acceleration; it is an ac-
celerator only when it causes a change in the speedome-
ter reading.

(a) At only one point—the peak of the trajectory—are
the velocity and acceleration vectors perpendicular to
each other. (b) If the object is thrown straight up or
down, v and a are parallel to each other throughout the
downward motion. Otherwise, the velocity and accelera-
tion vectors are never parallel to each other. (c) The
greater the maximum height, the longer it takes the pro-
jectile to reach that altitude and then fall back down from

4.3

it. So, as the angle increases from 0° to 90°, the time of
flight increases. Therefore, the 15° angle gives the short-
est time of flight, and the 75° angle gives the longest.

(a) Because the object is moving with a constant speed,

the velocity vector is always the same length; because the
motion is circular, this vector is always tangent to the cir-

cle. The only acceleration is that which changes the di-
rection of the velocity vector; it points radially inward.

(a)

(b) Now there is a component of the acceleration vector
that is tangent to the circle and points in the direction
opposite the velocity. As a result, the acceleration vector
does not point toward the center. The object is slowing
down, and so the velocity vectors become shorter and
shorter.

®

(b)

(c) Now the tangential component of the acceleration
points in the same direction as the velocity. The object is
speeding up, and so the velocity vectors become longer
and longer.
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4.4 The motion diagram is as shown below. Note that each

position vector points from the pivot point at the center
of the circle to the position of the ball.

I
=3
<
I
=3

v

4.5 (a) The passenger sees the coffee pouring nearly verti-

cally into the cup, just as if she were standing on the
ground pouring it. (b) The stationary observer sees the
coffee moving in a parabolic path with a constant hori-
zontal velocity of 60 mi/h (=88 ft/s) and a downward
acceleration of — g. If it takes the coffee 0.10 s to reach
the cup, the stationary observer sees the coffee moving
8.8 ft horizontally before it hits the cup! (c) If the car
slows suddenly, the coffee reaches the place where the
cup would have been had there been no change in velocity
and continues falling because the cup has not yet
reached that location. If the car rapidly speeds up, the
coffee falls behind the cup. If the car accelerates side-
ways, the coffee again ends up somewhere other than
the cup.



The Spirit of Akron is an airship that is
more than 60 m long. When it is parked
atan airport, one person can easily sup-
portit overhead using a single hand.
Nonetheless, it is impossible for even a
very strong adult to move the ship
abruptly. What property of this huge air-
ship makes it very difficult to cause any
sudden changes in its motion?  (Cour-
tesy of Edward E. Ogden)

=3

For more information about the airship,
visit http://www.goodyear.com/us/blimp/
index.html
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The Laws of Motion

Chapter Outline

5.1 The Concept of Force 5.5 The Force of Gravity and Weight
5.2 Newton'’s First Law and Inertial 5.6 Newton'’s Third Law

Frames 5.7 Some Applications of Newton’s
5.3 Mass Laws
5.4 Newton’s Second Law 5.8 Forces of Friction

5.1 The Concept of Force

n Chapters 2 and 4, we described motion in terms of displacement, velocity,

and acceleration without considering what might cause that motion. What

might cause one particle to remain at rest and another particle to accelerate? In
this chapter, we investigate what causes changes in motion. The two main factors
we need to consider are the forces acting on an object and the mass of the object.
We discuss the three basic laws of motion, which deal with forces and masses and
were formulated more than three centuries ago by Isaac Newton. Once we under-
stand these laws, we can answer such questions as “What mechanism changes mo-
tion?” and “Why do some objects accelerate more than others?”

5.1 - THE CONCEPT OF FORCE

Everyone has a basic understanding of the concept of force from everyday experi-
ence. When you push your empty dinner plate away, you exert a force on it. Simi-
larly, you exert a force on a ball when you throw or kick it. In these examples, the
word forceis associated with muscular activity and some change in the velocity of an
object. Forces do not always cause motion, however. For example, as you sit read-
ing this book, the force of gravity acts on your body and yet you remain stationary.
As a second example, you can push (in other words, exert a force) on a large boul-
der and not be able to move it.

What force (if any) causes the Moon to orbit the Earth? Newton answered this
and related questions by stating that forces are what cause any change in the veloc-
ity of an object. Therefore, if an object moves with uniform motion (constant ve-
locity), no force is required for the motion to be maintained. The Moon’s velocity
is not constant because it moves in a nearly circular orbit around the Earth. We
now know that this change in velocity is caused by the force exerted on the Moon
by the Earth. Because only a force can cause a change in velocity, we can think of
force as that which causes a body to accelerate. In this chapter, we are concerned with
the relationship between the force exerted on an object and the acceleration of
that object.

What happens when several forces act simultaneously on an object? In this
case, the object accelerates only if the net force acting on it is not equal to zero.
The net force acting on an object is defined as the vector sum of all forces acting
on the object. (We sometimes refer to the net force as the total force, the resultant
Jorce, or the unbalanced force.) If the net force exerted on an object is zero, then
the acceleration of the object is zero and its velocity remains constant. That
is, if the net force acting on the object is zero, then the object either remains at
rest or continues to move with constant velocity. When the velocity of an object is
constant (including the case in which the object remains at rest), the object is said
to be in equilibrium.

When a coiled spring is pulled, as in Figure 5.1a, the spring stretches. When a
stationary cart is pulled sufficently hard that friction is overcome, as in Figure 5.1b,
the cart moves. When a football is kicked, as in Figure 5.1c, it is both deformed
and set in motion. These situations are all examples of a class of forces called con-
tact forces. That is, they involve physical contact between two objects. Other exam-
ples of contact forces are the force exerted by gas molecules on the walls of a con-
tainer and the force exerted by your feet on the floor.

Another class of forces, known as field forces, do not involve physical contact be-
tween two objects but instead act through empty space. The force of gravitational
attraction between two objects, illustrated in Figure 5.1d, is an example of this
class of force. This gravitational force keeps objects bound to the Earth. The plan-
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A body accelerates because of an
external force

Definition of equilibrium
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Contact forces Field forces

—y

() ()

Figure 5.1 Some examples of applied forces. In each case a force is exerted on the object
within the boxed area. Some agent in the environment external to the boxed area exerts a force
on the object.

ets of our Solar System are bound to the Sun by the action of gravitational forces.
Another common example of a field force is the electric force that one electric
charge exerts on another, as shown in Figure 5.1e. These charges might be those
of the electron and proton that form a hydrogen atom. A third example of a field
force is the force a bar magnet exerts on a piece of iron, as shown in Figure 5.1f.
The forces holding an atomic nucleus together also are field forces but are very
short in range. They are the dominating interaction for particle separations of the
order of 1071° m.

Early scientists, including Newton, were uneasy with the idea that a force can
act between two disconnected objects. To overcome this conceptual problem,
Michael Faraday (1791-1867) introduced the concept of a field. According to this
approach, when object 1 is placed at some point P near object 2, we say that object
1 interacts with object 2 by virtue of the gravitational field that exists at P. The
gravitational field at Pis created by object 2. Likewise, a gravitational field created
by object 1 exists at the position of object 2. In fact, all objects create a gravita-
tional field in the space around themselves.

The distinction between contact forces and field forces is not as sharp as you
may have been led to believe by the previous discussion. When examined at the
atomic level, all the forces we classify as contact forces turn out to be caused by
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electric (field) forces of the type illustrated in Figure 5.1e. Nevertheless, in devel-
oping models for macroscopic phenomena, it is convenient to use both classifica-
tions of forces. The only known fundamental forces in nature are all field forces:
(1) gravitational forces between objects, (2) electromagnetic forces between elec-
tric charges, (3) strong nuclear forces between subatomic particles, and (4) weak
nuclear forces that arise in certain radioactive decay processes. In classical physics,
we are concerned only with gravitational and electromagnetic forces.

Measuring the Strength of a Force

It is convenient to use the deformation of a spring to measure force. Suppose we
apply a vertical force to a spring scale that has a fixed upper end, as shown in Fig-
ure 5.2a. The spring elongates when the force is applied, and a pointer on the
scale reads the value of the applied force. We can calibrate the spring by defining ouiCkLab -~
the unit force F as the force that produces a pointer reading of 1.00 cm. (Because g0 ennis ball, two drinking
force is a vector quantity, we use the bold-faced symbol F.) If we now apply a differ-  siraws, and a friend. Place the ball on
ent downward force Fy whose magnitude is 2 units, as seen in Figure 5.2b, the  a table. You and your friend can each
pointer moves to 2.00 cm. Figure 5.2¢ shows that the combined effect of the two ~ apply a force to the ball by blowing
collinear forces is the sum of the effects of the individual forces. lh;o"’gh the straws éhdd rori’ﬁ"la']y
Now suppose the two forces are applied simultaneously with F; downward and ?h::\di:l:l::ii:;z :;f:t:kz [;e) ©
Fy horizontal, as illustrated in Figure 5.2d. In this case, the pointer reads  pall Try a variety of configurations:
V5 cm? = 2.24 cm. The single force F that would produce this same reading is the ~ Blow in opposite dircctions against
sum of the two vectors F; and Fy, as described in Figure 5.2d. That is, {)ll‘e l""*ll"_bkl"” m ;he same :‘reﬁ“”"’
|F| = V£ + 1% = 2.24units, and its direction is 6= tan™! (= 0.500) = —26.67. o' IR USR0S0 I
Because forces are vector quantities, you must use the rules of vector addi- o, nature of the forces?
tion to obtain the net force acting on an object.

Fy
(a) (b)

Figure 5.2 The vector nature of a force is tested with a spring scale. (a) A downward force Fy
elongates the spring 1 cm. (b) A downward force Fy elongates the spring 2 cm. (c) When Fy and
Fy are applied simultaneously, the spring elongates by 3 cm. (d) When F, is downward and Fy is
horizontal, the combination of the two forces elongates the spring V12 + 22 cm = \/g cm.
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5.2 _~ NEWTON’S FIRST LAW AND INERTIAL FRAMES

5) Before we state Newton’s first law, consider the following simple experiment. Sup-

22 pose a book is lying on a table. Obviously, the book remains at rest. Now imagine

QuickLab -~

Use a drinking straw to impart a
strong, short-duration burst of air
against a tennis ball as it rolls along a
tabletop. Make the force perpendicu-
lar to the ball’s path. What happens
to the ball’s motion? What is different
if you apply a continuous force (con-
stant magnitude and direction) that
is directed along the direction of mo-
tion?

Newton’s first law

Definition of inertia

Definition of inertial frame

that you push the book with a horizontal force great enough to overcome the
force of friction between book and table. (This force you exert, the force of fric-
tion, and any other forces exerted on the book by other objects are referred to as
external forces.) You can keep the book in motion with constant velocity by applying
a force that is just equal in magnitude to the force of friction and acts in the oppo-
site direction. If you then push harder so that the magnitude of your applied force
exceeds the magnitude of the force of friction, the book accelerates. If you stop
pushing, the book stops after moving a short distance because the force of friction
retards its motion. Suppose you now push the book across a smooth, highly waxed
floor. The book again comes to rest after you stop pushing but not as quickly as be-
fore. Now imagine a floor so highly polished that friction is absent; in this case, the
book, once set in motion, moves until it hits a wall.

Before about 1600, scientists felt that the natural state of matter was the state
of rest. Galileo was the first to take a different approach to motion and the natural
state of matter. He devised thought experiments, such as the one we just discussed
for a book on a frictionless surface, and concluded that it is not the nature of an
object to stop once set in motion: rather, it is its nature to resist changes in its motion.
In his words, “Any velocity once imparted to a moving body will be rigidly main-
tained as long as the external causes of retardation are removed.”

This new approach to motion was later formalized by Newton in a form that
has come to be known as Newton’s first law of motion:

In the absence of external forces, an object at rest remains at rest and an object
in motion continues in motion with a constant velocity (that is, with a constant
speed in a straight line).

In simpler terms, we can say that when no force acts on an object, the accelera-
tion of the object is zero. If nothing acts to change the object’s motion, then its
velocity does not change. From the first law, we conclude that any isolated object
(one that does not interact with its environment) is either at rest or moving with
constant velocity. The tendency of an object to resist any attempt to change its ve-
locity is called the inertia of the object. Figure 5.3 shows one dramatic example of
a consequence of Newton'’s first law.

Another example of uniform (constantvelocity) motion on a nearly frictionless
surface is the motion of a light disk on a film of air (the lubricant), as shown in Fig-
ure 5.4. If the disk is given an initial velocity, it coasts a great distance before stopping.

Finally, consider a spaceship traveling in space and far removed from any plan-
ets or other matter. The spaceship requires some propulsion system to change its
velocity. However, if the propulsion system is turned off when the spaceship
reaches a velocity v, the ship coasts at that constant velocity and the astronauts get
a free ride (that is, no propulsion system is required to keep them moving at the
velocity v).

Inertial Frames

As we saw in Section 4.6, a moving object can be observed from any number of ref-
erence frames. Newton’s first law, sometimes called the law of inertia, defines a spe-
cial set of reference frames called inertial frames. An inertial frame of reference

5.2 Newton’s First Law and Inertial Frames

Figure 5.3 Unless a net ex-
ternal force acts on it, an ob-
ject at rest remains at rest and
an object in motion continues
in motion with constant veloc-
ity. In this case, the wall of the
building did not exert a force
on the moving train that was
large enough to stop it.

is one that is not accelerating. Because Newton’s first law deals only with objects
that are not accelerating, it holds only in inertial frames. Any reference frame that
moves with constant velocity relative to an inertial frame is itself an inertial frame.
(The Galilean transformations given by Equations 4.20 and 4.21 relate positions
and velocities between two inertial frames.)

A reference frame that moves with constant velocity relative to the distant stars
is the best approximation of an inertial frame, and for our purposes we can con-
sider planet Earth as being such a frame. The Earth is not really an inertial frame
because of its orbital motion around the Sun and its rotational motion about its
own axis. As the Earth travels in its nearly circular orbit around the Sun, it experi-
ences an acceleration of about 4.4 X 1073 m/s? directed toward the Sun. In addi-
tion, because the Earth rotates about its own axis once every 24 h, a point on the
equator experiences an additional acceleration of 8.37 X 1072 m/s? directed to-
ward the center of the Earth. However, these accelerations are small compared
with gand can often be neglected. For this reason, we assume that the Earth is an
inertial frame, as is any other frame attached to it.

If an object is moving with constant velocity, an observer in one inertial frame
(say, one at rest relative to the object) claims that the acceleration of the object
and the resultant force acting on it are zero. An observer in any other inertial frame
also finds that a = 0 and XF = 0 for the object. According to the first law, a body
at rest and one moving with constant velocity are equivalent. A passenger in a car
moving along a straight road at a constant speed of 100 km/h can easily pour cof-
fee into a cup. But if the driver steps on the gas or brake pedal or turns the steer-
ing wheel while the coffee is being poured, the car accelerates and it is no longer
an inertial frame. The laws of motion do not work as expected, and the coffee
ends up in the passenger’s lap!
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Isaac Newton English physicist
and mathematician (1642—1727)
Isaac Newton was one of the most
brilliant scientists in history. Before
the age of 30, he formulated the basic
concepts and laws of mechanics, dis-
covered the law of universal gravita-
tion, and invented the mathematical
methods of calculus. As a conse-
quence of his theories, Newton was
able to explain the motions of the
planets, the ebb and flow of the tides,
and many special features of the mo-
tions of the Moon and the Earth. He
also interpreted many fundamental
observations concerning the nature
of light. His contributions to physical
theories dominated scientific thought
for two centuries and remain impor-
tanttoday. (Giraudon/Art Resource)

Vv = constant
—
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Air flow

Electric blower

Figure 5.4 Air hockey takes ad-
vantage of Newton’s first law to
make the game more exciting.
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Definition of mass

Mass and weight are different
quantities
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») Imagine playing catch with either a basketball or a bowling ball. Which ball is
3 more likely to keep moving when you try to catch it? Which ball has the greater
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[ Quick Quiz 5.1 g

True or false: (a) It is possible to have motion in the absence of a force. (b) It is possible to
have force in the absence of motion.

5.3 _~ MASS

tendency to remain motionless when you try to throw it? Because the bowling ball
is more resistant to changes in its velocity, we say it has greater inertia than the bas-
ketball. As noted in the preceding section, inertia is a measure of how an object re-
sponds to an external force.

Mass is that property of an object that specifies how much inertia the object
has, and as we learned in Section 1.1, the SI unit of mass is the kilogram. The
greater the mass of an object, the less that object accelerates under the action of
an applied force. For example, if a given force acting on a 3-kg mass produces an
acceleration of 4 m/s?% then the same force applied to a 6-kg mass produces an ac-
celeration of 2 m/s2

To describe mass quantitatively, we begin by comparing the accelerations a
given force produces on different objects. Suppose a force acting on an object of
mass m; produces an acceleration a;, and the same force acting on an object of mass
mg produces an acceleration ag. The ratio of the two masses is defined as the in-
verse ratio of the magnitudes of the accelerations produced by the force:

R 5.1)
mo a
If one object has a known mass, the mass of the other object can be obtained from
acceleration measurements.

Mass is an inherent property of an t and is independent of the ob-
ject’s surroundings and of the method used to measure it. Also, mass is a
scalar quantity and thus obeys the rules of ordinary arithmetic. That is, several
masses can be combined in simple numerical fashion. For example, if you com-
bine a 3-kg mass with a 5-kg mass, their total mass is 8 kg. We can verify this result
experimentally by comparing the acceleration that a known force gives to several
objects separately with the acceleration that the same force gives to the same ob-
jects combined as one unit.

Mass should not be confused with weight. Mass and weight are two different
quantities. As we see later in this chapter, the weight of an object is equal to the mag-
nitude of the gravitational force exerted on the object and varies with location. For
example, a person who weighs 180 Ib on the Earth weighs only about 30 Ib on the
Moon. On the other hand, the mass of a body is the same everywhere: an object hav-
ing a mass of 2 kg on the Earth also has a mass of 2 kg on the Moon.

1.
J

5.4 _~ NEWTON’S SECOND LAW

(@ Newton’s first law explains what happens to an object when no forces act on it. It
44 either remains at rest or moves in a straight line with constant speed. Newton’s sec-

ond law answers the question of what happens to an object that has a nonzero re-
sultant force acting on it.

5.4 Newton’s Second Law

Imagine pushing a block of ice across a frictionless horizontal surface. When
you exert some horizontal force F, the block moves with some acceleration a. If
you apply a force twice as great, the acceleration doubles. If you increase the ap-
plied force to 3F, the acceleration triples, and so on. From such observations, we
conclude that the acceleration of an object is directly proportional to the re-
sultant force acting on it.

The acceleration of an object also depends on its mass, as stated in the preced-
ing section. We can understand this by considering the following experiment. If
you apply a force F to a block of ice on a frictionless surface, then the block un-
dergoes some acceleration a. If the mass of the block is doubled, then the same
applied force produces an acceleration a/2. If the mass is tripled, then the same
applied force produces an acceleration a/3, and so on. According to this observa-
tion, we conclude that the magnitude of the acceleration of an object is in-
versely proportional to its mass.

These observations are summarized in Newton’s second law:

The acceleration of an object is directly proportional to the net force acting on
it and inversely proportional to its mass.

Thus, we can relate mass and force through the following mathematical statement
of Newton’s second law:!

EF = ma (5.2)

Note that this equation is a vector expression and hence is equivalent to three
component equations:

EFX = ma,

| Quick Quiz 5.2 4

Is there any relationship between the net force acting on an object and the direction in
which the object moves?

EFy = ma EFZ = ma, (5.3)

Unit of Force

The SI unit of force is the newton, which is defined as the force that, when acting
on a 1-kg mass, produces an acceleration of 1 m/s2. From this definition and New-
ton’s second law, we see that the newton can be expressed in terms of the follow-
ing fundamental units of mass, length, and time:

1N =1kg m/s? (5.4)

In the British engineering system, the unit of force is the pound, which is
defined as the force that, when acting on a 1-slug mass,? produces an acceleration
of 1 ft/s%

11b = 1slug-ft/s? (5.5)

A convenient approximation is that 1 N = % 1b.

! Equation 5.2 is valid only when the speed of the object is much less than the speed of light. We treat
the relativi situation in Chapter 39.

2 The slug is the unit of mass in the British engineering system and is that system’s counterpart of the
SI unit the kilogram. Because most of the calculations in our study of classical mechanics are in SI units,
the slug is seldom used in this text.

Newton’s second law

Newton’s second law—
component form

Definition of newton

117



118 CHAPTER 5  The Laws of Motion

TABLE 5.1 \Units of Force, Mass, and Acceleration?

System of Units Mass Acceleration Force
ST kg m/s? N = kg~m/s2
British engineering slug ft/s? Ib = slug-ft/s?

“1N = 0.2251b.

The units of force, mass, and acceleration are summarized in Table 5.1.

=R

s We can now understand how a single person can hold up an airship but is not
able to change its motion abruptly, as stated at the beginning of the chapter. The

mass of the blimp is greater than 6 800 kg. In order to make this large mass accel-
erate appreciably, a very large force is required —certainly one much greater than

a human can provide.

EXAMPLE 5.1

A hockey puck having a mass of 0.30 kg slides on the hori-
zontal, frictionless surface of an ice rink. Two forces act on
the puck, as shown in Figure 5.5. The force F; has a magni-
tude of 5.0 N, and the force Fy has a magnitude of 8.0 N. De-
termine both the magnitude and the direction of the puck’s
acceleration.

An Accelerating Hockey Puck

Solution The resultant force in the x direction is

zFx = Fi, + Fs, = Fy cos(—20°) + Fy cos 60°
= (5.0 N)(0.940) + (8.0N)(0.500) = 8.7 N

Figure 5.5 A hockey puck moving on a frictionless surface acceler-
ates in the direction of the resultant force F; + Fo.

The resultant force in the y direction is
S\F, = Fyy + Fyy = Fy sin(—20°) + Fysin 60°
= (5.0 N)(—0.342) + (8.0 N)(0.866) = 52N

Now we use Newton’s second law in component form to find
the xand y components of acceleration:

SF, 87N
= =—— =99 2
T T 030kg m/s
3 Fy 52N ;
a, = > — 2 =17 m/s?

7" m 0.30kg

The acceleration has a magnitude of
a=V(29)%+ (17)2m/s2 = 34m/s?

and its direction relative to the positive x axis is

a.
0= tan"! <7y> = tan~! <;%> = 30°
ay

We can graphically add the vectors in Figure 5.5 to check the
reasonableness of our answer. Because the acceleration vec-
tor is along the direction of the resultant force, a drawing
showing the resultant force helps us check the validity of the
answer.

Exercise Determine the components of a third force that,
when applied to the puck, causes it to have zero acceleration.

Answer [, = —87N, I3, = —52N.

5.5 The Force of Gravity and Weight

5.5 _~ THE FORCE OF GRAVITY AND WEIGHT

We are well aware that all objects are attracted to the Earth. The attractive force
exerted by the Earth on an object is called the force of gravity F,. This force is
directed toward the center of the Earth,? and its magnitude is called the weight
of the object.

We saw in Section 2.6 that a freely falling object experiences an acceleration g
acting toward the center of the Earth. Applying Newton’s second law 3F = ma to a
freely falling object of mass m, with a = g and XF = F,, we obtain

F,= mg (5.6)

Thus, the weight of an object, being defined as the magnitude of Fg, is mg. (You
should not confuse the italicized symbol g for gravitational acceleration with the
nonitalicized symbol g used as the abbreviation for “gram.”)

Because it depends on g weight varies with geographic location. Hence,
weight, unlike mass, is not an inherent property of an object. Because g decreases
with increasing distance from the center of the Earth, bodies weigh less at higher
altitudes than at sea level. For example, a 1000-kg palette of bricks used in the
construction of the Empire State Building in New York City weighed about 1 N less
by the time it was lifted from sidewalk level to the top of the building. As another
example, suppose an object has a mass of 70.0 kg. Its weight in a location where
g=19.80 m/s? is F, = mg = 686 N (about 150 1b). At the top of a mountain, how-
ever, where g = 9.77 m/s?, its weight is only 684 N. Therefore, if you want to lose
weight without going on a diet, climb a mountain or weigh yourself at 30 000 ft
during an airplane flight!

Because weight = I, = mg, we can compare the masses of two objects by mea-
suring their weights on a spring scale. At a given location, the ratio of the weights
of two objects equals the ratio of their masses.

The life-support unit strapped to the back
of astronaut Edwin Aldrin weighed 300 1b
on the Earth. During his training, a 50-lb
mock-up was used. Although this effectively
simulated the reduced weight the unit
would have on the Moon, it did not cor-
rectly mimic the unchanging mass. It was
just as difficult to accelerate the unit (per-
haps by jumping or twisting suddenly) on
the Moon as on the Earth.

3 This statement ignores the fact that the mass distribution of the Earth is not perfectly spherical.
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Definition of weight

QuickLab >

Drop a pen and your textbook simul-
taneously from the same height and
watch as they fall. How can they have
the same acceleration when their
weights are so different?
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CONCEPTUAL EXAMPLE 5.2  How Much Do You Weigh in an Elevator?

You have most likely had the experience of standing in an el-
evator that accelerates upward as it moves toward a higher
floor. In this case, you feel heavier. In fact, if you are standing
on a bathroom scale at the time, the scale measures a force
magnitude that is greater than your weight. Thus, you have
tactile and measured evidence that leads you to believe you

Solution No, your weight is unchanged. To provide the
acceleration upward, the floor or scale must exert on your
feet an upward force that is greater in magnitude than your
weight. It is this greater force that you feel, which you inter-
pret as feeling heavier. The scale reads this upward force, not
your weight, and so its reading increases.

are heavier in this situation. Areyou heavier?

| Quick Quiz 5.3 g

A baseball of mass m is thrown upward with some initial speed. If air resistance is neglected,
what forces are acting on the ball when it reaches (a) half its maximum height and (b) its
maximum height?

5.6_~ NEWTON’S THIRD LAW

‘ar\ If you press against a corner of this textbook with your fingertip, the book pushes

45 back and makes a small dent in your skin. If you push harder, the book does the
same and the dent in your skin gets a little larger. This simple experiment illus-
trates a general principle of critical importance known as Newton’s third law:

If two objects interact, the force Fyy exerted by object 1 on object 2 is equal in
magnitude to and opposite in direction to the force Fy; exerted by object 2 on
Newton’s third law object 1:

Fio = —Fy (5.7)
This law, which is illustrated in Figure 5.6a, states that a force that affects the mo-

tion of an object must come from a second, external, object. The external object, in
turn, is subject to an equal-magnitude but oppositely directed force exerted on it.

(a)

Figure 5.6 Newton’s third law. (a) The force Fyy exerted by object 1 on object 2 is equal in
magnitude to and opposite in direction to the force Fy; exerted by object 2 on object 1. (b) The
force Fy,, exerted by the hammer on the nail is equal to and opposite the force Fy, exerted by
the nail on the hammer.

5.6 Newton’s Third Law

This is equivalent to stating that a single isolated force cannot exist. The force
that object 1 exerts on object 2 is sometimes called the action force, while the force
object 2 exerts on object 1 is called the reaction force. In reality, either force can be
labeled the action or the reaction force. The action force is equal in magnitude
to the reaction force and opposite in direction. In all cases, the action and
reaction forces act on different objects. For example, the force acting on a
freely falling projectile is F; = mg, which is the force of gravity exerted by the
Earth on the projectile. The reaction to this force is the force exerted by the pro-
jectile on the Earth, Fé = - Fg. The reaction force F}é accelerates the Earth toward
the projectile just as the action force F,accelerates the projectile toward the Earth.
However, because the Earth has such a great mass, its acceleration due to this reac-
tion force is negligibly small.

Another example of Newton’s third law is shown in Figure 5.6b. The force ex-
erted by the hammer on the nail (the action force Fy,,) is equal in magnitude and
opposite in direction to the force exerted by the nail on the hammer (the reaction
force F,). It is this latter force that causes the hammer to stop its rapid forward
motion when it strikes the nail.

You experience Newton’s third law directly whenever you slam your fist against
a wall or kick a football. You should be able to identify the action and reaction
forces in these cases.

Quick O

A person steps from a boat toward a dock. Unfortunately, he forgot to tie the boat to the
dock, and the boat scoots away as he steps from it. Analyze this situation in terms of New-
ton’s third law.

The force of gravity F, was defined as the attractive force the Earth exerts on
an object. If the object is a TV at rest on a table, as shown in Figure 5.7a, why does
the TV not accelerate in the direction of F,? The TV does not accelerate because
the table holds it up. What is happening is that the table exerts on the TV an up-
ward force n called the normal force.! The normal force is a contact force that
prevents the TV from falling through the table and can have any magnitude
needed to balance the downward force F, up to the point of breaking the table. If
someone stacks books on the TV, the normal force exerted by the table on the TV
increases. If someone lifts up on the TV, the normal force exerted by the table on
the TV decreases. (The normal force becomes zero if the TV is raised off the table.)

The two forces in an action-reaction pair always act on different objects.
For the hammer-and-nail situation shown in Figure 5.6b, one force of the pair acts
on the hammer and the other acts on the nail. For the unfortunate person step-
ping out of the boat in Quick Quiz 5.4, one force of the pair acts on the person,
and the other acts on the boat.

For the TV in Figure 5.7, the force of gravity F,and the normal force n are not
an action—reaction pair because they act on the same body—the TV. The two re-
action forces in this situation—F, and n’ —are exerted on objects other than the
TV. Because the reaction to Fis the force Fj exerted by the TV on the Earth and
the reaction to m is the force n’ exerted by the TV on the table, we conclude that

F,= —Fé and n=-n

4 Normalin this context means perpendicular:
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Compression of a football as the
force exerted by a player’s foot sets
the ball in motion.

Definition of normal force
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(@) (b)

Figure 5.7 When a TV is at rest on a table, the forces acting on the TV are the normal force n

and the force of gravity F,

as illustrated in part (b). The reaction to n is the force n’ exerted by

the TV on the table. The reaction to F,is the force F; exerted by the TV on the Earth.

The forces n and n’ have the same magnitude, which is the same as that of F, until
the table breaks. From the second law, we see that, because the TV is in equilib-
rium (a = 0), it follows® that Fy=n= mg

| Quick Quiz 5.5 g

If a fly collides with the windshield of a fast-moving bus, (a) which experiences the greater im-
pact force: the fly or the bus, or is the same force experienced by both? (b) Which experiences
the greater acceleration: the fly or the bus, or is the same acceleration experienced by both?

CONCEPTUAL EXAMPLE 5.3 You Push Me and I'll Push You

A large man and a small boy stand facing each other on fric-
tionless ice. They put their hands together and push against
each other so that they move apart. (a) Who moves away with
the higher speed?

Solution This situation is similar to what we saw in Quick
Quiz 5.5. According to Newton’s third law, the force exerted
by the man on the boy and the force exerted by the boy on
the man are an action-reaction pair, and so they must be
equal in magnitude. (A bathroom scale placed between their
hands would read the same, regardless of which way it faced.)

Therefore, the boy, having the lesser mass, experiences the
greater acceleration. Both individuals accelerate for the same
amount of time, but the greater acceleration of the boy over
this time interval results in his moving away from the interac-
tion with the higher speed.

(b) Who moves farther while their hands are in contact?
Solution Because the boy has the greater acceleration, he

moves farther during the interval in which the hands are in
contact.

5 Technically, we should write this equation in the component form Fy = ny = mg,. This component
notation is cumbersome, however, and so in situations in which a vector is parallel to a coordinate axis,
we usually do not include the subscript for that axis because there is no other component.
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5.7 _~ SOME APPLICATIONS OF NEWTON’S LAWS

@ In this section we apply Newton’s laws to objects that are either in equilibrium
46 (a = 0) or accelerating along a straight line under the action of constant external

forces. We assume that the objects behave as particles so that we need not worry
about rotational motion. We also neglect the effects of friction in those problems
involving motion; this is equivalent to stating that the surfaces are frictionless. Fi-
nally, we usually neglect the mass of any ropes involved. In this approximation, the
magnitude of the force exerted at any point along a rope is the same at all points
along the rope. In problem statements, the synonymous terms light, lightweight, and
of negligible mass are used to indicate that a mass is to be ignored when you work
the problems.

When we apply Newton’s laws to an object, we are interested only in ex-
ternal forces that act on the object. For example, in Figure 5.7 the only external
forces acting on the TV are m and Fg. The reactions to these forces, n’ and F,’z’ act
on the table and on the Earth, respectively, and therefore do not appear in New-
ton’s second law applied to the TV.

When a rope attached to an object is pulling on the object, the rope exerts a
force T on the object, and the magnitude of that force is called the tension in the
rope. Because it is the magnitude of a vector quantity, tension is a scalar quantity.

Consider a crate being pulled to the right on a frictionless, horizontal surface,
as shown in Figure 5.8a. Suppose you are asked to find the acceleration of the
crate and the force the floor exerts on it. First, note that the horizontal force be-
ing applied to the crate acts through the rope. Use the symbol T to denote the
force exerted by the rope on the crate. The magnitude of T is equal to the tension
in the rope. A dotted circle is drawn around the crate in Figure 5.8a to remind you
that you are interested only in the forces acting on the crate. These are illustrated
in Figure 5.8b. In addition to the force T, this force diagram for the crate includes
the force of gravity F, and the normal force n exerted by the floor on the crate.
Such a force diagram, referred to as a free-body diagram, shows all external
forces acting on the object. The construction of a correct free-body diagram is an
important step in applying Newton’s laws. The reactions to the forces we have
listed—namely, the force exerted by the crate on the rope, the force exerted by
the crate on the Earth, and the force exerted by the crate on the floor—are not in-
cluded in the free-body diagram because they act on other bodies and not on the
crate.

We can now apply Newton’s second law in component form to the crate. The
only force acting in the x direction is T. Applying 2F, = ma, to the horizontal mo-
tion gives

T
EFx: T = ma, or a,=—
m
No acceleration occurs in the y direction. Applying %F, = ma, with a, =0
yields

n+ (=F) =0 or n=F,

That is, the normal force has the same magnitude as the force of gravity but is in
the opposite direction.

If T is a constant force, then the acceleration a, = T/m also is constant.
Hence, the constant-acceleration equations of kinematics from Chapter 2 can be
used to obtain the crate’s displacement Ax and velocity v, as functions of time. Be-
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(b)

Figure 5.8 (a) A crate being
pulled to the right on a frictionless
surface. (b) The free-body diagram
representing the external forces
acting on the crate.
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Figure 5.9 When one object
pushes downward on another ob-
jectwith a force F, the normal
force n is greater than the force of
gravity: n = F, + F.

a) (b)

Figure 5.10 (a) A lamp sus-
pended from a ceiling by a chain of
negligible mass. (b) The forces act-
ing on the lamp are the force of
gravity F and the force exerted by
the chain T. (c) The forces acting
on the chain are the force exerted
by the lamp T’ and the force ex-
erted by the ceiling T".

CHAPTER 5  The Laws of Motion

cause a, = T/m = constant, Equations 2.8 and 2.11 can be written as

T

Vy= Uyt . t
T

Ax = vt + %(7),/2
m

In the situation just described, the magnitude of the normal force n is equal to
the magnitude of F,, but this is not always the case. For example, suppose a book
is lying on a table and you push down on the book with a force F, as shown in Fig-
ure 5.9. Because the book is at rest and therefore not accelerating, 3F, = 0, which
gives n — F, — F= 0, or n = F, + F. Other examples in which n # F, are pre-
sented later.

Consider a lamp suspended from a light chain fastened to the ceiling, as in
Figure 5.10a. The free-body diagram for the lamp (Figure 5.10b) shows that the
forces acting on the lamp are the downward force of gravity F, and the upward
force T exerted by the chain. If we apply the second law to the lamp, noting that
a = 0, we see that because there are no forces in the x direction, 2F, = 0 provides
no helpful information. The condition 2, = ma, = 0 gives

SF=T-F,=0 o T=F,

Again, note that T and F,, are not an action-reaction pair because they act on the
same object—the lamp. The reaction force to T is T’, the downward force exerted
by the lamp on the chain, as shown in Figure 5.10c. The ceiling exerts on the
chain a force T” that is equal in magnitude to the magnitude of T' and points in
the opposite direction.

Problem-Solving Hints

Applying Newton’s Laws

The following procedure is recommended when dealing with problems involv-
ing Newton’s laws:

Draw a simple, neat diagram of the system.

Isolate the object whose motion is being analyzed. Draw a free-body diagram
for this object. For systems containing more than one object, draw separate
free-body diagrams for each object. Do not include in the free-body diagram
forces exerted by the object on its surroundings. Establish convenient coor-
dinate axes for each object and find the components of the forces along
these axes.

Apply Newton’s second law, 3F = ma, in component form. Check your di-
mensions to make sure that all terms have units of force.

Solve the component equations for the unknowns. Remember that you must
have as many independent equations as you have unknowns to obtain a
complete solution.

Make sure your results are consistent with the free-body diagram. Also check
the predictions of your solutions for extreme values of the variables. By do-
ing so, you can often detect errors in your results.
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EXAMPLE 5.4  ATraffic Light at Rest

A traffic light weighing 125 N hangs from a cable tied to two
other cables fastened to a support. The upper cables make
angles of 37.0° and 53.0° with the horizontal. Find the ten-
sion in the three cables.

Solution Figure 5.11a shows the type of drawing we might
make of this situation. We then construct two free-body dia-
grams—one for the traffic light, shown in Figure 5.11b, and
one for the knot that holds the three cables together, as seen
in Figure 5.11c. This knot is a convenient object to choose be-
cause all the forces we are interested in act through it. Be-
cause the acceleration of the system is zero, we know that the
net force on the light and the net force on the knot are both
ZEeTo.

In Figure 5.11b the force Ty exerted by the vertical cable

supports the light, and so 73 = F, = 125N. Next, we

choose the coordinate axes shown in Figure 5.11c and resolve
the forces acting on the knot into their components:

Force x Component y Component
T, — T cos 37.0° T sin 37.0°
Ty Ty cos 53.0° Ty sin 53.0°
Ts 0 —125N

Knowing that the knot is in equilibrium (a = 0) allows us to
write

(a)

(1) S F,=—T cos37.0° + Ty cos 53.0° = 0
() X F,= Tsin 37.0° + Tysin 53.0°
+(-125N) =0

From (1) we see that the horizontal components of T} and Ty
must be equal in magnitude, and from (2) we see that the
sum of the vertical components of T} and Ty must balance
the weight of the light. We solve (1) for 75 in terms of 73 to
obtain
.. cos37.0° -
5= l( cos 53.0° ) = 1837,

This value for 75 is substituted into (2) to yield

Ty sin 37.0° + (1.337}) (sin 53.0°) — 125N = 0

T, = 751N

T, =133T, = 999N
This problem is important because it combines what we have
learned about vectors with the new topic of forces. The gen-
eral approach taken here is very powerful, and we will repeat
it many times.

Exercise  In what situation does T} = Ty?

Answer When the two cables attached to the support make
equal angles with the horizontal.

37.0%

Ty

()

Figure 5.11 (a) A waffic light suspended by cables. (b) Free-body diagram for the traf-
fic light. (c) Free-body diagram for the knot where the three cables are joined.
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CONCEPTUAL EXAMPLE 5.5 ' Forces Between Cars in a Train

In a train, the cars are connected by couplers, which are under
tension as the locomotive pulls the train. As you move down
the train from locomotive to caboose, does the tension in the
couplers increase, decrease, or stay the same as the train
speeds up? When the engineer applies the brakes, the cou-
plers are under compression. How does this compression
force vary from locomotive to caboose? (Assume that only the
brakes on the wheels of the engine are applied.)

Solution As the train speeds up, the tension decreases
from the front of the train to the back. The coupler between

the locomotive and the first car must apply enough force to
accelerate all of the remaining cars. As you move back along
the train, each coupler is accelerating less mass behind it.
The last coupler has to accelerate only the caboose, and so it
is under the least tension.

When the brakes are applied, the force again decreases
from front to back. The coupler connecting the locomotive
to the first car must apply a large force to slow down all the
remaining cars. The final coupler must apply a force large
enough to slow down only the caboose.

EXAMPLE 5.6 Crate on a Frictionless Incline

A crate of mass m is placed on a frictionless inclined plane of
angle 6. (a) Determine the acceleration of the crate after it is
released.

Solution Because we know the forces acting on the crate,
we can use Newton’s second law to determine its accelera-
tion. (In other words, we have classified the problem; this
gives us a hint as to the approach to take.) We make a sketch
as in Figure 5.12a and then construct the free-body diagram
for the crate, as shown in Figure 5.12b. The only forces acting
on the crate are the normal force n exerted by the inclined
plane, which acts perpendicular to the plane, and the force
of gravity F, = mg, which acts vertically downward. For prob-
lems involving inclined planes, it is convenient to choose the
coordinate axes with x downward along the incline and y per-
pendicular to it, as shown in Figure 5.12b. (It is possible to
solve the problem with “standard” horizontal and vertical
axes. You may want to try this, just for practice.) Then, we re-

(a) (b)

Figure 5.12 (a) A crate of mass msliding down a frictionless in-
cline. (b) The free-body diagram for the crate. Note that its accelera-
tion along the incline is gsin 6.

place the force of gravity by a component of magnitude
mg sin 6 along the positive x axis and by one of magnitude
mg cos 6 along the negative y axis.

Now we apply Newton’s second law in component form,
noting that a, = 0:

(1) 21“.@: mgsin 6 = ma,
(2) EF= n— mgcos =0

Solving (1) for a,, we see that the acceleration along the incline
is caused by the component of F, directed down the incline:

(3) a, = gsin 0

Note that this acceleration component is independent of the
mass of the crate! It depends only on the angle of inclination
and on g.

From (2) we conclude that the component of F, perpendic-
ular to the incline is balanced by the normal force; that is, n =
mg cos 6. This is one example of a situation in which the nor-
mal force is not equal in magnitude to the weight of the object.

Special Cases Looking over our results, we see that in the
extreme case of 6 = 90°, a, = g and n = 0. This condition
corresponds to the crate’s being in free fall. When 6 = 0,
a, =0 and n = mg (its maximum value); in this case, the
crate is sitting on a horizontal surface.

(b) Suppose the crate is released from rest at the top of
the incline, and the distance from the front edge of the crate
to the bottom is d. How long does it take the front edge to
reach the bottom, and what is its speed just as it gets there?

Solution Because a, = constant, we can apply Equation
211, xp— x; = vyt + %axt(z, to analyze the crate’s motion.
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With the displacement x; — x; = dand v,; = 0, we obtain

d= %axﬁ

R oron
ax gsin 6

Using Equation 2.12, v,f =02+ 2a,(xy = x;), with v; = 0,
we find that
vxf = 2a,d

(5) vy = \N2a,d = V?gdsino

We see from equations (4) and (5) that the time # needed to
reach the bottom and the speed v,;, like acceleration, are in-
dependent of the crate’s mass. This suggests a simple method
you can use to measure g, using an inclined air track: Mea-
sure the angle of inclination, some distance traveled by a cart
along the incline, and the time needed to travel that dis-
tance. The value of g can then be calculated from (4).

EXAMPLE 5.7  One Block Pushes Another

Two blocks of masses m; and my are placed in contact with
each other on a frictionless horizontal surface. A constant
horizontal force F is applied to the block of mass m;. (a) De-
termine the magnitude of the acceleration of the two-block
system.

Solution Common sense tells us that both blocks must ex-
perience the same acceleration because they remain in con-
tact with each other. Just as in the preceding example, we
make a labeled sketch and free-body diagrams, which are
shown in Figure 5.13. In Figure 5.13a the dashed line indi-
cates that we treat the two blocks together as a system. Be-
cause F is the only external horizontal force acting on the sys-
tem (the two blocks), we have

zFx(systcm) =F= (m + mo)ay

(1) r
Q=
o omy + omy
n
ny
y
F P P
— —
* m my
mg o8
(b) (c)
Figure 5.13

Treating the two blocks together as a system simplifies the
solution but does not provide information about internal
forces.

(b) Determine the magnitude of the contact force be-
tween the two blocks.

Solution To solve this part of the problem, we must treat
each block separately with its own free-body diagram, as in
Figures 5.13b and 5.13c. We denote the contact force by P.
From Figure 5.13c, we see that the only horizontal force act-
ing on block 2 is the contact force P (the force exerted by
block 1 on block 2), which is directed to the right. Applying
Newton'’s second law to block 2 gives

@ XF.=P=mua,

Substituting into (2) the value of a, given by (1), we obtain

my
(3) P=mea,=\—""—|F
my + mg

From this result, we see that the contact force P exerted by
block 1 on block 2 is less than the applied force F. This is con-
sistent with the fact that the force required to accelerate
block 2 alone must be less than the force required to pro-
duce the same acceleration for the two-block system.

It is instructive to check this expression for P by consider-
ing the forces acting on block 1, shown in Figure 5.13b. The
horizontal forces acting on this block are the applied force F
to the right and the contact force P’ to the left (the force ex-
erted by block 2 on block 1). From Newton’s third law, P’ is
the reaction to P, so that |P’| = |P|. Applying Newton’s sec-
ond law to block 1 produces

4)  SF,=F-P =F-P=ma,
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Substituting into (4) the value of a, from (1), we obtain

_omF (L)r
my + moy my + mo

This agrees with (3), as it must.

P=F—ma,=F—

Exercise If m; = 4.00 kg, my = 3.00kg, and F=9.00 N,
find the magnitude of the acceleration of the system and the
magnitude of the contact force.

Answer a,=1.29m/s% P= 3.86N.

EXAMPLE 5.8

A person weighs a fish of mass m on a spring scale attached to
the ceiling of an elevator, as illustrated in Figure 5.14. Show
that if the elevator accelerates either upward or downward,
the spring scale gives a reading that is different from the
weight of the fish.

Weighing a Fish in an Elevator

Solution The external forces acting on the fish are the
downward force of gravity F, = mg and the force T exerted
by the scale. By Newton’s third law, the tension 7 is also the
reading of the scale. If the elevator is either at rest or moving
at constant velocity, the fish is not accelerating, and so
3F,=T— mg=0or T= mg (remember that the scalar mg
is the weight of the fish).

(a)

If the elevator moves upward with an acceleration a rela-
tive to an observer standing outside the elevator in an inertial
frame (see Fig. 5.14a), Newton’s second law applied to the
fish gives the net force on the fish:

(1) EFy:T—mg:nLay

where we have chosen upward as the positive direction. Thus,
we conclude from (1) that the scale reading 7'is greater than
the weight mg if a is upward, so that a, is positive, and that
the reading is less than mg if a is downward, so that g, is
negauve.

For example, if the weight of the fish is 40.0 N and a is up-
ward, so that a, = +2.00 m/s?, the scale reading from (1) is

la
yF.r

ETW
e
=]

(b)

Observer in
inertial frame

\

Figure 5.14 Apparent weight versus true weight. (a) When the elevator accelerates upward, the
spring scale reads a value greater than the weight of the fish. (b) When the elevator accelerates down-
ward, the spring scale reads a value less than the weight of the fish.

€ |
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ay
(2) T = ma, + mg= mg(i + 1)
g

Hence, if you buy a fish by weight in an elevator, make
sure the fish is weighed while the elevator is either at rest or
accelerating downward! Furthermore, note that from the in-
formation given here one cannot determine the direction of
motion of the elevator.

Special Cases If the elevator cable breaks, the elevator
falls freely and a, = —g. We see from (2) that the scale read-
ing T'is zero in this case; that is, the fish appears to be weight-
less. If the elevator accelerates downward with an accelera-
tion greater than g the fish (along with the person in the
elevator) eventually hits the ceiling because the acceleration
of fish and person is still that of a freely falling object relative
to an outside observer.

2.00 m/s’
= (40.0N) (=——L5 + 1
9.80 m/s?
= 482N
If a is downward so that @, = —2.00 m/s?, then (2) gives us
ay —2.00 m/s?
T=mg(—=+1)= (400N (7(+ 1)
mg( g > ( ) 9.80 m/s?
= 318N
EXAMPLE 5.9  Atwood’s Machine

When two objects of unequal mass are hung vertically over a
frictionless pulley of negligible mass, as shown in Figure
5.15a, the arrangement is called an Atwood machine. The de-

¢ mQ

‘ [z
lmlg

mog
(b)
Figure 5.15 Atwood’s machine. (a) Two objects (mg > my) con-
nected by a cord of negligible mass strung over a frictionless pulley.
(b) Free-body diagrams for the two objects.

vice is sometimes used in the laboratory to measure the free-
fall acceleration. Determine the magnitude of the accelera-
tion of the two objects and the tension in the lightweight
cord.

Solution If we were to define our system as being made
up of both objects, as we did in Example 5.7, we would have
to determine an internal force (tension in the cord). We must
define two systems here—one for each object—and apply
Newton’s second law to each. The free-body diagrams for the
two objects are shown in Figure 5.15b. Two forces act on each
object: the upward force T exerted by the cord and the down-
ward force of gravity.

We need to be very careful with signs in problems such as
this, in which a string or rope passes over a pulley or some
other structure that causes the string or rope to bend. In Fig-
ure 5.15a, notice that if object 1 accelerates upward, then ob-
ject 2 accelerates downward. Thus, for consistency with signs,
if we define the upward direction as positive for object 1, we
must define the downward direction as positive for object 2.
With this sign convention, both objects accelerate in the
same direction as defined by the choice of sign. With this sign
convention applied to the forces, the y component of the net
force exerted on object 1 is T'— m; g, and the y component of
the net force exerted on object 2 is mgog — T. Because the ob-
jects are connected by a cord, their accelerations must be
equal in magnitude. (Otherwise the cord would stretch or
break as the distance between the objects increased.) If we as-
sume mg > my, then object 1 must accelerate upward and ob-
ject 2 downward.

When Newton’s second law is applied to object 1, we
obtain

(1 SE=T-mg=ma,
Similarly, for object 2 we find

(2) Eﬁy = mog — T'= mya,



When (2) is added to (1), 7'drops out and we get

—mg+ meg = myay, + moa,

ma T M
3 S L
® % (7ﬂ1+7ﬂ2>g
‘When (3) is substituted into (1), we obtain

o) T:(E@ﬂL%

my + mg

The result for the acceleration in (3) can be interpreted as
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the ratio of the unbalanced force on the system (mog — m;g)
to the total mass of the system (m; + mo), as expected from
Newton’s second law.

Special Cases When m; = my, then a,= 0 and 7= mg,
as we would expect for this balanced case. If mg >> m;, then
a, = g (afreely falling body) and 7'~ 2m g

Exercise Find the magnitude of the acceleration and the
string tension for an Atwood machine in which m; = 2.00 kg

and my = 4.00 kg.

Answer a,=3.27m/s%, T=26.1N.

EXAMPLE 5.10

A ball of mass m; and a block of mass my are attached by a
lightweight cord that passes over a frictionless pulley of negli-
gible mass, as shown in Figure 5.16a. The block lies on a fric-
tionless incline of angle 6. Find the magnitude of the acceler-
ation of the two objects and the tension in the cord.

Solution Because the objects are connected by a cord
(which we assume does not stretch), their accelerations have
the same magnitude. The free-body diagrams are shown in
Figures 5.16b and 5.16c. Applying Newton’s second law in
component form to the ball, with the choice of the upward
direction as positive, yields

1 SF=0

(2) sz:T*mlg:mlll‘:ﬂl]{l
Note that in order for the ball to accelerate upward, it is nec-
essary that 77> m;g. In (2) we have replaced a, with a be-

cause the acceleration has only a y component.
For the block it is convenient to choose the positive x' axis

Acceleration of Two Objects Connected by a Cord

rection. Applying Newton’s second law in component form to
the block gives

3  SF
4) EE‘r:n—ngCOSBZO

= mggsin 0 — T = moa, = mea

In (3) we have replaced a, with a because that is the accelera-
tion’s only component. In other words, the two objects have ac-
celerations of the same magnitude a, which is what we are trying
to find. Equations (1) and (4) provide no information regard-
ing the acceleration. However, if we solve (2) for T'and then
substitute this value for 7'into (3) and solve for 4, we obtain

*) e mogsin 6 — myg
: my + my

When this value for a is substituted into (2), we find

_ mymgg(sin 6 + 1)

along the incline, as shown in Figure 5.16c. Here we choose (6) T
. . . I . ' 1 2
the positive direction to be down the incline, in the + x" di-
¥ Figure 5.16 (a) Two objects
connected by a lightweight cord
y strung over a frictionless pulley.
(b) Free-body diagram for the
T ball. (c) Free-body diagram for
\ the block. (The incline is friction-
less.)
T
mog sin @
I m ‘»—x
J ¥
l myg cos 6
mg

(a) (b)

Note that the block accelerates down the incline only if
mgy sin 6> m; (that is, if a is in the direction we assumed). If
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Exercise If m; = 10.0 kg, my = 5.00 kg, and 6 = 45.0°, find
the acceleration of each object.

my > my sin 6, then the acceleration is up the incline for the
block and downward for the ball. Also note that the result for

the acceleration (5) can be interpreted as the resultant force ~ Answer a= —4.22 m/s%, where the negative sign indicates
acting on the system divided by the total mass of the system; this  that the block accelerates up the incline and the ball acceler-

is consistent with Newton’s second law. Finally, if § = 90°, then ates downward.
the results for aand 7'are identical to those of Example 5.9.

5.8 ~ FORCES OF FRICTION

When a body is in motion either on a surface or in a viscous medium such as air or
water, there is resistance to the motion because the body interacts with its sur-
roundings. We call such resistance a force of friction. Forces of friction are very
important in our everyday lives. They allow us to walk or run and are necessary for
the motion of wheeled vehicles.

Have you ever tried to move a heavy desk across a rough floor? You push
harder and harder until all of a sudden the desk seems to “break free” and subse-
quently moves relatively easily. It takes a greater force to start the desk moving
than it does to keep it going once it has started sliding. To understand why this
happens, consider a book on a table, as shown in Figure 5.17a. If we apply an ex-
ternal horizontal force F to the book, acting to the right, the book remains station-
ary if F is not too great. The force that counteracts F and keeps the book from
moving acts to the left and is called the frictional force f.

As long as the book is not moving, f= F. Because the book is stationary, we
call this frictional force the force of static friction f,. Experiments show that this
force arises from contacting points that protrude beyond the general level of the
surfaces in contact, even for surfaces that are apparently very smooth, as shown in
the magnified view in Figure 5.17a. (If the surfaces are clean and smooth at the
atomic level, they are likely to weld together when contact is made.) The frictional
force arises in part from one peak’s physically blocking the motion of a peak from
the opposing surface, and in part from chemical bonding of opposing points as
they come into contact. If the surfaces are rough, bouncing is likely to occur, fur-
ther complicating the analysis. Although the details of friction are quite complex
at the atomic level, this force ultimately involves an electrical interaction between
atoms or molecules.

If we increase the magnitude of F, as shown in Figure 5.17b, the magnitude of
f, increases along with it, keeping the book in place. The force f; cannot increase
indefinitely, however. Eventually the surfaces in contact can no longer supply suffi-
cient frictional force to counteract F, and the book accelerates. When it is on the
verge of moving, f; is a maximum, as shown in Figure 5.17c. When Fexceeds f; max
the book accelerates to the right. Once the book is in motion, the retarding fric-
tional force becomes less than f .« (see Fig. 5.17¢). When the book is in motion,
we call the retarding force the force of kinetic friction f,. If F = f,, then the
book moves to the right with constant speed. If > f;, then there is an unbalanced
force F — f; in the positive x direction, and this force accelerates the book to the
right. If the applied force F is removed, then the frictional force f}, acting to the
left accelerates the book in the negative x direction and eventually brings it to rest.

Experimentally, we find that, to a good approximation, both f;,x and f; are
proportional to the normal force acting on the book. The following empirical laws
of friction summarize the experimental observations:

Force of static friction

Force of kinetic friction
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Figure 5.17 The direction of the force of friction f between a book and a rough surface is op-
posite the direction of the applied force F. Because the two surfaces are both rough, contact is
made only at a few points, as illustrated in the “magnified” view. (a) The magnitude of the force
of static friction equals the magnitude of the applied force. (b) When the magnitude of the ap-
plied force exceeds the magnitude of the force of kinetic friction, the book accelerates to the
right. (c) A graph of frictional force versus applied force. Note that f; . > fi-

* The direction of the force of static friction between any two surfaces in contact with
each other is opposite the direction of relative motion and can have values

[ = pn (5.8)

where the dimensionless constant u, is called the coefficient of static friction
and n is the magnitude of the normal force. The equality in Equation 5.8 holds
when one object is on the verge of moving, that is, when f; = f .« = w,n. The
inequality holds when the applied force is less than w,n.

The direction of the force of kinetic friction acting on an object is opposite the
direction of the object’s sliding motion relative to the surface applying the fric-
tional force and is given by

Ji = mn (5.9)

where uy is the coefficient of kinetic friction.

The values of u; and u, depend on the nature of the surfaces, but w, is generally
less than u,. Typical values range from around 0.03 to 1.0. Table 5.2 lists some
reported values.

5.8 Forces of Friction

TABLE 5.2 Coefficients of Friction®

s Mk
Steel on steel 0.74 0.57
Aluminum on steel 0.61 0.47
Copper on steel 0.53 0.36
Rubber on concrete 1.0 0.8
Wood on wood 0.25-0.5 0.2
Glass on glass 0.94 0.4
Waxed wood on wet snow 0.14 0.1
Waxed wood on dry snow — 0.04
Metal on metal (lubricated) 0.15 0.06
Ice on ice 0.1 0.03
Teflon on Teflon 0.04 0.04
Synovial joints in humans 0.01 0.003

# All values are approximate. In some cases, the coefficient of fric-
tion can exceed 1.0.

e The coefficients of friction are nearly independent of the area of contact be-
tween the surfaces. To understand why, we must examine the difference be-
tween the apparent contact area, which is the area we see with our eyes, and the
real contact area, represented by two irregular surfaces touching, as shown in the
magnified view in Figure 5.17a. It seems that increasing the apparent contact
area does not increase the real contact area. When we increase the apparent
area (without changing anything else), there is less force per unit area driving
the jagged points together. This decrease in force counteracts the effect of hav-
ing more points involved.

Although the coefficient of kinetic friction can vary with speed, we shall usu-
ally neglect any such variations in this text. We can easily demonstrate the approxi-
mate nature of the equations by trying to get a block to slip down an incline at
constant speed. Especially at low speeds, the motion is likely to be characterized by
alternate episodes of sticking and movement.

EY uickc Oui 5.6 8

A crate is sitting in the center of a flatbed truck. The truck accelerates to the right, and the
crate moves with it, not sliding at all. What is the direction of the frictional force exerted by
the truck on the crate? (a) To the left. (b) To the right. (c) No frictional force because the
crate is not sliding.

CONCEPTUAL EXAMPLE 5.11 Why Does the Sled Accelerate?

133

If you would like to learn more
about this subject, read the article
“Friction at the Atomic Scale” by J.
Krim in the October 1996 issue of
Scientific American.

QuickLab >~

Can you apply the ideas of Example
5.12 to determine the coefficients of
static and kinetic friction between the
cover of your book and a quarter?
What should happen to those coeffi-
cients if you make the measurements
between your book and two quarters
taped one on top of the other?

A horse pulls a sled along a level, snow-covered road, causing ~ Solution It is important to remember that the forces de-

the sled to accelerate, as shown in Figure 5.18a. Newton’s
third law states that the sled exerts an equal and opposite
force on the horse. In view of this, how can the sled acceler-
ate? Under what condition does the system (horse plus sled)
move with constant velocity?

scribed in Newton’s third law act on different objects—the
horse exerts a force on the sled, and the sled exerts an equal-
magnitude and oppositely directed force on the horse. Be-
cause we are interested only in the motion of the sled, we do
not consider the forces it exerts on the horse. When deter-
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Fhorse
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Figure 5.18

mining the motion of an object, you must add only the forces
on that object. The horizontal forces exerted on the sled are
the forward force T exerted by the horse and the backward
force of friction f;.q between sled and snow (see Fig. 5.18b).
When the forward force exceeds the backward force, the sled
accelerates to the right.

The force that accelerates the system (horse plus sled) is
the frictional force £}, exerted by the Earth on the horse’s
feet. The horizontal forces exerted on the horse are the for-
ward force i, exerted by the Earth and the backward ten-
sion force T exerted by the sled (Fig. 5.18c). The resultant of

these two forces causes the horse to accelerate. When .
balances .4, the system moves with constant velocity.

Exercise Are the normal force exerted by the snow on the
horse and the gravitational force exerted by the Earth on the
horse a third-law pair?

Answer No, because they act on the same object. Third-law
force pairs are equal in magnitude and opposite in direction,
and the forces act on different objects.

EXAMPLE 5.12

The following is a simple method of measuring coefficients of
friction: Suppose a block is placed on a rough surface in-
clined relative to the horizontal, as shown in Figure 5.19. The
incline angle is increased until the block starts to move. Let
us show that by measuring the critical angle 6, at which this
slipping just occurs, we can obtain ;.

Solution The only forces acting on the block are the force
of gravity mg, the normal force n, and the force of static fric-
tion f;. These forces balance when the block is on the verge

Figure 5.19 The external forces exerted on a block lying on a
rough incline are the force of gravity mg, the normal force n, and
the force of friction f. For convenience, the force of gravity is re-
solved into a component along the incline mgsin # and a component
perpendicular to the incline mg cos 6.

Experimental Determination of psand

of slipping but has not yet moved. When we take x to be par-
allel to the plane and y perpendicular to it, Newton’s second
law applied to the block for this balanced situation gives

Static case: (1) EE,( = mgsin 0 — f, = ma, = 0

(2) EF‘:n—mgCOSOZmayZO

We can eliminate mg by substituting mg = n/cos 6 from

(2) into (1) to get

n
(3) Js = mgsin 6 = (7) sin 6 = ntan 6
cos 6
When the incline is at the critical angle 6,, we know that f; =
fimax = Msm, and so at this angle, (3) becomes

Msn = ntan 6,

Static case: My = tan 6,

For example, if the block just slips at 6, = 20°, then we find
that u, = tan 20° = 0.364.

Once the block starts to move at = 6,, it accelerates
down the incline and the force of friction is f; = u;n. How-
ever, if 0 is reduced to a value less than 6, it may be possible
to find an angle 6, such that the block moves down the in-
cline with constant speed (a, = 0). In this case, using (1) and
(2) with f replaced by f; gives

Kinetic case: My = tan 6,

where 6, < 6,.

@

EXAMPLE 5.13  The Sliding Hockey Puck

A hockey puck on a frozen pond is given an initial speed of
20.0 m/s. If the puck always remains on the ice and slides
115 m before coming to rest, determine the coefficient of ki-
netic friction between the puck and ice.

Solution The forces acting on the puck after it is in mo-
tion are shown in Figure 5.20. If we assume that the force of
kinetic friction f; remains constant, then this force produces
a uniform acceleration of the puck in the direction opposite
its velocity, causing the puck to slow down. First, we find this
acceleration in terms of the coefficient of kinetic friction, us-
ing Newton’s second law. Knowing the acceleration of the
puck and the distance it travels, we can then use the equa-
tions of kinematics to find the coefficient of kinetic friction.

Motion

n
fi i |I 3

mg

Figure 5.20  Afier the puck is given an initial velocity to the right,
the only external forces acting on it are the force of gravity mg, the
normal force n, and the force of kinetic friction f},.

5.8 Forces of Friction 135

Defining rightward and upward as our positive directions,
we apply Newton’s second law in component form to the
puck and obtain

1) S F.=—f= ma,
@ SFR=n-mg=0 (a,=0)
But f; = uyn, and from (2) we see that n = mg. Therefore,
(1) becomes
— = = pymg = ma
ax = ~ Mg

The negative sign means the acceleration is to the left; this
means that the puck is slowing down. The acceleration is in-
dependent of the mass of the puck and is constant because
we assume that w; remains constant.
Because the acceleration is constant, we can use Equation
2.12, vx/2 =02+ 2a,(x;— x;),with x; = 0 and v, = 0:
v+ 2ax; = vy — 2urgxy =0
2
Uxi
‘ng/
(20.0 m/s)?

M= e som 15 my 77

M =

Note that yy is dimensionless.

EXAMPLE 5.14

When Friction Is Present

A block of mass m; on a rough, horizontal surface is con-
nected to a ball of mass my by a lightweight cord over a light-
weight, frictionless pulley, as shown in Figure 5.21a. A force
of magnitude Fat an angle 6 with the horizontal is applied to
the block as shown. The coefficient of kinetic friction be-
tween the block and surface is u;. Determine the magnitude
of the acceleration of the two objects.

Solution We start by drawing free-body diagrams for the
two objects, as shown in Figures 5.21b and 5.21c. (Are you be-
ginning to see the similarities in all these examples?) Next,
we apply Newton’s second law in component form to each
object and use Equation 5.9, f; = w;n. Then we can solve for
the acceleration in terms of the parameters given.

The applied force F has x and y components F cos 6 and
Fsin 6, respectively. Applying Newton’s second law to both
objects and assuming the motion of the block is to the right,
we obtain

Acceleration of Two C ted Obj

Motion of block: (1) EFX: Fcos 0 — f — T=ma,

= ma
(2) EF =n+ Fsin 0 — mg
=ma, =0

Motion of ball: EFX = mgoa, = 0

(3) 21"}, = T — mog = mga, = mea

Note that because the two objects are connected, we can
equate the magnitudes of the x component of the accelera-
tion of the block and the y component of the acceleration of
the ball. From Equation 5.9 we know that f; = u;n, and from
(2) we know that n = m;g — Fsin 6 (note that in this case nis
not equal to m; g); therefore,

(4) S = ty(mig — Fsin 6)

That is, the frictional force is reduced because of the positive
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y component of F. Substituting (4) and the value of 7 from
(3) into (1) gives

Fcos § — py(mg — Fsin 0) — mo(a + g) = ma

Solving for a, we obtain

F(cos 0 + pysin 0) — g(mg + ppmy)

(5)

my + my

Note that the acceleration of the block can be either to
the right or to the left,® depending on the sign of the numer-
ator in (5). If the motion is to the left, then we must reverse
the sign of f; in (1) because the force of kinetic friction must
oppose the motion. In this case, the value of a is the same as
in (5), with u; replaced by — .

(b) (©)

Figure 5.21 (a) The external force F applied as shown can cause the block to accelerate to the right.
(b) and (c) The free-body diagrams, under the assumption that the block accelerates to the right and the
ball accelerates upward. The magnitude of the force of kinetic friction in this case is given by

S = mgn = wy(mg — Fsin 6).

APPLICATION ~ Automobile Antilock Braking Systems (ABS)

If an automobile tire is rolling and not slipping on a road sur-
face, then the maximum frictional force that the road can ex-
ert on the tire is the force of static friction u;n. One must use
static friction in this situation because at the point of contact
between the tire and the road, no sliding of one surface over
the other occurs if the tire is not skidding. However, if the
tire starts to skid, the frictional force exerted on it is reduced
to the force of kinetic friction u;n. Thus, to maximize the
frictional force and minimize stopping distance, the wheels
must maintain pure rolling motion and not skid. An addi-
tional benefit of maintaining wheel rotation is that direc-
tional control is not lost as it is in skidding.

Unfortunately, in emergency situations drivers typically
press down as hard as they can on the brake pedal, “locking
the brakes.” This stops the wheels from rotating, ensuring a
skid and reducing the frictional force from the static to the
kinetic case. To address this problem, automotive engineers

have developed antilock braking systems (ABS) that very
briefly release the brakes when a wheel is just about to stop
turning. This maintains rolling contact between the tire and
the pavement. When the brakes are released momentarily,
the stopping distance is greater than it would be if the brakes
were being applied continuously. However, through the use
of computer control, the “brake-off” time is kept to a mini-
mum. As a result, the stopping distance is much less than
what it would be if the wheels were to skid.

Let us model the stopping of a car by examining real data.
In a recent issue of AutoWeek,” the braking performance for a
Toyota Corolla was measured. These data correspond to the
braking force acquired by a highly trained, professional dri-
ver. We begin by assuming constant acceleration. (Why do we
need to make this assumption?) The magazine provided the
initial speed and stopping distance in non-SI units. After con-
verting these values to SI we use vxf‘ = v, + 2a,x to deter-

6 Equation 5 shows that when w;m; > my, there is a range of values of Ffor which no motion occurs at

a given angle 6.

7 AutoWeek magazine, 48:22-23, 1998.
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mine the acceleration at different speeds. These do not vary Initial Speed Stopping Distance Stopping distance
greatly, and so our assumption of constant acceleration is rea- (mi/h) no skid (m) skidding (m)
sonable.

30 10.4 13.9
60 43.6 55.5
Initial Speed Stopping Distance Acceleration 80 76.5 98.9
(mi/h) (m/s) (ft) (m) (m/s?)
30 13.4 34 10.4 —8.67 . i
60 26.8 143 43.6 —8.95 ) An ABS -k‘e'eps th wh'eels .ro'laur.)g, w1'Lh Lbe result that the
80 35.8 951 76.5 —8.36 higher coefficient of static friction is maintained between the

We take an average value of acceleration of — 8.4 m/s?,
which is approximately 0.86g. We then calculate the coeffi-
cient of friction from XF = pu,mg = ma; this gives u, = 0.86 for
the Toyota. This is lower than the rubber-to-concrete value
given in Table 5.2. Can you think of any reasons for this?

Let us now estimate the stopping distance of the car if the
wheels were skidding. Examining Table 5.2 again, we see that
the difference between the coefficients of static and kinetic
friction for rubber against concrete is about 0.2. Let us there-
fore assume that our coefficients differ by the same amount,
so that w; = 0.66. This allows us to calculate estimated stop-
ping distances for the case in which the wheels are locked
and the car skids across the pavement. The results illustrate
the advantage of not allowing the wheels to skid.

Speed (m/s)

tires and road. This approximates the technique of a profes-
sional driver who is able to maintain the wheels at the point
of maximum frictional force. Let us estimate the ABS perfor-
mance by assuming that the magnitude of the acceleration is
not quite as good as that achieved by the professional driver
but instead is reduced by 5%.

We now plot in Figure 5.22 vehicle speed versus distance
from where the brakes were applied (at an initial speed of
80 mi/h = 37.5 m/s) for the three cases of amateur driver,
professional driver, and estimated ABS performance (ama-
teur driver). We find that a markedly shorter distance is nec-
essary for stopping without locking the wheels and skidding
and a satisfactory value of stopping distance when the ABS
computer maintains tire rotation.

The purpose of the ABS is to help typical drivers (whose ten-
dency is to lock the wheels in an emergency) to better maintain
control of their automobiles and minimize stopping distance.

40
= Amateur driver
Professional driver
20 m— ABS, amateur driver
Figure 5.22 This plot of vehicle speed versus distance
0 I | from where the brakes were applied shows that an antilock
0 50 100 Distance from point braking system (ABS) approaches the performance of a
of application of brakes (m) trained professional driver.
SUMMARY

Newton’s first law states that, in the absence of an external force, a body at rest
remains at rest and a body in uniform motion in a straight line maintains that mo-
tion. An inertial frame is one that is not accelerating.

Newton’s second law states that the acceleration of an object is directly pro-
portional to the net force acting on it and inversely proportional to its mass. The
net force acting on an object equals the product of its mass and its acceleration:
3F = ma. You should be able to apply the x and y component forms of this equa-
tion to describe the acceleration of any object acting under the influence of speci-
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A block pulled to the right on a
rough horizontal surface

A block pulled up a rough incline
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—_— \
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Two blocks in contact, pushed to the

right on a frictionless surface

Two masses connected by a light cord. The
surface is rough, and the pulley is frictionless.
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Figure 5.23 Various systems (left) and the corresponding free-body diagrams (right).

Questions

fied forces. If the object is either stationary or moving with constant velocity, then
the forces must vectorially cancel each other.

The force of gravity exerted on an object is equal to the product of its mass
(a scalar quantity) and the freefall acceleration: F, = mg. The weight of an ob-
ject is the magnitude of the force of gravity acting on the object.

Newton’s third law states that if two objects interact, then the force exerted by
object 1 on object 2 is equal in magnitude and opposite in direction to the force ex-
erted by object 2 on object 1. Thus, an isolated force cannot exist in nature. Make
sure you can identify third-law pairs and the two objects upon which they act.

The maximum force of static friction f,,,,, between an object and a surface
is proportional to the normal force acting on the object. In general, f{ = un,
where u,is the coefficient of static friction and 7 is the magnitude of the normal
force. When an object slides over a surface, the direction of the force of kinetic
friction f}, is opposite the direction of sliding motion and is also proportional to
the magnitude of the normal force. The magnitude of this force is given by f, =
n, where wy is the coefficient of kinetic friction.

More on Free-Body Diagrams

To be successful in applying Newton’s second law to a system, you must be able to
recognize all the forces acting on the system. That is, you must be able to construct
the correct free-body diagram. The importance of constructing the free-body dia-
gram cannot be overemphasized. In Figure 5.23 a number of systems are pre-
sented together with their free-body diagrams. You should examine these carefully
and then construct free-body diagrams for other systems described in the end-of-
chapter problems. When a system contains more than one element, it is important
that you construct a separate free-body diagram for each element.

As usual, F denotes some applied force, Fg = mg is the force of gravity, n de-
notes a normal force, f is the force of friction, and T is the force whose magnitude
is the tension exerted on an object.

QUESTIONS

1. A passenger sitting in the rear of a bus claims that he was
injured when the driver slammed on the brakes, causing
a suitcase to come flying toward the passenger from the strikes a window.
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tions: a man takes a step; a snowball hits a woman in the
back; a baseball player catches a ball; a gust of wind

front of the bus. If you were the judge in this case, what
disposition would you make? Why?

2. A space explorer is in a spaceship moving through space

far from any planet or star. She notices a large rock, taken
as a specimen from an alien planet, floating around the

cabin of the spaceship. Should she push it gently toward a 7
storage compartment or kick it toward the compartment?
Why? 8

3. A massive metal object on a rough metal surface may un-

'S

dergo contact welding to that surface. Discuss how this af-
fects the frictional force between object and surface.

The observer in the elevator of Example 5.8 would claim
that the weight of the fish is 7, the scale reading. This
claim is obviously wrong. Why does this observation differ
from that of a person in an inertial frame outside the
elevator?

dentify the action—-reaction pairs in the following situa-

A ball is held in a person’s hand. (a) Identify all the exter-
nal forces acting on the ball and the reaction to each.

(b) If the ball is dropped, what force is exerted on it
while it is falling? Identify the reaction force in this case.
(Neglect air resistance.)

. Ifa car is traveling westward with a constant speed of

20 m/s, what is the resultant force acting on it?

. “When the locomotive in Figure 5.3 broke through the

wall of the train station, the force exerted by the locomo-
tive on the wall was greater than the force the wall could
exert on the locomotive.” Is this statement true or in
need of correction? Explain your answer.

A rubber ball is dropped onto the floor. What force

10.

causes the ball to bounce?

What is wrong with the statement, “Because the car is at
rest, no forces are acting on it”? How would you correct
this statement?
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11.

12.

13

14.

15.

16.

Suppose you are driving a car along a highway at a high
speed. Why should you avoid slamming on your brakes if
you want to stop in the shortest distance? That is, why
should you keep the wheels turning as you brake?

If you have ever taken a ride in an elevator of a high-rise
building, you may have experienced a nauseating sensa-
tion of “heaviness” and “lightness” depending on the di-
rection of the acceleration. Explain these sensations. Are
we truly weightless in free-fall?

The driver of a speeding empty truck slams on the brakes
and skids to a stop through a distance d. (a) If the truck
carried a heavy load such that its mass were doubled,
what would be its skidding distance? (b) If the initial
speed of the truck is halved, what would be its skidding
distance?

In an attempt to define Newton’s third law, a student states
that the action and reaction forces are equal in magnitude
and opposite in direction to each other. If this is the case,
how can there ever be a net force on an object?

What force causes (a) a propeller-driven airplane to
move? (b) arocket? (c) a person walking?

Suppose a large and spirited Freshman team is beating
the Sophomores in a tug-of-war contest. The center of the

PROBLEMS

1, 2, 3 = straightforward, intermediate, challenging D = full solution available in the Student Solutions Manual and Study Guide
WeB = solution posted at http://www.saunderscollege.com/physics/ [] = Computer useful in solving problem ‘F-’ = Interactive Physics

]

= paired numerical/symbolic problems

17

19.

rope being tugged is gradually accelerating toward the
Freshman team. State the relationship between the
strengths of these two forces: First, the force the Fresh-
men exert on the Sophomores; and second, the force the
Sophomores exert on the Freshmen.

If you push on a heavy box that is at rest, you must exert
some force to start its motion. However, once the box is
sliding, you can apply a smaller force to maintain that
motion. Why?

A weight lifter stands on a bathroom scale. He pumps a
barbell up and down. What happens to the reading on
the scale as this is done? Suppose he is strong enough to
actually throw the barbell upward. How does the reading
on the scale vary now?

As a rocket is fired from a launching pad, its speed and
acceleration increase with time as its engines continue to
operate. Explain why this occurs even though the force of
the engines exerted on the rocket remains constant.

n the motion picture It Happened One Night (Columbia
Pictures, 1934), Clark Gable is standing inside a station-
ary bus in front of Claudette Colbert, who is seated. The
bus suddenly starts moving forward, and Clark falls into
Claudette’s lap. Why did this happen?

Sections 5.1 through 5.6

1

I

. Aforce F applied to an object of mass m; produces an
acceleration of 3.00 m/s?. The same force applied to a
second object of mass my produces an acceleration of
1.00 m/s% (a) What is the value of the ratio my /mo?
(b) If m; and my are combined, find their acceleration
under the action of the force F.

. A force of 10.0 N acts on a body of mass 2.00 kg. What
are (a) the body’s acceleration, (b) its weight in new-
tons, and (c) its acceleration if the force is doubled?

A 3.00-kg mass undergoes an acceleration given by a =

(2.00i + 5.00§) m/s?. Find the resultant force 3F and
its magnitude.

. A heavy freight train has a mass of 15 000 metric tons.
If the locomotive can pull with a force of 750 000 N,
how long does it take to increase the speed from 0 to
80.0 km/h?

. A '5.00-g bullet leaves the muzzle of a rifle with a speed
of 320 m/s. The expanding gases behind it exert what
force on the bullet while it is traveling down the barrel
of the rifle, 0.820 m long? Assume constant acceleration
and negligible friction.

. After uniformly accelerating his arm for 0.0900 s, a

pitcher releases a baseball of weight 1.40 N with a veloc-

7

ity of 32.0 m/s horizontally forward. If the ball starts
from rest, (a) through what distance does the ball accel-
erate before its release? (b) What force does the pitcher
exert on the ball?

. After uniformly accelerating his arm for a time £, a
pitcher releases a baseball of weight — F, j with a veloc-
ity vi. If the ball starts from rest, (a) through what dis-
tance does the ball accelerate before its release?

(b) What force does the pitcher exert on the ball?

. Define one pound as the weight of an object of mass
0.453 592 37 kg at a location where the acceleration
due to gravity is 32.174 0 ft/s2 Express the pound as
one quantity with one SI unit.

wes [9.] A 4.00-kg object has a velocity of 3.00i m/s at one in-

stant. Eight seconds later, its velocity has increased to
(8.00i + 10.0j) m/s. Assuming the object was subject to
a constant total force, find (a) the components of the
force and (b) its magnitude.

The average speed of a nitrogen molecule in air is
about 6.70 X 10? m/s, and its mass is 4.68 X 10720 kg.
(a) If it takes 3.00 X 107'3 s for a nitrogen molecule to
hit a wall and rebound with the same speed but moving
in the opposite direction, what is the average accelera-
tion of the molecule during this time interval? (b) What
average force does the molecule exert on the wall?

@5

11.] An electron of mass 9.11 X 107! kg has an initial speed
g P

12.

13.

14.

16.

17.

18.

3

19.

0of 3.00 X 10° m/s. It travels in a straight line, and its
speed increases to 7.00 X 10° m/s in a distance of

5.00 cm. Assuming its acceleration is constant, (a) de-
termine the force exerted on the electron and (b) com-
pare this force with the weight of the electron, which we
neglected.

A woman weighs 120 1b. Determine (a) her weight in
newtons and (b) her mass in kilograms.

If a man weighs 900 N on the Earth, what would he
weigh on Jupiter, where the acceleration due to gravity
is 25.9 m/s%?

The distinction between mass and weight was discov-
ered after Jean Richer transported pendulum clocks
from Paris to French Guiana in 1671. He found that
they ran slower there quite systematically. The effect was
reversed when the clocks returned to Paris. How much
weight would you personally lose in traveling from
Paris, where g = 9.809 5 m/s%, to Cayenne, where g =
9.780 8 m/s2? (We shall consider how the free-fall accel-
eration influences the period of a pendulum in Section
13.4.)

Two forces Fy and Fy act on a 5.00-kg mass. If 17 =

20.0 N and F = 15.0 N, find the accelerations in

(a) and (b) of Figure P5.15.

Fy
Fy
90.0°
\ 4 \6().()”
[ M —F [ m p— F,
@ S m)
Figure P5.15

Besides its weight, a 2.80-kg object is subjected to one
other constant force. The object starts from rest and in
1.20 s experiences a displacement of (4.20 m)i —

(3.30 m)j, where the direction of j is the upward vertical
direction. Determine the other force.

You stand on the seat of a chair and then hop off.

(a) During the time you are in flight down to the floor,
the Earth is lurching up toward you with an accelera-
tion of what order of magnitude? In your solution ex-
plain your logic. Visualize the Earth as a perfectly solid
object. (b) The Earth moves up through a distance of
what order of magnitude?

Forces of 10.0 N north, 20.0 N east, and 15.0 N south
are simultaneously applied to a 4.00-kg mass as it rests
on an air table. Obtain the object’s acceleration.

A boat moves through the water with two horizontal
forces acting on it. One is a 2000-N forward push
caused by the motor; the other is a constant 1800-N re-
sistive force caused by the water. (a) What is the acceler-
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ation of the 1 000-kg boat? (b) If it starts from rest, how
far will it move in 10.0 s? (c) What will be its speed at
the end of this time?

20. Three forces, given by F; = (—2.00i + 2.00j) N, Fy =

(5.00i — 3.00j) N, and F5 = (— 45.0i) N, act on an ob-
ject to give it an acceleration of magnitude 3.75 m/s?.
(a) What is the direction of the acceleration? (b) What
is the mass of the object? (c) If the object is initially at
rest, what is its speed after 10.0 s? (d) What are the ve-
locity components of the object after 10.0 s?

21. A 15.0-1b block rests on the floor. (a) What force does

the floor exert on the block? (b) If a rope is tied to the
block and run vertically over a pulley, and the other end
is attached to a free-hanging 10.0-Ib weight, what is the
force exerted by the floor on the 15.0-b block? (c) If we
replace the 10.0-1b weight in part (b) with a 20.0-b
weight, what is the force exerted by the floor on the
15.0-b block?

Section 5.7 Some Applications of Newton's Laws

22. A 3.00-kg mass is moving in a plane, with its x and y co-

ordinates given by x = 5t2 — 1 and y= 36% + 2, where
xand yare in meters and #is in seconds. Find the mag-
nitude of the net force acting on this mass at £ = 2.00 s.

23. The distance between two telephone poles is 50.0 m.

When a 1.00-kg bird lands on the telephone wire mid-
way between the poles, the wire sags 0.200 m. Draw a
free-body diagram of the bird. How much tension does
the bird produce in the wire? Ignore the weight of the
wire.

24. A bag of cement of weight 325 N hangs from three

wires as shown in Figure P5.24. Two of the wires make
angles 6; = 60.0° and 6, = 25.0° with the horizontal. If
the system is in equilibrium, find the tensions 77, 75,
and T3 in the wires.

Figure P5.24 Problems 24 and 25.



142

26.

27.
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.| A bag of cement of weight /, hangs from three wires as
g ght Ly hang:

shown in Figure P5.24. Two of the wires make angles 6;
and 6 with the horizontal. If the system is in equilib-
rium, show that the tension in the left-hand wire is

Ty = F,cos by/sin(6; + o)

You are a judge in a children’s kite-flying contest, and
two children will win prizes for the kites that pull most
strongly and least strongly on their strings. To measure
string tensions, you borrow a weight hanger, some slot-
ted weights, and a protractor from your physics teacher
and use the following protocol, illustrated in Figure
P5.26: Wait for a child to get her kite well-controlled,
hook the hanger onto the kite string about 30 cm from
her hand, pile on weights until that section of string is
horizontal, record the mass required, and record the
angle between the horizontal and the string running up
to the kite. (a) Explain how this method works. As you
construct your explanation, imagine that the children’s
parents ask you about your method, that they might
make false assumptions about your ability without con-
crete evidence, and that your explanation is an opportu-
nity to give them confidence in your evaluation tech-
nique. (b) Find the string tension if the mass required
to make the string horizontal is 132 g and the angle of
the kite string is 46.3°.

Figure P5.26

The systems shown in Figure P5.27 are in equilibrium.
If the spring scales are calibrated in newtons, what do
they read? (Neglect the masses of the pulleys and
strings, and assume the incline is frictionless.)

A fire helicopter carries a 620-kg bucket of water at the
end of a cable 20.0 m long. As the aircraft flies back
from a fire at a constant speed of 40.0 m/s, the cable
makes an angle of 40.0° with respect to the vertical.

(a) Determine the force of air resistance on the bucket.
(b) After filling the bucket with sea water, the pilot re-

wes

()

5.00 kg _] _J 5.00 kg
(b)

Figure P5.27

turns to the fire at the same speed with the bucket now
making an angle of 7.00° with the vertical. What is the
mass of the water in the bucket?

A 1.00-kg mass is observed to accelerate at 10.0 m/s? in
a direction 30.0° north of east (Fig. P5.29). The force
Fy acting on the mass has a magnitude of 5.00 N and is
directed north. Determine the magnitude and direction
of the force F; acting on the mass.

F. 12

2 Y
0
[ \30.0°
—

1.00 kg =
1

Figure P5.29

30. A simple accelerometer is constructed by suspending a

mass m from a string of length L that is tied to the top
of a cart. As the cart is accelerated the string-mass sys-
tem makes a constant angle 6 with the vertical.

(a) Assuming that the string mass is negligible com-
pared with m, derive an expression for the cart’s acceler-
ation in terms of 6 and show that it is independent of

31.

32.

the mass m and the length L. (b) Determine the accel-
eration of the cart when 6 = 23.0°.

Two people pull as hard as they can on ropes attached
to a boat that has a mass of 200 kg. If they pull in the
same direction, the boat has an acceleration of

1.52 m/s? to the right. If they pull in opposite direc-
tions, the boat has an acceleration of 0.518 m/s? to the
left. What is the force exerted by each person on the
boat? (Disregard any other forces on the boat.)

Draw a free-body diagram for a block that slides down a
frictionless plane having an inclination of 6 = 15.0°
(Fig. P5.32). If the block starts from rest at the top and
the length of the incline is 2.00 m, find (a) the accelera-
tion of the block and (b) its speed when it reaches the
bottom of the incline.

[

Figure P5.32

A block is given an initial velocity of 5.00 m/s up a fric-
tionless 20.0° incline. How far up the incline does the
block slide before coming to rest?

Two masses are connected by a light string that passes
over a frictionless pulley, as in Figure P5.34. If the in-
cline is frictionless and if m; = 2.00 kg, my = 6.00 kg,
and 6 = 55.0°, find (a) the accelerations of the masses,
(b) the tension in the string, and (c) the speed of each
mass 2.00 s after being released from rest.

Figure P5.34

iP35.

36.

38.
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Two masses my and my situated on a frictionless, hori-
zontal surface are connected by a light string. A force F
is exerted on one of the masses to the right (Fig.
P5.35). Determine the acceleration of the system and
the tension T'in the string.

m ot ﬁ]—»r

Figure P5.35 Problems 35 and 51.

Two masses of 3.00 kg and 5.00 kg are connected by a
light string that passes over a frictionless pulley, as was
shown in Figure 5.15a. Determine (a) the tension in the
string, (b) the acceleration of each mass, and (c) the
distance each mass will move in the first second of mo-
tion if they start from rest.

.| In the system shown in Figure P5.37, a horizontal force

Fyacts on the 8.00-kg mass. The horizontal surface is
frictionless.(a) For what values of I, does the 2.00-kg
mass accelerate upward? (b) For what values of F, is the
tension in the cord zero? (c) Plot the acceleration of
the 8.00-kg mass versus F,. Include values of F, from
—100 N to +100 N.

Figure P5.37

Mass my on a frictionless horizontal table is connected
to mass mg by means of a very light pulley P, and a light
fixed pulley Py as shown in Figure P5.38. (a) If ¢; and a»

Py

Py
"bli H‘—{\

|

Figure P5.38
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are the accelerations of m; and my, respectively, what is
the relationship between these accelerations? Express
(b) the tensions in the strings and (c) the accelerations
a) and a in terms of the masses m; and mg and g.

A 72.0-kg man stands on a spring scale in an elevator.
Starting from rest, the elevator ascends, attaining its
maximum speed of 1.20 m/s in 0.800 s. It travels with
this constant speed for the next 5.00 s. The elevator
then undergoes a uniform acceleration in the negative
ydirection for 1.50 s and comes to rest. What does the
spring scale register (a) before the elevator starts to
move? (b) during the first 0.800 s? (c) while the eleva-
tor is traveling at constant speed? (d) during the time it
is slowing down?

Section 5.8 Forces of Friction
40.

41

42.

43.

44.

The coefficient of static friction is 0.800 between the
soles of a sprinter’s running shoes and the level track
surface on which she is running. Determine the maxi-
mum acceleration she can achieve. Do you need to
know that her mass is 60.0 kg?

A 25.0-kg block is initially at rest on a horizontal sur-
face. A horizontal force of 75.0 N is required to set the
block in motion. After it is in motion, a horizontal force
of 60.0 N is required to keep the block moving with
constant speed. Find the coefficients of static and ki-
netic friction from this information.

A racing car accelerates uniformly from 0 to 80.0 mi/h
in 8.00 s. The external force that accelerates the car is
the frictional force between the tires and the road. If
the tires do not slip, determine the minimum coeffi-
cient of friction between the tires and the road.

A car is traveling at 50.0 mi/h on a horizontal highway.
(a) If the coefficient of friction between road and tires
on a rainy day is 0.100, what is the minimum distance in
which the car will stop? (b) What is the stopping dis-
tance when the surface is dry and u, = 0.600?

A woman at an airport is towing her 20.0-kg suitcase at
constant speed by pulling on a strap at an angle of 6
above the horizontal (Fig. P5.44). She pulls on the strap
with a 35.0-N force, and the frictional force on the suit-
case is 20.0 N. Draw a free-body diagram for the suit-
case. (a) What angle does the strap make with the hori-
zontal? (b) What normal force does the ground exert
on the suitcase?

wee - A 3.00-kg block starts from rest at the top of a 30.0° in-

46.

cline and slides a distance of 2.00 m down the incline in
1.50 s. Find (a) the magnitude of the acceleration of
the block, (b) the coefficient of kinetic friction between
block and plane, (c) the frictional force acting on the
block, and (d) the speed of the block after it has slid
2.00 m.

To determine the coefficients of friction between rub-
ber and various surfaces, a student uses a rubber eraser
and an incline. In one experiment the eraser begins to
slip down the incline when the angle of inclination is

The Laws of Motion

47.

48.

Figure P5.44

36.0° and then moves down the incline with constant
speed when the angle is reduced to 30.0°. From these
data, determine the coefficients of static and kinetic
friction for this experiment.

A boy drags his 60.0-N sled at constant speed up a 15.0°
hill. He does so by pulling with a 25.0-N force on a rope
attached to the sled. If the rope is inclined at 35.0° to
the horizontal, (a) what is the coefficient of kinetic fric-
tion between sled and snow? (b) At the top of the hill,
he jumps on the sled and slides down the hill. What is
the magnitude of his acceleration down the slope?
Determine the stopping distance for a skier moving
down a slope with friction with an initial speed of

20.0 m/s (Fig. P5.48). Assume w;, = 0.180 and 6 = 5.00°.

o,

50.

Figure P5.48

A 9.00-kg hanging weight is connected by a string over a
pulley to a 5.00-kg block that is sliding on a flat table
(Fig. P5.49). If the coefficient of kinetic friction is
0.200, find the tension in the string.

Three blocks are connected on a table as shown in Fig-
ure P5.50. The table is rough and has a coefficient of ki-

% 5N

52.

53.

5.00 kg
)
9.00 kg
Figure P5.49
1.00 kg

A

4.00 kg 2.00 kg

Figure P5.50

netic friction of 0.350. The three masses are 4.00 kg,
1.00 kg, and 2.00 kg, and the pulleys are frictionless.
Draw a free-body diagram for each block. (a) Deter-
mine the magnitude and direction of the acceleration
of each block. (b) Determine the tensions in the two
cords.

Two blocks connected by a rope of negligible mass are
being dragged by a horizontal force F (see Fig. P5.35).
Suppose that "= 68.0 N, m; = 12.0 kg, me = 18.0 kg,
and the coefficient of kinetic friction between each
block and the surface is 0.100. (a) Draw a free-body dia-
gram for each block. (b) Determine the tension 7'and
the magnitude of the acceleration of the system.

A block of mass 2.20 kg is accelerated across a rough
surface by a rope passing over a pulley, as shown in Fig-
ure P5.52. The tension in the rope is 10.0 N, and the
pulley is 10.0 cm above the top of the block. The coeffi-
cient of kinetic friction is 0.400. (a) Determine the ac-
celeration of the block when x = 0.400 m. (b) Find the
value of x at which the acceleration becomes zero.

A block of mass 3.00 kg is pushed up against a wall by a
force P that makes a 50.0° angle with the horizontal as
shown in Figure P5.53. The coefficient of static friction
between the block and the wall is 0.250. Determine the
possible values for the magnitude of P that allow the
block to remain stationary.
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M

Figure P5.52

50A0°y

P

Figure P5.53

ADDITIONAL PROBLEMS

54.

A time-dependent force F = (8.00i — 4.00¢j) N (where
tis in seconds) is applied to a 2.00-kg object initially at
rest. (a) At what time will the object be moving with a
speed of 15.0 m/s? (b) How far is the object from its
initial position when its speed is 15.0 m/s? (c) What is
the object’s displacement at the time calculated in (a)?

An inventive child named Pat wants to reach an apple

56.

in a tree without climbing the tree. Sitting in a chair
connected to a rope that passes over a frictionless pulley
(Fig. P5.55), Pat pulls on the loose end of the rope with
such a force that the spring scale reads 250 N. Pat’s
weight is 320 N, and the chair weighs 160 N. (a) Draw
free-body diagrams for Pat and the chair considered as
separate systems, and draw another diagram for Pat and
the chair considered as one system. (b) Show that the
acceleration of the system is upward and find its magni-
tude. (c) Find the force Pat exerts on the chair.

Three blocks are in contact with each other on a fric-
tionless, horizontal surface, as in Figure P5.56. A hori-
zontal force F is applied to m;. If my = 2.00 kg, mg =
3.00 kg, mg = 4.00 kg, and F'= 18.0 N, draw a separate
free-body diagram for each block and find (a) the accel-
eration of the blocks, (b) the resultant force on each
block, and (c) the magnitudes of the contact forces be-
tween the blocks.
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the system is in equilibrium, find (e) the minimum
value of Mand (f) the maximum value of M. (g) Com-
pare the values of T, when M has its minimum and
maximum values.

wes Amass Mis held in place by an applied force F and a
pulley system as shown in Figure P5.59. The pulleys are
massless and frictionless. Find (a) the tension in each
section of rope, 11, 15, T3, Ty, and T; and (b) the mag-
nitude of F. (Hint: Draw a free-body diagram for each
pulley.)

Figure P5.55

Figure P5.56

57. A high diver of mass 70.0 kg jumps off a board 10.0 m
above the water. If his downward motion is stopped
2.00 s after he enters the water, what average upward
force did the water exert on him?

58. Consider the three connected objects shown in Figure
P5.58. If the inclined plane is frictionless and the
system is in equilibrium, find (in terms of m, g, and 6)
(a) the mass M and (b) the tensions 77 and T5. If the
value of M is double the value found in part (a), find
(c) the acceleration of each object, and (d) the ten-
sions 77 and 7. If the coefficient of static friction
between m and 2m and the inclined plane is u,, and

Figure P5.59

60. Two forces, given by F; = (— 6.00i — 4.00j) N and Fy =
(—3.00i + 7.00j) N, act on a particle of mass 2.00 kg that
is initially at rest at coordinates (— 2.00 m, +4.00 m).
(a) What are the components of the particle’s velocity at
t = 10.0 s? (b) In what direction is the particle moving at
t = 10.0 s? (c) What displacement does the particle un-
dergo during the first 10.0 s? (d) What are the coordi-
nates of the particle at £ = 10.0 s?

p 61. A crate of weight Fis pushed by a force P on a horizon-

( M) tal floor. (a) If the coefficient of static friction is u, and

p— P is directed at an angle 6 below the horizontal, show

that the minimum value of P that will move the crate is
\9 given by

T

2m

P = p, Fysec 6(1 — p,tan 6)~!

Figure P5.58 (b) Find the minimum value of P that can produce mo-

62.

63.

64.

tion when u, = 0.400, Fg =100 N, and 6 = 0°, 15.0°,
30.0°, 45.0°, and 60.0°.

Review Problem. A block of mass m = 2.00 kg is re-
leased from rest 2 = 0.500 m from the surface of a
table, at the top of a 6 = 30.0° incline as shown in Fig-
ure P5.62. The frictionless incline is fixed on a table of
height H = 2.00 m. (a) Determine the acceleration of
the block as it slides down the incline. (b) What is the
velocity of the block as it leaves the incline? (c) How far
from the table will the block hit the floor? (d) How
much time has elapsed between when the block is re-
leased and when it hits the floor? (e) Does the mass of
the block affect any of the above calculations?

T

[ ‘AN
N
N
N
\

Figure P5.62

A 1.30-kg toaster is not plugged in. The coefficient of
static friction between the toaster and a horizontal
countertop is 0.350. To make the toaster start moving,
you carelessly pull on its electric cord. (a) For the cord
tension to be as small as possible, you should pull at
what angle above the horizontal? (b) With this angle,
how large must the tension be?

A 2.00-kg aluminum block and a 6.00-kg copper block
are connected by a light string over a frictionless pulley.
They sit on a steel surface, as shown in Figure P5.64,
and 6 = 30.0°. Do they start to move once any holding
mechanism is released? If so, determine (a) their accel-
eration and (b) the tension in the string. If not, deter-
mine the sum of the magnitudes of the forces of friction
acting on the blocks.

Aluminum

Figure P5.64

os.

O 66.

@e7.
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A block of mass m = 2.00 kg rests on the left edge of a
block of larger mass M = 8.00 kg. The coefficient of ki-
netic friction between the two blocks is 0.300, and the
surface on which the 8.00-kg block rests is frictionless. A
constant horizontal force of magnitude /= 10.0 N is ap-
plied to the 2.00-kg block, setting it in motion as shown
in Figure P5.65a. If the length L that the leading edge of
the smaller block travels on the larger block is 3.00 m,
(a) how long will it take before this block makes it to the
right side of the 8.00-kg block, as shown in Figure
P5.65b? (Note: Both blocks are set in motion when F is
applied.) (b) How far does the 8.00-kg block move in
the process?

F—p " ";Lﬂ
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(b)
Figure P5.65

A student is asked to measure the acceleration of a cart
on a “frictionless” inclined plane as seen in Figure
P5.32, using an air track, a stopwatch, and a meter stick.
The height of the incline is measured to be 1.774 cm,
and the total length of the incline is measured to be

d = 127.1 cm. Hence, the angle of inclination 0 is deter-
mined from the relation sin 6 = 1.774/127.1. The cart
is released from rest at the top of the incline, and its dis-
placement x along the incline is measured versus time,
where x = 0 refers to the initial position of the cart. For
xvalues of 10.0 cm, 20.0 cm, 35.0 cm, 50.0 cm, 75.0 cm,
and 100 cm, the measured times to undergo these dis-
placements (averaged over five runs) are 1.02 s, 1.53 s,
2.01s,2.64s, 3.30 s, and 3.75 s, respectively. Construct a
graph of x versus ¢%, and perform a linear least-squares
fit to the data. Determine the acceleration of the cart
from the slope of this graph, and compare it with the
value you would get using a’ = gsin 6, where g =

9.80 m/s%

A 2.00-kg block is placed on top of a 5.00-kg block as in
Figure P5.67. The coefficient of kinetic friction between
the 5.00-kg block and the surface is 0.200. A horizontal
force F is applied to the 5.00-kg block. (a) Draw a free-
body diagram for each block. What force accelerates
the 2.00-kg block? (b) Calculate the magnitude of the
force necessary to pull both blocks to the right with an
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2.00
kg

5.00 kg .

Figure P5.67

acceleration of 3.00 m/s2 (c) Find the minimum coeffi-
cient of static friction between the blocks such that the
2.00-kg block does not slip under an acceleration of
3.00 m/s2

A 5.00-kg block is placed on top of a 10.0-kg block (Fig.
P5.68). A horizontal force of 45.0 N is applied to the
10.0-kg block, and the 5.00-kg block is tied to the wall.
The coefficient of kinetic friction between all surfaces is
0.200. (a) Draw a free-body diagram for each block and
identify the action—reaction forces between the blocks.
(b) Determine the tension in the string and the magni-
tude of the acceleration of the 10.0-kg block.

pese=mmara 5.00 kg

10.0 kg e = 45.0 N

Figure P5.68

C‘ ‘What horizontal force must be applied to the cart

shown in Figure P5.69 so that the blocks remain station-
ary relative to the cart? Assume all surfaces, wheels, and
pulley are frictionless. (Hint: Note that the force ex-
erted by the string accelerates m; .)

Figure P5.69 Problems 69 and 70.

id@o.

71.

@

.

(% 128

Initially the system of masses shown in Figure P5.69 is
held motionless. All surfaces, pulley, and wheels are fric-
tionless. Let the force F be zero and assume that my can
move only vertically. At the instant after the system of
masses is released, find (a) the tension 7'in the string,
(b) the acceleration of my, (c) the acceleration of M,
and (d) the acceleration of m; . (Note: The pulley accel-
erates along with the cart.)

A block of mass 5.00 kg sits on top of a second block of
mass 15.0 kg, which in turn sits on a horizontal table.
The coefficients of friction between the two blocks are
s = 0.300 and w;, = 0.100. The coefficients of friction
between the lower block and the rough table are u, =
0.500 and w;, = 0.400. You apply a constant horizontal
force to the lower block, just large enough to make this
block start sliding out from between the upper block
and the table. (a) Draw a free-body diagram of each
block, naming the forces acting on each. (b) Determine
the magnitude of each force on each block at the in-
stant when you have started pushing but motion has not
yet started. (c) Determine the acceleration you measure
for each block.

Two blocks of mass 3.50 kg and 8.00 kg are connected
by a string of negligible mass that passes over a friction-
less pulley (Fig. P5.72). The inclines are frictionless.
Find (a) the magnitude of the acceleration of each
block and (b) the tension in the string.

3.50 kg \ 8.00kg

Figure P5.72 Problems 72 and 73.

The system shown in Figure P5.72 has an acceleration
of magnitude 1.50 m/s% Assume the coefficients of ki-
netic friction between block and incline are the same
for both inclines. Find (a) the coefficient of kinetic fric-
tion and (b) the tension in the string.

In Figure P5.74, a 500-kg horse pulls a sledge of mass
100 kg. The system (horse plus sledge) has a forward
acceleration of 1.00 m/s* when the frictional force ex-
erted on the sledge is 500 N. Find (a) the tension in the
connecting rope and (b) the magnitude and direction
of the force of friction exerted on the horse. (c) Verify
that the total forces of friction the ground exerts on the
system will give the system an acceleration of 1.00 m/s

A van accelerates down a hill (Fig. P5.75), going from

rest to 30.0 m/s in 6.00 s. During the acceleration, a toy
(m = 0.100 kg) hangs by a string from the van’s ceiling.
The acceleration is such that the string remains perpen-
dicular to the ceiling. Determine (a) the angle 6 and
(b) the tension in the string.

Figure P5.74

Figure P5.75

76. A mobile is formed by supporting four metal butterflies

of equal mass m from a string of length L. The points of
support are evenly spaced a distance € apart as shown in
Figure P5.76. The string forms an angle 6, with the ceil-
ing at each end point. The center section of string is
horizontal. (a) Find the tension in each section of
string in terms of 6;, m, and g. (b) Find the angle 6,, in

Figure P5.76

ANSWERS TO QUICK QUIZZES

5.1 (a) True. Newton’s first law tells us that motion requires

no force: An object in motion continues to move at con-

stant velocity in the absence of external forces. (b) True.

A stationary object can have several forces acting on it,
but if the vector sum of all these external forces is zero,
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71.

o s

terms of 6, that the sections of string between the out-
side butterflies and the inside butterflies form with the
horizontal. (c) Show that the distance D between the
end points of the string is

L 1
D= ?{2 cos 6 + 2 cos[tarfl (? tan 01)} + 1}

Before 1960 it was believed that the maximum attain-
able coefficient of static friction for an automobile tire
was less than 1. Then about 1962, three companies in-
dependently developed racing tires with coefficients of
1.6. Since then, tires have improved, as illustrated in
this problem. According to the 1990 Guinness Book of
Records, the fastest time in which a piston-engine car
initially at rest has covered a distance of one-quarter
mile is 4.96 s. This record was set by Shirley Muldowney
in September 1989 (Fig. P5.77). (a) Assuming that the
rear wheels nearly lifted the front wheels off the pave-
ment, what minimum value of u, is necessary to achieve
the record time? (b) Suppose Muldowney were able to
double her engine power, keeping other things equal.
How would this change affect the elapsed time?

Figure P5.77

An 8.40-kg mass slides down a fixed, frictionless in-
clined plane. Use a computer to determine and tabu-
late the normal force exerted on the mass and its accel-
eration for a series of incline angles (measured from
the horizontal) ranging from 0 to 90° in 5° increments.
Plot a graph of the normal force and the acceleration as
functions of the incline angle. In the limiting cases of 0
and 90°, are your results consistent with the known be-
havior?

there is no net force and the object remains stationary.
It also is possible to have a net force and no motion, but
only for an instant. A ball tossed vertically upward stops
at the peak of its path for an infinitesimally short time,
but the force of gravity is still acting on it. Thus, al-
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though v = 0 at the peak, the net force acting on the
ball is not zero.

No. Direction of motion is part of an object’s velocily,
and force determines the direction of acceleration, not
that of velocity.

(a) Force of gravity. (b) Force of gravity. The only exter-
nal force acting on the ball at all points in its trajectory
is the downward force of gravity.

As the person steps out of the boat, he pushes against it
with his foot, expecting the boat to push back on him so
that he accelerates toward the dock. However, because
the boat is untied, the force exerted by the foot causes
the boat to scoot away from the dock. As a result, the
person is not able to exert a very large force on the boat
before it moves out of reach. Therefore, the boat does
not exert a very large reaction force on him, and he

Calvin and Hobbes

The Laws of Motion

5.,

5.

ends up not being accelerated sufficiently to make it to
the dock. Consequently, he falls into the water instead.
If a small dog were to jump from the untied boat toward
the dock, the force exerted by the boat on the dog
would probably be enough to ensure the dog’s success-
ful landing because of the dog’s small mass.
5 (a) The same force is experienced by both. The fly and
bus experience forces that are equal in magnitude but
opposite in direction. (b) The fly. Because the fly has
such a small mass, it undergoes a very large acceleration.
The huge mass of the bus means that it more effectively
resists any change in its motion.
(b) The crate accelerates to the right. Because the only
horizontal force acting on it is the force of static friction
between its bottom surface and the truck bed, that force
must also be directed to the right.
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PuzzLeR%E

This sky diver is falling at more than

50 m/s (120 mi/h), but once her para-
chute opens, her downward velocity will
be greatly reduced. Why does she slow
down rapidly when her chute opens, en-
abling her to fall safely to the ground? If
the chute does not function properly, the
sky diver will almost certainly be seri-
ously injured. What force exerted on
her limits her maximum speed?

(Guy Savage/Photo Researchers, Inc.)
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Force causing centripetal
acceleration

CHAPTER 6  Circular Motion and Other Applications of Newton’s Laws

them to situations involving linear motion. Now we discuss motion that is

slightly more complicated. For example, we shall apply Newton’s laws to objects
traveling in circular paths. Also, we shall discuss motion observed from an acceler-
ating frame of reference and motion in a viscous medium. For the most part, this
chapter is a series of examples selected to illustrate the application of Newton’s
laws to a wide variety of circumstances.

I n the preceding chapter we introduced Newton’s laws of motion and applied

6.1 _~ NEWTON’S SECOND LAW APPLIED TO

UNIFORM CIRCULAR MOTION

In Section 4.4 we found that a particle moving with uniform speed v in a circular
path of radius r experiences an acceleration a, that has a magnitude

a,=—
r

37 The acceleration is called the centripetal acceleration because a, is directed toward
47 the center of the circle. Furthermore, a, is always perpendicular to v. (If there

were a component of acceleration parallel to v, the particle’s speed would be
changing.)

Consider a ball of mass m that is tied to a string of length r and is being
whirled at constant speed in a horizontal circular path, as illustrated in Figure 6.1.
Its weight is supported by a low-friction table. Why does the ball move in a circle?
Because of its inertia, the tendency of the ball is to move in a straight line; how-
ever, the string prevents motion along a straight line by exerting on the ball a
force that makes it follow the circular path. This force is directed along the string
toward the center of the circle, as shown in Figure 6.1. This force can be any one
of our familiar forces causing an object to follow a circular path.

If we apply Newton’s second law along the radial direction, we find that the
value of the net force causing the centripetal acceleration can be evaluated:

EF,= ma, = mﬁ (6.1)
r

Figure 6.1 Overhead view of a ball moving
in a circular path in a horizontal plane. A

force F, directed toward the center of the cir-
cle keeps the ball moving in its circular path.
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Figure 6.2 When the string breaks, the
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A force causing a centripetal acceleration acts toward the center of the circular
path and causes a change in the direction of the velocity vector. If that force
should vanish, the object would no longer move in its circular path; instead, it
would move along a straight-line path tangent to the circle. This idea is illustrated
in Figure 6.2 for the ball whirling at the end of a string. If the string breaks at
some instant, the ball moves along the straightline path tangent to the circle at
the point where the string broke.
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An athlete in the process of throw-
ing the hammer at the 1996
Olympic Games in Atlanta, Geor-
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QuickLab >

Tie a string to a tennis ball, swing it in
a circle, and then, while it is swinging,
let go of the string to verify your an-

swer to the last part of Quick Quiz 6.2.

EXAMPLE 6.2

CHAPTER 6  Circular Motion and Other Applications of Newton’s Laws

Figure 6.3 A ball that had been moving in a circular path is acted on by various external forces
that change its path.

Quick Quiz 6.2

A ball is following the dotted circular path shown in Figure 6.3 under the influence of a
force. At a certain instant of time, the force on the ball changes abruptly to a new force, and
the ball follows the paths indicated by the solid line with an arrowhead in each of the four
parts of the figure. For each part of the figure, describe the magnitude and direction of the
force required to make the ball move in the solid path. If the dotted line represents the
path of a ball being whirled on the end of a string, which path does the ball follow if
the string breaks?

Let us consider some examples of uniform circular motion. In each case, be
sure to recognize the external force (or forces) that causes the body to move in its
circular path.

How Fast Can It Spin?

Quick Quiz 6.

gia. The force exerted by the chain
is the force causing the circular
motion. Only when the athlete re-
leases the hammer will it move
along a straight-line path tangent to

Is it possible for a car to move in a circular path in such a way that it has a tangential accel- the circle.
eration but no centripetal acceleration?

CONCEPTUAL EXAMPLE 6.1

The force causing centripetal acceleration is sometimes
called a centripetal force. We are familiar with a variety of forces
in nature—friction, gravity, normal forces, tension, and so
forth. Should we add centripetal force to this list?

Solution No; centripetal force should not be added to this
list. This is a pitfall for many students. Giving the force caus-
ing circular motion a name — centripetal force—leads many
students to consider it a new kind of force rather than a new
role for force. A common mistake in force diagrams is to draw
all the usual forces and then to add another vector for the
centripetal force. But it is not a separate force—it is simply
one of our familiar forces acting in the role of a force that causes
a circular motion.

Forces That Cause Centripetal Acceleration

Consider some examples. For the motion of the Earth
around the Sun, the centripetal force is gravity. For an object
sitting on a rotating turntable, the centripetal force is friction.
For a rock whirled on the end of a string, the centripetal
force is the force of tension in the string. For an amusement-
park patron pressed against the inner wall of a rapidly rotat-
ing circular room, the centripetal force is the normal force ex-
erted by the wall. What’s more, the centripetal force could
be a combination of two or more forces. For example, as a
Ferris-wheel rider passes through the lowest point, the cen-
tripetal force on her is the difference between the normal
force exerted by the seat and her weight.

A ball of mass 0.500 kg is attached to the end of a cord
1.50 m long. The ball is whirled in a horizontal circle as was
shown in Figure 6.1. If the cord can withstand a maximum
tension of 50.0 N, what is the maximum speed the ball can at-
tain before the cord breaks? Assume that the string remains
horizontal during the motion.

Solution Itis difficult to know what might be a reasonable
value for the answer. Nonetheless, we know that it cannot be
too large, say 100 m/s, because a person cannot make a ball
move so quickly. It makes sense that the stronger the cord,
the faster the ball can twirl before the cord breaks. Also, we
expect a more massive ball to break the cord at a lower
speed. (Imagine whirling a bowling ball!)

Because the force causing the centripetal acceleration in
this case is the force T exerted by the cord on the ball, Equa-
tion 6.1 yields for 3 F, = ma,

T= mi
v

Solving for v, we have

Tr
v= \—
m
This shows that v increases with 7" and decreases with larger
m, as we expect to see—for a given v, a large mass requires a
large tension and a small mass needs only a small tension.
The maximum speed the ball can have corresponds to the
maximum tension. Hence, we find

\j Thnas” (50.0 N) (1.50 m)
= _ 4/ (80.0N) (1.50 m)
e m 0.500 kg

= 122m/s

Exercise Calculate the tension in the cord if the speed of
the ball is 5.00 m/s.

Answer 8.33 N.

EXAMPLE 6.3  The Conical Pendulum

A small object of mass m is suspended from a string of length
L. The object revolves with constant speed v in a horizontal
circle of radius 7 as shown in Figure 6.4. (Because the string
sweeps out the surface of a cone, the system is known as a
conical pendulum.) Find an expression for v.

Solution Let us choose 6 to represent the angle between
string and vertical. In the free-body diagram shown in Figure
6.4, the force T exerted by the string is resolved into a vertical
component 7" cos 6 and a horizontal component 7'sin 6 act-
ing toward the center of revolution. Because the object does
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not accelerate in the vertical direction, ZFy = may, = 0, and
the upward vertical component of T must balance the down-
ward force of gravity. Therefore,

(1) Tcos 6 = mg

Tsin 6

mg

Figure 6.4 The conical pendulum and its free-body diagram.

Because the force providing the centripetal acceleration in
this example is the component 7'sin 6, we can use Newton’s
second law and Equation 6.1 to obtain

mv?

(2) EF, = Tsin 0 = ma, =
Dividing (2) by (1) and remembering that sin 6/cos 6 =
tan 0, we eliminate 7'and find that

2
tan = —
8

v = \rgtan 6

From the geometry in Figure 6.4, we note that »= L sin 6;
therefore,

v= YVLgsin 6 tan 0

Note that the speed is independent of the mass of the object.

EXAMPLE 6.4

A1 500-kg car moving on a flat, horizontal road negotiates a
curve, as illustrated in Figure 6.5. If the radius of the curve is
35.0 m and the coefficient of static friction between the tires

n

1
A

Figure 6.5 (a) The force of static friction directed toward the cen-
ter of the curve keeps the car moving in a circular path. (b) The free-
body diagram for the car.

What Is the Maximum Speed of the Car?

and dry pavement is 0.500, find the maximum speed the car
can have and still make the turn successfully.

Solution From experience, we should expect a maximum
speed less than 50 m/s. (A convenient mental conversion is
that 1 m/s is roughly 2 mi/h.) In this case, the force that en-
ables the car to remain in its circular path is the force of sta-
tic friction. (Because no slipping occurs at the point of con-
tact between road and tires, the acting force is a force of
static friction directed toward the center of the curve. If this
force of static friction were zero—for example, if the car
were on an icy road—the car would continue in a straight
line and slide off the road.) Hence, from Equation 6.1 we
have

@O f=m—

The maximum speed the car can have around the curve is
the speed at which it is on the verge of skidding outward. At
this point, the friction force has its maximum value
Jfimax = Msn. Because the car is on a horizontal road, the mag-
nitude of the normal force equals the weight (n = mg) and
thus fi .« = M,mg. Substituting this value for f into (1), we
find that the maximum speed is

P JSimax? _ Msmgr ‘/ET
max I —— s,

= \/(0.500)(9.80 m/s?)(35.0m) = 13.1m/s

Note that the maximum speed does not depend on the mass
of the car. That is why curved highways do not need multiple
speed limit signs to cover the various masses of vehicles using
the road.
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Exercise  On a wet day, the car begins to skid on the curve
when its speed reaches 8.00 m/s. What is the coefficient of
static friction in this case?

Answer 0.187.

EXAMPLE 6.5 ~ The Banked Exit Ramp

A civil engineer wishes to design a curved exit ramp for a
highway in such a way that a car will not have to rely on fric-
tion to round the curve without skidding. In other words, a
car moving at the designated speed can negotiate the curve
even when the road is covered with ice. Such a ramp is usu-
ally banked; this means the roadway is tilted toward the inside
of the curve. Suppose the designated speed for the ramp is to
be 13.4m/s (30.0 mi/h) and the radius of the curve is
50.0 m. At what angle should the curve be banked?

Solution On a level (unbanked) road, the force that
causes the centripetal acceleration is the force of static fric-
tion between car and road, as we saw in the previous exam-
ple. However, if the road is banked at an angle 6, as shown in
Figure 6.6, the normal force n has a horizontal component

Figure 6.6 Car rounding a curve on a road banked at an angle 6
to the horizontal. When friction is neglected, the force that causes
the centripetal acceleration and keeps the car moving in its circular
path is the horizontal component of the normal force. Note that n is
the sum of the forces exerted by the road on the wheels.

n sin 6 pointing toward the center of the curve. Because the
ramp is to be designed so that the force of static friction is
zero, only the component 7 sin 6 causes the centripetal accel-
eration. Hence, Newton'’s second law written for the radial di-
rection gives

mv?

r

(1) S F=nsinf=

The car is in equilibrium in the vertical direction. Thus, from
3 F, = 0, we have

(2) ncos 6 = mg
Dividing (1) by (2) gives

9

U
tan = —
g
2
0= a1 [ (13.4 m/s)

(50.0 m) (9.80 m/s?) } = R

If a car rounds the curve at a speed less than 13.4 m/s,
friction is needed to keep it from sliding down the bank (to
the left in Fig. 6.6). A driver who attempts to negotiate the
curve at a speed greater than 13.4 m/s has to depend on fric-
tion to keep from sliding up the bank (to the right in Fig.
6.6). The banking angle is independent of the mass of the ve-
hicle negotiating the curve.

Exercise Write Newton’s second law applied to the radial
direction when a frictional force f; is directed down the bank,

toward the center of the curve.

mu’

Answer nsin 0 + f cos 0 =

EXAMPLE 6.6 Satellite Motion

This example treats a satellite moving in a circular orbit
around the Earth. To understand this situation, you must
know that the gravitational force between spherical objects
and small objects that can be modeled as particles having

masses m; and my and separated by a distance r is attractive
and has a magnitude

F:Gml”l‘z

¢ 2
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where G = 6.673 x 1071 N‘m2/kg2. This is Newton’s law of
gravitation, which we study in Chapter 14.

Consider a satellite of mass m moving in a circular orbit
around the Earth at a constant speed v and at an altitude %
above the Earth’s surface, as illustrated in Figure 6.7. Deter-
mine the speed of the satellite in terms of G, h, Ry (the radius
of the Earth), and M (the mass of the Earth).

Solution The only external force acting on the satellite is
the force of gravity, which acts toward the center of the Earth

Figure 6.7 A satellite of mass m moving around the Earth at a con-
stant speed vin a circular orbit of radius » = Ry + h. The force F,
acting on the satellite that causes the centripetal acceleration is the
gravitational force exerted by the Earth on the satellite.

and keeps the satellite in its circular orbit. Therefore,

Mpm
F=F =G}

From Newton’s second law and Equation 6.1 we obtain

Mpm a

G =m

Solving for v and remembering that the distance r from the
center of the Earth to the satellite is r = Ry + h, we obtain

(1) o GMy; _ , GMg
r Rp+ h

If the satellite were orbiting a different planet, its velocity
would increase with the mass of the planet and decrease as
the satellite’s distance from the center of the planet increased.

Exercise A satellite is in a circular orbit around the Earth at
an altitude of 1 000 km. The radius of the Earth is equal to
6.37 X 10° m, and its mass is 5.98 X 102* kg. Find the speed
of the satellite, and then find the period, which is the time it
needs to make one complete revolution.

Answer 7.36 X 10° m/s; 6.29 X 103 s = 105 min.

EXAMPLE 6.7  Let's Go Loop-the-Loop!

A pilot of mass m in a jet aircraft executes a loop-the-loop, as
shown in Figure 6.8a. In this maneuver, the aircraft moves in
a vertical circle of radius 2.70 km at a constant speed of
225 m/s. Determine the force exerted by the seat on the pilot
(a) at the bottom of the loop and (b) at the top of the loop.
Express your answers in terms of the weight of the pilot mg.

Solution We expect the answer for (a) to be greater than
that for (b) because at the bottom of the loop the normal
and gravitational forces act in opposite directions, whereas at
the top of the loop these two forces act in the same direction.
It is the vector sum of these two forces that gives the force of
constant magnitude that keeps the pilot moving in a circular
path. To yield net force vectors with the same magnitude, the
normal force at the bottom (where the normal and gravita-
tional forces are in opposite directions) must be greater than
that at the top (where the normal and gravitational forces are
in the same direction). (a) The free-body diagram for the pi-
lot at the bottom of the loop is shown in Figure 6.8b. The
only forces acting on him are the downward force of gravity
F, = mg and the upward force ny, exerted by the seat. Be-
cause the net upward force that provides the centripetal ac-

celeration has a magnitude 7y, — mg, Newton’s second law
for the radial direction combined with Equation 6.1 gives

) 2
S F = o — mg = me-

o 7
Npoy = Mg + mT =mg|l+ Tg
Substituting the values given for the speed and radius gives

(225 m/s)?
(2.70 X 10> m) (9.80 m/s?)

Moy = Mg[l + } = 291lmg

Hence, the magnitude of the force mny,, exerted by the seat
on the pilot is greater than the weight of the pilot by a factor
of 2.91. This means that the pilot experiences an apparent
weight that is greater than his true weight by a factor of 2.91.

(b) The free-body diagram for the pilot at the top of the
loop is shown in Figure 6.8c. As we noted earlier, both the
gravitational force exerted by the Earth and the force n,,, ex-
erted by the seat on the pilot act downward, and so the net
downward force that provides the centripetal acceleration has
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Bottom

(a)

a magnitude ny,, + mg. Applying Newton’s second law yields
X s
SF= Tuop T mg = m =

= m g = (i,1>
,pr mr mg mg P

o (225 m/s)?
Mop = ™81 7970 X 10% m) (9.80 m/s?)

- 1] = 0.913mg

Figure 6.8 (a) An aircraft exe-
cutes a loop-the-loop maneuver as
it moves in a vertical circle at con-
stant speed. (b) Free-body dia-
gram for the pilot at the bottom
of the loop. In this position the
pilot experiences an apparent
weight greater than his true
weight. (c) Free-body diagram for
the pilot at the top of the loop.

Moy

mg

(b) ()

In this case, the magnitude of the force exerted by the seat
on the pilot is less than his true weight by a factor of 0.913,
and the pilot feels lighter.

Exercise Determine the magnitude of the radially directed
force exerted on the pilot by the seat when the aircraft is at

point A in Figure 6.8a, midway up the loop.

Answer n, = 1.913mg directed to the right.

A bead slides freely along a curved wire at constant speed, as shown in the overhead view of
Figure 6.9. At each of the points ®, ®, and ©, draw the vector representing the force that
the wire exerts on the bead in order to cause it to follow the path of the wire at that point.

®

QuickLab -

Hold a shoe by the end of its lace and
spin it in a vertical circle. Can you
feel the difference in the tension in
the lace when the shoe is at top of the
circle compared with when the shoe
is at the bottom?

© Figure 6.9

6.2 _~ NONUNIFORM CIRCULAR MOTION

In Chapter 4 we found that if a particle moves with varying speed in a circular
path, there is, in addition to the centripetal (radial) component of acceleration, a
tangential component having magnitude dv/dt. Therefore, the force acting on the
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Some examples of forces acting during circular motion. (Left) As these speed skaters round a

curve, the force exerted by the ice on their skates provides the centripetal acceleration.

(Right) Passengers on a “corkscrew” roller coaster. What are the origins of the forces in this

example?

Figure 6.10 When the force acting on a particle mov-
ing in a circular path has a tangential component £}, the
particle’s speed changes. The total force exerted on the
particle in this case is the vector sum of the radial force
and the tangential force. Thatis, F = F, + F,.

particle must also have a tangential and a radial component. Because the total accel-
eration is a = a, + a,, the total force exerted on the particle is F =F, + F,, as
shown in Figure 6.10. The vector F, is directed toward the center of the circle and is
responsible for the centripetal acceleration. The vector F, tangent to the circle is re-
sponsible for the tangential acceleration, which represents a change in the speed of
the particle with time. The following example demonstrates this type of motion.

EXAMPLE 6.8

A small sphere of mass m is attached to the end of a cord of
length R and whirls in a vertical circle about a fixed point O,
as illustrated in Figure 6.11a. Determine the tension in the
cord at any instant when the speed of the sphere is v and the
cord makes an angle 6 with the vertical.

Keep Your Eye on the Ball

Solution Unlike the situation in Example 6.7, the speed is
not uniform in this example because, at most points along the
path, a tangential component of acceleration arises from the
gravitational force exerted on the sphere. From the free-body
diagram in Figure 6.11b, we see that the only forces acting on
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Viop
—

mg
Tmp
Oe
TbDl
N ,
\\ //
~o -
- "ot
mg cos 6 Figure 6.11 (a) Forces acting on a sphere

mg of mass m connected to a cord of length Rand
rotating in a vertical circle centered at O.
(b) Forces acting on the sphere at the top and
bottom of the circle. The tension is a maxi-

(b) mum at the bottom and a minimum at the top.

the sphere are the gravitational force F, = mg exerted by the
Earth and the force T exerted by the cord. Now we resolve F,
into a tangential component mgsin 6 and a radial component
mg cos 6. Applying Newton’s second law to the forces acting
on the sphere in the tangential direction yields

EF;, = mgsin 0 = ma,
a, = gsin 0

This tangential component of the acceleration causes v to
change in time because a, = dv/ dt.

Applying Newton’s second law to the forces acting on the
sphere in the radial direction and noting that both T and a,
are directed toward O, we obtain

2
EF,: T- mgcosf):mT

T= m(%*—gcos 0)

Special Cases At the top of the path, where 6 = 180°, we
have cos 180° = — 1, and the tension equation becomes

°
R
Top = m( s —g)

This is the minimum value of 7. Note that at this point @, = 0
and therefore the acceleration is purely radial and directed
downward.

At the bottom of the path, where 6 = 0, we see that, be-

cause cos 0 = 1,
U%o[
Thoor = m R tg

This is the maximum value of 7. At this point, @ is again 0
and the acceleration is now purely radial and directed up-
ward.

Exercise At what position of the sphere would the cord
most likely break if the average speed were to increase?

Answer At the bottom, where T has its maximum value.

Optional Section

6.3 _~ MOTION IN ACCELERATED FRAMES

When Newton'’s laws of motion were introduced in Chapter 5, we emphasized that
they are valid only when observations are made in an inertial frame of reference.
In this section, we analyze how an observer in a noninertial frame of reference
(one that is accelerating) applies Newton’s second law.
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6.3 Motion in Accelerated Frames

To understand the motion of a system that is noninertial because an object is
moving along a curved path, consider a car traveling along a highway at a high
speed and approaching a curved exit ramp, as shown in Figure 6.12a. As the car
takes the sharp left turn onto the ramp, a person sitting in the passenger seat
slides to the right and hits the door. At that point, the force exerted on her by the
door keeps her from being ejected from the car. What causes her to move toward
the door? A popular, but improper, explanation is that some mysterious force act-
ing from left to right pushes her outward. (This is often called the “centrifugal”
force, but we shall not use this term because it often creates confusion.) The pas-
senger invents this fictitious force to explain what is going on in her accelerated
frame of reference, as shown in Figure 6.12b. (The driver also experiences this ef-
fect but holds on to the steering wheel to keep from sliding to the right.)

The phenomenon is correctly explained as follows. Before the car enters the
ramp, the passenger is moving in a straight-line path. As the car enters the ramp
and travels a curved path, the passenger tends to move along the original straight-
line path. This is in accordance with Newton’s first law: The natural tendency of a
body is to continue moving in a straight line. However, if a sufficiently large force
(toward the center of curvature) acts on the passenger, as in Figure 6.12c, she will
move in a curved path along with the car. The origin of this force is the force of
friction between her and the car seat. If this frictional force is not large enough,
she will slide to the right as the car turns to the left under her. Eventually, she en-
counters the door, which provides a force large enough to enable her to follow the
same curved path as the car. She slides toward the door not because of some mys-
terious outward force but because the force of friction is not sufficiently great
to allow her to travel along the circular path followed by the car.

In general, if a particle moves with an acceleration a relative to an observer in
an inertial frame, that observer may use Newton’s second law and correctly claim
that 3F = ma. If another observer in an accelerated frame tries to apply Newton’s
second law to the motion of the particle, the person must introduce fictitious
forces to make Newton’s second law work. These forces “invented” by the observer
in the accelerating frame appear to be real. However, we emphasize that these fic-
titious forces do not exist when the motion is observed in an inertial frame.
Fictitious forces are used only in an accelerating frame and do not represent “real”
forces acting on the particle. (By real forces, we mean the interaction of the parti-
cle with its environment.) If the fictitious forces are properly defined in the accel-
erating frame, the description of motion in this frame is equivalent to the descrip-
tion given by an inertial observer who considers only real forces. Usually, we
analyze motions using inertial reference frames, but there are cases in which it is
more convenient to use an accelerating frame.

Figure 6.12 (a) A car approaching a curved exit ramp. What causes a front-seat passenger to
move toward the right-hand door? (b) From the frame of reference of the passenger, a (ficti-
tious) force pushes her toward the right door. (c) Relative to the reference frame of the Earth,
the car seat applies a leftward force to the passenger, causing her to change direction along with
the rest of the car.
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QuickLab -~

Use a string, a small weight, and a
protractor to measure your accelera-
tion as you start sprinting from a
standing position.

Fictitious forces

EXAMPLE 6.9 Fictitious Forces in Linear Motion

A small sphere of mass m is hung by a cord from the ceiling
of a boxcar that is accelerating to the right, as shown in Fig-
ure 6.13. According to the inertial observer at rest (Fig.
6.13a), the forces on the sphere are the force T exerted by
the cord and the force of gravity. The inertial observer con-
cludes that the acceleration of the sphere is the same as that
of the boxcar and that this acceleration is provided by the
horizontal component of T. Also, the vertical component of
T balances the force of gravity. Therefore, she writes New-
ton’s second law as XF = T + mg = ma, which in compo-

nent form becomes
(1)  XF=Tsin0=ma
Inertial observer
@ Y F=Tcos8—mg=0

Thus, by solving (1) and (2) simultaneously for a, the inertial
observer can determine the magnitude of the car’s accelera-
tion through the relationship

a= gtan 6
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Because the deflection of the cord from the vertical serves as
a measure of acceleration, a simple pendulum can be used as an
accelerometer.

According to the noninertial observer riding in the car
(Fig. 6.13b), the cord still makes an angle 6 with the vertical;
however, to her the sphere is at rest and so its acceleration is
zero. Therefore, she introduces a fictitious force to balance
the horizontal component of T and claims that the net force
on the sphere is zero! In this noninertial frame of reference,
Newton'’s second law in component form yields

S F = Tsin = Fiegious = 0

Noninertial observer
EF{ =Tcos—mg=0

If we recognize that Fiitous = M@inerial = Ma, then these ex-
pressions are equivalent to (1) and (2); therefore, the noniner-
tial observer obtains the same mathematical results as the iner-
tial observer does. However, the physical interpretation of the
deflection of the cord differs in the two frames of reference.

mg

17T
Inertial
observer

sos—=T

()
| Noninertial
l observer
- —
1 I T T T I T I l\f
b d

(b)

Figure 6.13 A small sphere suspended from the ceiling of a boxcar accelerating to the right is de-
flected as shown. (a) An inertial observer at rest outside the car claims that the acceleration of the
sphere is provided by the horizontal component of T. (b) A noninertial observer riding in the car says
that the net force on the sphere is zero and that the deflection of the cord from the vertical is due to a
fictitious force Ffijious that balances the horizontal component of T.
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EXAMPLE 6.10 Fictitious Force in a Rotating System

Suppose a block of mass m lying on a horizontal, frictionless According to a noninertial observer attached to the
turntable is connected to a string attached to the center of  turntable, the block is at rest and its acceleration is zero.

tial observer, if the block rotates uniformly, it undergoes an  magnitude mv?/r to balance the inward force exerted by the
acceleration of magnitude v2/1, where v is its linear speed. string. According to her, the net force on the block is zero,
The inertial observer concludes that this centripetal accelera- and she writes Newton’s second law as 7' — mov2/r = 0.

tion is provided by the force T exerted by the string and

writes Newton’s second law as 7'= mwv?/r.

n  Noninertial observer

— A

m
Fo .. =
™ fictitious =~

(a) Inertial observer (b)

Figure 6.14 A block of mass m connected to a string tied to the center of a rotating turntable.

(a) The inertial observer claims that the force causing the circular motion is provided by the force T
exerted by the string on the block. (b) The noninertial observer claims that the block is not accelerat-
ing, and therefore she introduces a fictitious force of magnitude mv?/rthat acts outward and balances
the force T.

Optional Section
6.4 _~ MOTION IN THE PRESENCE OF RESISTIVE FORCES

(@ In the preceding chapter we described the force of kinetic friction exerted on an

49 object moving on some surface. We completely ignored any interaction between
the object and the medium through which it moves. Now let us consider the effect
of that medium, which can be either a liquid or a gas. The medium exerts a resis-
tive force R on the object moving through it. Some examples are the air resis-
tance associated with moving vehicles (sometimes called air drag) and the viscous
forces that act on objects moving through a liquid. The magnitude of R depends
on such factors as the speed of the object, and the direction of R is always opposite
the direction of motion of the object relative to the medium. The magnitude of R
nearly always increases with increasing speed.

The magnitude of the resistive force can depend on speed in a complex way,
and here we consider only two situations. In the first situation, we assume the resis-
tive force is proportional to the speed of the moving object; this assumption is
valid for objects falling slowly through a liquid and for very small objects, such as
dust particles, moving through air. In the second situation, we assume a resistive
force that is proportional to the square of the speed of the moving object; large
objects, such as a skydiver moving through air in free fall, experience such a force.

the turntable, as shown in Figure 6.14. According to an iner-  Therefore, she must introduce a fictitious outward force of
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Figure 6.15 (a) A small sphere falling through a liquid. (b) Motion diagram of the sphere as it
falls. (c) Speed—time graph for the sphere. The sphere reaches a maximum, or terminal, speed
v, and the time constant 7is the time it takes to reach 0.63v,.

Resistive Force Proportional to Object Speed

If we assume that the resistive force acting on an object moving through a liquid
or gas is proportional to the object’s speed, then the magnitude of the resistive
force can be expressed as

R=bv (6.2)

where v is the speed of the object and b is a constant whose value depends on the
properties of the medium and on the shape and dimensions of the object. If the
object is a sphere of radius 7, then bis proportional to .

Consider a small sphere of mass m released from rest in a liquid, as in Figure
6.15a. Assuming that the only forces acting on the sphere are the resistive force bv
and the force of gravity F,, let us describe its motion.! Applying Newton’s second
law to the vertical motion, choosing the downward direction to be positive, and
noting that X F, = mg — bv, we obtain

d
mg — bv = ma = mTI; (6.3)

where the acceleration dv/dtis downward. Solving this expression for the accelera-
tion gives
dv b
— =g —v (6.4)
dt g m
This equation is called a differential equation, and the methods of solving it may not
be familiar to you as yet. However, note that initially, when v = 0, the resistive
force — bu is also zero and the acceleration dv/dt is simply g. As ¢ increases, the re-
sistive force increases and the acceleration decreases. Eventually, the acceleration
becomes zero when the magnitude of the resistive force equals the sphere’s
weight. At this point, the sphere reaches its terminal speed v, and from then on

! There is also a buoyant force acting on the submerged object. This force is constant, and its magnitude
is equal to the weight of the displaced liquid. This force changes the apparent weight of the sphere by a
constant factor, so we will ignore the force here. We discuss buoyant forces in Chapter 15.
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it continues to move at this speed with zero acceleration, as shown in Figure 6.15b.
We can obtain the terminal speed from Equation 6.3 by setting a = dv/dt = 0.
This gives

mg — bv, =0 or v, = mg/b

The expression for v that satisfies Equation 6.4 with v = 0 at { = 0 is

m

v="E 1= = (1= ) (6.5)

This function is plotted in Figure 6.15¢c. The time constant 7 = m/b (Greek letter

tau) is the time it takes the sphere to reach 63.2% (=1 — 1/¢) of its terminal

speed. This can be seen by noting that when ¢ = 7, Equation 6.5 yields v = 0.632v;.

We can check that Equation 6.5 is a solution to Equation 6.4 by direct differen-
tiation:

v _d <ﬂ _mg e—bt/m) __mg d = ggb/m
dt dt \ b b b dt

(See Appendix Table B.4 for the derivative of ¢raised to some power.) Substituting
into Equation 6.4 both this expression for dv/dt and the expression for v given by
Equation 6.5 shows that our solution satisfies the differential equation.

EXAMPLE 6.11 Sphere Falling in 0il

A small sphere of mass 2.00 g is released from rest in a large
vessel filled with oil, where it experiences a resistive force pro-
portional to its speed. The sphere reaches a terminal speed
of 5.00 cm/s. Determine the time constant 7 and the time it
takes the sphere to reach 90% of its terminal speed.

1— ¢ ¥7=0.900
V7T =0.100

Solution Because the terminal speed is given by

0.9000, = v,(1 — ¢ ¥7)
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Aerodynamic car. A streamlined
body reduces air drag and in-
creases fuel efficiency.

l
—— =1In(0.100) = —2.30
=

v, = mg/ b, the coefficient bis

mg _ (2.00 g) (980 cm/s?)

b= =39
Y 5.00 cm/s 2g/s
Therefore, the time constant 7is
m 2.00g
=—=—""= 510x107°
T T 892g/s s

The speed of the sphere as a function of time is given by
Equation 6.5. To find the time ¢ it takes the sphere to reach a
speed of 0.900v,, we set v = 0.900v, in Equation 6.5 and solve
for t:

t=2307=2.30(5.10 X 107%5) = 11.7 X 1073 s

= 11.7ms

Thus, the sphere reaches 90% of its terminal (maximum)
speed in a very short time.

Exercise What is the sphere’s speed through the oil at ¢ =
11.7 ms? Compare this value with the speed the sphere would
have if it were falling in a vacuum and so were influenced
only by gravity.

Answer 4.50 cm/s in oil versus 11.5 cm/s in free fall.

Air Drag at High Speeds

For objects moving at high speeds through air, such as airplanes, sky divers, cars,
and baseballs, the resistive force is approximately proportional to the square of the
speed. In these situations, the magnitude of the resistive force can be expressed as

R = 1DpAs (6.6)
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mg

Figure 6.16 An object falling
through air experiences a resistive
force R and a gravitational force
F, = mg. The object reaches termi-
nal speed (on the right) when the
net force acting on it is zero, that
is, when R = — Fgor R = mg. Be-
fore this occurs, the acceleration
varies with speed according to
Equation 6.8.
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where p is the density of air, A is the cross-sectional area of the falling object mea-
sured in a plane perpendicular to its motion, and D is a dimensionless empirical
quantity called the drag coefficient. The drag coefficient has a value of about 0.5 for
spherical objects but can have a value as great as 2 for irregularly shaped objects.

Let us analyze the motion of an object in free fall subject to an upward air
resistive force of magnitude R = %DpAvQ. Suppose an object of mass m is re-
leased from rest. As Figure 6.16 shows, the object experiences two external forces:
the downward force of gravity F, = mg and the upward resistive force R. (There is
also an upward buoyant force that we neglect.) Hence, the magnitude of the net
force is

2F= mg — %DpAv2 (6.7)

where we have taken downward to be the positive vertical direction. Substituting
3F = mainto Equation 6.7, we find that the object has a downward acceleration of

magnitude
_ DpA
a=g ( o )v? (6.8)

We can calculate the terminal speed v, by using the fact that when the force of
gravity is balanced by the resistive force, the net force on the object is zero and
therefore its acceleration is zero. Setting @ = 0 in Equation 6.8 gives

DpA
¢ (27> v =0
2mg

v, =\—= (6.9)
DpA
Using this expression, we can determine how the terminal speed depends on the
dimensions of the object. Suppose the object is a sphere of radius . In this case,
Ax? (from A= m?) and m = r® (because the mass is proportional to the
volume of the sphere, which is V= % %), Therefore, v, * .
Table 6.1 lists the terminal speeds for several objects falling through air.

The high cost of fuel has prompted many truck owners to install wind deflectors on their cabs to
reduce drag.
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TABLE 6.1 Terminal Speed for Various Objects Falling Through Air

Cross-Sectional Area
Object Mass (kg) (m?) v, (m/s)
Sky diver 75 0.70 60
Baseball (radius 3.7 cm) 0.145 492 X 1073 43
Golf ball (radius 2.1 cm) 0.046 1.4 x 1073 44
Hailstone (radius 0.50 cm) 48 x 1074 7.9 X 107° 14
Raindrop (radius 0.20 cm) 3.4 X 107° 1.3 X 1075 9.0

CONCEPTUAL EXAMPLE 6.12

Consider a sky surfer who jumps from a plane with her feet
attached firmly to her surfboard, does some tricks, and then
opens her parachute. Describe the forces acting on her dur-
ing these maneuvers.

Solution When the surfer first steps out of the plane, she
has no vertical velocity. The downward force of gravity causes
her to accelerate toward the ground. As her downward speed
increases, so does the upward resistive force exerted by the
air on her body and the board. This upward force reduces
their acceleration, and so their speed increases more slowly.
Eventually, they are going so fast that the upward resistive
force matches the downward force of gravity. Now the net
force is zero and they no longer accelerate, but reach their
terminal speed. At some point after reaching terminal speed,
she opens her parachute, resulting in a drastic increase in the
upward resistive force. The net force (and thus the accelera-
tion) is now upward, in the direction opposite the direction
of the velocity. This causes the downward velocity to decrease
rapidly; this means the resistive force on the chute also de-
creases. Eventually the upward resistive force and the down-
ward force of gravity balance each other and a much smaller
terminal speed is reached, permitting a safe landing.

(Contrary to popular belief, the velocity vector of a sky
diver never points upward. You may have seen a videotape
in which a sky diver appeared to “rocket” upward once the
chute opened. In fact, what happened is that the diver
slowed down while the person holding the camera contin-
ued falling at high speed.)

A sky surfer takes advantage of the upward force of the air on her
board. (

EXAMPLE 6.13 - Falling Coffee Filters

The dependence of resistive force on speed is an empirical
relationship. In other words, it is based on observation rather
than on a theoretical model. A series of stacked filters is
dropped, and the terminal speeds are measured. Table 6.2

presents data for these coffee filters as they fall through the
air. The time constant 7 is small, so that a dropped filter
quickly reaches terminal speed. Each filter has a mass of
1.64 g. When the filters are nested together, they stack in

Resistive force (N)

such a way that the frontfacing surface area does not in-
crease. Determine the relationship between the resistive force
exerted by the air and the speed of the falling filters.

Solution At terminal speed, the upward resistive force bal-
ances the downward force of gravity. So, a single filter falling
at its terminal speed experiences a resistive force of

1.64
R=mg= (7g> (9.80 m/s?) = 0.016 1 N
1000 g/kg

TABLE 6.2

Terminal Speed for

Stacked Coffee Filters

Number v

of Filters (m/s)*
1 1.01
2 1.40
3 1.63
4 2.00
5 2.25
6 2.40
7 2.57
8 2.80
9 3.05

10 3.22

* All values of v, are approximate.
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(a)

168 CHAPTER 6  Circular Motion and Other Applications of Newton’s Laws

Two filters nested together experience 0.032 2 N of resistive
force, and so forth. A graph of the resistive force on the fil-
ters as a function of terminal speed is shown in Figure 6.17a.
A straight line would not be a good fit, indicating that the re-
sistive force is not proportional to the speed. The curved line
is for a second-order polynomial, indicating a proportionality
of the resistive force to the square of the speed. This propor-
tionality is more clearly seen in Figure 6.17b, in which the re-
sistive force is plotted as a function of the square of the termi-
nal speed.

Pleated coffee filters can be nested together so
that the force of air resistance can be studied.

(

0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00 | | | | | J
0 2 4 6 8 10 12
Terminal speed squared (m/s)?
(b)

Resistive force (N)

Figure 6.17 (a) Relationship between the resistive force acting on falling coffee filters and their ter-
minal speed. The curved line is a second-order polynomial fit. (b) Graph relating the resistive force to
the square of the terminal speed. The fit of the straight line to the data points indicates that the resis-
tive force is proportional to the terminal speed squared. Can you find the proportionality constant?
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EXAMPLE 6.14 Resistive Force Exerted on a Baseball

A pitcher hurls a 0.145-kg baseball past a batter at 40.2 m/s 2 mg 2(0.145 kg) (9.80 m/s%)
(= 9((; mi/h). Find the resistive force acting on the ball at this b= 02 pA = (43 m/s)2 (1.29 kg/m®) (4.2 X 1073 m?)
speed.

=0.284

This number has no dimensions. We have kept an extra digit
beyond the two that are significant and will drop it at the end
of our calculation.

We can now use this value for D in Equation 6.6 to find
the magnitude of the resistive force:

Solution We do not expect the air to exert a huge force
on the ball, and so the resistive force we calculate from Equa-
tion 6.6 should not be more than a few newtons. First, we
must determine the drag coefficient D. We do this by imagin-
ing that we drop the baseball and allow it to reach terminal R= % Dp/\vz

speed. We solve Equation 6.9 for D and substitute the appro-

p}:‘iate values for 7:,‘ v;, and A from Table 6.1. Taking theptfl)en- = %(O'Q&D .29 kg/mg) (42 X 1077 m?) (402 m/5)?
sity of air as 1.29 kg/ms, we obtain = 19N

Optional Section
6.5 - NUMERICAL MODELING IN PARTICLE DYNAMICS?

As we have seen in this and the preceding chapter, the study of the dynamics of a
particle focuses on describing the position, velocity, and acceleration as functions of
time. Cause-and-effect relationships exist among these quantities: Velocity causes
position to change, and acceleration causes velocity to change. Because accelera-
tion is the direct result of applied forces, any analysis of the dynamics of a particle
usually begins with an evaluation of the net force being exerted on the particle.

Up till now, we have used what is called the analytical method to investigate the
position, velocity, and acceleration of a moving particle. Let us review this method
briefly before learning about a second way of approaching problems in dynamics.
(Because we confine our discussion to one-dimensional motion in this section,
boldface notation will not be used for vector quantities.)

If a particle of mass m moves under the influence of a net force 3F, Newton’s
second law tells us that the acceleration of the particle is « = ZF/m. In general, we
apply the analytical method to a dynamics problem using the following procedure:

1. Sum all the forces acting on the particle to get the net force 2F

2. Use this net force to determine the acceleration from the relationship a = 3F/m.
3. Use this acceleration to determine the velocity from the relationship dv/dt = a.
4. Use this velocity to determine the position from the relationship dx/dt = v.

The following straightforward example illustrates this method.

EXAMPLE 6.15  An Object Falling in a Vacuum— Analytical Method

Consider a particle falling in a vacuum under the influence ~ Solution The only force acting on the particle is the
of the force of gravity, as shown in Figure 6.18. Use the analyt-  downward force of gravity of magnitude £, which is also the
ical method to find the acceleration, velocity, and position of  net force. Applying Newton’s second law, we set the net force
the particle. acting on the particle equal to the mass of the particle times

2 The authors are most grateful to Colonel James Head of the U.S. Air Force Academy for preparing
this section. See the Student Tools CD-ROM for some assistance with numerical modeling.

170 CHAPTER 6  Circular Motion and Other Applications of Newton’s Laws

its acceleration (taking upward to be the positive y direction):  In these expressions, y; and v, represent the position and
speed of the particle at ¢; = 0.
F, = may = —mg
Thus, a; = — g which means the acceleration is constant. Be-
cause dv,/dt = ay, we see that d-u}/dt = — g which may be in-
tegrated to yield
vy(l) =v,— gt

Then, because vy = dy/ dt, the position of the particle is ob-
tained from another integration, which yields the well-known mg
result
Figure 6.18 An object falling in vacuum under the influence
(1) = yi + vyt — %gt2 of gravity.

The analytical method is straightforward for many physical situations. In the
“real world,” however, complications often arise that make analytical solutions dif-
ficult and perhaps beyond the mathematical abilities of most students taking intro-
ductory physics. For example, the net force acting on a particle may depend on
the particle’s position, as in cases where the gravitational acceleration varies with
height. Or the force may vary with velocity, as in cases of resistive forces caused by
motion through a liquid or gas.

Another complication arises because the expressions relating acceleration, ve-
locity, position, and time are differential equations rather than algebraic ones. Dif-
ferential equations are usually solved using integral calculus and other special
techniques that introductory students may not have mastered.

When such situations arise, scientists often use a procedure called numerical
modeling to study motion. The simplest numerical model is called the Euler
method, after the Swiss mathematician Leonhard Euler (1707-1783).

The Euler Method

In the Euler method for solving differential equations, derivatives are approxi-
mated as ratios of finite differences. Considering a small increment of time Az, we
can approximate the relationship between a particle’s speed and the magnitude of
its acceleration as

Av o(t+ Ab) — v(i)

oty ~<—=—""—"—

At At
Then the speed v(¢ + At) of the particle at the end of the time interval At is ap-
proximately equal to the speed v(¢) at the beginning of the time interval plus the
magnitude of the acceleration during the interval multiplied by Az

u(t + A =o(t) + a()At (6.10)

Because the acceleration is a function of time, this estimate of (¢ + Af) is accurate
only if the time interval A¢is short enough that the change in acceleration during
it is very small (as is discussed later). Of course, Equation 6.10 is exact if the accel-
eration is constant.
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The position x(¢ + Af) of the particle at the end of the interval At can be
found in the same manner:

o(t) s% _ x(t + AAt)t — x(1)

x(t + At =x(1) + v()At (6.11)

You may be tempted to add the term % a(A1)? to this result to make it look like
the familiar kinematics equation, but this term is not included in the Euler
method because At is assumed to be so small that A¢? is nearly zero.

If the acceleration at any instant ¢ is known, the particle’s velocity and position
at a time ¢ + At can be calculated from Equations 6.10 and 6.11. The calculation
then proceeds in a series of finite steps to determine the velocity and position at
any later time. The acceleration is determined from the net force acting on the
particle, and this force may depend on position, velocity, or time:

S, Fix, v, 1)
a(x, v, 1) = =F—"—- (6.12)
m

It is convenient to set up the numerical solution to this kind of problem by
numbering the steps and entering the calculations in a table, a procedure that is il-
lustrated in Table 6.3.

The equations in the table can be entered into a spreadsheet and the calcula-
tions performed row by row to determine the velocity, position, and acceleration
as functions of time. The calculations can also be carried out by using a program
written in either BASIC, C++, or FORTRAN or by using commercially available
mathematics packages for personal computers. Many small increments can be
taken, and accurate results can usually be obtained with the help of a computer.
Graphs of velocity versus time or position versus time can be displayed to help you
visualize the motion.

One advantage of the Euler method is that the dynamics is not obscured — the
fundamental relationships between acceleration and force, velocity and accelera-
tion, and position and velocity are clearly evident. Indeed, these relationships
form the heart of the calculations. There is no need to use advanced mathematics,
and the basic physics governs the dynamics.

The Euler method is completely reliable for infinitesimally small time incre-
ments, but for practical reasons a finite increment size must be chosen. For the fi-
nite difference approximation of Equation 6.10 to be valid, the time increment
must be small enough that the acceleration can be approximated as being con-
stant during the increment. We can determine an appropriate size for the time in-

TABLE 6.3 The Euler Method for Solving Dynamics Problems

Step  Time Position Velocity Acceleration
0 ly Xo vy ag = F(xo, v, o)/ m
1 1 =ty + At x] = xg + vy At vy = vy + ag At ay = F(xy, vy, t)/m
2 ty=1t; + At xo = x1 + vy At vy = vy + ay At ag = F(xg, vy, tg)/m
3

ty = 1o + At X3 = x9 + vg Al vg = vg + ag At as = F(xs, vs, t3)/m

n [ Xy Uy a,
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See the spreadsheet file “Baseball
with Drag” on the Student Web
site (address below) for an
example of how this technique can
be applied to find the initial speed
of the baseball described in
Example 6.14. We cannot use our
regular approach because our
kinematics equations assume
constant acceleration. Euler’s
method provides a way to
circumvent this difficulty.

A detailed solution to Problem 41
involving iterative integration
appears in the Student Solutions
Manual and Study Guide and is
posted on the Web at http:/
www.saunderscollege.com/physics

QUESTIONS

1. Because the Earth rotates about its axis and revolves
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crement by examining the particular problem being investigated. The criterion for
the size of the time increment may need to be changed during the course of the
motion. In practice, however, we usually choose a time increment appropriate to
the initial conditions and use the same value throughout the calculations.

The size of the time increment influences the accuracy of the result, but un-
fortunately it is not easy to determine the accuracy of an Eulermethod solution
without a knowledge of the correct analytical solution. One method of determin-
ing the accuracy of the numerical solution is to repeat the calculations with a
smaller time increment and compare results. If the two calculations agree to a cer-
tain number of significant figures, you can assume that the results are correct to
that precision.

SUMMARY

Newton’s second law applied to a particle moving in uniform circular motion states
that the net force causing the particle to undergo a centripetal acceleration is
2

EF,: ma,:ﬂ (6.1)
r

You should be able to use this formula in situations where the force providing the
centripetal acceleration could be the force of gravity, a force of friction, a force of
string tension, or a normal force.

A particle moving in nonuniform circular motion has both a centripetal com-
ponent of acceleration and a nonzero tangential component of acceleration. In
the case of a particle rotating in a vertical circle, the force of gravity provides the
tangential component of acceleration and part or all of the centripetal component
of acceleration. Be sure you understand the directions and magnitudes of the ve-
locity and acceleration vectors for nonuniform circular motion.

An observer in a noninertial (accelerating) frame of reference must introduce
fictitious forces when applying Newton’s second law in that frame. If these ficti-
tious forces are properly defined, the description of motion in the noninertial
frame is equivalent to that made by an observer in an inertial frame. However, the
observers in the two frames do not agree on the causes of the motion. You should
be able to distinguish between inertial and noninertial frames and identify the fic-
titious forces acting in a noninertial frame.

A body moving through a liquid or gas experiences a resistive force that is
speed-dependent. This resistive force, which opposes the motion, generally in-
creases with speed. The magnitude of the resistive force depends on the shape of
the body and on the properties of the medium through which the body is moving.
In the limiting case for a falling body, when the magnitude of the resistive force
equals the body’s weight, the body reaches its terminal speed. You should be able
to apply Newton’s laws to analyze the motion of objects moving under the influ-
ence of resistive forces. You may need to apply Euler’s method if the force de-
pends on velocity, as it does for air drag.

parent weight of an object be greater at the poles than at

around the Sun, it is a noninertial frame of reference. As- the equator?
suming the Earth is a uniform sphere, why would the ap- 2. Explain why the Earth bulges at the equator.



3. Why is it that an astronaut in a space capsule orbiting the
Earth experiences a feeling of weightlessness?

4. Why does mud fly off a rapidly turning automobile tire?

5. Imagine that you attach a heavy object to one end of a
spring and then whirl the spring and object in a horizon-
tal circle (by holding the free end of the spring). Does
the spring stretch? If so, why? Discuss this in terms of the
force causing the circular motion.

It has been suggested that rotating cylinders about 10 mi
in length and 5 mi in diameter be placed in space and
used as colonies. The purpose of the rotation is to simu-
late gravity for the inhabitants. Explain this concept for
producing an effective gravity.

Why does a pilot tend to black out when pulling out of a
steep dive?

PROBLEMS

Problems 173

8. Describe a situation in which a car driver can have
a centripetal acceleration but no tangential accel-
eration.

9. Describe the path of a moving object if its acceleration is
constant in magnitude at all times and (a) perpendicular
to the velocity; (b) parallel to the velocity.

10. Analyze the motion of a rock falling through water in
terms of its speed and acceleration as it falls. Assume that
the resistive force acting on the rock increases as the
speed increases.

11. Consider a small raindrop and a large raindrop falling
through the atmosphere. Compare their terminal speeds.
What are their accelerations when they reach terminal
speed?

1, 2, 3 = straightforward, intermediate, challenging D = full solution available in the Student Solutions Manual and Study Guide
weB = solution posted at http:/ /www.saunderscollege.com/physics/ D = Computer useful in solving problem ‘r'-’ = Interactive Physics

l:l = paired numerical/symbolic problems

Section 6.1 Newton's Second Law
Applied to Uniform Circular Motion

1. A toy car moving at constant speed completes one lap
around a circular track (a distance of 200 m) in 25.0 s.
(a) What is its average speed? (b) If the mass of the car
is 1.50 kg, what is the magnitude of the force that keeps
itin a circle?

2. A 55.0-kg ice skater is moving at 4.00 m/s when she
grabs the loose end of a rope, the opposite end of
which is tied to a pole. She then moves in a circle of ra-
dius 0.800 m around the pole. (a) Determine the force
exerted by the rope on her arms. (b) Compare this
force with her weight.

g’ﬂ A light string can support a stationary hanging load of
25.0 kg before breaking. A 3.00-kg mass attached to the
string rotates on a horizontal, frictionless table in a cir-
cle of radius 0.800 m. What range of speeds can the
mass have before the string breaks?

4. In the Bohr model of the hydrogen atom, the speed of
the electron is approximately 2.20 X 10% m/s. Find
(a) the force acting on the electron as it revolves in a
circular orbit of radius 0.530 X 107 m and (b) the
centripetal acceleration of the electron.

5. In a cyclotron (one type of particle accelerator), a
deuteron (of atomic mass 2.00 u) reaches a final speed
of 10.0% of the speed of light while moving in a circular
path of radius 0.480 m. The deuteron is maintained in
the circular path by a magnetic force. What magnitude
of force is required?

6. A satellite of mass 300 kg is in a circular orbit around
the Earth at an altitude equal to the Earth’s mean ra-
dius (see Example 6.6). Find (a) the satellite’s orbital

speed, (b) the period of its revolution, and (c) the grav-
itational force acting on it.

7. Whenever two Apollo astronauts were on the surface of
the Moon, a third astronaut orbited the Moon. Assume
the orbit to be circular and 100 km above the surface of
the Moon. If the mass of the Moon is 7.40 X 10?2 kg and
its radius is 1.70 X 10% m, determine (a) the orbiting as-
tronaut’s acceleration, (b) his orbital speed, and (c) the
period of the orbit.

8. The speed of the tip of the minute hand on a town
clock is 1.75 X 1073 m/s. (a) What is the speed of the
tip of the second hand of the same length? (b) What is
the centripetal acceleration of the tip of the second
hand?

A coin placed 30.0 cm from the center of a rotating,
horizontal turntable slips when its speed is 50.0 cm/s.
(a) What provides the force in the radial direction
when the coin is stationary relative to the turntable?

(b) What is the coefficient of static friction between

coin and turntable?
10. The cornering performance of an automobile is evalu-
ated on a skid pad, where the maximum speed that a
car can maintain around a circular path on a dry, flat
surface is measured. The centripetal acceleration, also
called the lateral acceleration, is then calculated as a
multiple of the free-fall acceleration g. The main factors
affecting the performance are the tire characteristics
and the suspension system of the car. A Dodge Viper
GTS can negotiate a skid pad of radius 61.0 m at
86.5 km/h. Calculate its maximum lateral acceleration.
A crate of eggs is located in the middle of the flatbed of
a pickup truck as the truck negotiates an unbanked
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curve in the road. The curve may be regarded as an arc
of a circle of radius 35.0 m. If the coefficient of static
friction between crate and truck is 0.600, how fast can
the truck be moving without the crate sliding?

12. A car initially traveling eastward turns north by traveling
in a circular path at uniform speed as in Figure P6.12.
The length of the arc ABCis 235 m, and the car com-
pletes the turn in 36.0 s. (a) What is the acceleration
when the car is at Blocated at an angle of 35.0°? Ex-
press your answer in terms of the unit vectors i and j.
Determine (b) the car’s average speed and (c) its aver-
age acceleration during the 36.0-s interval.
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Figure P6.12

13. Consider a conical pendulum with an 80.0-kg bob on a
10.0-m wire making an angle of # = 5.00° with the verti-
cal (Fig. P6.13). Determine (a) the horizontal and verti-
cal components of the force exerted by the wire on the
pendulum and (b) the radial acceleration of the bob.
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Figure P6.13

Section 6.2 Nonuniform Circular Motion

14. A car traveling on a straight road at 9.00 m/s goes over
a hump in the road. The hump may be regarded as an
arc of a circle of radius 11.0 m. (a) What is the apparent
weight of a 600-N woman in the car as she rides over the

hump? (b) What must be the speed of the car over the
hump if she is to experience weightlessness? (That is, if
her apparent weight is zero.)

wes 315. Tarzan (m = 85.0 kg) tries to cross a river by swinging

from a vine. The vine is 10.0 m long, and his speed at
the bottom of the swing (as he just clears the water) is
8.00 m/s. Tarzan doesn’t know that the vine has a
breaking strength of 1 000 N. Does he make it safely
across the river?

16. A hawk flies in a horizontal arc of radius 12.0 m at a
constant speed of 4.00 m/s. (a) Find its centripetal ac-
celeration. (b) It continues to fly along the same hori-
zontal arc but steadily increases its speed at the rate of
1.20 m/s2 Find the acceleration (magnitude and direc-
tion) under these conditions.

.] A 40.0-kg child sits in a swing supported by two chains,
each 3.00 m long. If the tension in each chain at the
lowest point is 350 N, find (a) the child’s speed at the
lowest point and (b) the force exerted by the seat on
the child at the lowest point. (Neglect the mass of the
seat.)

18. A child of mass m sits in a swing supported by two

chains, each of length R. If the tension in each chain at

the lowest point is 7, find (a) the child’s speed at the

lowest point and (b) the force exerted by the seat on

the child at the lowest point. (Neglect the mass of the
seat.)

wes A pail of water is rotated in a vertical circle of radius

1.00 m. What must be the minimum speed of the pail at
the top of the circle if no water is to spill out?

20. A 0.400-kg object is swung in a vertical circular path on
a string 0.500 m long. If its speed is 4.00 m/s at the top
of the circle, what is the tension in the string there?

21. A roller-coaster car has a mass of 500 kg when fully
loaded with passengers (Fig. P6.21). (a) If the car has a
speed of 20.0 m/s at point A, what is the force exerted
by the track on the car at this point? (b) What is the
maximum speed the car can have at Band still remain
on the track?
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22. Aroller coaster at the Six Flags Great America amuse-

ment park in Gurnee, Illinois, incorporates some of the
latest design technology and some basic physics. Each
vertical loop, instead of being circular, is shaped like a
teardrop (Fig. P6.22). The cars ride on the inside of the
loop at the top, and the speeds are high enough to en-
sure that the cars remain on the track. The biggest loop
is 40.0 m high, with a maximum speed of 31.0 m/s
(nearly 70 mi/h) at the bottom. Suppose the speed at
the top is 13.0 m/s and the corresponding centripetal
acceleration is 2g. (a) What is the radius of the arc of
the teardrop at the top? (b) If the total mass of the cars
plus people is M, what force does the rail exert on this
total mass at the top? (c) Suppose the roller coaster had
a loop of radius 20.0 m. If the cars have the same speed,
13.0 m/s at the top, what is the centripetal acceleration
at the top? Comment on the normal force at the top in
this situation.

Figure P6.22  (Frank Cezus/FPG International)

(Optional)
Section 6.3

23. A merry-go-round makes one complete revolution in

Motion in Accelerated Frames

12.0 s. If a 45.0-kg child sits on the horizontal floor of
the merry-go-round 3.00 m from the center, find (a) the
child’s acceleration and (b) the horizontal force of fric-
tion that acts on the child. (c) What minimum coeffi-
cient of static friction is necessary to keep the child
from slipping?

24.

Problems 175

A 5.00-kg mass attached to a spring scale rests on a fric-
tionless, horizontal surface as in Figure P6.24. The
spring scale, attached to the front end of a boxcar, reads
18.0 N when the car is in motion. (a) If the spring scale
reads zero when the car is at rest, determine the accel-
eration of the car. (b) What will the spring scale read if
the car moves with constant velocity? (c) Describe the
forces acting on the mass as observed by someone in
the car and by someone at rest outside the car.

Figure P6.24

A 0.500-kg object is suspended from the ceiling of an

26.

accelerating boxcar as was seen in Figure 6.13. If a =
3.00 m/s2, find (a) the angle that the string makes with
the vertical and (b) the tension in the string.

The Earth rotates about its axis with a period of 24.0 h.
Imagine that the rotational speed can be increased. If
an object at the equator is to have zero apparent weight,
(a) what must the new period be? (b) By what factor
would the speed of the object be increased when the
planet is rotating at the higher speed? (Hint: See Prob-
lem 53 and note that the apparent weight of the object
becomes zero when the normal force exerted on it is
zero. Also, the distance traveled during one period is
2R, where Ris the Earth’s radius.)

A person stands on a scale in an elevator. As the elevator

28.

starts, the scale has a constant reading of 591 N. As the
elevator later stops, the scale reading is 391 N. Assume
the magnitude of the acceleration is the same during
starting and stopping, and determine (a) the weight of
the person, (b) the person’s mass, and (c) the accelera-
tion of the elevator.

A child on vacation wakes up. She is lying on her back.
The tension in the muscles on both sides of her neck is
55.0 N as she raises her head to look past her toes and
out the motel window. Finally, it is not raining! Ten min-
utes later she is screaming and sliding feet first down a
water slide at a constant speed of 5.70 m/s, riding high
on the outside wall of a horizontal curve of radius 2.40 m
(Fig. P6.28). She raises her head to look forward past
her toes; find the tension in the muscles on both sides
of her neck.
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Figure P6.28

A plumb bob does not hang exactly along a line di-
rected to the center of the Earth, because of the Earth’s
rotation. How much does the plumb bob deviate from a
radial line at 35.0° north latitude? Assume that the
Earth is spherical.

(Optional)
Section 6.4 Motion in the Presence of Resistive Forces

30.

@1

32.

33.

34.

A sky diver of mass 80.0 kg jumps from a slow-moving
aircraft and reaches a terminal speed of 50.0 m/s.

(a) What is the acceleration of the sky diver when her
speed is 30.0 m/s? What is the drag force exerted on
the diver when her speed is (b) 50.0 m/s? (c) 30.0 m/s?
A small piece of Styrofoam packing material is dropped
from a height of 2.00 m above the ground. Until it
reaches terminal speed, the magnitude of its accelera-
tion is given by @ = g — bv. After falling 0.500 m, the
Styrofoam effectively reaches its terminal speed, and
then takes 5.00 s more to reach the ground. (a) What is
the value of the constant b? (b) What is the acceleration
at t = 0? (c) What is the acceleration when the speed is
0.150 m/s?

(a) Estimate the terminal speed of a wooden sphere
(density 0.830 g/cm?) falling through the air if its ra-
dius is 8.00 cm. (b) From what height would a freely
falling object reach this speed in the absence of air
resistance?

Calculate the force required to pull a copper ball of ra-
dius 2.00 cm upward through a fluid at the constant
speed 9.00 cm/s. Take the drag force to be proportional
to the speed, with proportionality constant 0.950 kg/s.
Ignore the buoyant force.

A fire helicopter carries a 620-kg bucket at the end of a
cable 20.0 m long as in Figure P6.34. As the helicopter
flies to a fire at a constant speed of 40.0 m/s, the cable
makes an angle of 40.0° with respect to the vertical. The
bucket presents a cross-sectional area of 3.80 m? in a
plane perpendicular to the air moving past it. Deter-
mine the drag coefficient assuming that the resistive

Figure P6.34

force is proportional to the square of the bucket’s
speed.

A small, spherical bead of mass 3.00 g is released from

36.

38.

rest at £ = 0 in a bottle of liquid shampoo. The terminal
speed is observed to be v, = 2.00 cm/s. Find (a) the
value of the constant b in Equation 6.4, (b) the time 7
the bead takes to reach 0.632v,, and (c) the value of the
resistive force when the bead reaches terminal speed.
The mass of a sports car is 1 200 kg. The shape of the
car is such that the aerodynamic drag coefficient is
0.250 and the frontal area is 2.20 m2 Neglecting all
other sources of friction, calculate the initial accelera-
tion of the car if, after traveling at 100 km/h, it is
shifted into neutral and is allowed to coast.

wes A motorboat cuts its engine when its speed is 10.0 m/s

and coasts to rest. The equation governing the motion
of the motorboat during this period is v = v;¢” %, where
vis the speed at time ¢, v;is the initial speed, and cis a
constant. At £ = 20.0 s, the speed is 5.00 m/s. (a) Find
the constant ¢. (b) What is the speed at t = 40.0 s?

(c) Differentiate the expression for v(¢) and thus show
that the acceleration of the boat is proportional to the
speed at any time.

Assume that the resistive force acting on a speed skater
is f= — kmv?, where kis a constant and m is the skater’s
mass. The skater crosses the finish line of a straight-line
race with speed vy and then slows down by coasting on
his skates. Show that the skater’s speed at any time ¢
after crossing the finish line is v(¢) = v/ (1 + ktvy).

39. You can feel a force of air drag on your hand if you

stretch your arm out of the open window of a speeding
car. (Note: Do not get hurt.) What is the order of magni-
tude of this force? In your solution, state the quantities
you measure or estimate and their values.

(Optional)
6.5 Numerical Modeling in Particle Dy

40.

A 3.00-g leaf is dropped from a height of 2.00 m above
the ground. Assume the net downward force exerted on
the leaf is /"= mg — bv, where the drag factor is b =
0.030 0 kg/s. (a) Calculate the terminal speed of the
leaf. (b) Use Euler’s method of numerical analysis to
find the speed and position of the leaf as functions of



time, from the instant it is released until 99% of termi-
nal speed is reached. (Hint: Try At = 0.005 s.)

wes [] A hailstone of mass 4.80 X 10~* kg falls through the air

0 42.

ia

44.

and experiences a net force given by
F=—mg+ Co?

where C =250 X 107> kg/m. (a) Calculate the termi-
nal speed of the hailstone. (b) Use Euler’s method of
numerical analysis to find the speed and position of the
hailstone at 0.2-s intervals, taking the initial speed to be
zero. Continue the calculation until the hailstone
reaches 99% of terminal speed.

A 0.142-kg baseball has a terminal speed of 42.5 m/s
(95 mi/h). (a) If a baseball experiences a drag force of
magnitude R = 72, what is the value of the constant C?
(b) What is the magnitude of the drag force when the
speed of the baseball is 36.0 m/s? (c) Use a computer
to determine the motion of a baseball thrown vertically
upward at an initial speed of 36.0 m/s. What maxi-
mum height does the ball reach? How long is it in

the air? What is its speed just before it hits the ground?

. A 50.0-kg parachutist jumps from an airplane and falls

with a drag force proportional to the square of the
speed R = Cv®. Take C = 0.200 kg/m with the para-
chute closed and C = 20.0 kg/m with the chute open.
(a) Determine the terminal speed of the parachutist in
both configurations, before and after the chute is
opened. (b) Set up a numerical analysis of the motion
and compute the speed and position as functions of
time, assuming the jumper begins the descent at

1 000 m above the ground and is in free fall for 10.0 s
before opening the parachute. (Hint: When the para-
chute opens, a sudden large acceleration takes place; a
smaller time step may be necessary in this region.)
Consider a 10.0-kg projectile launched with an initial
speed of 100 m/s, at an angle of 35.0° elevation. The re-
sistive force is R = — bv, where b = 10.0 kg/s. (a) Use a
numerical method to determine the horizontal and ver-
tical positions of the projectile as functions of time.

(b) What is the range of this projectile? (c) Determine
the elevation angle that gives the maximum range for
the projectile. (Hint: Adjust the elevation angle by trial
and error to find the greatest range.)

. A professional golfer hits a golf ball of mass 46.0 g with

her 5-iron, and the ball first strikes the ground 155 m
(170 yards) away. The ball experiences a drag force of
magnitude R = Cv? and has a terminal speed of

44.0 m/s. (a) Calculate the drag constant C for the golf
ball. (b) Use a numerical method to analyze the trajec-
tory of this shot. If the initial velocity of the ball makes
an angle of 31.0° (the loft angle) with the horizontal,
what initial speed must the ball have to reach the 155-m
distance? (c) If the same golfer hits the ball with her 9-
iron (47.0° loft) and it first strikes the ground 119 m
away, what is the initial speed of the ball? Discuss the
differences in trajectories between the two shots.

Problems 177

ADDITIONAL PROBLEMS

46.

47.

48.

49.

50.

b,

An 1 800-kg car passes over a bump in a road that fol-
lows the arc of a circle of radius 42.0 m as in Figure
P6.46. (a) What force does the road exert on the car as
the car passes the highest point of the bump if the car
travels at 16.0 m/s? (b) What is the maximum speed the
car can have as it passes this highest point before losing
contact with the road?

A car of mass m passes over a bump in a road that fol-
lows the arc of a circle of radius R as in Figure P6.46.

(a) What force does the road exert on the car as the car
passes the highest point of the bump if the car travels at
aspeed v? (b) What is the maximum speed the car can
have as it passes this highest point before losing contact
with the road?

Figure P6.46 Problems 46 and 47.

In one model of a hydrogen atom, the electron in orbit
around the proton experiences an attractive force of
about 8.20 X 1078 N. If the radius of the orbit is 5.30 X
10" m, how many revolutions does the electron make
each second? (This number of revolutions per unit time
is called the frequency of the motion.) See the inside
front cover for additional data.

A student builds and calibrates an accelerometer, which
she uses to determine the speed of her car around a
certain unbanked highway curve. The accelerometer is
a plumb bob with a protractor that she attaches to the
roof of her car. A friend riding in the car with her ob-
serves that the plumb bob hangs at an angle of 15.0°
from the vertical when the car has a speed of 23.0 m/s.
(a) What is the centripetal acceleration of the car
rounding the curve? (b) What is the radius of the
curve? (c) What is the speed of the car if the plumb bob
deflection is 9.00° while the car is rounding the same
curve?

Suppose the boxcar shown in Figure 6.13 is moving with
constant acceleration @ up a hill that makes an angle ¢
with the horizontal. If the hanging pendulum makes a
constant angle 6 with the perpendicular to the ceiling,
what is a?

An air puck of mass 0.250 kg is tied to a string and al-
lowed to revolve in a circle of radius 1.00 m on a fric-
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tionless horizontal table. The other end of the string
passes through a hole in the center of the table, and a
mass of 1.00 kg is tied to it (Fig. P6.51). The suspended
mass remains in equilibrium while the puck on the
tabletop revolves. What are (a) the tension in the string,
(b) the force exerted by the string on the puck, and

(c) the speed of the puck?

An air puck of mass m is tied to a string and allowed

to revolve in a circle of radius R on a frictionless hori-
zontal table. The other end of the string passes
through a hole in the center of the table, and a mass
my is tied to it (Fig. P6.51). The suspended mass re-
mains in equilibrium while the puck on the tabletop re-
volves. What are (a) the tension in the string? (b) the
central force exerted on the puck? (c) the speed of the
puck?

Nl

Figure P6.51 Problems 51 and 52.

Because the Earth rotates about its axis, a point on the
equator experiences a centripetal acceleration of

0.033 7 m/s?, while a point at one of the poles experi-
ences no centripetal acceleration. (a) Show that at the
equator the gravitational force acting on an object (the
true weight) must exceed the object’s apparent weight.
(b) What is the apparent weight at the equator and at
the poles of a person having a mass of 75.0 kg? (Assume
the Earth is a uniform sphere and take g = 9.800 m/s?.)
A string under a tension of 50.0 N is used to whirl a
rock in a horizontal circle of radius 2.50 m at a speed of
20.4 m/s. The string is pulled in and the speed of the
rock increases. When the string is 1.00 m long and the
speed of the rock is 51.0 m/s, the string breaks. What is
the breaking strength (in newtons) of the string?

. A child’s toy consists of a small wedge that has an acute

angle 6 (Fig. P6.55). The sloping side of the wedge is
frictionless, and a mass m on it remains at constant
height if the wedge is spun at a certain constant speed.
The wedge is spun by rotating a vertical rod that is
firmly attached to the wedge at the bottom end. Show

56.

57.

58.

that, when the mass sits a distance L up along the slop-
ing side, the speed of the mass must be

v = (gLsin §)'/2
/v\)

\e

L

o)

Figure P6.55

The pilot of an airplane executes a constant-speed loop-
the-loop maneuver. His path is a vertical circle. The
speed of the airplane is 300 mi/h, and the radius of the
circle is 1 200 ft. (a) What is the pilot’s apparent weight
at the lowest point if his true weight is 160 1b? (b) What
is his apparent weight at the highest point? (c) Describe
how the pilot could experience apparent weightlessness
if both the radius and the speed can be varied. (Note:
His apparent weight is equal to the force that the seat
exerts on his body.)

For a satellite to move in a stable circular orbit at a con-
stant speed, its centripetal acceleration must be in-
versely proportional to the square of the radius r of the
orbit. (a) Show that the tangential speed of a satellite is
proportional to r 172 (b) Show that the time required
to complete one orbit is proportional to r3/2

A penny of mass 3.10 g rests on a small 20.0-g block sup-
ported by a spinning disk (Fig. P6.58). If the coeffi-

Figure P6.58
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cients of friction between block and disk are 0.750 (sta-
tic) and 0.640 (kinetic) while those for the penny and
block are 0.450 (kinetic) and 0.520 (static), what is the
maximum rate of rotation (in revolutions per minute)
that the disk can have before either the block or the
penny starts to slip?

Figure P6.59 shows a Ferris wheel that rotates four times
each minute and has a diameter of 18.0 m. (a) What is
the centripetal acceleration of a rider? What force does
the seat exert on a 40.0-kg rider (b) at the lowest point
of the ride and (c) at the highest point of the ride?

(d) What force (magnitude and direction) does the seat
exert on a rider when the rider is halfway between top
and bottom?

60.

61.

62.

Figure P6.59  (Color Box/FPG)

A space station, in the form of a large wheel 120 m in
diameter, rotates to provide an “artificial gravity” of
8.00 m/s? for persons situated at the outer rim. Find
the rotational frequency of the wheel (in revolutions
per minute) that will produce this effect.

An amusement park ride consists of a rotating circular
platform 8.00 m in diameter from which 10.0-kg seats
are suspended at the end of 2.50-m massless chains
(Fig. P6.61). When the system rotates, the chains make
an angle 6 = 28.0° with the vertical. (a) What is the
speed of each seat? (b) Draw a free-body diagram of a
40.0-kg child riding in a seat and find the tension in the
chain.

A piece of putty is initially located at point A on the rim
of a grinding wheel rotating about a horizontal axis.
The putty is dislodged from point A when the diameter
through A is horizontal. The putty then rises vertically
and returns to A the instant the wheel completes one
revolution. (a) Find the speed of a point on the rim of
the wheel in terms of the acceleration due to gravity
and the radius R of the wheel. (b) If the mass of the
putty is m, what is the magnitude of the force that held
it to the wheel?

Problems 179

Figure P6.61

An amusement park ride consists of a large vertical

cylinder that spins about its axis fast enough that any
person inside is held up against the wall when the floor
drops away (Fig. P6.63). The coefficient of static fric-
tion between person and wall is u,, and the radius of
the cylinder is R. (a) Show that the maximum period of
revolution necessary to keep the person from falling is
T= (47r2Ry,s/g)1/2. (b) Obtain a numerical value for 7'

Figure P6.63

180

64.

65.

CHAPTER 6  Circular Motion and Other Applications of Newton’s Laws

if R = 4.00 m and u, = 0.400. How many revolutions
per minute does the cylinder make?

An example of the Coriolis effect. Suppose air resistance is
negligible for a golf ball. A golfer tees off from a loca-
tion precisely at ¢; = 35.0° north latitude. He hits the
ball due south, with range 285 m. The ball’s initial ve-
locity is at 48.0° above the horizontal. (a) For what
length of time is the ball in flight? The cup is due south
of the golfer’s location, and he would have a hole-in-
one if the Earth were not rotating. As shown in Figure
P6.64, the Earth’s rotation makes the tee move in a cir-
cle of radius Ry cos ¢; = (6.37 X 10° m) cos 35.0°, com-
pleting one revolution each day. (b) Find the eastward
speed of the tee, relative to the stars. The hole is also
moving eastward, but it is 285 m farther south and thus
at a slightly lower latitude ¢;. Because the hole moves
eastward in a slightly larger circle, its speed must be
greater than that of the tee. (c) By how much does the
hole’s speed exceed that of the tee? During the time the
ball is in flight, it moves both upward and downward, as
well as southward with the projectile motion you studied
in Chapter 4, but it also moves eastward with the speed
you found in part (b). The hole moves to the east ata
faster speed, however, pulling ahead of the ball with the
relative speed you found in part (c). (d) How far to the
west of the hole does the ball land?

Golf ball
trajectory

[ Rpcos ¢;

(b~

Figure P6.64

A curve in a road forms part of a horizontal circle. As a
car goes around it at constant speed 14.0 m/s, the total
force exerted on the driver has magnitude 130 N. What
are the magnitude and direction of the total force ex-
erted on the driver if the speed is 18.0 m/s instead?

66.

67.

A car rounds a banked curve as shown in Figure 6.6.
The radius of curvature of the road is R, the banking
angle is 6, and the coefficient of static friction is u,.

(a) Determine the range of speeds the car can have
without slipping up or down the banked surface.

(b) Find the minimum value for u, such that the mini-
mum speed is zero. (c) What is the range of speeds pos-
sible if R = 100 m, § = 10.0°, and u, = 0.100 (slippery
conditions)?

A single bead can slide with negligible friction on a wire
that is bent into a circle of radius 15.0 cm, as in Figure
P6.67. The circle is always in a vertical plane and rotates
steadily about its vertical diameter with a period of
0.450 s. The position of the bead is described by the an-
gle 6 that the radial line from the center of the loop to
the bead makes with the vertical. (a) At what angle up
from the lowest point can the bead stay motionless rela-
tive to the turning circle? (b) Repeat the problem if the
period of the circle’s rotation is 0.850 s.

- | <
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Figure P6.67
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68. The expression F = arv + br?v? gives the magnitude of

the resistive force (in newtons) exerted on a sphere of
radius r (in meters) by a stream of air moving at speed
v (in meters per second), where aand b are constants
with appropriate SI units. Their numerical values are
a=3.10 X 10~*and b = 0.870. Using this formula, find
the terminal speed for water droplets falling under
their own weight in air, taking the following values for
the drop radii: (a) 10.0 um, (b) 100 um, (c) 1.00 mm.
Note that for (a) and (c) you can obtain accurate an-
swers without solving a quadratic equation, by consider-
ing which of the two contributions to the air resistance
is dominant and ignoring the lesser contribution.

A model airplane of mass 0.750 kg flies in a horizontal

circle at the end of a 60.0-m control wire, with a speed

of 35.0 m/s. Compute the tension in the wire if it makes
a constant angle of 20.0° with the horizontal. The forces
exerted on the airplane are the pull of the control wire,



its own weight, and aerodynamic lift, which acts at 20.0°
inward from the vertical as shown in Figure P6.69.

Figure P6.69

70. A 9.00-kg object starting from rest falls through a vis-

E 71.

cous medium and experiences a resistive force R =

— bv, where v is the velocity of the object. If the object’s
speed reaches one-half its terminal speed in 5.54 s,

(a) determine the terminal speed. (b) At what time is
the speed of the object three-fourths the terminal
speed? (c) How far has the object traveled in the first
5.54 s of motion?

Members of a skydiving club were given the following
data to use in planning their jumps. In the table, dis
the distance fallen from rest by a sky diver in a “free-fall

ANSWERS TO QUICK QUIZZES

6.1 No. The tangential acceleration changes just the speed

6.

N

part of the velocity vector. For the car to move in a cir-
cle, the direction of its velocity vector must change, and
the only way this can happen is for there to be a cen-
tripetal acceleration.

(a) The ball travels in a circular path that has a larger ra-
dius than the original circular path, and so there must
be some external force causing the change in the veloc-
ity vector’s direction. The external force must not be as
strong as the original tension in the string because if it
were, the ball would follow the original path. (b) The
ball again travels in an arc, implying some kind of exter-
nal force. As in part (a), the external force is directed to-
ward the center of the new arc and not toward the cen-
ter of the original circular path. (c) The ball undergoes
an abrupt change in velocity—from tangent to the cir-
cle to perpendicular to it—and so must have experi-
enced a large force that had one component opposite
the ball’s velocity (tangent to the circle) and another
component radially outward. (d) The ball travels in a
straight line tangent to the original path. If there is an
external force, it cannot have a component perpendicu-
lar to this line because if it did, the path would curve. In

Answers to Quick Quizzes

6.

o
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stable spread position” versus the time of fall #. (a) Con-
vert the distances in feet into meters. (b) Graph d (in
meters) versus £ (c) Determine the value of the termi-
nal speed v, by finding the slope of the straight portion
of the curve. Use a least-squares fit to determine this
slope.

t(s) d (ft)
1 16
b 62
3 138
4 242
5 366
6 504
7 652
8 808
9 971

10 1138

11 1309

12 1483

13 1657

14 1831

15 2005

16 2179

17 2353

18 2527

19 2701

20 2875

fact, if the string breaks and there is no other force act-
ing on the ball, Newton’s first law says the ball will travel
along such a tangent line at constant speed.

At ® the path is along the circumference of the larger
circle. Therefore, the wire must be exerting a force on
the bead directed toward the center of the circle. Be-
cause the speed is constant, there is no tangential force
component. At ® the path is not curved, and so the wire
exerts no force on the bead. At © the path is again
curved, and so the wire is again exerting a force on the
bead. This time the force is directed toward the center
of the smaller circle. Because the radius of this circle is
smaller, the magnitude of the force exerted on the bead
is larger here than at ®.
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eering. In everyday life, we think of energy in terms of fuel for transportation

and heating, electricity for lights and appliances, and foods for consumption.

However, these ideas do not really define energy. They merely tell us that fuels are
needed to do a job and that those fuels provide us with something we call energy.

In this chapter, we first introduce the concept of work. Work is done by a force
acting on an object when the point of application of that force moves through
some distance and the force has a component along the line of motion. Next, we
define kinetic energy, which is energy an object possesses because of its motion. In
general, we can think of energy as the capacity that an object has for performing
work. We shall see that the concepts of work and kinetic energy can be applied to
the dynamics of a mechanical system without resorting to Newton’s laws. In a com-
plex situation, in fact, the “energy approach” can often allow a much simpler
analysis than the direct application of Newton’s second law. However, it is impor-
tant to note that the work—energy concepts are based on Newton’s laws and there-
fore allow us to make predictions that are always in agreement with these laws.

This alternative method of describing motion is especially useful when the
force acting on a particle varies with the position of the particle. In this case, the ac-
celeration is not constant, and we cannot apply the kinematic equations developed
in Chapter 2. Often, a particle in nature is subject to a force that varies with the po-
sition of the particle. Such forces include the gravitational force and the force ex-
erted on an object attached to a spring. Although we could analyze situations like
these by applying numerical methods such as those discussed in Section 6.5, utiliz-
ing the ideas of work and energy is often much simpler. We describe techniques for
treating complicated systems with the help of an extremely important theorem
called the work—kinetic energy theorem, which is the central topic of this chapter.

T he concept of energy is one of the most important topics in science and engi-
n

Chum salmon “climbing a ladder” in the
McNeil River in Alaska. Why are fish lad-
ders like this often built around dams? Do
the ladders reduce the amount of work
that the fish must do to get past the dam?
(Daniel J. Cox/Tony Stone Images)

c h apter 7.1 - WORK DONE BY A CONSTANT FORCE

@7 Almost all the terms we have used thus far—velocity, acceleration, force, and so
51 on—convey nearly the same meaning in physics as they do in everyday life. Now,

L} L} . . . . . . .
wo rk and KI netlc Ener however, we encounter a term whose meaning in physics is distinctly different
gy from its everyday meaning. That new term is work.
To understand what work means to the physicist, consider the situation illus-

trated in Figure 7.1. A force is applied to a chalkboard eraser, and the eraser slides
along the tray. If we are interested in how effective the force is in moving the

Chapter Outline

7.1 Work Done by a Constant Force 7.6 (Optional) Energy and the Auto-

7.2 The Scalar Product of Two Vectors mobile

7.3 Work Done by a Varying Force 7.7 (Optional) Kinetic Energy at High
Speeds

7.4 Kinetic Energy and the Work—
Kinetic Energy Theorem

(b)

7.5 Power Figure 7.1 An eraser being pushed along a chalkboard tray. (Charles D. Winters)
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Figure 7.2 If an object under-
goes a displacement d under the
action of a constant force F, the
work done by the force is

(Fcos 0)d.

‘Work done by a constant force

Figure 7.3 When an object is dis-
placed on a frictionless, horizontal,
surface, the normal force n and the
force of gravity mg do no work on
the object. In the situation shown
here, F is the only force doing
work on the object.

&
w
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eraser, we need to consider not only the magnitude of the force but also its direc-
tion. If we assume that the magnitude of the applied force is the same in all three
photographs, it is clear that the push applied in Figure 7.1b does more to move
the eraser than the push in Figure 7.1a. On the other hand, Figure 7.1c shows a
situation in which the applied force does not move the eraser at all, regardless of
how hard it is pushed. (Unless, of course, we apply a force so great that we break
something.) So, in analyzing forces to determine the work they do, we must con-
sider the vector nature of forces. We also need to know how far the eraser moves
along the tray if we want to determine the work required to cause that motion.
Moving the eraser 3 m requires more work than moving it 2 cm.

Let us examine the situation in Figure 7.2, where an object undergoes a dis-
placement d along a straight line while acted on by a constant force F that makes
an angle 6 with d.

The work W done on an object by an agent exerting a constant force on
the object is the product of the component of the force in the direction of the
displacement and the magnitude of the displacement:

W= Fdcos 6 (7.1)

As an example of the distinction between this definition of work and our
everyday understanding of the word, consider holding a heavy chair at arm’s
length for 3 min. At the end of this time interval, your tired arms may lead you to
think that you have done a considerable amount of work on the chair. According
to our definition, however, you have done no work on it whatsoever.! You exert a
force to support the chair, but you do not move it. A force does no work on an ob-
ject if the object does not move. This can be seen by noting that if d = 0, Equation
7.1 gives W= 0—the situation depicted in Figure 7.1c.

Also note from Equation 7.1 that the work done by a force on a moving object
is zero when the force applied is perpendicular to the object’s displacement. That
is, if 6 = 90°, then W= 0 because cos 90° = 0. For example, in Figure 7.3, the
work done by the normal force on the object and the work done by the force of
gravity on the object are both zero because both forces are perpendicular to the
displacement and have zero components in the direction of d.

The sign of the work also depends on the direction of F relative to d. The
work done by the applied force is positive when the vector associated with the
component F cos 6 is in the same direction as the displacement. For example,
when an object is lifted, the work done by the applied force is positive because the
direction of that force is upward, that is, in the same direction as the displace-
ment. When the vector associated with the component F cos 6 is in the direction
opposite the displacement, Wis negative. For example, as an object is lifted, the
work done by the gravitational force on the object is negative. The factor cos 6 in
the definition of W (Eq. 7.1) automatically takes care of the sign. It is important to
note that work is an energy transfer; if energy is transferred to the system (ob-
ject), Wis positive; if energy is transferred from the system, Wis negative.

! Actually, you do work while holding the chair at arm’s length because your muscles are continuously
contracting and relaxing; this means that they are exerting internal forces on your arm. Thus, work is
being done by your body—but internally on itself rather than on the chair.

7.1 Work Done by a Constant Force

If an applied force F acts along the direction of the displacement, then 6 = 0
and cos 0 = 1. In this case, Equation 7.1 gives

W= Fd

Work is a scalar quantity, and its units are force multiplied by length. There-
fore, the SI unit of work is the newton-meter (N-m). This combination of units is
used so frequently that it has been given a name of its own: the joule (J).

Can the component of a force that gives an object a centripetal acceleration do any work on
the object? (One such force is that exerted by the Sun on the Earth that holds the Earth in
a circular orbit around the Sun.)

In general, a particle may be moving with either a constant or a varying veloc-
ity under the influence of several forces. In these cases, because work is a scalar
quantity, the total work done as the particle undergoes some displacement is the
algebraic sum of the amounts of work done by all the forces.

EXAMPLE 7.1 ~ Mr.Clean

A man cleaning a floor pulls a vacuum cleaner with a force of
magnitude F= 50.0 N at an angle of 30.0° with the horizon-
tal (Fig. 7.4a). Calculate the work done by the force on the
vacuum cleaner as the vacuum cleaner is displaced 3.00 m to
the right.

Solution Because they aid us in clarifying which forces are
acting on the object being considered, drawings like Figure
7.4b are helpful when we are gathering information and or-
ganizing a solution. For our analysis, we use the definition of
work (Eq. 7.1):

W= (Fcos 6)d
(50.0 N) (cos 30.0°) (3.00 m) = 130 N-m

130]

One thing we should learn from this problem is that the
normal force m, the force of gravity F, = mg, and the upward
component of the applied force (50.0 N) (sin 30.0°) do no
work on the vacuum cleaner because these forces are perpen-
dicular to its displacement. ”

g
Exercise Find the work done by the man on the vacuum
cleaner if he pulls it 3.0 m with a horizontal force of 32 N.

Answer 96 ]. the vacuum cleaner.

185

(b)

Figure 7.4 (a) A vacuum cleaner being pulled at an angle of 30.0°
with the horizontal. (b) Free-body diagram of the forces acting on
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The weightlifter does no work on the weights as he holds them on his shoulders. (If he could rest
the bar on his shoulders and lock his knees, he would be able to support the weights for quite
some time.) Did he do any work when he raised the weights to this height?

A person lifts a heavy box of mass m a vertical distance /# and then walks horizontally a dis-
Figure 7.5 A person lifts a box of tance d while holding the box, as shown in Figure 7.5. Determine (a) the work he does on
mass m a vertical distance / and then the box and (b) the work done on the box by the force of gravity.
walks horizontally a distance d.

7.2 _~ THE SCALAR PRODUCT OF TWO VECTORS
(¢’ Because of the way the force and displacement vectors are combined in Equation
26 7.1, it is helpful to use a convenient mathematical tool called the scalar product.

This tool allows us to indicate how F and d interact in a way that depends on how

close to parallel they happen to be. We write this scalar product F-d. (Because of

the dot symbol, the scalar product is often called the dot product.) Thus, we can
express Equation 7.1 as a scalar product:

)

‘Work expressed as a dot product W= F-d = Fdcos 0 (7.2)

In other words, F-d (read “F dot d”) is a shorthand notation for Fd cos 6.

In general, the scalar product of any two vectors A and B is a scalar quantity
Scalar product of any two vectors equal to the product of the magnitudes of the two vectors and the cosine of the
Aand B angle 6 between them:

A‘B = ABcos 0 (7.3)

This relationship is shown in Figure 7.6. Note that A and B need not have the
same units.

7.2 The Scalar Product of Two Vectors 187

In Figure 7.6, B cos 0 is the projection of B onto A. Therefore, Equation 7.3
says that A-B is the product of the magnitude of A and the projection of B onto
A2

From the right-hand side of Equation 7.3 we also see that the scalar product is
commutative.’ That is,

A‘B = B‘A The order of the dot product can
be reversed

Finally, the scalar product obeys the distributive law of multiplication, so
that

A-(B+C)=AB+AC

The dot product is simple to evaluate from Equation 7.3 when A is either per-
pendicular or parallel to B. If A is perpendicular to B (6 = 90°), then A-B = 0.
(The equality A‘B =0 also holds in the more trivial case when either A or B is
zero.) If vector A is parallel to vector B and the two point in the same direction
(0 = 0), then A‘B = AB. If vector A is parallel to vector B but the two point in op-
posite directions (6 = 180°), then A-B = — AB. The scalar product is negative
when 90° < 6 < 180°. .

The unit vectors i, j, and k, which were defined in Chapter 3, lie in the posi- ilgl::lz‘;lf th?::;izgchl;a
tive x, y, and z directions, respectively, of a right-handed coordinate system. There- multiplied by B cos 6, which is the
fore, it follows from the definition of A+B that the scalar products of these unit projection of B onto A.
vectors are

A

izjj=kk=1 (7.4)
ij=ik=jk=0 (7.5)

Dot products of unit vectors

Equations 3.18 and 3.19 state that two vectors A and B can be expressed in
component vector form as

A=Ai+Aj+Ak
B = Bi+ B,j + Bk
Using the information given in Equations 7.4 and 7.5 shows that the scalar prod-
uct of A and B reduces to
AB=AB + AB + AB, (7.6)
(Details of the derivation are left for you in Problem 7.10.) In the special case in

which A = B, we see that
AA=A2+ A2+ AZ=A7

Quick Quiz 7.3

If the dot product of two vectors is positive, must the vectors have positive rectangular com-
ponents?

2 This is equivalent to stating that A-B equals the product of the magnitude of B and the projection of
A onto B.

3 This may seem obvious, but in Chapter 11 you will see another way of combining vectors that proves
useful in physics and is not commutative.
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Area = AA=F, Ax Figure 7.7 (a) The work done by the force component F,
ExaMPLE 7.2 The Scalar Product F for the small displacement Ax is F,, Ax, which equals the area
The vectors A and B are given by A = 2i + 3jand B = —i + (b) Find the angle 0 between A and B. of the shaded rectangle. The total work done for the dis-
9. (a) Determine the scalar product A-B placement from x; to xyis approximately equal to the sum of
I ’ : Solution The maenitudes of A and B : the areas of all the rectangles. (b) The work done by the
Soluti 1e magnitudes of A an are component F, of the varying force as the particle moves from
olution A= AxQ + A}Q =V(2)?2+ (3)2 = \/ﬁ F x; to xyis exactly equal to the area under this curve.
AB=(2i+ 3% (-i+ 2 5 5 5 5
(2; J)Q( 2l ;.)) - B=vVBZ+B2=V(—1)2+ 2%=15
= —9i-i+ 29— 3-i+ 3y ’ [Py Pi— E7ad
S ati p S ; ’ - 5 P i /
= —9(1) + 4(0) — 3(0) + 6(1) Using Equation 7.3 and the result from part (a) we find that Ax
sroc B g AB 4 4 (@
= —94+6= cos = —— = =—
AB - 13\s 65 F,
where we have used the facts thati-i = jj = 1 and ij = ji = 4
0. The same result is obtained when we use Equation 7.6 di- 0= cos! = 60.2°
rectly, where A, = 2, Ay =3,B,=—1,and B), =2, 8.06
Work
X
EXAMPLE 7.3 ~ Work Done by a Constant Force i X
. (b)
A particle moving in the xy plane undergoes a displacement ~ Selution Substituting the expressions for F and d into
d = (2.0i + 3.0j) m as a constant force F = (5.0i + 2.0j) N Equations 7.4 and 7.5, we obtain
acts on the particle. (a) Calculate the magnitude of the dis- o ke . N .
placement and that of the force. W=Fd = (5.00 + 2.0j)-(2.0i + 3.0) N-m
) = 5.0i-2.0i + 5.0i-3.0j + 2.0j-2.0i + 2.0j-3.0j If the displacements are allowed to approach zero, then the number of terms in
Sol P PP
olution =10+0+0+6=16Nm= 16] the sum increases without limit but the value of the sum approaches a definite
d=Nx>+y?=(2.0)2 + (3.0)2= 3.6m value equal to the area bounded by the F, curve and the x axis:
b (2.0) (3.0) q Y
Exercise Calculate the angle between F and d. g Ax= s
F=VEZ+ 2 =V(5.0? + (202= 54N Al.lfosz = | Fods
Answer 35°. x; i
(b) Calculate the work done by F. This definite integral is numerically equal to the area under the F-versus-x
curve between x; and Xy Therefore, we can express the work done by F, as the par-
ticle moves from x; to xyas
&
7.3 _~ WORK DONE BY A VARYING FORCE W= f F, dx (7.7) Work done by a varying force
xi
(@ Consider a particle being displaced along the x axis under the action of a varying
52 force. The particle is displaced in the direction of increasing x from x = x; to x = This equation reduces to Equation 7.1 when the component F, = F cos 6 is con-
7. In such a situation, we cannot use W= (Fcos 6)d to calculate the work done by stant.
the force because this relationship applies only when F is constant in magnitude If more than one force acts on a particle, the total work done is just the work
and direction. However, if we imagine that the particle undergoes a very small dis- done by the resultant force. If we express the resultant force in the x direction as
placement Ax, shown in Figure 7.7a, then the x component of the force F, is ap- 3 F,, then the total work, or net work, done as the particle moves from x; to x/is
proximately constant over this interval; for this small displacement, we can express X
the work done by the force as 2 W= Wye = J’ <2Fx>dx (7.8)
xi
AW = F,Ax
This is just the area of the shaded rectangle in Figure 7.7a. If we imagine that the
F, versus x curve is divided into a large number of such intervals, then the total
work done for the displacement from x; to x/is approximately equal to the sum of .
a large number of Sucg terms: 110 %15 app ¥ ed EXAMPLE 7.4 Calculating Total Work Done from a Graph
X A force acting on a particle varies with x, as shown in Figure ~ Selution The work done by the force is equal to the area
W= EFX Ax 7.8. Calculate the work done by the force as the particle  under the curve from xa = 0 to x¢c = 6.0 m. This area is
x; moves from x = 0 to x = 6.0 m. equal to the area of the rectangular section from ® to ® plus
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E(N)

©

0 x(m)
12 38 4 5 6

Figure 7.8 The force acting on a particle is constant for the first 4.0 m

of motion and then decreases linearly with x from xg = 4.0 m to x¢c =
6.0 m. The net work done by this force is the area under the curve.

the area of the triangular section from ® to ©. The area of

the rectangle is (4.0)(5.0) N-m = 20 J, and the area of the
triangle is }5(2.0)(5.0) N-m = 5.0 J. Therefore, the total work

doneis 25].

EXAMPLE 7.5 ~ Work Done by the Sun on a Probe

The interplanetary probe shown in Figure 7.9a is attracted to
the Sun by a force of magnitude

F=—13 X 1022/52

where x is the distance measured outward from the Sun to
the probe. Graphically and analytically determine how much

Ma
orbit

Earth’s orbit

work is done by the Sun on the probe as the probe—Sun sep-
aration changes from 1.5 X 10" m to 2.3 X 10'! m.

Graphical Solution The minus sign in the formula for
the force indicates that the probe is attracted to the Sun. Be-
cause the probe is moving away from the Sun, we expect to
calculate a negative value for the work done on it.

A spreadsheet or other numerical means can be used to
generate a graph like that in Figure 7.9b. Each small square
of the grid corresponds to an area (0.05 N) (0.1 X 101 m) =
5 X 108 N'm. The work done is equal to the shaded area in
Figure 7.9b. Because there are approximately 60 squares
shaded, the total area (which is negative because it is below
the x axis) is about —3 X 10! N-m. This is the work done by
the Sun on the probe.

x 10" x(m)

0.3 —

-0.6 —

-0.7 =

-1.0 -
AN)
(b)

Figure 7.9 (a) An interplanetary probe moves
from a position near the Earth’s orbit radially out-
ward from the Sun, ending up near the orbit of
Mars. (b) Attractive force versus distance for the in-
terplanetary probe.
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Analytical Solution We can use Equation 7.7 to calcu-
late a more precise value for the work done on the probe by
the Sun. To solve this integral, we use the first formula of
Table B.5 in Appendix B with n = —2:

2.3x10" 7 _ 1.3 X 1022
J = = dx
" L.EXI(V” < x2 >(17V

2.3%x10"
= (—1.3 X 10%2) f x 2 dx
1.5x10"
2.3%10"
= (—1.3 X 10®)(—x")
1.5x 10"

C(-18x lozz)<*71 _ *71)
N 2.3 X 101! 1.5 x 10

= —30x101]

Exercise Does it matter whether the path of the probe is
not directed along a radial line away from the Sun?

Answer No; the value of Wdepends only on the initial and
final positions, not on the path taken between these points.

Work Done by a Spring

(@ A common physical system for which the force varies with position is shown in Fig-
53 ure 7.10. A block on a horizontal, frictionless surface is connected to a spring. If

the spring is either stretched or compressed a small distance from its unstretched
(equilibrium) configuration, it exerts on the block a force of magnitude

F,= —kx

(7.9) Spring force

where x is the displacement of the block from its unstretched (x = 0) position and
kis a positive constant called the force constant of the spring. In other words, the
force required to stretch or compress a spring is proportional to the amount of
stretch or compression x. This force law for springs, known as Hooke’s law, is
valid only in the limiting case of small displacements. The value of k is a measure
of the stiffness of the spring. Stiff springs have large k values, and soft springs have

small & values.

Quick Quiz 7.4

What are the units for k, the force constant in Hooke’s law?

The negative sign in Equation 7.9 signifies that the force exerted by the spring
is always directed opposite the displacement. When x> 0 as in Figure 7.10a, the
spring force is directed to the left, in the negative x direction. When x < 0 as in
Figure 7.10c, the spring force is directed to the right, in the positive x direction.
When x = 0 as in Figure 7.10b, the spring is unstretched and F; = 0. Because the
spring force always acts toward the equilibrium position (x = 0), it sometimes is
called a restoring force. If the spring is compressed until the block is at the point
— Xmax and is then released, the block moves from — xy,,, through zero to + xp,x.
If the spring is instead stretched until the block is at the point x,,,c and is then re-
leased, the block moves from + x,,,,, through zero to — x,. It then reverses direc-
tion, returns to + Xy, and continues oscillating back and forth.

Suppose the block has been pushed to the left a distance x,,,, from equilib-
rium and is then released. Let us calculate the work W, done by the spring force as
the block moves from x; = — Xy to x;= 0. Applying Equation 7.7 and assuming

the block may be treated as a particle, we obtain

X 0
W, = f Fydx = f (= k) dx = $had o

(7.10)
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| [ is negative.
f x is positive.
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Figure 7.10 The force exerted by a spring on a block varies with the block’s displacement x
from the equilibrium position x = 0. (a) When «x is positive (stretched spring), the spring force is
directed to the left. (b) When x is zero (natural length of the spring), the spring force is zero.

(c) When xis negative (compressed spring), the spring force is directed to the right. (d) Graph
of Fyversus x for the block—spring system. The work done by the spring force as the block moves
from — X, to 0 is the area of the shaded triangle, %kxﬁux.

where we have used the indefinite integral [x"dx = x"™'/(n + 1) with n = 1. The
work done by the spring force is positive because the force is in the same direction
as the displacement (both are to the right). When we consider the work done by
the spring force as the block moves from x; =0 to x/ = xp,, we find that

7.3 Work Done by a Varying Force

W, = 7%kx,2mx because for this part of the motion the displacement is to the right
and the spring force is to the left. Therefore, the net work done by the spring force
as the block moves from x; = — Xy L0 Xy = Xpay 1S zevo.

Figure 7.10d is a plot of F, versus x. The work calculated in Equation 7.10 is
the area of the shaded triangle, corresponding to the displacement from — x,,, to
0. Because the triangle has base x,,x and height kx,,y, its area is %kxﬁmx, the work
done by the spring as given by Equation 7.10.

If the block undergoes an arbitrary displacement from x = x; to x = xy, the
work done by the spring force is

Xf
W, = J’ (= kxdx = gk — ghx? (7.11)

For example, if the spring has a force constant of 80 N/m and is compressed
3.0 cm from equilibrium, the work done by the spring force as the block moves
from x; = — 3.0 cm to its unstretched position x;= 0 is 3.6 X 1072 ]. From Equa-
tion 7.11 we also see that the work done by the spring force is zero for any motion
that ends where it began (x; = x7). We shall make use of this important result in
Chapter 8, in which we describe the motion of this system in greater detail.

Equations 7.10 and 7.11 describe the work done by the spring on the block.
Now let us consider the work done on the spring by an external agent that stretches
the spring very slowly from x; = 0 to x; = Xpax, as in Figure 7.11. We can calculate
this work by noting that at any value of the displacement, the applied force F,, is
equal to and opposite the spring force Fy, so that I, = — (= kx) = kx. Therefore,
the work done by this applied force (the external agent) is

Xmax Xmax 1 9
WEW = N Fypp dx = X kx dx = ghxfax

This work is equal to the negative of the work done by the spring force for this dis-
placement.

EXAMPLE 7.6 ~ Measuring kfor a Spring

A common technique used to measure the force constant of
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Work done by a spring
F“PP
—_—
| —l
520 Y= X

Figure 7.11 A block being
pulled from x; = 0 to Xy = Xy ON
a frictionless surface by a force
F.pp- If the process is carried out
very slowly, the applied force is
equal to and opposite the spring
force at all times.

a spring is described in Figure 7.12. The spring is hung verti-
cally, and an object of mass m is attached to its lower end. Un-
der the action of the “load” mg, the spring stretches a dis-
tance d from its equilibrium position. Because the spring
force is upward (opposite the displacement), it must balance
the downward force of gravity mg when the system is at rest.
In this case, we can apply Hooke’s law to give |F,| = kd = mg,
or

For example, if a spring is stretched 2.0 cm by a suspended
object having a mass of 0.55 kg, then the force constant is
mg _ (0.55 kg) (9.80 m/s%) _

k= S B TY) 97X 102N
d 20X 10 2m : /im

(a)

mg
(b) ()

Figure 7.12 Determining the force constant k of a spring. The
elongation dis caused by the attached object, which has a weight mg.

Because the spring force balances the force of gravity, it follows that

k= mg/d.
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Figure 7.13 A particle undergo-
ing a displacement d and a change
in velocity under the action of a
constant net force XF.

Kinetic energy is energy associated
with the motion of a body

CHAPTER 7  Work and Kinetic Energy

7.4_~ KINETIC ENERGY AND THE
WORK-KINETIC ENERGY THEOREM

(@ Tt can be difficult to use Newton’s second law to solve motion problems involving
57 complex forces. An alternative approach is to relate the speed of a moving particle

to its displacement under the influence of some net force. If the work done by the
net force on a particle can be calculated for a given displacement, then the change
in the particle’s speed can be easily evaluated.

Figure 7.13 shows a particle of mass m moving to the right under the action of
a constant net force 2F. Because the force is constant, we know from Newton’s sec-
ond law that the particle moves with a constant acceleration a. If the particle is dis-
placed a distance d, the net work done by the total force XF is

Sw= (2F)d= (ma)d (7.12)

In Chapter 2 we found that the following relationships are valid when a particle
undergoes constant acceleration:

v U

d:%(vﬂr v/)t a= .

where v; is the speed at ¢ = 0 and vy is the speed at time & Substituting these ex-
pressions into Equation 7.12 gives

U
EW: m 715 5(v; + v/)t
2 W= %mvf? - émv;—) (7.13)

The quantity %mv2 represents the energy associated with the motion of the
particle. This quantity is so important that it has been given a special name —ki-
netic energy. The net work done on a particle by a constant net force 2F acting
on it equals the change in kinetic energy of the particle.

In general, the kinetic energy K of a particle of mass m moving with a speed v
is defined as

K= im? (7.14)

roj—

TABLE 7.1 Kinetic Energies for Various Objects

Object Mass (kg) Speed (m/s) Kinetic Energy (J)
Earth orbiting the Sun 5.98 X 10% 2.98 X 10* 2.65 X 10%
Moon orbiting the Earth 7.35 X 10%2 1.02 x 10° 3.82 X 10%
Rocket moving at escape speed* 500 1.12 x 10* 3.14 x 101
Automobile at 55 mi/h 2 000 25 6.3 X 10°
Running athlete 70 10 8.5 x 10°
Stone dropped from 10 m 1.0 14 9.8 X 10!

Golf ball at terminal speed 0.046 44 4.5 x 10!
Raindrop at terminal speed 35 % 107° 9.0 1.4 x 1073
Oxygen molecule in air 5.3 X 1072 500 6.6 x 10721

 Escape speed is the minimum speed an object must attain near the Earth’s surface if it is to escape
the Earth’s gravitational force.

@
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7.4 Kinetic Energy and the Work—Kinetic Energy Theorem

Kinetic energy is a scalar quantity and has the same units as work. For exam-
ple, a 2.0-kg object moving with a speed of 4.0 m/s has a kinetic energy of 16 J.
Table 7.1 lists the kinetic energies for various objects.

It is often convenient to write Equation 7.13 in the form

S W=K - K =AK (7.15)

Thatis, K; + W= K.

Equation 7.15 is an important result known as the work-Kkinetic energy the-
orem. It is important to note that when we use this theorem, we must include all
of the forces that do work on the particle in the calculation of the net work done.
From this theorem, we see that the speed of a particle increases if the net work
done on it is positive because the final kinetic energy is greater than the initial ki-
netic energy. The particle’s speed decreases if the net work done is negative be-
cause the final kinetic energy is less than the initial kinetic energy.

The work—kinetic energy theorem as expressed by Equation 7.15 allows us to
think of kinetic energy as the work a particle can do in coming to rest, or the
amount of energy stored in the particle. For example, suppose a hammer (our
particle) is on the verge of striking a nail, as shown in Figure 7.14. The moving
hammer has kinetic energy and so can do work on the nail. The work done on the
nail is equal to Fd, where Fis the average force exerted on the nail by the hammer
and dis the distance the nail is driven into the wall.*

We derived the work—kinetic energy theorem under the assumption of a con-
stant net force, but it also is valid when the force varies. To see this, suppose the
net force acting on a particle in the x direction is 2F,. We can apply Newton’s sec-
ond law, 3F, = ma,, and use Equation 7.8 to express the net work done as

Sw- f T’(E Fx>dx - f T/max dx

If the resultant force varies with x, the acceleration and speed also depend on x.
Because we normally consider acceleration as a function of ¢, we now use the fol-
lowing chain rule to express ain a slightly different way:

dv dv dx dv

a= =—— =

v
dt dx dt dx
Substituting this expression for @ into the above equation for 3 W gives

Y do o
2W= my—— dx = mv dv
v dx Y

2 W= %mvfz — fmo? (7.16)

The limits of the integration were changed from x values to v values because the
variable was changed from x to v. Thus, we conclude that the net work done on a
particle by the net force acting on it is equal to the change in the kinetic energy of
the particle. This is true whether or not the net force is constant.

+ Note that because the nail and the hammer are systems of particles rather than single particles, part of

the hammer’s kinetic energy goes into warming the hammer and the nail upon impact. Also, as the nail
moves into the wall in response to the impact, the large frictional force between the nail and the wood
results in the continuous transformation of the kinetic energy of the nail into further temperature in-
creases in the nail and the wood, as well as in deformation of the wall. Energy associated with tempera-
ture changes is called internal energy and will be studied in detail in Chapter 20.
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‘Work-kinetic energy theorem

Figure 7.14 The moving ham-
mer has kinetic energy and thus
can do work on the nail, driving it
into the wall.

The net work done on a particle
equals the change in its kinetic
energy
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Loss in kinetic energy due to
friction

7

Figure 7.15 A book sliding to
the right on a horizontal surface
slows down in the presence of a
force of kinetic friction acting to
the left. The initial velocity of the
book is v;, and its final velocity is
vy. The normal force and the force
of gravity are not included in the
diagram because they are perpen-
dicular to the direction of motion
and therefore do not influence the
book’s velocity.

EXAMPLE 7.7

A 6.0-kg block initially at rest is pulled to the right along a
horizontal, frictionless surface by a constant horizontal force
of 12 N. Find the speed of the block after it has moved 3.0 m.

CHAPTER 7  Work and Kinetic Energy

Situations Involving Kinetic Friction

One way to include frictional forces in analyzing the motion of an object sliding
on a horizontal surface is to describe the kinetic energy lost because of friction.
Suppose a book moving on a horizontal surface is given an initial horizontal veloc-
ity v; and slides a distance d before reaching a final velocity v, as shown in Figure
7.15. The external force that causes the book to undergo an acceleration in the
negative x direction is the force of kinetic friction f; acting to the left, opposite the
motion. The initial kinetic energy of the book is émv,z, and its final kinetic energy
is %mvﬁ. Applying Newton’s second law to the book can show this. Because the
only force acting on the book in the x direction is the friction force, Newton’s sec-
ond law gives — f; = ma,. Multiplying both sides of this expression by d and using
Equation 2.12 in the form v,f — v, = 2a,d for motion under constant accelera-
tion give — fid = (ma,)d = %mvxf - %mvm2 or

AKgicion = —fid (7.17a)

This result specifies that the amount by which the force of kinetic friction changes
the kinetic energy of the book is equal to — f,d. Part of this lost kinetic energy goes
into warming up the book, and the rest goes into warming up the surface over
which the book slides. In effect, the quantity — f;d is equal to the work done by ki-
netic friction on the book plus the work done by kinetic friction on the surface.
(We shall study the relationship between temperature and energy in Part III of this
text.) When friction—as well as other forces—acts on an object, the work—kinetic
energy theorem reads

K+ 3 Woner — fid = K (7.17b)

Here, 3 Wyer represents the sum of the amounts of work done on the object by
forces other than kinetic friction.

Can frictional forces ever increase an object’s kinetic energy?

A Block Pulled on a Frictionless Surface

Solution We have made a drawing of this situation in Fig-
ure 7.16a. We could apply the equations of kinematics to de-
termine the answer, but let us use the energy approach for

n n
Ve Vj—
| [
F ! £, F !
I | - — e
! |
| | |
d «—d . .
Figure 7.16 A block pulled to the right by a
mg mg

constant horizontal force. (a) Frictionless surface.
(b) (b) Rough surface.

*
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practice. The normal force balances the force of gravity on
the block, and neither of these vertically acting forces does
work on the block because the displacement is horizontal.
Because there is no friction, the net external force acting on
the block is the 12-N force. The work done by this force is

W= Fd= (12N)(3.0m) = 36 N-m = 36 ]

Using the work—kinetic energy theorem and noting that
the initial kinetic energy is zero, we obtain

W= K — K;=gmy? — 0

2W  2(36])

2 — = = 2,2

vt = o 6.0 kg = 12 m*/s
v = 3.5m/s

Exercise Find the acceleration of the block and determine

its final speed, using the kinematics equation vxf =

v + 2ayd.

Answer a, = 2.0 m/s% vr=35m/s.

EXAMPLE 7.8 A Block Pulled on a Rough Surface

Find the final speed of the block described in Example 7.7 if
the surface is not frictionless but instead has a coefficient of
kinetic friction of 0.15.

Solution The applied force does work just as in Example
7.7:

W=Fd = (12N)(3.0m) = 36]

In this case we must use Equation 7.17a to calculate the ki-
netic energy lost to friction AKjg;uion- The magnitude of the
frictional force is

o = mpn = wmg = (0.15) (6.0 kg) (9.80 m/s?) = 8.82 N
The change in kinetic energy due to friction is
AKgpicion = —fid = — (8.82N)(3.0m) = —26.5]
The final speed of the block follows from Equation 7.17b:
% mu? + 2 Wother — fid = % mv/2

0+36] —265] =3 (6.0 kg) v2
v? =2(9.5])/(6.0 kg) = 3.18 m?/s?

v = 1.8 m/s

After sliding the 3-m distance on the rough surface, the block
is moving at a speed of 1.8 m/s; in contrast, after covering
the same distance on a frictionless surface (see Example 7.7),
its speed was 3.5 m/s.

Exercise Find the acceleration of the block from Newton’s
second law and determine its final speed, using equations of

kinematics.

Answer a,= 0.53 m/s% v=18m/s.

CONCEPTUAL EXAMPLE 7.9

A man wishes to load a refrigerator onto a truck using a
ramp, as shown in Figure 7.17. He claims that less work would
be required to load the truck if the length L of the ramp were
increased. Is his statement valid?

Does the Ramp Lessen the Work Required?

Solution No. Although less force is required with a longer
ramp, that force must act over a greater distance if the same
amount of work is to be done. Suppose the refrigerator is
wheeled on a dolly up the ramp at constant speed. The

= Figure 7.17 A refrigerator attached to a

frictionless wheeled dolly is moved up a ramp
at constant speed.



normal force exerted by the ramp on the refrigerator is di-
rected 90° to the motion and so does no work on the refriger-
ator. Because AK = 0, the work—kinetic energy theorem gives

S W= Wy man + Woy gravity = 0

The work done by the force of gravity equals the weight of
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the refrigerator mg times the vertical height / through which
it is displaced times cos 180°, or Wiy graviy = — mgh. (The mi-
nus sign arises because the downward force of gravity is oppo-
site the displacement.) Thus, the man must do work mgh on
the refrigerator, regardless of the length of the ramp.

- Consider the chum salmon attempting to swim upstream in the photograph at

QuickLab

Attach two paperclips to a ruler so
that one of the clips is twice the dis-
tance from the end as the other.
Place the ruler on a table with two
small wads of paper against the clips,
which act as stops. Sharply swing the
ruler through a small angle, stopping
it abruptly with your finger. The outer
paper wad will have twice the speed
of the inner paper wad as the two
slide on the table away from the ruler.
Compare how far the two wads slide.
How does this relate to the results of
Conceptual Example 7.10?

/._ ‘:.

Crumpled wads of paper

Paperclips

the beginning of this chapter. The “steps” of a fish ladder built around a dam do
not change the total amount of work that must be done by the salmon as they leap
through some vertical distance. However, the ladder allows the fish to perform
that work in a series of smaller jumps, and the net effect is to raise the vertical posi-
tion of the fish by the height of the dam.

These cyclists are working hard and expending energy as they pedal uphill in Marin County, CA.

CONCEPTUAL EXAMPLE 7.10  Useful Physics for Safer Driving

EXAMPLE 7.11 A Block—Spring System

A block of mass 1.6 kg is attached to a horizontal spring that
has a force constant of 1.0 X 10* N/m, as shown in Figure
7.10. The spring is compressed 2.0 cm and is then released
from rest. (a) Calculate the speed of the block as it passes
through the equilibrium position x = 0 if the surface is fric-
tionless.

Solution In this situation, the block starts with v; = 0 at
x; = — 2.0 cm, and we want to find vyat x; = 0. We use Equa-
tion 7.10 to find the work done by the spring with xy, =
x=—20cm=—20xX10"2m:
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Solution Certainly, the answer has to be less than what we
found in part (a) because the frictional force retards the mo-
tion. We use Equation 7.17 to calculate the kinetic energy lost
because of friction and add this negative value to the kinetic
energy found in the absence of friction. The kinetic energy
lost due to friction is

AK= —fid= — (40N)(2.0 X 102m) = —0.080 ]

In part (a), the final kinetic energy without this loss was
found to be 0.20 J. Therefore, the final kinetic energy in the
presence of friction is

A certain car traveling at an initial speed v slides a distance d
to a halt after its brakes lock. Assuming that the car’s initial
speed is instead 2v at the moment the brakes lock, estimate
the distance it slides.

Solution Let us assume that the force of kinetic friction
between the car and the road surface is constant and the

same for both speeds. The net force multiplied by the dis-
placement of the car is equal to the initial kinetic energy of
the car (because K;= 0). If the speed is doubled, as it is in
this example, the kinetic energy is quadrupled. For a given
constant applied force (in this case, the frictional force), the
distance traveled is four times as great when the initial speed is
doubled, and so the estimated distance that the car slides is 4d.

W, = $kad = 5(1.0 X 103 N/m) (= 2.0 X 1072 m)2 = 0.20]

Using the work—kinetic energy theorem with v; = 0, we ob-
tain the change in kinetic energy of the block due to the

_ 040

= 0.25 m?/s?

v = 0.50m/s smaller.

(b) Calculate the speed of the block as it passes through
the equilibrium position if a constant frictional force of 4.0 N
retards its motion from the moment it is released.

K;=0.20] = 0.080] = 0.12] = ymu,*
$(1.6kg)y? = 0.12]
0.24]

work done on it by the spring: v? = = 0.15 m?/s?
) ) 7 16kg
W, = %mvf‘ - %mvf
0.20] = §(1.6kg)v? — 0 u= 0.39m/s

v? = As expected, this value is somewhat less than the 0.50 m/s we
1.6 kg found in part (a). If the frictional force were greater, then
the value we obtained as our answer would have been even

7.5 _~ POWER

@7 Imagine two identical models of an automobile: one with a base-priced four-cylin-
58 der engine; and the other with the highest-priced optional engine, a mighty eight-

cylinder powerplant. Despite the differences in engines, the two cars have the
same mass. Both cars climb a roadway up a hill, but the car with the optional en-
gine takes much less time to reach the top. Both cars have done the same amount
of work against gravity, but in different time periods. From a practical viewpoint, it
is interesting to know not only the work done by the vehicles but also the rate at
which it is done. In taking the ratio of the amount of work done to the time taken
to do it, we have a way of quantifying this concept. The time rate of doing work is
called power.

If an external force is applied to an object (which we assume acts as a parti-
cle), and if the work done by this force in the time interval Azis W, then the aver-
age power expended during this interval is defined as

=

At
The work done on the object contributes to the increase in the energy of the ob-
ject. Therefore, a more general definition of power is the time rate of energy transfer.
In a manner similar to how we approached the definition of velocity and accelera-

Average power
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Instantaneous power

The watt

The kilowatt hour is a unit of
energy

CHAPTER 7  Work and Kinetic Energy

tion, we can define the instantaneous power & as the limiting value of the aver-
age power as At approaches zero:
W aw
P=lim —=——
A0 At di
where we have represented the increment of work done by dW. We find from
Equation 7.2, letting the displacement be expressed as ds, that dW= F-ds.
Therefore, the instantaneous power can be written
AW _ . ds

P = =F- =F-v (7.18)
di dt

where we use the fact that v = ds/dt.
The SI unit of power is joules per second (J/s), also called the watt (W) (after
James Watt, the inventor of the steam engine):

1W=1]J/s= lkg-m2/53

The symbol W (not italic) for watt should not be confused with the symbol W
(italic) for work.
A unit of power in the British engineering system is the horsepower (hp):

1 hp = 746 W

A unit of energy (or work) can now be defined in terms of the unit of power.
One kilowatt hour (kWh) is the energy converted or consumed in 1 h at the con-
stant rate of 1 kW = 1 000 J/s. The numerical value of 1 kWh is

1kWh = (10°W) (3 600s) = 3.60 X 10°]

It is important to realize that a kilowatt hour is a unit of energy, not power.
When you pay your electric bill, you pay the power company for the total electrical
energy you used during the billing period. This energy is the power used multi-
plied by the time during which it was used. For example, a 300-W lightbulb run for
12 h would convert (0.300 kW) (12 h) = 3.6 kWh of electrical energy.

Suppose that an old truck and a sports car do the same amount of work as they climb a hill
but that the truck takes much longer to accomplish this work. How would graphs of % ver-
sus ¢ compare for the two vehicles?

7.6

Using Equation 7.18 and the fact that T is in the same direc-
tion as v, we find that

P =Tv=Tv
= (2.16 X 10*N)(3.00 m/s) = 6.48 X 10*W

(b) What power must the motor deliver at the instant its
speed is v if it is designed to provide an upward acceleration
of 1.00 m/s%

Solution Now we expect to obtain a value greater than we
did in part (a), where the speed was constant, because the
motor must now perform the additional task of accelerating
the car. The only change in the setup of the problem is that
now a > 0. Applying Newton’s second law to the car gives
SFE=T-f-Mg=Ma
T=Ma+g +f

= (1.80 X 10%kg) (1.00 + 9.80)m/s* + 4.00 X 103N

=234 X 10'N
Therefore, using Equation 7.18, we obtain for the required
power

P=To= (234X 10%) W

where v is the instantaneous speed of the car in meters per
second. The power is less than that obtained in part (a) as
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long as the speed is less than ®/T = 2.77 m/s, but it is
greater when the elevator’s speed exceeds this value.

Motor
L=
. T

+

(a) (b)

Figure 7.18 (a) The motor exerts an upward force T on the eleva-
tor car. The magnitude of this force is the tension T'in the cable con-
necting the car and motor. The downward forces acting on the car
are a frictional force f and the force of gravity F, = Mg. (b) The
free-body diagram for the elevator car.

CONCEPTUAL EXAMPLE 7.13

In part (a) of the preceding example, the motor delivers
power to lift the car, and yet the car moves at constant speed.
A student analyzing this situation notes that the kinetic en-
ergy of the car does not change because its speed does not
change. This student then reasons that, according to the
work—kinetic energy theorem, W= AK = 0. Knowing that
P = W/t, the student concludes that the power delivered by
the motor also must be zero. How would you explain this ap-
parent paradox?

Solution The work-kinetic energy theorem tells us that
the net force acting on the system multiplied by the displace-
ment is equal to the change in the kinetic energy of the sys-
tem. In our elevator case, the net force is indeed zero (that is,
T—Mg—f=0), and so W= (2F)d= 0. However, the
power from the motor is calculated not from the net force but
rather from the force exerted by the motor acting in the di-
rection of motion, which in this case is T'and not zero.

EXAMPLE 7.12 Power Delivered by an Elevator Motor

An elevator car has a mass of 1 000 kg and is carrying passen-
gers having a combined mass of 800 kg. A constant frictional
force of 4 000 N retards its motion upward, as shown in Fig-
ure 7.18a. (a) What must be the minimum power delivered
by the motor to lift the elevator car at a constant speed of
3.00 m/s?

Solution The motor must supply the force of magnitude
T that pulls the elevator car upward. Reading that the speed
is constant provides the hint that @ = 0, and therefore we
know from Newton’s second law that 3F, = 0. We have drawn

a free-body diagram in Figure 7.18b and have arbitrarily spec-
ified that the upward direction is positive. From Newton’s sec-
ond law we obtain

SE=T-f—Mg=0
where M is the total mass of the system (car plus passengers),
equal to 1 800 kg. Therefore,
T=f+ Mg
=4.00 X 103N + (1.80 x 10% kg) (9.80 m/s?)
=216 X 10*N

Optional Section
7.6_~ ENERGY AND THE AUTOMOBILE

Automobiles powered by gasoline engines are very inefficient machines. Even un-
der ideal conditions, less than 15% of the chemical energy in the fuel is used to
power the vehicle. The situation is much worse under stop-and-go driving condi-
tions in a city. In this section, we use the concepts of energy, power, and friction to
analyze automobile fuel consumption.
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Many mechanisms contribute to energy loss in an automobile. About 67% of
the energy available from the fuel is lost in the engine. This energy ends up in the
atmosphere, partly via the exhaust system and partly via the cooling system. (As we
shall see in Chapter 22, the great energy loss from the exhaust and cooling systems
is required by a fundamental law of thermodynamics.) Approximately 10% of the
available energy is lost to friction in the transmission, drive shaft, wheel and axle
bearings, and differential. Friction in other moving parts dissipates approximately
6% of the energy, and 4% of the energy is used to operate fuel and oil pumps and
such accessories as power steering and air conditioning. This leaves a mere 13% of
the available energy to propel the automobile! This energy is used mainly to bal-
ance the energy loss due to flexing of the tires and the friction caused by the air,
which is more commonly referred to as air resistance.

Let us examine the power required to provide a force in the forward direction
that balances the combination of the two frictional forces. The coefficient of
rolling friction u between the tires and the road is about 0.016. For a 1 450-kg car,
the weight is 14 200 N and the force of rolling friction has a magnitude of un =
umg = 227 N. As the speed of the car increases, a small reduction in the normal
force occurs as a result of a decrease in atmospheric pressure as air flows over the
top of the car. (This phenomenon is discussed in Chapter 15.) This reduction in
the normal force causes a slight reduction in the force of rolling friction f, with in-
creasing speed, as the data in Table 7.2 indicate.

Now let us consider the effect of the resistive force that results from the move-
ment of air past the car. For large objects, the resistive force f, associated with air
friction is proportional to the square of the speed (in meters per second; see Sec-
tion 6.4) and is given by Equation 6.6:

fu = §DpAY
where D is the drag coefficient, p is the density of air, and A is the cross-sectional
area of the moving object. We can use this expression to calculate the f, values in
Table 7.2, using D = 0.50, p = 1.293 kg/mg, and A = 2 m%

The magnitude of the total frictional force f; is the sum of the rolling frictional
force and the air resistive force:

fe=htta
At low speeds, road friction is the predominant resistive force, but at high
speeds air drag predominates, as shown in Table 7.2. Road friction can be de-
creased by a reduction in tire flexing (for example, by an increase in the air pres-

TABLE 7.2 Frictional Forces and Power Requirements for a Typical Car?

v (m/s) AN HN LN LN P =fo (kW)
0 14 200 227 0 227 0
8.9 14 100 226 51 277 2.5
17.8 13 900 222 204 426 7.6
26.8 13 600 218 465 683 18.3
35.9 13 200 211 830 1041 37.3
44.8 12 600 202 1293 1495 67.0

 In this table, nis the normal force, f, is road friction, f, is air friction, f, is total friction, and % is
the power delivered to the wheels.

7.6 Energy and the Automobile

sure slightly above recommended values) and by the use of radial tires. Air drag
can be reduced through the use of a smaller cross-sectional area and by streamlin-
ing the car. Although driving a car with the windows open increases air drag and
thus results in a 3% decrease in mileage, driving with the windows closed and the
air conditioner running results in a 12% decrease in mileage.

The total power needed to maintain a constant speed v is f;v, and it is this
power that must be delivered to the wheels. For example, from Table 7.2 we see
that at v = 26.8 m/s (60 mi/h) the required power is

P = fw= (683 N)<26.83> = 18.3 kW
s
This power can be broken down into two parts: (1) the power f,v needed to compen-

sate for road friction, and (2) the power f,vneeded to compensate for air drag. At v =
26.8 m/s, we obtain the values

203

P, = fu= (218 N)<26.8£> = 5.84 kW
S

P, = fio= (465 N)(QG.Sﬂ) = 125 kW
S

Note that® = P, + P,.

On the other hand, at v = 44.8 m/s (100 mi/h), 2, = 9.05 kW, ?, = 57.9 kW,

EXAMPLE 7.14 - Gas Consumed by a Compact Car

A compact car has a mass of 800 kg, and its efficiency is rated
at 18%. (That is, 18% of the available fuel energy is delivered
to the wheels.) Find the amount of gasoline used to acceler-
ate the car from rest to 27 m/s (60 mi/h). Use the fact that
the energy equivalent of 1 gal of gasoline is 1.3 X 10%J.

Solution The energy required to accelerate the car from
rest to a speed v s its final kinetic cncrgy%mxfz:

K = $mv? = 5(800 kg) (27 m/s)2 = 2.9 X 10°]

If the engine were 100% efficient, each gallon of gasoline

and ? = 67.0 kW. This shows the importance of air drag at high speeds.

would supply 1.8 X 108] of energy. Because the engine is
only 18% efficient, each gallon delivers only (0.18)(1.3 X
10%]) = 2.3 X 107 J. Hence, the number of gallons used to
accelerate the car is

Number of gall = w = 0.013 gal

umber of gallons = o= 107/ gal .013 gal

At cruising speed, this much gasoline is sufficient to propel
the car nearly 0.5 mi. This demonstrates the extreme energy
requirements of stop-and-start driving.

EXAMPLE 7.15 Power Delivered to Wheels

Suppose the compact car in Example 7.14 gets 35 mi/gal at
60 mi/h. How much power is delivered to the wheels?

Solution By simply canceling units, we determine that the
car consumes 60 mi/h + 35 mi/gal = 1.7 gal/h. Using the
fact that each gallon is equivalent to 1.3 X 108 J, we find that
the total power used is

(1.7 gal/h)(1.3 X 10%]/gal)
a 3.6 X 10%s/h

%

22 X 108]
= aex107s  02kW

Because 18% of the available power is used to propel the car,
the power delivered to the wheels is (0.18)(62 kW) =

11 kW. This is 40% less than the 18.3-kW value obtained

for the 1450-kg car discussed in the text. Vehicle mass is
clearly an important factor in power-loss mechanisms.
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EXAMPLE 7.16  Car Accelerating Up a Hill

Consider a car of mass m that is accelerating up a hill, as
shown in Figure 7.19. An automotive engineer has measured
the magnitude of the total resistive force to be

fi= (218 + 0.700%) N

where v is the speed in meters per second. Determine the
power the engine must deliver to the wheels as a function of
speed.

Solution The forces on the car are shown in Figure 7.19,
in which F is the force of friction from the road that propels
the car; the remaining forces have their usual meaning. Ap-
plying Newton’s second law to the motion along the road sur-
face, we find that

EF)C:F*f,* mgsin 6 = ma
F= ma+ mgsin 0 + f;
= ma + mgsin 0 + (218 + 0.700%)
Therefore, the power required to move the car forward is
P = v = mva + mugsin 6 + 218v + 0.700°

The term mva represents the power that the engine must de-
liver to accelerate the car. If the car moves at constant speed,
this term is zero and the total power requirement is reduced.
The term mug sin 6 is the power required to provide a force
to balance a component of the force of gravity as the car
moves up the incline. This term would be zero for motion on
a horizontal surface. The term 218v is the power required to
provide a force to balance road friction, and the term 0.700°
is the power needed to do work on the air.

If we take m =1450kg, v=27m/s (=60 mi/h), a=

Figure 7.19

1.0 m/s?%, and = 10°, then the various terms in % are calcu-
lated to be

mva = (1450 kg) (27 m/s) (1.0 m/s?)
= 39 kW = 52 hp
mugsin 0 = (1450 kg) (27 m/s) (9.80 m/s?) (sin 10°)
= 67kW = 89 hp
218v = 218(27 m/s) = 5.9kW = 7.9 hp
0.70v* = 0.70(27 m/s)® = 14 kW = 19 hp

Hence, the total power required is 126 kW, or 168 hp.

Note that the power requirements for traveling at constant
speed on a horizontal surface are only 20 kW, or 27 hp (the
sum of the last two terms). Furthermore, if the mass were
halved (as in the case of a compact car), then the power re-
quired also is reduced by almost the same factor.

Optional Section

7.7 _~ KINETIC ENERGY AT HIGH SPEEDS

Relativistic kinetic energy

The laws of Newtonian mechanics are valid only for describing the motion of parti-
cles moving at speeds that are small compared with the speed of light in a vacuum
¢ (=3.00 X 10 m/s). When speeds are comparable to ¢, the equations of Newton-
ian mechanics must be replaced by the more general equations predicted by the
theory of relativity. One consequence of the theory of relativity is that the kinetic
energy of a particle of mass m moving with a speed v is no longer given by
K = mv?/2. Instead, one must use the relativistic form of the kinetic energy:

5 1

K= m(?(* - 1) (7.19)
V1 — (v/0)?

According to this expression, speeds greater than ¢ are not allowed because, as

v approaches ¢, K approaches %. This limitation is consistent with experimental ob-

Summary

servations on subatomic particles, which have shown that no particles travel at
speeds greater than ¢. (In other words, ¢ is the ultimate speed.) From this relativis-
tic point of view, the work—Kkinetic energy theorem says that v can only approach ¢
because it would take an infinite amount of work to attain the speed v = ¢.

All formulas in the theory of relativity must reduce to those in Newtonian me-
chanics at low particle speeds. It is instructive to show that this is the case for the
kinetic energy relationship by analyzing Equation 7.19 when v is small compared
with ¢. In this case, we expect K to reduce to the Newtonian expression. We can
check this by using the binomial expansion (Appendix B.5) applied to the quan-
tity [1 — (v/¢)?172, with v/¢<< 1. If we let x = (v/¢)?, the expansion gives

1 3

X
o+ X2 e
T LA

Making use of this expansion in Equation 7.19 gives

22 8 ¢
1 3 v
= 5 mo® + EmT +
1 v
= —m? for —<<1
2 ¢

Thus, we see that the relativistic kinetic energy expression does indeed reduce to
the Newtonian expression for speeds that are small compared with ¢. We shall re-
turn to the subject of relativity in Chapter 39.

SUMMARY

The work done by a constant force F acting on a particle is defined as the product
of the component of the force in the direction of the particle’s displacement and
the magnitude of the displacement. Given a force F that makes an angle 6 with the
displacement vector d of a particle acted on by the force, you should be able to de-
termine the work done by F using the equation

W= Fd cos 6 (7.1)

The scalar product (dot product) of two vectors A and B is defined by the re-
lationship

A‘B = ABcos 6 (7.3)

where the result is a scalar quantity and 6 is the angle between the two vectors. The
scalar product obeys the commutative and distributive laws.

If a varying force does work on a particle as the particle moves along the x axis
from x; to x;, you must use the expression

X/
w= f F, dx (7.7)
X
where F, is the component of force in the x direction. If several forces are acting

on the particle, the net work done by all of the forces is the sum of the amounts of
work done by all of the forces.

205
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The kinetic energy of a particle of mass m moving with a speed v (where v is
small compared with the speed of light) is

K= jme? (7.14)

The work-kinetic energy theorem states that the net work done on a parti-
cle by external forces equals the change in kinetic energy of the particle:

S W= K — K = smy? — fmo? (7.16)

If a frictional force acts, then the work—Kkinetic energy theorem can be modified

to give

K; + 2 Wother = Jfod = Ky

(7.17b)

The instantaneous power ? is defined as the time rate of energy transfer. If
an agent applies a force F to an object moving with a velocity v, the power deliv-

ered by that agent is

QUESTIONS

1.

[

Consider a tug-of-war in which two teams pulling on a
rope are evenly matched so that no motion takes place.
Assume that the rope does not stretch. Is work done on
the rope? On the pullers? On the ground? Is work done
on anything?

For what values of 6 is the scalar product (a) positive and
(b) negative?

As the load on a spring hung vertically is increased, one
would not expect the Frversus-x curve to always remain
linear, as shown in Figure 7.10d. Explain qualitatively
what you would expect for this curve as mis increased.

Can the kinetic energy of an object be negative? Explain.

(a) If the speed of a particle is doubled, what happens to
its kinetic energy? (b) If the net work done on a particle
is zero, what can be said about the speed?

. In Example 7.16, does the required power increase or de-

crease as the force of friction is reduced?

. An automobile sales representative claims that a “souped-

up” 300-hp engine is a necessary option in a compact car
(instead of a conventional 130-hp engine). Suppose you
intend to drive the car within speed limits (= 55 mi/h)
and on flat terrain. How would you counter this sales
pitch?

One bullet has twice the mass of another bullet. If both

9.

bullets are fired so that they have the same speed, which
has the greater kinetic energy? What is the ratio of the ki-
netic energies of the two bullets?

When a punter kicks a football, is he doing any work on

10.

11

14.

EJPEL‘;V:F-V (7.18)

the ball while his toe is in contact with it? Is he doing

any work on the ball after it loses contact with his toe?
Are any forces doing work on the ball while it is in

flight?

Discuss the work done by a pitcher throwing a baseball.
‘What is the approximate distance through which the
force acts as the ball is thrown?

Two sharpshooters fire 0.30-caliber rifles using identical
shells. The barrel of rifle A is 2.00 cm longer than that of
rifle B. Which rifle will have the higher muzzle speed?
(Hint: The force of the expanding gases in the barrel ac-
celerates the bullets.)

As a simple pendulum swings back and forth, the forces
acting on the suspended mass are the force of gravity, the
tension in the supporting cord, and air resistance.

(a) Which of these forces, if any, does no work on the
pendulum? (b) Which of these forces does negative work
at all times during its motion? (c) Describe the work done
by the force of gravity while the pendulum is swinging.

. The kinetic energy of an object depends on the frame of

reference in which its motion is measured. Give an exam-
ple to illustrate this point.

An older model car accelerates from 0 to a speed vin

10 s. A newer, more powerful sports car accelerates from
0 to 2vin the same time period. What is the ratio of pow-
ers expended by the two cars? Consider the energy com-
ing from the engines to appear only as kinetic energy of
the cars.

PROBLEMS

1, 2, 3 = straightforward, intermediate, challenging D = full solution available in the Student Solutions Manual and Study Guide
WeB = solution posted at http://www.saunderscollege.com/physics/ [7] = Computer useful in solving problem ‘F-’ = Interactive Physics

[

= paired numerical/symbolic problems
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Section 7.1 Work Done by a Constant Force

1.

w

'S

8.

A tugboat exerts a constant force of 5 000 N on a ship
moving at constant speed through a harbor. How much
work does the tugboat do on the ship in a distance of
3.00 km?

. A shopper in a supermarket pushes a cart with a force

of 35.0 N directed at an angle of 25.0° downward from
the horizontal. Find the work done by the shopper as
she moves down an aisle 50.0 m in length.

A raindrop (m = 3.35 X 107° kg) falls vertically at con-
stant speed under the influence of gravity and air resis-
tance. After the drop has fallen 100 m, what is the work
done (a) by gravity and (b) by air resistance?

. Asledge loaded with bricks has a total mass of 18.0 kg

and is pulled at constant speed by a rope. The rope is
inclined at 20.0° above the horizontal, and the sledge
moves a distance of 20.0 m on a horizontal surface. The
coefficient of kinetic friction between the sledge and
the surface is 0.500. (a) What is the tension of the rope?
(b) How much work is done on the sledge by the rope?
(c) What is the energy lost due to friction?

A block of mass 2.50 kg is pushed 2.20 m along a fric-
tionless horizontal table by a constant 16.0-N force di-
rected 25.0° below the horizontal. Determine the work
done by (a) the applied force, (b) the normal force ex-
erted by the table, and (c) the force of gravity. (d) De-
termine the total work done on the block.

. A 15.0kg block is dragged over a rough, horizontal sur-

face by a 70.0-N force acting at 20.0° above the horizon-
tal. The block is displaced 5.00 m, and the coefficient of
kinetic friction is 0.300. Find the work done by (a) the
70-N force, (b) the normal force, and (c) the force of
gravity. (d) What is the energy loss due to friction?

(e) Find the total change in the block’s kinetic energy.
Batman, whose mass is 80.0 kg, is holding onto the free
end of a 12.0-m rope, the other end of which is fixed to
a tree limb above. He is able to get the rope in motion
as only Batman knows how, eventually getting it to swing
enough so that he can reach a ledge when the rope
makes a 60.0° angle with the vertical. How much work
was done against the force of gravity in this maneuver?

Section 7.2 The Scalar Product of Two Vectors

In Problems 8 to 14, calculate all numerical answers to three
significant figures.

Vector A has a magnitude of 5.00 units, and vector B
has a magnitude of 9.00 units. The two vectors make an
angle of 50.0° with each other. Find A-B.

9.

10.

14.

Vector A extends from the origin to a point having po-
lar coordinates (7, 70°), and vector B extends from the
origin to a point having polar coordinates (4, 130°).
Find A-B.

Given two arbitrary vectors A and B, show that A*B =
AB,+ AB)+ A.B.. (Hint: Write A and B in unit vector
form and use Equations 7.4 and 7.5.)

A force F = (6i — 2j) N acts on a particle that under-
goes a displacement d = (3i + j)m. Find (a) the work
done by the force on the particle and (b) the angle be-
tween F and d.

. ForA=3i+j—k B=—i+2j+5kandC =2j—

3Kk, find C-(A — B).

. Using the definition of the scalar product, find the an-

gles between (a) A = 3i — 2jand B = 4i — 4j; (b) A =
—2i+4andB=3i— 4+ 2k (c)A=1i—2j+2k
and B = 3j + 4k.

Find the scalar product of the vectors in Figure P7.14.

x
328N 132°

17.3 cm/s

Figure P7.14

Section 7.3 Work Done by a Varying Force

15.

The force acting on a particle varies as shown in Figure
P7.15. Find the work done by the force as the particle
moves (a) from x = 0 to x = 8.00 m, (b) from x = 8.00 m
to x = 10.0 m, and (c) from x = 0 to x = 10.0 m.

. The force acting on a particle is /, = (8x — 16) N,

where xis in meters. (a) Make a plot of this force versus
xfrom x = 0 to x = 3.00 m. (b) From your graph, find
the net work done by this force as the particle moves
from x = 0 to x = 3.00 m.

wes A particle is subject to a force F, that varies with position

as in Figure P7.17. Find the work done by the force on
the body as it moves (a) from x = 0 to x = 5.00 m,
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18.

19.

20.

21.
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Figure P7.17 Problems 17 and 32.

(b) from x = 5.00 m to x = 10.0 m, and (c) from x =
10.0 m to x = 15.0 m. (d) What is the total work done
by the force over the distance x = 0 to x = 15.0 m?
Aforce F = (4xi + 3yj) N acts on an object as it moves
in the x direction from the origin to x = 5.00 m. Find
the work W= [F-dr done on the object by the force.
When a 4.00-kg mass is hung vertically on a certain light
spring that obeys Hooke’s law, the spring stretches

2.50 cm. If the 4.00-kg mass is removed, (a) how far will
the spring stretch if a 1.50-kg mass is hung on it and

(b) how much work must an external agent do to
stretch the same spring 4.00 cm from its unstretched
position?

An archer pulls her bow string back 0.400 m by exerting
a force that increases uniformly from zero to 230 N.

(a) What is the equivalent spring constant of the bow?
(b) How much work is done by the archer in pulling
the bow?

A 6 000-kg freight car rolls along rails with negligible
friction. The car is brought to rest by a combination of
two coiled springs, as illustrated in Figure P7.21. Both
springs obey Hooke’s law with &, = 1 600 N/m and

kg = 3 400 N/m. After the first spring compresses a dis-
tance of 30.0 cm, the second spring (acting with the
first) increases the force so that additional compression
occurs, as shown in the graph. If the car is brought to

Work and Kinetic Energy
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Figure P7.21

rest 50.0 cm after first contacting the two-spring system,
find the car’s initial speed.

A 100-g bullet is fired from a rifle having a barrel

0.600 m long. Assuming the origin is placed where the
bullet begins to move, the force (in newtons) exerted
on the bullet by the expanding gas is 15 000 +

10 000x — 25 000x2, where x is in meters. (a) Deter-
mine the work done by the gas on the bullet as the bul-
let travels the length of the barrel. (b) If the barrel is
1.00 m long, how much work is done and how does this
value compare with the work calculated in part (a)?

If it takes 4.00 J of work to stretch a Hooke’s-law spring

24.

25.

10.0 cm from its unstressed length, determine the extra
work required to stretch it an additional 10.0 cm.

If it takes work Wto stretch a Hooke’s-law spring a dis-
tance d from its unstressed length, determine the extra
work required to stretch it an additional distance d .

A small mass m is pulled to the top of a frictionless half-
cylinder (of radius R) by a cord that passes over the top
of the cylinder, as illustrated in Figure P7.25. (a) If the
mass moves at a constant speed, show that /' = mg cos 6.
(Hint: If the mass moves at a constant speed, the com-
ponent of its acceleration tangent to the cylinder must
be zero at all times.) (b) By directly integrating

W= [F-ds, find the work done in moving the mass at
constant speed from the bottom to the top of the half-

26.

Figure P7.25

cylinder. Here ds represents an incremental displace-
ment of the small mass.

Express the unit of the force constant of a spring in
terms of the basic units meter, kilogram, and second.

Section 7.4 Kinetic Energy and the Work—Kinetic Energy
Theorem

27. A 0.600-kg particle has a speed of 2.00 m/s at point A

28,

29.

30,

31.

32.

and kinetic energy of 7.50 J at point B. What is (a) its ki-
netic energy at A? (b) its speed at B? (c) the total work
done on the particle as it moves from A to B?

A 0.300-kg ball has a speed of 15.0 m/s. (a) What is its
kinetic energy? (b) If its speed were doubled, what
would be its kinetic energy?

A 3.00-kg mass has an initial velocity v; = (6.00i —
2.00j) m/s. (a) What is its kinetic energy at this time?
(b) Find the total work done on the object if its velocity
changes to (8.00i + 4.00§) m/s. (Hint: Remember that
v =v-v.)

A mechanic pushes a 2 500-kg car, moving it from rest
and making it accelerate from rest to a speed v. He does
5 000 J of work in the process. During this time, the car
moves 25.0 m. If friction between the car and the road
is negligible, (a) what is the final speed v of the car? (b)
‘What constant horizontal force did he exert on the car?
A mechanic pushes a car of mass m, doing work Win
making it accelerate from rest. If friction between the
car and the road is negligible, (a) what is the final
speed of the car? During the time the mechanic pushes
the car, the car moves a distance d. (b) What constant
horizontal force did the mechanic exert on the car?

A 4.00-kg particle is subject to a total force that varies
with position, as shown in Figure P7.17. The particle
starts from rest at x = 0. What is its speed at (a) x =
5.00 m, (b) x = 10.0 m, (c) x = 15.0 m?

A 40.0-kg box initially at rest is pushed 5.00 m along a
rough, horizontal floor with a constant applied horizon-
tal force of 130 N. If the coefficient of friction between
the box and the floor is 0.300, find (a) the work done
by the applied force, (b) the energy loss due to friction,
(c) the work done by the normal force, (d) the work
done by gravity, (e) the change in kinetic energy of the
box, and (f) the final speed of the box.

34.

36.
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You can think of the work—kinetic energy theorem as a
second theory of motion, parallel to Newton’s laws in
describing how outside influences affect the motion

of an object. In this problem, work out parts (a) and
(b) separately from parts (c) and (d) to compare the
predictions of the two theories. In a rifle barrel, a 15.0-g
bullet is accelerated from rest to a speed of 780 m/s.
(a) Find the work that is done on the bullet. (b) If the
rifle barrel is 72.0 cm long, find the magnitude of the
average total force that acted on it, as "= W/ (d cos 0).
(c) Find the constant acceleration of a bullet that starts
from rest and gains a speed of 780 m/s over a distance
of 72.0 cm. (d) Find the total force that acted on it as
3F= ma.

A crate of mass 10.0 kg is pulled up a rough incline with

an initial speed of 1.50 m/s. The pulling force is 100 N
parallel to the incline, which makes an angle of 20.0°
with the horizontal. The coefficient of kinetic friction is
0.400, and the crate is pulled 5.00 m. (a) How much
work is done by gravity? (b) How much energy is lost
because of friction? (c) How much work is done by the
100-N force? (d) What is the change in kinetic energy of
the crate? (e) What is the speed of the crate after it has
been pulled 5.00 m?

A block of mass 12.0 kg slides from rest down a friction-
less 35.0° incline and is stopped by a strong spring with
k= 3.00 X 10* N/m. The block slides 3.00 m from the
point of release to the point where it comes to rest
against the spring. When the block comes to rest, how
far has the spring been compressed?

wes Asled of mass m is given a kick on a frozen pond. The

38.
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kick imparts to it an initial speed v; = 2.00 m/s. The co-
efficient of kinetic friction between the sled and the ice
is u; = 0.100. Utilizing energy considerations, find the
distance the sled moves before it stops.

A picture tube in a certain television set is 36.0 cm long.
The electrical force accelerates an electron in the tube
from rest to 1.00% of the speed of light over this dis-
tance. Determine (a) the kinetic energy of the electron
as it strikes the screen at the end of the tube, (b) the
magnitude of the average electrical force acting on the
electron over this distance, (c) the magnitude of the av-
erage acceleration of the electron over this distance,
and (d) the time of flight.

. A bullet with a mass of 5.00 g and a speed of 600 m/s

penetrates a tree to a depth of 4.00 cm. (a) Use work
and energy considerations to find the average frictional
force that stops the bullet. (b) Assuming that the fric-
tional force is constant, determine how much time
elapsed between the moment the bullet entered the
tree and the moment it stopped.

An Atwood’s machine (see Fig. 5.15) supports masses of
0.200 kg and 0.300 kg. The masses are held at rest be-
side each other and then released. Neglecting friction,
what is the speed of each mass the instant it has moved
0.400 m?
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A 2.00-kg block is attached to a spring of force constant
500 N/m, as shown in Figure 7.10. The block is pulled
5.00 cm to the right of equilibrium and is then released
from rest. Find the speed of the block as it passes
through equilibrium if (a) the horizontal surface is fric-
tionless and (b) the coefficient of friction between the
block and the surface is 0.350.

Section 7.5 Power

42.

Make an order-of-magnitude estimate of the power a car
engine contributes to speeding up the car to highway
speed. For concreteness, consider your own car (if you
use one). In your solution, state the physical quantities
you take as data and the values you measure or estimate
for them. The mass of the vehicle is given in the
owner’s manual. If you do not wish to consider a car,
think about a bus or truck for which you specify the
necessary physical quantities.

wes A 700-N Marine in basic training climbs a 10.0-m verti-

S
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46.

47.

48.

cal rope at a constant speed in 8.00 s. What is his power
output?

If a certain horse can maintain 1.00 hp of output for
2.00 h, how many 70.0-kg bundles of shingles can the
horse hoist (using some pulley arrangement) to the
roof of a house 8.00 m tall, assuming 70.0% efficiency?
A certain automobile engine delivers 2.24 X 10* W

(30.0 hp) to its wheels when moving at a constant speed
of 27.0 m/s (= 60 mi/h). What is the resistive force act-
ing on the automobile at that speed?

A skier of mass 70.0 kg is pulled up a slope by a motor-
driven cable. (a) How much work is required for him to
be pulled a distance of 60.0 m up a 30.0° slope (assumed
frictionless) at a constant speed of 2.00 m/s? (b) A motor
of what power is required to perform this task?

A 650-kg elevator starts from rest. It moves upward for
3.00 s with constant acceleration until it reaches its
cruising speed of 1.75 m/s. (a) What is the average
power of the elevator motor during this period?

(b) How does this power compare with its power when
it moves at its cruising speed?

An energy-efficient lightbulb, taking in 28.0 W of power,
can produce the same level of brightness as a conven-
tional bulb operating at 100-W power. The lifetime of
the energy-efficient bulb is 10 000 h and its purchase
price is $17.0, whereas the conventional bulb has a life-
time of 750 h and costs $0.420 per bulb. Determine the
total savings obtained through the use of one energy-
efficient bulb over its lifetime as opposed to the use of
conventional bulbs over the same time period. Assume
an energy cost of $0.080 0 per kilowatt hour.

(Optional)
Section 7.6 Energy and the Automobile

A compact car of mass 900 kg has an overall motor effi-

ciency of 15.0%. (That is, 15.0% of the energy supplied
by the fuel is delivered to the wheels of the car.) (a) If

50.
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burning 1 gal of gasoline supplies 1.34 X 10% J of en-
ergy, find the amount of gasoline used by the car in ac-
celerating from rest to 55.0 mi/h. Here you may ignore
the effects of air resistance and rolling resistance.

(b) How many such accelerations will 1 gal provide?

(c) The mileage claimed for the car is 38.0 mi/gal at

55 mi/h. What power is delivered to the wheels (to
overcome frictional effects) when the car is driven at
this speed?

Suppose the empty car described in Table 7.2 has a fuel
economy of 6.40 km/L (15 mi/gal) when traveling at
26.8 m/s (60 mi/h). Assuming constant efficiency, de-
termine the fuel economy of the car if the total mass of
the passengers and the driver is 350 kg.

When an air conditioner is added to the car described
in Problem 50, the additional output power required to
operate the air conditioner is 1.54 kW. If the fuel econ-
omy of the car is 6.40 km/L without the air conditioner,
what is it when the air conditioner is operating?

(Optional)
Section 7.7 Kinetic Energy at High Speeds

52.

54.

An electron moves with a speed of 0.995¢. (a) What is its
kinetic energy? (b) If you use the classical expression to
calculate its kinetic energy, what percentage error
results?

A proton in a high-energy accelerator moves with a
speed of ¢/2. Using the work—kinetic energy theorem,
find the work required to increase its speed to

(a) 0.750cand (b) 0.995¢.

Find the kinetic energy of a 78.0-kg spacecraft launched
out of the Solar System with a speed of 106 km/s using
(a) the classical equation K = %mv2 and (b) the rela-
tivistic equation.

ADDITIONAL PROBLEMS

55.

56.

57.

58.

A baseball outfielder throws a 0.150-kg baseball at a
speed of 40.0 m/s and an initial angle of 30.0°. What is
the kinetic energy of the baseball at the highest point of
the trajectory?

While running, a person dissipates about 0.600 J of me-
chanical energy per step per kilogram of body mass. If a
60.0-kg runner dissipates a power of 70.0 W during a
race, how fast is the person running? Assume a running
step is 1.50 m in length.

A particle of mass m moves with a constant acceleration
a. If the initial position vector and velocity of the parti-
cle are r; and v;, respectively, use energy arguments to
show that its speed v, at any time satisfies the equation

u? =v?+ 2a- (r;— 1)

where 1y is the position vector of the particle at that
same time.

The direction of an arbitrary vector A can be com-
pletely specified with the angles «, 8, and vy that the vec-

tor makes with the x, y, and z axes, respectively. If A =
Ad + Ajj + Ak (a) find expressions for cos a, cos S,
and cos y (known as direction cosines) and (b) show

that these angles satisfy the relation cos® a + cos® g +

cos? y = 1. (Hint: Take the scalar product of A with ij,

and k separately.)
A 4.00-kg particle moves along the x axis. Its position

varies with time according to x =  + 2.0¢%, where xis in
meters and ¢ is in seconds. Find (a) the kinetic energy at

any time ¢, (b) the acceleration of the particle and the
force acting on it at time ¢, (c) the power being deliv-

ered to the particle at time £ and (d) the work done on

the particle in the interval ¢ = 0 to ¢ = 2.00 s.
60. A traveler at an airport takes an escalator up one floor
(Fig. P7.60). The moving staircase would itself carry

him upward with vertical velocity component v between

entry and exit points separated by height 4. However,
while the escalator is moving, the hurried traveler
climbs the steps of the escalator at a rate of n steps/s.

Assume that the height of each step is ;. (a) Determine

the amount of work done by the traveler during his es-

calator ride, given that his mass is m. (b) Determine the

work the escalator motor does on this person.

Figure P7.60 (©Ron Chapple/FPG)

61. When a certain spring is stretched beyond its propor-
tional limit, the restoring force satisfies the equation
F= —kx+ Bx® If k= 10.0 N/m and g = 100 N/m?,

62.
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calculate the work done by this force when the spring is
stretched 0.100 m.

In a control system, an accelerometer consists of a
4.70-g mass sliding on a low-friction horizontal rail. A
low-mass spring attaches the mass to a flange at one end
of the rail. When subject to a steady acceleration of
0.800g, the mass is to assume a location 0.500 cm away
from its equilibrium position. Find the stiffness constant
required for the spring.

A 2 100-kg pile driver is used to drive a steel I-beam into

64.
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the ground. The pile driver falls 5.00 m before coming
into contact with the beam, and it drives the beam

12.0 cm into the ground before coming to rest. Using
energy considerations, calculate the average force the
beam exerts on the pile driver while the pile driver is
brought to rest.

A cyclist and her bicycle have a combined mass of

75.0 kg. She coasts down a road inclined at 2.00° with
the horizontal at 4.00 m/s and down a road inclined at
4.00° at 8.00 m/s. She then holds on to a moving vehi-
cle and coasts on a level road. What power must the ve-
hicle expend to maintain her speed at 3.00 m/s? As-
sume that the force of air resistance is proportional to
her speed and that other frictional forces remain con-
stant. (Warning: You must not attempt this dangerous
maneuver.)

. A single constant force F acts on a particle of mass m.

The particle starts at rest at £ = 0. (a) Show that the in-
stantaneous power delivered by the force at any time ¢ is
(F2/m)t. (b) If F=20.0 N and m = 5.00 kg, what is the
power delivered at ¢ = 3.00 s?

A particle is attached between two identical springs on a
horizontal frictionless table. Both springs have spring
constant k and are initially unstressed. (a) If the particle
is pulled a distance x along a direction perpendicular to
the initial configuration of the springs, as in Figure
P7.66, show that the force exerted on the particle by the
springs is

(b) Determine the amount of work done by this force
in moving the particle from x = A to x = 0.

Top view

Figure P7.66



212

67.

[ 8.

CHAPTER 7

Review Problem. Two constant forces act on a 5.00-kg
object moving in the xy plane, as shown in Figure P7.67.
Force Fy is 25.0 N at 35.0°, while Fy = 42.0 N at 150°.
At time ¢ = 0, the object is at the origin and has velocity
(4.0i + 2.5j) m/s. (a) Express the two forces in
unit—vector notation. Use unit—vector notation for
your other answers. (b) Find the total force on the ob-
ject. (c) Find the object’s acceleration. Now, consider-
ing the instant ¢ = 3.00 s, (d) find the object’s velocity,
(e) its location, (f) its kinetic energy from %mv/? ,and
(g) its kinetic energy from %mv,2 + XF-d.

Figure P7.67

When different weights are hung on a spring, the
spring stretches to different lengths as shown in the fol-
lowing table. (a) Make a graph of the applied force ver-
sus the extension of the spring. By least-squares fitting,
determine the straight line that best fits the data. (You
may not want to use all the data points.) (b) From the
slope of the best-fit line, find the spring constant k.

(c) If the spring is extended to 105 mm, what force
does it exert on the suspended weight?

F(N) 20 40 60 80 10 12 14 16

L(mm) 15 32 49 64

A 200-g block is pressed against a spring of force con-

70.

stant 1.40 kN/m until the block compresses the spring
10.0 cm. The spring rests at the bottom of a ramp in-
clined at 60.0° to the horizontal. Using energy consider-
ations, determine how far up the incline the block
moves before it stops (a) if there is no friction between
the block and the ramp and (b) if the coefficient of ki-
netic friction is 0.400.

A 0.400-kg particle slides around a horizontal track. The
track has a smooth, vertical outer wall forming a circle
with a radius of 1.50 m. The particle is given an initial
speed of 8.00 m/s. After one revolution, its speed has
dropped to 6.00 m/s because of friction with the rough
floor of the track. (a) Find the energy loss due to fric-
tion in one revolution. (b) Calculate the coefficient of
kinetic friction. (c¢) What is the total number of revolu-
tions the particle makes before stopping?

18

79 98 112 126 149
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Figure P7.71

wee 53 The ball launcher in a pinball machine has a spring that

has a force constant of 1.20 N/cm (Fig. P7.71). The sur-
face on which the ball moves is inclined 10.0° with re-
spect to the horizontal. If the spring is initially com-
pressed 5.00 cm, find the launching speed of a 100-g
ball when the plunger is released. Friction and the mass
of the plunger are negligible.

. In diatomic molecules, the constituent atoms exert at-

tractive forces on each other at great distances and re-
pulsive forces at short distances. For many molecules,
the Lennard-Jones law is a good approximation to the
magnitude of these forces:

sl ) - ()]

where ris the center-to-center distance between the
atoms in the molecule, o is a length parameter, and £ is
the force when r = . For an oxygen molecule, I, =
9.60 X 107" Nand o = 8.50 X 107'* m. Determine
the work done by this force if the atoms are pulled
apart from r = 4.00 X 107 m to » = 9.00 X 107" m.
A horizontal string is attached to a 0.250-kg mass lying
on a rough, horizontal table. The string passes over a
light, frictionless pulley, and a 0.400-kg mass is then at-
tached to its free end. The coefficient of sliding friction
between the 0.250-kg mass and the table is 0.200. Using
the work—kinetic energy theorem, determine (a) the
speed of the masses after each has moved 20.0 m from
rest and (b) the mass that must be added to the 0.250-kg
mass so that, given an initial velocity, the masses con-
tinue to move at a constant speed. (c¢) What mass must
be removed from the 0.400-kg mass so that the same
outcome as in part (b) is achieved?

Suppose a car is modeled as a cylinder moving with a
speed v, as in Figure P7.74. In a time A¢, a column of air

Figure P7.74

76.
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of mass Am must be moved a distance v At and, hence,
must be given a kinetic energy %(Am) v Using this
model, show that the power loss due to air resistance is
%pAv8 and that the resistive force is %pAvZ, where p is the
density of air.

A particle moves along the x axis from x = 12.8 m to

x = 23.7 m under the influence of a force

_ 375
x>+ 3.75 x

where Fis in newtons and x is in meters. Using numeri-
cal integration, determine the total work done by this
force during this displacement. Your result should be
accurate to within 2%.

More than 2 300 years ago the Greek teacher Aristotle
wrote the first book called Physics. The following pas-
sage, rephrased with more precise terminology, is from
the end of the book’s Section Eta:

ANSWERS TO QUICK QUIZZES

7.1

7.2

7.3

No. The force does no work on the object because the
force is pointed toward the center of the circle and is
therefore perpendicular to the motion.

(a) Assuming the person lifts with a force of magnitude
mg, the weight of the box, the work he does during the
vertical displacement is mgh because the force is in the
direction of the displacement. The work he does during
the horizontal displacement is zero because now the
force he exerts on the box is perpendicular to the dis-
placement. The net work he does is mgh + 0 = mgh.

(b) The work done by the gravitational force on the box
as the box is displaced vertically is — mgh because the di-
rection of this force is opposite the direction of the dis-
placement. The work done by the gravitational force is
zero during the horizontal displacement because now
the direction of this force is perpendicular to the direc-
tion of the displacement. The net work done by the
gravitational force — mgh + 0 = — mgh. The total work
done on the box is + mgh — mgh = 0.

No. For example, consider the two vectors A = 3i — 2j
and B = 2i — j. Their dot productis A*B = 8, yet both
vectors have negative y components.

Answers to Quick Quizzes 213

7.4

Let ? be the power of an agent causing motion; w,
the thing moved; d, the distance covered; and ¢, the
time taken. Then (1) a power equal to % will in a
period of time equal to f move w/2 a distance 2d;
or (2) it will move w/2 the given distance din time
t/2. Also, if (3) the given power % moves the given
object wa distance d/2 in time /2, then (4) /2
will move w/2 the given distance d in the given
time 1.

(a) Show that Aristotle’s proportions are included in
the equation Pt = bwd, where bis a proportionality con-
stant. (b) Show that our theory of motion includes this
part of Aristotle’s theory as one special case. In particu-
lar, describe a situation in which it is true, derive the
equation representing Aristotle’s proportions, and de-
termine the proportionality constant.

Force divided by displacement, which in SI units is new-
tons per meter (N/m).

7.5 Yes, whenever the frictional force has a component along

7.6

the direction of motion. Consider a crate sitting on the
bed of a truck as the truck accelerates to the east. The
static friction force exerted on the crate by the truck acts
to the east to give the crate the same acceleration as the
truck (assuming that the crate does not slip). Because
the crate accelerates, its kinetic energy must increase.
Because the two vehicles perform the same amount of
work, the areas under the two graphs are equal. How-
ever, the graph for the low-power truck extends over a
longer time interval and does not extend as high on the
@ axis as the graph for the sports car does.

P

High-power sports car

Low-power truck

t



A common scene at a carnival is the
Ring-the-Bell attraction, in which the
player swings a heavy hammer down-
ward in an attempt to project a mass up-
ward to ring a bell. What is the best
strategy to win the game and impress
your friends?  (Robert E. Daemmrich/Tony
Stone Images)
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Conservation of Energy
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8.1 Potential Energy

associated with the motion of an object. In this chapter we introduce another

form of energy— potential energy, which is the energy associated with the arrange-
ment of a system of objects that exert forces on each other. Potential energy can
be thought of as stored energy that can either do work or be converted to kinetic
energy.

The potential energy concept can be used only when dealing with a special
class of forces called conservative forces. When only conservative forces act within an
isolated system, the kinetic energy gained (or lost) by the system as its members
change their relative positions is balanced by an equal loss (or gain) in potential
energy. This balancing of the two forms of energy is known as the principle of conser-
vation of mechanical energy.

Energy is present in the Universe in various forms, including mechanical, elec-
tromagnetic, chemical, and nuclear. Furthermore, one form of energy can be con-
verted to another. For example, when an electric motor is connected to a battery,
the chemical energy in the battery is converted to electrical energy in the motor,
which in turn is converted to mechanical energy as the motor turns some device.
The transformation of energy from one form to another is an essential part of the
study of physics, engineering, chemistry, biology, geology, and astronomy.

When energy is changed from one form to another, the total amount present
does not change. Conservation of energy means that although the form of energy
may change, if an object (or system) loses energy, that same amount of energy ap-
pears in another object or in the object’s surroundings.

I n Chapter 7 we introduced the concept of kinetic energy, which is the energy

8.1 ~ POTENTIAL ENERGY

(@) An object that possesses kinetic energy can do work on another object—for exam-
53 ple, a moving hammer driving a nail into a wall. Now we shall introduce another

form of energy. This energy, called potential energy U, is the energy associated
with a system of objects.

Before we describe specific forms of potential energy, we must first define a
system, which consists of two or more objects that exert forces on one another. If
the arrangement of the system changes, then the potential energy of the
system changes. If the system consists of only two particle-like objects that exert
forces on each other, then the work done by the force acting on one of the objects
causes a transformation of energy between the object’s kinetic energy and other
forms of the system’s energy.

Gravitational Potential Energy

As an object falls toward the Earth, the Earth exerts a gravitational force mg on the
object, with the direction of the force being the same as the direction of the ob-
ject’s motion. The gravitational force does work on the object and thereby in-
creases the object’s kinetic energy. Imagine that a brick is dropped from rest di-
rectly above a nail in a board lying on the ground. When the brick is released, it
falls toward the ground, gaining speed and therefore gaining kinetic energy. The
brick—Earth system has potential energy when the brick is at any distance above
the ground (that is, it has the potential to do work), and this potential energy is
converted to kinetic energy as the brick falls. The conversion from potential en-
ergy to kinetic energy occurs continuously over the entire fall. When the brick
reaches the nail and the board lying on the ground, it does work on the nail,

215
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Gravitational potential energy

i

Figure 8.1 The work done on
the brick by the gravitational force
as the brick falls from a height y; to
a height y; is equal to mgy; — mgy.

CHAPTER 8 Potential Energy and Conservation of Energy

driving it into the board. What determines how much work the brick is able to do
on the nail? It is easy to see that the heavier the brick, the farther in it drives the
nail; also the higher the brick is before it is released, the more work it does when it
strikes the nail.

The product of the magnitude of the gravitational force mg acting on an ob-
ject and the height y of the object is so important in physics that we give it a name:
the gravitational potential energy. The symbol for gravitational potential energy
is Uy, and so the defining equation for gravitational potential energy is

U, = mgy (8.1)

Gravitational potential energy is the potential energy of the object—Earth system.
This potential energy is transformed into kinetic energy of the system by the gravi-
tational force. In this type of system, in which one of the members (the Earth) is
much more massive than the other (the object), the massive object can be mod-
eled as stationary, and the kinetic energy of the system can be represented entirely
by the kinetic energy of the lighter object. Thus, the kinetic energy of the system is
represented by that of the object falling toward the Earth. Also note that Equation
8.1 is valid only for objects near the surface of the Earth, where g is approximately
constant.!

Let us now directly relate the work done on an object by the gravitational
force to the gravitational potential energy of the object—Earth system. To do this,
let us consider a brick of mass m at an initial height y; above the ground, as shown
in Figure 8.1. If we neglect air resistance, then the only force that does work on
the brick as it falls is the gravitational force exerted on the brick mg. The work W,
done by the gravitational force as the brick undergoes a downward displacement
dis

W, = (mg) -d = (= mgj) - (yy— y) j = mgy; — mgy,
where we have used the fact that j-j =1 (Eq. 7.4). If an object undergoes
both a horizontal and a vertical displacement, so that d = (x — x)i + (yy = y)j,
then the work done by the gravitational force is stll mgy; — mgy, because
—mgj* (xy — x)i = 0. Thus, the work done by the gravitational force depends only
on the change in y and not on any change in the horizontal position x.

We just learned that the quantity mgy is the gravitational potential energy of
the system U, and so we have

W, = U — U= — (U~ Uy = —AL, (8.2)

From this result, we see that the work done on any object by the gravitational force
is equal to the negative of the change in the system’s gravitational potential energy.
Also, this result demonstrates that it is only the difference in the gravitational poten-
tial energy at the initial and final locations that matters. This means that we are
free to place the origin of coordinates in any convenient location. Finally, the work
done by the gravitational force on an object as the object falls to the Earth is the
same as the work done were the object to start at the same point and slide down an
incline to the Earth. Horizontal motion does not affect the value of W,.

The unit of gravitational potential energy is the same as that of work—the
joule. Potential energy, like work and kinetic energy, is a scalar quantity.

! The assumption that the force of gravity is constant is a good one as long as the vertical displacement
is small compared with the Earth’s radius.

Can the gravitational potential energy of a system ever be negative?

EXAMPLE 8.1 The Bowler and the Sore Toe

A bowling ball held by a careless bowler slips from the
bowler’s hands and drops on the bowler’s toe. Choosing floor
level as the y = 0 point of your coordinate system, estimate
the total work done on the ball by the force of gravity as the
ball falls. Repeat the calculation, using the top of the bowler’s
head as the origin of coordinates.

Solution First, we need to estimate a few values. A bowling
ball has a mass of approximately 7 kg, and the top of a per-
son’s toe is about 0.03 m above the floor. Also, we shall as-
sume the ball falls from a height of 0.5 m. Holding nonsignif-
icant digits until we finish the problem, we calculate the
gravitational potential energy of the ball-Earth system just
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the ball reaches his toe gives U= mgy = (7 kg)
(9.80 m/s?) (0.03 m) = 2.06 J. So, the work done by the gravi-
tational force is W, = U; — Uy = 32.24 J. We should probably
keep only one digit because of the roughness of our esti-
mates; thus, we estimate that the gravitational force does 30 J
of work on the bowling ball as it falls. The system had 30 ] of
gravitational potential energy relative to the top of the toe be-
fore the ball began its fall.

‘When we use the bowler’s head (which we estimate to be
1.50 m above the floor) as our origin of coordinates, we find
that U; = mgy; = (7 kg) (9.80 m/s%)(—1m) = —68.6] and
that Uy = mgy, = (7 kg) (9.80 m/s?) (—1.47 m) = —100.8 J.
The work being done by the gravitational force is still

before the ball is released to be U;= mgy; = (7kg)
(9.80 m/s?) (0.5 m) = 34.3 J. A similar calculation for when

W, = U= Up=3224] ~

30 J.

Elastic Potential Energy

Now consider a system consisting of a block plus a spring, as shown in Figure 8.2.
The force that the spring exerts on the block is given by I\ = — kx. In the previous
chapter, we learned that the work done by the spring force on a block connected
to the spring is given by Equation 7.11:

W, = gka? — gk (8.3)

In this situation, the initial and final x coordinates of the block are measured from
its equilibrium position, x = 0. Again we see that W; depends only on the initial
and final x coordinates of the object and is zero for any closed path. The elastic
potential energy function associated with the system is defined by

= ki (8.4)

The elastic potential energy of the system can be thought of as the energy stored
in the deformed spring (one that is either compressed or stretched from its equi-
librium position). To visualize this, consider Figure 8.2, which shows a spring on a
frictionless, horizontal surface. When a block is pushed against the spring (Fig.
8.2b) and the spring is compressed a distance x, the elastic potential energy stored
in the spring is kx2/2. When the block is released from rest, the spring snaps back
to its original length and the stored elastic potential energy is transformed into ki-
netic energy of the block (Fig. 8.2c). The elastic potential energy stored in the
spring is zero whenever the spring is undeformed (x = 0). Energy is stored in the
spring only when the spring is either stretched or compressed. Furthermore, the
elastic potential energy is a maximum when the spring has reached its maximum
compression or extension (that is, when | x| is a maximum). Finally, because the
elastic potential energy is proportional to x2, we see that U, is always positive in a
deformed spring.

Elastic potential energy stored in a
spring
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(a)
l—x—>
| L
= -
K;=0
(b)

Figure 8.2 (a) An undeformed
spring on a frictionless horizontal
surface. (b) A block of mass m is
pushed against the spring, compress-
ing it a distance x. (c) When the
block is released from rest, the elastic
potential energy stored in the spring
is transferred to the block in the

(c) form of kinetic energy.

8.2 _~ CONSERVATIVE AND NONCONSERVATIVE FORCES

The work done by the gravitational force does not depend on whether an object
falls vertically or slides down a sloping incline. All that matters is the change in the
object’s elevation. On the other hand, the energy loss due to friction on that in-
cline depends on the distance the object slides. In other words, the path makes no
difference when we consider the work done by the gravitational force, but it does
make a difference when we consider the energy loss due to frictional forces. We
can use this varying dependence on path to classify forces as either conservative or
nonconservative.

Of the two forces just mentioned, the gravitational force is conservative and
the frictional force is nonconservative.

Conservative Forces
Conservative forces have two important properties:

1. Aforce is conservative if the work it does on a particle moving between any two
points is independent of the path taken by the particle.

2. The work done by a conservative force on a particle moving through any closed
path is zero. (A closed path is one in which the beginning and end points are
identical.)

The gravitational force is one example of a conservative force, and the force
that a spring exerts on any object attached to the spring is another. As we learned
in the preceding section, the work done by the gravitational force on an object
moving between any two points near the Earth’s surface is W, = mgy, — mgyy.
From this equation we see that W, depends only on the initial and final y coordi-
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nates of the object and hence is independent of the path. Furthermore, W, is zero
when the object moves over any closed path (where y; = y)).

For the case of the object—spring system, the work W, done by the spring force
is given by W, = %lmi2 - ékxf (Eq. 8.3). Again, we see that the spring force is con-
servative because W, depends only on the initial and final x coordinates of the ob-
jectand is zero for any closed path.

We can associate a potential energy with any conservative force and can do this
only for conservative forces. In the previous section, the potential energy associated
with the gravitational force was defined as U, = mgy. In general, the work W, done
on an object by a conservative force is equal to the initial value of the potential en-
ergy associated with the object minus the final value:

W,=U — U= —-AU (8.5)

This equation should look familiar to you. It is the general form of the equation
for work done by the gravitational force (Eq. 8.2) and that for the work done by
the spring force (Eq. 8.3).

Nonconservative Forces

™ . . . . . .
o) A force is nonconservative if it causes a change in mechanical energy E
& s
3 which we define as the sum of kinetic and potential energies. For example, if a

book is sent sliding on a horizontal surface that is not frictionless, the force of ki-
netic friction reduces the book’s kinetic energy. As the book slows down, its kinetic
energy decreases. As a result of the frictional force, the temperatures of the book
and surface increase. The type of energy associated with temperature is internal en-
ergy, which we will study in detail in Chapter 20. Experience tells us that this inter-
nal energy cannot be transferred back to the kinetic energy of the book. In other
words, the energy transformation is not reversible. Because the force of kinetic
friction changes the mechanical energy of a system, it is a nonconservative force.

From the work—-kinetic energy theorem, we see that the work done by a con-
servative force on an object causes a change in the kinetic energy of the object.
The change in kinetic energy depends only on the initial and final positions of the
object, and not on the path connecting these points. Let us compare this to the
sliding book example, in which the nonconservative force of friction is acting be-
tween the book and the surface. According to Equation 7.17a, the change in ki-
netic energy of the book due to friction is AKgicion = —/fid, where d is the length
of the path over which the friction force acts. Imagine that the book slides from A
to B over the straight-line path of length d in Figure 8.3. The change in kinetic en-
ergy is — fyd. Now, suppose the book slides over the semicircular path from A to B.
In this case, the path is longer and, as a result, the change in kinetic energy is
greater in magnitude than that in the straight-line case. For this particular path,
the change in kinetic energy is —fym d/2, since d is the diameter of the semicircle.
Thus, we see that for a nonconservative force, the change in kinetic energy de-
pends on the path followed between the initial and final points. If a potential en-
ergy is involved, then the change in the total mechanical energy depends on the
path followed. We shall return to this point in Section 8.5.

8.3 _~ CONSERVATIVE FORCES AND POTENTIAL ENERGY

In the preceding section we found that the work done on a particle by a conserva-
tive force does not depend on the path taken by the particle. The work depends
only on the particle’s initial and final coordinates. As a consequence, we can de-
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Work done by a conservative force

Properties of a nonconservative
force

£

Figure 8.3 The loss in mechani-
cal energy due to the force of ki-
netic friction depends on the path
taken as the book is moved from A
to B. The loss in mechanical energy
is greater along the red path than
along the blue path.
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fine a potential energy function U such that the work done by a conservative
force equals the decrease in the potential energy of the system. The work done by
a conservative force F as a particle moves along the x axis is?

Xf
m:jdex: —-AU (8.6)

where F, is the component of F in the direction of the displacement. That is, the
work done by a conservative force equals the negative of the change in the
potential energy associated with that force, where the change in the potential
energy is defined as AU = Uy — U;.

We can also express Equation 8.6 as

¥

AU= U - i:—J/dex 8.7)
Xi

Therefore, AUis negative when F, and dx are in the same direction, as when an ob-

ject is lowered in a gravitational field or when a spring pushes an object toward

equilibrium.

The term potential energy implies that the object has the potential, or capability,
of either gaining kinetic energy or doing work when it is released from some point
under the influence of a conservative force exerted on the object by some other
member of the system. It is often convenient to establish some particular location
x; as a reference point and measure all potential energy differences with respect to
it. We can then define the potential energy function as

Y
Up(x) = 7"‘ F.dx+ U; (8.8)

The value of U is often taken to be zero at the reference point. It really does
not matter what value we assign to U;, because any nonzero value merely shifts
Us(x) by a constant amount, and only the change in potential energy is physically
meaningful.

If the conservative force is known as a function of position, we can use Equa-
tion 8.8 to calculate the change in potential energy of a system as an object within
the system moves from «; to x;. It is interesting to note that in the case of one-
dimensional displacement, a force is always conservative if it is a function of posi-
tion only. This is not necessarily the case for motion involving two- or three-dimen-
sional displacements.

8.4 _~ CONSERVATION OF MECHANICAL ENERGY

(@) An object held at some height 4 above the floor has no kinetic energy. However, as
59 we learned earlier, the gravitational potential energy of the object—Earth system is

equal to mgh. If the object is dropped, it falls to the floor; as it falls, its speed and
thus its kinetic energy increase, while the potential energy of the system decreases.
If factors such as air resistance are ignored, whatever potential energy the system
loses as the object moves downward appears as kinetic energy of the object. In
other words, the sum of the kinetic and potential energies—the total mechanical
energy E—remains constant. This is an example of the principle of conservation

2 For a general displacement, the work done in two or three dimensions also equals U; — Uy, where

I
U= U(x, y, z). We write this formally as W= J’F ds = U; = Uy
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of mechanical energy. For the case of an object in free fall, this principle tells us
that any increase (or decrease) in potential energy is accompanied by an equal de-
crease (or increase) in kinetic energy. Note that the total mechanical energy of
a system remains constant in any isolated system of objects that interact
only through conservative forces.

Because the total mechanical energy E of a system is defined as the sum of the
kinetic and potential energies, we can write

E=K+U (8.9)
We can state the principle of conservation of energy as £; = E;, and so we have
Ki+ U = K+ Uy (8.10)

It is important to note that Equation 8.10 is valid only when no energy is
added to or removed from the system. Furthermore, there must be no nonconser-
vative forces doing work within the system.

Consider the carnival Ring-the-Bell event illustrated at the beginning of the
chapter. The participant is trying to convert the initial kinetic energy of the ham-
mer into gravitational potential energy associated with a weight that slides on a
vertical track. If the hammer has sufficient kinetic energy, the weight is lifted high
enough to reach the bell at the top of the track. To maximize the hammer’s ki-
netic energy, the player must swing the heavy hammer as rapidly as possible. The
fast-moving hammer does work on the pivoted target, which in turn does work on
the weight. Of course, greasing the track (so as to minimize energy loss due to fric-
tion) would also help but is probably not allowed!

If more than one conservative force acts on an object within a system, a poten-
tial energy function is associated with each force. In such a case, we can apply the
principle of conservation of mechanical energy for the system as

K+ XU =K+30 ®11)
where the number of terms in the sums equals the number of conservative forces

present. For example, if an object connected to a spring oscillates vertically, two
conservative forces act on the object: the spring force and the gravitational force.
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Total mechanical energy

The mechanical energy of an
isolated system remains constant

QuickLab

Dangle a shoe from its lace and use it
as a pendulum. Hold it to the side, re-
lease it, and note how high it swings
at the end of its arc. How does this
height compare with its initial height?
You may want to check Question 8.3
as part of your investigation.

Twin Falls on the Island of Kauai, Hawaii. The gravitational po-
tential energy of the water—Earth system when the water is at
the top of the falls is converted to kinetic energy once that wa-
ter begins falling. How did the water get to the top of the cliff?
In other words, what was the original source of the gravita-
tional potential energy when the water was at the top? (Hint:
This same source powers nearly everything on the planet.)
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] Quick Ouiz 3.2 8

A ball is connected to a light spring suspended vertically, as shown in Figure 8.4. When dis-
placed downward from its equilibrium position and released, the ball oscillates up and down.
If air resistance is neglected, is the total mechanical energy of the system (ball plus spring
plus Earth) conserved? How many forms of potential energy are there for this situation?

Y ouick Ouiz 5.5

J Three identical balls are thrown from the top of a building, all with the same initial speed.

(. mY

The first is thrown horizontally, the second at some angle above the horizontal, and the

Figure 8.4 A ball connected to a
massless spring suspended verti-
cally. What forms of potential en-
ergy are associated with the
ball-spring—Earth system when
the ball is displaced downward?

EXAMPLE 8.2 - Ballin Free Fall

A ball of mass m is dropped from a height h above the
ground, as shown in Figure 8.6. (a) Neglecting air resistance,
determine the speed of the ball when it is at a height y above
the ground.

Solution Because the ball is in free fall, the only force act-
ing on it is the gravitational force. Therefore, we apply the
principle of conservation of mechanical energy to the
ball-Earth system. Initially, the system has potential energy
but no kinetic energy. As the ball falls, the total mechanical
energy remains constant and equal to the initial potential en-
ergy of the system.

At the instant the ball is released, its kinetic energy is
K; = 0 and the potential energy of the system is U; = mgh.
‘When the ball is at a distance y above the ground, its kinetic
energy is K, = %mvﬂ and the potential energy relative to the
ground is Uy = mgy. Applying Equation 8.10, we obtain

K+ U= K+ U
0 + mgh = %mvjz + mgy

v/2 = 2g(h —y)

third at some angle below the horizontal, as shown in Figure 8.5. Neglecting air resistance,
rank the speeds of the balls at the instant each hits the ground.

Figure 8.5 Three identical balls are thrown
with the same initial speed from the top of a
building.

——
- y
L
yi=h
,70 U; = mgh
K;=0
7'/”\\ =y
|3 U= mey
h Kf:%mvf
A
y
y=0
U,=0

Figure 8.6 Ahall is dropped from a height & above the ground.
Initially, the total energy of the ball-Earth system is potential energy,
equal to mgh relative to the ground. At the elevation y, the total en-
ergy is the sum of the kinetic and potential energies.

%
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= N2g(h—y)

The speed is always positive. If we had been asked to find the
ball’s velocity, we would use the negative value of the square
root as the y component to indicate the downward motion.

(b) Determine the speed of the ball at y if at the instant of
release it already has an initial speed v; at the initial altitude A.
Solution In this case, the initial energy includes kinetic
energy equal to %mvf, and Equation 8.10 gives

%mv; + mgh = %mvﬁ + mgy

v/2 =02+ 2g(h —y)
v = \)'U,2 + 2g(h — y)

This result is consistent with the expression vyﬂ =
v,;2 — 2¢(yy— ») from kinematics, where y; = A. Further-
more, this result is valid even if the initial velocity is at an an-
gle to the horizontal (the projectile situation) for two rea-
sons: (1) energy is a scalar, and the kinetic energy depends
only on the magnitude of the velocity; and (2) the change in
the gravitational potential energy depends only on the
change in position in the vertical direction.

EXAMPLE 8.3

The Pendulum

A pendulum consists of a sphere of mass m attached to a light
cord of length L, as shown in Figure 8.7. The sphere is re-
leased from rest when the cord makes an angle 6 with the
vertical, and the pivot at P is frictionless. (a) Find the speed
of the sphere when it is at the lowest point ®.

Solution The only force that does work on the sphere is
the gravitational force. (The force of tension is always perpen-
dicular to each element of the displacement and hence does
no work.) Because the gravitational force is conservative, the
total mechanical energy of the pendulum-Earth system is
constant. (In other words, we can classify this as an “energy
conservation” problem.) As the pendulum swings, continuous
transformation between potential and kinetic energy occurs.
At the instant the pendulum is released, the energy of the sys-
tem is entirely potential energy. At point ® the pendulum has
kinetic energy, but the system has lost some potential energy.
At © the system has regained its initial potential energy, and
the kinetic energy of the pendulum is again zero.

Figure 8.7 If the sphere is released from rest at the angle 6 it will
never swing above this position during its motion. At the start of the
motion, position ®, the energy is entirely potential. This initial po-
tential energy is all transformed into kinetic energy at the lowest ele-
vation ®. As the sphere continues to move along the arc, the energy
again becomes entirely potential energy at ©.

If we measure the y coordinates of the sphere from the
center of rotation, then y, = — L cos 6, and yg = — L. There-
fore, Uy = —mgl cos 0, and Ug = — mgL. Applying the prin-
ciple of conservation of mechanical energy to the system gives

Ko+ Uh=Kg + U

0 — mgl. cos 6 = %mva2 — mglL

(1) ug = 2 gL(l — cos 6a)
(b) What is the tension 7g in the cord at ®?

Solution Because the force of tension does no work, we
cannot determine the tension using the energy method. To
find 7g, we can apply Newton’s second law to the radial direc-
tion. First, recall that the centripetal acceleration of a particle
moving in a circle is equal to v?/r directed toward the center
of rotation. Because » = L in this example, we obtain
2
(2) EF, = 1 — mg = ma, = mv'%

Substituting (1) into (2) gives the tension at point ®:
(3) Tg = mg+ 2 mg(1 — cos 6p)
= mg(3 — 2 cos Op)

From (2) we see that the tension at is greater than the
weight of the sphere. Furthermore, (3) gives the expected re-
sult that 75 = mg when the initial angle 65 = 0.

Exercise A pendulum of length 2.00 m and mass 0.500 kg
is released from rest when the cord makes an angle of 30.0°
with the vertical. Find the speed of the sphere and the ten-
sion in the cord when the sphere is at its lowest point.

Answer 2.29 m/s; 6.21 N.
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QuickLab P

Find a friend and play a game of
racquetball. After a long volley, feel
the ball and note that it is warm. Why
is that?

CHAPTER 8 Potential Energy and Conservation of Energy

8.5 _~ WORK DONE BY NONCONSERVATIVE FORCES

As we have seen, if the forces acting on objects within a system are conservative,
then the mechanical energy of the system remains constant. However, if some of
the forces acting on objects within the system are not conservative, then the me-
chanical energy of the system does not remain constant. Let us examine two types
of nonconservative forces: an applied force and the force of kinetic friction.

Work Done by an Applied Force

When you lift a book through some distance by applying a force to it, the force
you apply does work W,,,, on the book, while the gravitational force does work W,
on the book. If we treat the book as a particle, then the net work done on the
book is related to the change in its kinetic energy as described by the work-
kinetic energy theorem given by Equation 7.15:

Wapp + W, = AK (8.12)
Because the gravitational force is conservative, we can use Equation 8.2 to express
the work done by the gravitational force in terms of the change in potential en-
ergy, or W, = — AU. Substituting this into Equation 8.12 gives

Wopp = AK + AU (8.13)

app
Note that the right side of this equation represents the change in the mechanical
energy of the book—Earth system. This result indicates that your applied force
transfers energy to the system in the form of kinetic energy of the book and gravi-
tational potential energy of the book—Earth system. Thus, we conclude that if an
object is part of a system, then an applied force can transfer energy into or out
of the system.

Situations Involving Kinetic Friction

Kinetic friction is an example of a nonconservative force. If a book is given some
initial velocity on a horizontal surface that is not frictionless, then the force of ki-
netic friction acting on the book opposes its motion and the book slows down and
eventually stops. The force of kinetic friction reduces the kinetic energy of the
book by transforming kinetic energy to internal energy of the book and part of the
horizontal surface. Only part of the book’s kinetic energy is transformed to inter-
nal energy in the book. The rest appears as internal energy in the surface. (When
you trip and fall while running across a gymnasium floor, not only does the skin on
your knees warm up but so does the floor!)

As the book moves through a distance d, the only force that does work is the
force of kinetic friction. This force causes a decrease in the kinetic energy of the
book. This decrease was calculated in Chapter 7, leading to Equation 7.17a, which
we repeat here:

AKgicion = — fid (8.14)

If the book moves on an incline that is not frictionless, a change in the gravita-
tional potential energy of the book—Earth system also occurs, and — fd is the
amount by which the mechanical energy of the system changes because of the
force of kinetic friction. In such cases,

AE=AK+ AU= —fid (8.15)

where E; + AE = E.
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Write down the work—kinetic energy theorem for the general case of two objects that are
connected by a spring and acted upon by gravity and some other external applied force. In-
clude the effects of friction as AFg;icgon -

Problem-Solving Hints
Conservation of Energy

We can solve many problems in physics using the principle of conservation of
energy. You should incorporate the following procedure when you apply this
principle:

¢ Define your system, which may include two or more interacting particles, as
well as springs or other systems in which elastic potential energy can be
stored. Choose the initial and final points.

Identify zero points for potential energy (both gravitational and spring). If
there is more than one conservative force, write an expression for the po-
tential energy associated with each force.

Determine whether any nonconservative forces are present. Remember that
if friction or air resistance is present, mechanical energy is not conserved.

If mechanical energy is conserved, you can write the total initial energy

E; = K; + U,at some point. Then, write an expression for the total final en-
ergy ;= K+ Urat the final point that is of interest. Because mechanical
energy is conserved, you can equate the two total energies and solve for the
quantity that is unknown.

If frictional forces are present (and thus mechanical energy is not conserved),
first write expressions for the total initial and total final energies. In this
case, the difference between the total final mechanical energy and the total
initial mechanical energy equals the change in mechanical energy in the sys-
tem due to friction.

t,:f EXAMPLE 8.4 Crate Sliding Down a Ramp

A 3.00-kg crate slides down a ramp. The ramp is 1.00 m in
length and inclined at an angle of 30.0°, as shown in Figure
8.8. The crate starts from rest at the top, experiences a con-
stant frictional force of magnitude 5.00 N, and continues to
move a short distance on the flat floor after it leaves the
ramp. Use energy methods to determine the speed of the
crate at the bottom of the ramp.

Solution Because v, = 0, the initial kinetic energy at the
top of the ramp is zero. If the y coordinate is measured from
the bottom of the ramp (the final position where the poten-
tial energy is zero) with the upward direction being positive,
then y; = 0.500 m. Therefore, the total mechanical energy of
the crate—Earth system at the top is all potential energy:

0.500 m

E; =K+ U =0+ U = mgy,
= (3.00 kg) (9.80m/s?) (0.500 m) = 14.7]

Figure 8.8 A crate slides down a ramp under the influence of grav-
ity. The potential energy decreases while the kinetic energy increases.




When the crate reaches the bottom of the ramp, the po-
tential energy of the system is zero because the elevation of
the crate is y; = 0. Therefore, the total mechanical energy of
the system when the crate reaches the bottom is all kinetic
energy:

Er= K+ Up= gy + 0

We cannot say that E; = E; because a nonconservative force
reduces the mechanical energy of the system: the force of ki-
netic friction acting on the crate. In this case, Equation 8.15
gives AE = —fid, where d is the displacement along the
ramp. (Remember that the forces normal to the ramp do no
work on the crate because they are perpendicular to the dis-
placement.) With f, = 5.00 N and d = 1.00 m, we have

AE = —fid= —(5.00 N)(1.00 m) = —5.00]

This result indicates that the system loses some mechanical
energy because of the presence of the nonconservative fric-
tional force. Applying Equation 8.15 gives
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E/— E; = %mvf = mgy; = — fyd
dmu? = 14.7] = 5.00] = 9.70 ]

. 19.4] .
vl =—"—" =647 m?/s%
/7 3.00kg

v = 2.54 m/s

Exercise Use Newton’s second law to find the acceleration
of the crate along the ramp, and use the equations of kine-
matics to determine the final speed of the crate.

Answer 3.23m/s% 2.54 m/s.

Exercise Assuming the ramp to be frictionless, find the fi-
nal speed of the crate and its acceleration along the ramp.

Answer 3.13m/s; 4.90 m/s2

EXAMPLE 8.5 Motion on a Curved Track

A child of mass m rides on an irregularly curved slide of
height 2 = 2.00 m, as shown in Figure 8.9. The child starts
from rest at the top. (a) Determine his speed at the bottom,
assuming no friction is present.

Solution The normal force n does no work on the child
because this force is always perpendicular to each element of
the displacement. Because there is no friction, the mechani-
cal energy of the child—Earth system is conserved. If we mea-
sure the y coordinate in the upward direction from the bot-
tom of the slide, then y; = A, = 0, and we obtain

Figure 8.9 1f the slide is frictionless, the speed of the child at the
bottom depends only on the height of the slide.

Ko+ U= K+
0 + mgh = %mvf +0
v = \2gh
Note that the result is the same as it would be had the child

fallen vertically through a distance %! In this example,
h = 2.00 m, giving

v = \2gh = \/2(9480 m/s?)(2.00m) = 6.26 m/s

(b) If a force of kinetic friction acts on the child, how
much mechanical energy does the system lose? Assume that
v = 3.00 m/s and m = 20.0 kg.

Solution In this case, mechanical energy is not conserved,
and so we must use Equation 8.15 to find the loss of mechani-
cal energy due to friction:

AE=E~ E = (K+ U = (K + U)

(mu? + 0) — (0 + mgh) = ymu? — mgh
= 3(20.0 kg) (3.00 m/s)% — (20.0 kg) (9.80 m/s2) (2.00 m)

—302]

Again, AE is negative because friction is reducing mechanical
energy of the system (the final mechanical energy is less than
the initial mechanical energy). Because the slide is curved,
the normal force changes in magnitude and direction during
the motion. Therefore, the frictional force, which is propor-
tional to 7, also changes during the motion. Given this chang-
ing frictional force, do you think it is possible to determine
wy from these data?

P

i
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EXAMPLE 8.6  Let's Go Skiing!

A skier starts from rest at the top of a frictionless incline of
height 20.0 m, as shown in Figure 8.10. At the bottom of the
incline, she encounters a horizontal surface where the coeffi-
cient of kinetic friction between the skis and the snow is
0.210. How far does she travel on the horizontal surface be-
fore coming to rest?

Solution First, let us calculate her speed at the bottom of
the incline, which we choose as our zero point of potential
energy. Because the incline is frictionless, the mechanical en-
ergy of the skier—Earth system remains constant, and we find,
as we did in the previous example, that

v5 = V2gh = V2(9.80 m/s?) (20.0 m) = 19.8m/s

Now we apply Equation 8.15 as the skier moves along the
rough horizontal surface from ® to ©. The change in me-
chanical energy along the horizontal is AE = — fid, where dis
the horizontal displacement.

To find the distance the skier travels before coming to
rest, we take Kg = 0. With vg = 19.8 m/s and the frictional
force given by f, = wyn = wmg, we obtain

AE = I — g = — pymgd
(Ko + Ug) = (Kg + Ug) = (0 + 0) — (3mug? + 0)
= — wymgd
vg? (19.8 m/s)?

4= 2wg  2(0.210)(9.80 m/s2)

= 95.2m
Exercise Find the horizontal distance the skier travels be-
fore coming to rest if the incline also has a coefficient of ki-

netic friction equal to 0.210.

Answer 40.3 m.

Figure 8.10 The skier slides down the slope and onto a level surface, stopping after a distance d

from the bottom of the hill.

EXAMPLE 8.7  The Spring-Loaded Popgun

The launching mechanism of a toy gun consists of a spring of
unknown spring constant (Fig. 8.11a). When the spring is
compressed 0.120 m, the gun, when fired vertically, is able to
launch a 35.0-g projectile to a maximum height of 20.0 m
above the position of the projectile before firing. (a) Neglect-
ing all resistive forces, determine the spring constant.

Solution Because the projectile starts from rest, the initial
kinetic energy is zero. If we take the zero point for the gravita-

tional potential energy of the projectile—Earth system to be at
the lowest position of the projectile xa, then the initial gravita-
tional potential energy also is zero. The mechanical energy of
this system is constant because no nonconservative forces are
present.

Initially, the only mechanical energy in the system is the
elastic potential energy stored in the spring of the gun,
U = kx*/2, where the compression of the spring is
x=0.120 m. The projectile rises to a maximum height



© ) x=200m

xg=0.120 m

(2) (b)
Figure 8.11 A spring-loaded popgun.

xc = h =20.0 m, and so the final gravitational potential en-
ergy when the projectile reaches its peak is mgh. The final ki-
netic energy of the projectile is zero, and the final elastic po-
tential energy stored in the spring is zero. Because the
mechanical energy of the system is constant, we find that
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Ep = Eg
Ky + Un + Up = Ko + g + Ug

0+ 0+ 3k =0+ mgh+0

1k(0.120 m)? = (0.0350 kg) (9.80 m/s?) (20.0 m)

k= 953 N/m

(b) Find the speed of the projectile as it moves through
the equilibrium position of the spring (where xg = 0.120 m)
as shown in Figure 8.11b.

Solution As already noted, the only mechanical energy in
the system at ® is the elastic potential energy kx?/2. The to-
tal energy of the system as the projectile moves through the
equilibrium position of the spring comprises the kinetic en-
ergy of the projectile mug?/2, and the gravitational potential
energy mgxg. Hence, the principle of the conservation of me-
chanical energy in this case gives

Ep = Eg
Ka+ Un+ Ua=Kg + Upp + Up
0+0+§kx2:%mv32+mgx3+0

Solving for vg gives

e
g = \]7 — 2gx

B \/ (953 N,/m) (0.120 m)?
0.0350 kg

— 2(9.80 m/s2) (0.120 m)

= 19.7m/s
You should compare the different examples we have pre-
sented so far in this chapter. Note how breaking the problem

into a sequence of labeled events helps in the analysis.

Exercise  What is the speed of the projectile when it is at a
height of 10.0 m?

Answer 14.0 m/s.

EXAMPLE 8.8  Block-Spring Collision

A block having a mass of 0.80 kg is given an initial velocity
uvp = 1.2 m/s to the right and collides with a spring of negli-
gible mass and force constant £ = 50 N/m, as shown in Fig-
ure 8.12. (a) Assuming the surface to be frictionless, calculate
the maximum compression of the spring after the collision.

Solution Our system in this example consists of the block
and spring. Before the collision, at @, the block has kinetic

energy and the spring is uncompressed, so that the elastic po-
tential energy stored in the spring is zero. Thus, the total me-
chanical energy of the system before the collision is just
%mUAQA After the collision, at ©, the spring is fully com-
pressed; now the block is at rest and so has zero kinetic en-
ergy, while the energy stored in the spring has its maximum
value %ka? = %kxmz, where the origin of coordinates x = 0 is
chosen to be the equilibrium position of the spring and x,, is
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Figure 8.12 A block sliding on a smooth, horizontal surface col-
lides with a light spring. (a) Initially the mechanical energy is all ki-
netic energy. (b) The mechanical energy is the sum of the kinetic
energy of the block and the elastic potential energy in the spring.
(c) The energy is entirely potential energy. (d) The energy is trans-
formed back to the kinetic energy of the block. The total energy re-
mains constant throughout the motion.

the maximum compression of the spring, which in this case
happens to be xc. The total mechanical energy of the system
is conserved because no nonconservative forces act on ob-
jects within the system.

Because mechanical energy is conserved, the kinetic en-
ergy of the block before the collision must equal the maxi-
mum potential energy stored in the fully compressed spring:

Ey= I
Ko+ Un = Ko + Uc

%mvf +0=0+ %kx,,?

7,’& _ 0.80 kg (1.2m/s)
X, = P 750N/m 2m/s

= 0.15m

Note that we have not included U, terms because no change
in vertical position occurred.

(b) Suppose a constant force of kinetic friction acts be-
tween the block and the surface, with w;, = 0.50. If the speed

Multiflash photograph of a pole vault event. How
many forms of energy can you identify in this picture?

of the block at the moment it collides with the spring is vy =
1.2 m/s, what is the maximum compression in the spring?

Solution In this case, mechanical energy is not conserved
because a frictional force acts on the block. The magnitude
of the frictional force is

Jo = mgn = pmymg = 0.50(0.80 kg) (9.80 m/s?) = 3.92N

Therefore, the change in the block’s mechanical energy due
to friction as the block is displaced from the equilibrium posi-
tion of the spring (where we have set our origin) to xg is

AE = — fixg = —3.92xg
Substituting this into Equation 8.15 gives
AE = E;— E;= (0 + 3kxg?) — Gmua? +0) = — fixg
5(50)x5% — 3(0.80) (1.2)2 = —3.92x5
25x52 + 3.92x5 — 0.576 = 0

Solving the quadratic equation for xg gives x5 = 0.092 m and
xg = —0.25 m. The physically meaningful root is xg =

0.092 m. The negative root does not apply to this situation

because the block must be to the right of the origin (positive
value of x) when it comes to rest. Note that 0.092 m is less
than the distance obtained in the frictionless case of part (a).
This result is what we expect because friction retards the mo-
tion of the system.




EXAMPLE 8.9 Connected Blocks in Motion

Two blocks are connected by a light string that passes over a
frictionless pulley, as shown in Figure 8.13. The block of mass
my lies on a horizontal surface and is connected to a spring of
force constant k. The system is released from rest when the
spring is unstretched. If the hanging block of mass my falls a
distance % before coming to rest, calculate the coefficient of
kinetic friction between the block of mass m; and the surface.

Solution The key word rest appears twice in the problem
statement, telling us that the initial and final velocities and ki-
netic energies are zero. (Also note that because we are con-
cerned only with the beginning and ending points of the mo-
tion, we do not need to label events with circled letters as we
did in the previous two examples. Simply using i and fis suffi-
cient to keep track of the situation.) In this situation, the sys-
tem consists of the two blocks, the spring, and the Earth. We
need to consider two forms of potential energy: gravitational
and elastic. Because the initial and final kinetic energies of
the system are zero, AK = 0, and we can write

(1) AE = AU, + Al

n

!

Figure 8.13  As the hanging block moves from its highest eleva-
tion to its lowest, the system loses gravitational potential energy but
gains elastic potential energy in the spring. Some mechanical energy
is lost because of friction between the sliding block and the surface.
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where AU, = Uy — U,; is the change in the system’s gravita-
tional potential energy and AU, = Uy — U; is the change in
the system’s elastic potential energy. As the hanging block
falls a distance A, the horizontally moving block moves the
same distance % to the right. Therefore, using Equation 8.15,
we find that the loss in energy due to friction between the
horizontally sliding block and the surface is

(2 AE=—fih= —womgh

The change in the gravitational potential energy of the sys-
tem is associated with only the falling block because the verti-
cal coordinate of the horizontally sliding block does not
change. Therefore, we obtain
(3) AU, = Uyp— Ui = 0 — mogh

where the coordinates have been measured from the lowest
position of the falling block.

The change in the elastic potential energy stored in the
spring is

() AU=Uy= Ui=ghi2 =0
Substituting Equations (2), (3), and (4) into Equation (1)
gives
= upmygh = — mogh + %Ieh2
1
mag — gkh

mg

My =

This setup represents a way of measuring the coefficient of
kinetic friction between an object and some surface. As you
can see from the problem, sometimes it is easier to work with
the changes in the various types of energy rather than the ac-
tual values. For example, if we wanted to calculate the numer-
ical value of the gravitational potential energy associated with
the horizontally sliding block, we would need to specify the
height of the horizontal surface relative to the lowest position
of the falling block. Fortunately, this is not necessary because
the gravitational potential energy associated with the first
block does not change.

EXAMPLE 8.10 - A Grand Entrance

You are designing apparatus to support an actor of mass
65 kg who is to “fly” down to the stage during the perfor-
mance of a play. You decide to attach the actor’s harness to a
130-kg sandbag by means of a lightweight steel cable running
smoothly over two frictionless pulleys, as shown in Figure
8.14a. You need 3.0 m of cable between the harness and the
nearest pulley so that the pulley can be hidden behind a cur-
tain. For the apparatus to work successfully, the sandbag must
never lift above the floor as the actor swings from above the

stage to the floor. Let us call the angle that the actor’s cable
makes with the vertical 6. What is the maximum value 6 can
have before the sandbag lifts off the floor?

Solution We need to draw on several concepts to solve
this problem. First, we use the principle of the conservation
of mechanical energy to find the actor’s speed as he hits the
floor as a function of 6 and the radius R of the circular path
through which he swings. Next, we apply Newton’s second
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law to the actor at the bottom of his path to find the cable
tension as a function of the given parameters. Finally, we note
that the sandbag lifts off the floor when the upward force ex-
erted on it by the cable exceeds the gravitational force acting
on it; the normal force is zero when this happens.

Applying conservation of energy to the actor—Earth sys-
tem gives

K+U=K+U

M) 0+ Mo €3 = §Macrorty® + 0

Sandbag

(a)
T T
Mactor Mg
Mactor§
Mpyag8
(b) ()

Figure 8.14 (a) An actor uses some clever staging to make his en-
trance. (b) Free-body diagram for actor at the bottom of the circular
path. (c) Free-body diagram for sandbag.

where y;is the initial height of the actor above the floor and vy is
the speed of the actor at the instant before he lands. (Note that
K; = 0 because he starts from rest and that U = 0 because we
set the level of the actor’s harness when he is standing on the
floor as the zero level of potential energy.) From the geometry
in Figure 8.14a, we see that y; = R — Rcos 6 = R(1 — cos 6).
Using this relationship in Equation (1), we obtain
(2) vfz = 2gR(1 — cos 6)

Now we apply Newton’s second law to the actor when he is at
the bottom of the circular path, using the free-body diagram
in Figure 8.14b as a guide:

2

U/'
SF = T = Maciorg = Mactor =
- y?
@) T Mo+ Moo T

A force of the same magnitude as 7" is transmitted to the
sandbag. If it is to be just lifted off the floor, the normal force
on it becomes zero, and we require that 7' = my,eg, as shown
in Figure 8.14c. Using this condition together with Equations
(2) and (3), we find that

2gR(1 — cos 6)

Miagg = Maciorg + Macior R

Solving for 6 and substituting in the given parameters, we ob-
tain
3Mactor ~ Mhag _ 3(65kg) — 130kg _ 1

9= =
o8 2tyron 2(65 kg) 2

0= 60°

Notice that we did not need to be concerned with the length
R of the cable from the actor’s harness to the leftmost pulley.
The important point to be made from this problem is that it
is sometimes necessary to combine energy considerations
with Newton’s laws of motion.

Exercise If the initial angle § = 40°, find the speed of the
actor and the tension in the cable just before he reaches the
floor. (Hint: You cannot ignore the length R = 3.0 m in this
calculation.)

Answer 3.7 m/s; 940 N.

AND POTENTIAL ENERGY

8.6_~ RELATIONSHIP BETWEEN CONSERVATIVE FORCES

Once again let us consider a particle that is part of a system. Suppose that the par-
ticle moves along the x axis, and assume that a conservative force with an x compo-
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Relationship between force
and potential energy
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nent Fy acts on the particle. Earlier in this chapter, we showed how to determine
the change in potential energy of a system when we are given the conservative
force. We now show how to find F, if the potential energy of the system is known.

In Section 8.2 we learned that the work done by the conservative force as its
point of application undergoes a displacement Ax equals the negative of the
change in the potential energy associated with that force; that is,
W= F,Ax = — AU. If the point of application of the force undergoes an infinitesi-
mal displacement dx, we can express the infinitesimal change in the potential en-
ergy of the system dUas

dU = —F, dx

Therefore, the conservative force is related to the potential energy function
through the relationship®

r=-2 (8.16)
dx
That is, any conservative force acting on an object within a system equals the
negative derivative of the potential energy of the system with respect to x.
We can easily check this relationship for the two examples already discussed.
In the case of the deformed spring, U, = %kxz, and therefore

AU, i
F=—t3 = - Ol = —hx
dx dx

which corresponds to the restoring force in the spring. Because the gravitational
potential energy function is U, = mgy, it follows from Equation 8.16 that
F, = —mg when we differentiate U, with respect to y instead of x.

We now see that Uis an important function because a conservative force can
be derived from it. Furthermore, Equation 8.16 should clarify the fact that adding
a constant to the potential energy is unimportant because the derivative of a con-
stant is zero.

What does the slope of a graph of U(x) versus x represent?

Optional Section

8.7 ~ ENERGY DIAGRAMS AND THE
EQUILIBRIUM OF A SYSTEM

The motion of a system can often be understood qualitatively through a graph of
its potential energy versus the separation distance between the objects in the sys-
tem. Consider the potential energy function for a block—spring system, given by
U, = %kx2 This function is plotted versus x in Figure 8.15a. (A common mistake is
to think that potential energy on the graph represents height. This is clearly not

3 . . - au U
3 In three dimensions, the expression is F = —i -

d
Pyt | k——
ax Ay Az
partial derivatives. In the language of vector calculus, F equals the negative of the gradient of the scalar
quantity U(x, y, z).

U
, where —, and so forth, are
ax

8.7 Energy Diagrams and the Equilibrium of a System

Figure 8.15 (a) Potential energy as a
function of x for the block—spring sys-
tem shown in (b). The block oscillates
between the turning points, which have
the coordinates x = * x,,. Note that the
restoring force exerted by the spring al-

" ways acts toward x = 0, the position of
(b) stable equilibrium.

the case here, where the block is only moving horizontally.) The force F; exerted
by the spring on the block is related to U, through Equation 8.16:

As we saw in Quick Quiz 8.5, the force is equal to the negative of the slope of the
Uversus x curve. When the block is placed at rest at the equilibrium position of
the spring (x = 0), where F; = 0, it will remain there unless some external force
Fex acts on it. If this external force stretches the spring from equilibrium, x is posi-
tive and the slope dU/ dx is positive; therefore, the force F; exerted by the spring is
negative, and the block accelerates back toward x = 0 when released. If the exter-
nal force compresses the spring, then x is negative and the slope is negative; there-
fore, I;is positive, and again the mass accelerates toward x = 0 upon release.

From this analysis, we conclude that the x = 0 position for a block—spring sys-
tem is one of stable equilibrium. That is, any movement away from this position
results in a force directed back toward x = 0. In general, positions of stable
equilibrium correspond to points for which U(x) is a minimum.

From Figure 8.15 we see that if the block is given an initial displacement x,,
and is released from rest, its total energy initially is the potential energy stored in
the spring %kx"ﬁ. As the block starts to move, the system acquires kinetic energy
and loses an equal amount of potential energy. Because the total energy must re-
main constant, the block oscillates (moves back and forth) between the two points
x = —x, and x = +x,, called the turning points. In fact, because no energy is lost
(no friction), the block will oscillate between — x,, and + x,, forever. (We discuss
these oscillations further in Chapter 13.) From an energy viewpoint, the energy of
the system cannot exceed %kxmz; therefore, the block must stop at these points
and, because of the spring force, must accelerate toward x = 0.

Another simple mechanical system that has a position of stable equilibrium is
a ball rolling about in the bottom of a bowl. Anytime the ball is displaced from its
lowest position, it tends to return to that position when released.
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U

Positive slope
x<0

Negative slope
x>0

Figure 8.16 A plot of Uversus x
for a particle that has a position of
unstable equilibrium located at x =
0. For any finite displacement of
the particle, the force on the parti-
cle is directed away from x = 0.

EXAMPLE 8.11

CHAPTER 8 Potential Energy and Conservation of Energy

Now consider a particle moving along the x axis under the influence of a con-
servative force F,, where the U versus x curve is as shown in Figure 8.16. Once
again, I, = 0 at x = 0, and so the particle is in equilibrium at this point. However,
this is a position of unstable equilibrium for the following reason: Suppose that
the particle is displaced to the right (x> 0). Because the slope is negative for
x>0, I, = —dU/dx is positive and the particle accelerates away from x = 0. If in-
stead the particle is at x = 0 and is displaced to the left (x < 0), the force is nega-
tive because the slope is positive for x < 0, and the particle again accelerates away

from the equilibrium position. The position x = 0 in this situation is one of unsta-

ble equilibrium because for any displacement from this point, the force pushes the
particle farther away from equilibrium. The force pushes the particle toward a posi-
tion of lower potential energy. A pencil balanced on its point is in a position of un-
stable equilibrium. If the pencil is displaced slightly from its absolutely vertical po-
sition and is then released, it will surely fall over. In general, positions of
unstable equilibrium correspond to points for which U(x) is a maximum.

Finally, a situation may arise where U'is constant over some region and hence
F, = 0. This is called a position of neutral equilibrium. Small displacements from
this position produce neither restoring nor disrupting forces. A ball lying on a flat
horizontal surface is an example of an object in neutral equilibrium.

Force and Energy on an Atomic Scale

The potential energy associated with the force between two
neutral atoms in a molecule can be modeled by the
Lennard—Jones potential energy function:

o=l (5)"- (5]

where xis the separation of the atoms. The function U(x) con-
tains two parameters o and € that are determined from experi-
ments. Sample values for the interaction between two atoms
in a molecule are ¢ =0263nm and €= 1.51 X 10"%].
(a) Using a spreadsheet or similar tool, graph this function
and find the most likely distance between the two atoms.

Solution We expect to find stable equilibrium when the
two atoms are separated by some equilibrium distance and
the potential energy of the system of two atoms (the mole-
cule) is a minimum. One can minimize the function U(x) by
taking its derivative and setting it equal to zero:

we _, df(o ”_(gﬂ,
dx 74de[<x> x =0

—1202 —60°
=4e| —5—— =0

xl 3 x7

Solving for x—the equilibrium separation of the two atoms
in the molecule—and inserting the given information yield

x= 295X 10" ""m.

We graph the Lennard—Jones function on both sides of
this critical value to create our energy diagram, as shown in
Figure 8.17a. Notice how U(x) is extremely large when the
atoms are very close together, is a minimum when the atoms

are at their critical separation, and then increases again as
the atoms move apart. When U(x) is a minimum, the atoms
are in stable equilbrium; this indicates that this is the most
likely separation between them.

(b) Determine F,(x) —the force that one atom exerts on
the other in the molecule as a function of separation—and
argue that the way this force behaves is physically plausible
when the atoms are close together and far apart.

Solution Because the atoms combine to form a molecule,
we reason that the force must be attractive when the atoms
are far apart. On the other hand, the force must be repulsive
when the two atoms get very close together. Otherwise, the
molecule would collapse in on itself. Thus, the force must
change sign at the critical separation, similar to the way
spring forces switch sign in the change from extension to
compression. Applying Equation 8.16 to the Lennard—Jones
potential energy function gives

P 4EL[<1)” _ (1)6]
dx dx |\ x X

[ 126" 60° ]
= 4e =

xl 3 x7

This result is graphed in Figure 8.17b. As expected, the force
is positive (repulsive) at small atomic separations, zero when
the atoms are at the position of stable equilibrium [recall
how we found the minimum of U(x)], and negative (attrac-
tive) at greater separations. Note that the force approaches
zero as the separation between the atoms becomes very great.

8.8 Conservation of Energy in General
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Figure 8.17 (a) Potential energy curve associated with a molecule. The distance x is the separation be-
tween the two atoms making up the molecule. (b) Force exerted on one atom by the other.
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8.8 ~ CONSERVATION OF ENERGY IN GENERAL

We have seen that the total mechanical energy of a system is constant when only
conservative forces act within the system. Furthermore, we can associate a poten-
tial energy function with each conservative force. On the other hand, as we saw in
Section 8.5, mechanical energy is lost when nonconservative forces such as friction
are present.

In our study of thermodynamics later in this course, we shall find that me-
chanical energy can be transformed into energy stored inside the various objects
that make up the system. This form of energy is called internal energy. For example,
when a block slides over a rough surface, the mechanical energy lost because of
friction is transformed into internal energy that is stored temporarily inside the
block and inside the surface, as evidenced by a measurable increase in the temper-
ature of both block and surface. We shall see that on a submicroscopic scale, this
internal energy is associated with the vibration of atoms about their equilibrium
positions. Such internal atomic motion involves both kinetic and potential energy.
Therefore, if we include in our energy expression this increase in the internal en-
ergy of the objects that make up the system, then energy is conserved.

This is just one example of how you can analyze an isolated system and al-
ways find that the total amount of energy it contains does not change, as long as
you account for all forms of energy. That is, energy can never be created or
destroyed. Energy may be transformed from one form to another, but the

Total energy is always conserved
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total energy of an isolated system is always constant. From a universal
point of view, we can say that the total energy of the Universe is constant. If
one part of the Universe gains energy in some form, then another part must
lose an equal amount of energy. No violation of this principle has ever been
found.

Optional Section
8.9 _~ MASS—ENERGY EQUIVALENCE

This chapter has been concerned with the important principle of energy conserva-
tion and its application to various physical phenomena. Another important princi-
ple, conservation of mass, states that in any physical or chemical process,
mass is neither created nor destroyed. That is, the mass before the process
equals the mass after the process.

For centuries, scientists believed that energy and mass were two quantities that
were separately conserved. However, in 1905 Einstein made the brilliant discovery
that the mass of any system is a measure of the energy of that system. Hence, en-
ergy and mass are related concepts. The relationship between the two is given by
Einstein’s most famous formula:

Eg = mc? (8.17)

where cis the speed of light and Eg is the energy equivalent of a mass m. The sub-
script R on the energy refers to the rest energy of an object of mass m—that is,
the energy of the object when its speed is v = 0.

The rest energy associated with even a small amount of matter is enormous.
For example, the rest energy of 1 kg of any substance is

Ep=mc? = (1kg)(3 X 105m/s)? =9 X 10'9]

This is equivalent to the energy content of about 15 million barrels of crude oil—
about one day’s consumption in the United States! If this energy could easily be re-
leased as useful work, our energy resources would be unlimited.

In reality, only a small fraction of the energy contained in a material sample
can be released through chemical or nuclear processes. The effects are greatest in
nuclear reactions, in which fractional changes in energy, and hence mass, of ap-
proximately 107% are routinely observed. A good example is the enormous
amount of energy released when the uranium-235 nucleus splits into two smaller
nuclei. This happens because the sum of the masses of the product nuclei is
slightly less than the mass of the original 2°U nucleus. The awesome nature of the
energy released in such reactions is vividly demonstrated in the explosion of a nu-
clear weapon.

Equation 8.17 indicates that energy has mass. Whenever the energy of an object
changes in any way, its mass changes as well. If AEis the change in energy of an ob-
ject, then its change in mass is

Am = Lf (8.18)
2
Anytime energy AE in any form is supplied to an object, the change in the mass of
the object is Am = AE/¢?. However, because ¢? is so large, the changes in mass in
any ordinary mechanical experiment or chemical reaction are too small to be
detected.
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EXAMPLE 8.12 Here Comes the Sun

The Sun converts an enormous amount of matter to energy.
Each second, 4.19 X 10° kg—approximately the capacity of
400 average-sized cargo ships—is changed to energy. What is
the power output of the Sun?

Solution We find the energy liberated per second by
means of a straightforward conversion:

Eg = (4.19 X 10°kg) (3.00 X 108 m/s)? = 8.77 X 10%]

‘We then apply the definition of power:

The Sun radiates uniformly in all directions, and so only a
very tiny fraction of its total output is collected by the Earth.
Nonetheless this amount is sufficient to supply energy to
nearly everything on the Earth. (Nuclear and geothermal en-
ergy are the only alternatives.) Plants absorb solar energy and
convert it to chemical potential energy (energy stored in the
plant’s molecules). When an animal eats the plant, this chem-
ical potential energy can be turned into kinetic and other
forms of energy. You are reading this book with solar-
powered eyes!

3.77 X 10%]
1.00s

P = 3.77 X 1020 W

Optional Section
8.10_~ QUANTIZATION OF ENERGY

Certain physical quantities such as electric charge are quantized; that is, the quanti-
ties have discrete values rather than continuous values. The quantized nature of
energy is especially important in the atomic and subatomic world. As an example,
let us consider the energy levels of the hydrogen atom (which consists of an elec-
tron orbiting around a proton). The atom can occupy only certain energy levels,
called quantum states, as shown in Figure 8.18a. The atom cannot have any energy
values lying between these quantum states. The lowest energy level £ is called the

E.
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ke g
=1 =
= =
)
g
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Hydrogen atom Earth satellite

(a) (b)

Figure 8.18 Energy-level diagrams: (a) Quantum states of the hydrogen atom. The lowest state
Ly is the ground state. (b) The energy levels of an Earth satellite are also quantized but are so
close together that they cannot be distinguished from one another.
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ground state of the atom. The ground state corresponds to the state that an isolated
atom usually occupies. The atom can move to higher energy states by absorbing
energy from some external source or by colliding with other atoms. The highest
energy on the scale shown in Figure 8.18a, E.., corresponds to the energy of the
atom when the electron is completely removed from the proton. The energy dif-
ference E, — E; is called the ionization energy. Note that the energy levels get
closer together at the high end of the scale.

Next, consider a satellite in orbit about the Earth. If you were asked to de-
scribe the possible energies that the satellite could have, it would be reasonable
(but incorrect) to say that it could have any arbitrary energy value. Just like that of
the hydrogen atom, however, the energy of the satellite is quantized. If you
were to construct an energy level diagram for the satellite showing its allowed en-
ergies, the levels would be so close to one another, as shown in Figure 8.18b, that it
would be difficult to discern that they were not continuous. In other words, we
have no way of experiencing quantization of energy in the macroscopic world;
hence, we can ignore it in describing everyday experiences.

SUMMARY

If a particle of mass m is at a distance y above the Earth’s surface, the gravita-
tional potential energy of the particle—Earth system is

U, = mgy (8.1)
The elastic potential energy stored in a spring of force constant kis
= gk (8.4)

You should be able to apply these two equations in a variety of situations to deter-
mine the potential an object has to perform work.

A force is conservative if the work it does on a particle moving between two
points is independent of the path the particle takes between the two points. Fur-
thermore, a force is conservative if the work it does on a particle is zero when the
particle moves through an arbitrary closed path and returns to its initial position.
A force that does not meet these criteria is said to be nonconservative.

A potential energy function U can be associated only with a conservative
force. If a conservative force F acts on a particle that moves along the x axis from
x; to xz, then the change in the potential energy of the system equals the negative
of the work done by that force:

X
U - U= —J F, dx (8.7)
x;
You should be able to use calculus to find the potential energy associated with a
conservative force and vice versa.
The total mechanical energy of a system is defined as the sum of the ki-
netic energy and the potential energy:

E=K+U (8.9)

If no external forces do work on a system and if no nonconservative forces are
acting on objects inside the system, then the total mechanical energy of the system
is constant:

K+ U=K+U (8.10)
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If nonconservative forces (such as friction) act on objects inside a system, then
mechanical energy is not conserved. In these situations, the difference between the
total final mechanical energy and the total initial mechanical energy of the system
equals the energy transferred to or from the system by the nonconservative forces.

QUESTIONS

1. Many mountain roads are constructed so that they spiral
around a mountain rather than go straight up the slope.
Discuss this design from the viewpoint of energy and
power.

2. Aball is thrown straight up into the air. At what position
is its kinetic energy a maximum? At what position is the
gravitational potential energy a maximum?

A bowling ball is suspended from the ceiling of a lecture
hall by a strong cord. The bowling ball is drawn away from
its equilibrium position and released from rest at the tip

¥
| 1

__'-'a-
<2

Figure 08.3

PROBLEMS

of the student’s nose as in Figure Q8.3. If the student re-
mains stationary, explain why she will not be struck by the
ball on its return swing. Would the student be safe if she
pushed the ball as she released it?

One person drops a ball from the top of a building, while

another person at the bottom observes its motion. Will
these two people agree on the value of the potential en-
ergy of the ball-Earth system? on its change in potential
energy? on the kinetic energy of the ball?

When a person runs in a track event at constant velocity,
is any work done? (Note: Although the runner moves with
constant velocity, the legs and arms accelerate.) How does
air resistance enter into the picture? Does the center of
mass of the runner move horizontally?

Our body muscles exert forces when we lift, push, run,

jump, and so forth. Are these forces conservative?

If three conservative forces and one nonconservative
force act on a system, how many potential energy terms
appear in the equation that describes this system?
Consider a ball fixed to one end of a rigid rod whose
other end pivots on a horizontal axis so that the rod can
rotate in a vertical plane. What are the positions of stable
and unstable equilibrium?

Is it physically possible to have a situation where
E—-U<0?

. What would the curve of Uversus x look like if a particle

were in a region of neutral equilibrium?

. Explain the energy transformations that occur during

(a) the pole vault, (b) the shot put, (c) the high jump.
What is the source of energy in each case?

Discuss some of the energy transformations that occur
during the operation of an automobile.

If only one external force acts on a particle, does it
necessarily change the particle’s (a) kinetic energy?
(b) velocity?

1, 2, 3 = straightforward, intermediate, challenging D = full solution available in the Student Solutions Manual and Study Guide

WeB = solution posted at http://www.saunderscollege.com/physics/ [] = Computer useful in solving problem [*

l:l = paired numerical /symbolic problems

= Interactive Physics

Section 8.1 Potential Energy
Section 8.2 Conservative and Nonconservative Forces
1. A1 000-kg roller coaster is initially at the top of a rise, at
point A. It then moves 135 ft, at an angle of 40.0° below
the horizontal, to a lower point B. (a) Choose point B to

be the zero level for gravitational potential energy. Find
the potential energy of the roller coaster—Earth system
at points A and Band the change in its potential energy
as the coaster moves. (b) Repeat part (a), setting the
zero reference level at point A.
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2. A 40.0-N child is in a swing that is attached to ropes

2.00 m long. Find the gravitational potential energy of
the child—Earth system relative to the child’s lowest po-
sition when (a) the ropes are horizontal, (b) the ropes
make a 30.0° angle with the vertical, and (c) the child is
at the bottom of the circular arc.

A 4.00-kg particle moves from the origin to position C,

which has coordinates x = 5.00 m and y = 5.00 m

(Fig. P8.3). One force on it is the force of gravity acting
in the negative y direction. Using Equation 7.2, calcu-
late the work done by gravity as the particle moves from
Oto Calong (a) OAC, (b) OBC, and (c) OC. Your re-
sults should all be identical. Why?

c
B (5.00, 5.00) m

o A

Figure P8.3 Problems 3, 4, and 5.

. (a) Suppose that a constant force acts on an object. The
force does not vary with time, nor with the position or
velocity of the object. Start with the general definition
for work done by a force

f
W= | F-ds
i

and show that the force is conservative. (b) As a special
case, suppose that the force F = (3i + 4j) Nactsona
particle that moves from O to Cin Figure P8.3. Calcu-
late the work done by F if the particle moves along each
one of the three paths OAC, OBC, and OC. (Your three
answers should be identical.)

A force acting on a particle moving in the xy plane is
given by F = (2 yi + x%j) N, where xand y are in me-
ters. The particle moves from the origin to a final posi-
tion having coordinates x = 5.00 m and y = 5.00 m, as
in Figure P8.3. Calculate the work done by F along

(a) OAC, (b) OBC, (c) OC. (d) Is F conservative or non-
conservative? Explain.

Section 8.3 Conservative Forces and Potential Energy
Section 8.4 Conservation of Mechanical Energy

6. At time ¢, the kinetic energy of a particle in a system is

30.0 J and the potential energy of the system is 10.0 J. At
some later time ¢, the kinetic energy of the particle is
18.0 J. (a) If only conservative forces act on the particle,
what are the potential energy and the total energy at

time 2 (b) If the potential energy of the system at time
{ris 5.00 J, are any nonconservative forces acting on the
particle? Explain.

wee |7.| A single conservative force acts on a 5.00-kg particle.

10.

The equation F, = (2x + 4) N, where xis in meters, de-
scribes this force. As the particle moves along the x axis
from x = 1.00 m to x = 5.00 m, calculate (a) the work
done by this force, (b) the change in the potential en-
ergy of the system, and (c) the kinetic energy of the par-
ticle at x = 5.00 m if its speed at x = 1.00 m is 3.00 m/s.

. Asingle constant force F = (3i + 5j) N actson a

4.00-kg particle. (a) Calculate the work done by this
force if the particle moves from the origin to the point
having the vector position r = (2i — 3j) m. Does this
result depend on the path? Explain. (b) What is the
speed of the particle at r if its speed at the origin is
4.00 m/s? (c) What is the change in the potential
energy of the system?

. A single conservative force acting on a particle varies as

F = (— Ax + Bx?)i N, where A and Bare constants and
xis in meters. (a) Calculate the potential energy func-
tion U(x) associated with this force, taking U = 0 at

x = 0. (b) Find the change in potential energy and
change in kinetic energy as the particle moves from
x=2.00m tox=3.00 m.

A particle of mass 0.500 kg is shot from Pas shown in
Figure P8.10. The particle has an initial velocity v; with a
horizontal component of 30.0 m/s. The particle rises to
a maximum height of 20.0 m above P. Using the law of
conservation of energy, determine (a) the vertical com-
ponent of v;, (b) the work done by the gravitational
force on the particle during its motion from Pto B, and
(c) the horizontal and the vertical components of the
velocity vector when the particle reaches B.

v; o 20A0m\\
\
VSN
\
\
\\
60.0 m lg N\
\
\
\
\
J \
A B
Figure P8.10

- A 3.00-kg mass starts from rest and slides a distance d

down a frictionless 30.0° incline. While sliding, it comes
into contact with an unstressed spring of negligible
mass, as shown in Figure P8.11. The mass slides an addi-
tional 0.200 m as it is brought momentarily to rest by
compression of the spring (k = 400 N/m). Find the ini-
tial separation d between the mass and the spring.

12,

13,

14.

. A mass m starts from rest and slides a distance d down a
frictionless incline of angle 6. While sliding, it contacts
an unstressed spring of negligible mass, as shown in Fig-
ure P8.11. The mass slides an additional distance x as it
is brought momentarily to rest by compression of the
spring (of force constant k). Find the initial separation
dbetween the mass and the spring.

m=3.00 kg

e
v

k=400 N/m

Figure P8.11 Problems 11 and 12.

. A particle of mass m = 5.00 kg is released from point ®
and slides on the frictionless track shown in Figure
P8.13. Determine (a) the particle’s speed at points
and © and (b) the net work done by the force of gravity
in moving the particle from ® to ©.

3.20 m

Figure P8.13

A simple, 2.00-m-long pendulum is released from rest
when the support string is at an angle of 25.0° from the
vertical. What is the speed of the suspended mass at the
bottom of the swing?

Ci A bead slides without friction around a loop-the-loop

16.

(Fig. P8.15). If the bead is released from a height 2 =
3.50R, what is its speed at point A? How great is the nor-
mal force on it if its mass is 5.00 g?

A 120-g mass is attached to the bottom end of an un-
stressed spring. The spring is hanging vertically and has
a spring constant of 40.0 N/m. The mass is dropped.

(a) What is its maximum speed? (b) How far does it
drop before coming to rest momentarily?

A block of mass 0.250 kg is placed on top of a light verti-

18.

19.

20.
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Figure P8.15

cal spring of constant k = 5 000 N/m and is pushed
downward so that the spring is compressed 0.100 m. Af-
ter the block is released, it travels upward and then
leaves the spring. To what maximum height above the
point of release does it rise?

Dave Johnson, the bronze medalist at the 1992 Olympic
decathlon in Barcelona, leaves the ground for his high
jump with a vertical velocity component of 6.00 m/s.
How far up does his center of gravity move as he makes
the jump?

A 0.400-kg ball is thrown straight up into the air and
reaches a maximum altitude of 20.0 m. Taking its initial
position as the point of zero potential energy and using
energy methods, find (a) its initial speed, (b) its total
mechanical energy, and (c) the ratio of its kinetic en-
ergy to the potential energy of the ball-Earth system
when the ball is at an altitude of 10.0 m.

In the dangerous “sport” of bungeejumping, a daring
student jumps from a balloon with a specially designed

Figure P8.20 Bungeejumping. (Gamma)
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elastic cord attached to his ankles, as shown in Figure
P8.20. The unstretched length of the cord is 25.0 m, the
student weighs 700 N, and the balloon is 36.0 m above
the surface of a river below. Assuming that Hooke’s law
describes the cord, calculate the required force constant
if the student is to stop safely 4.00 m above the river.

a Two masses are connected by a light string passing over a
light frictionless pulley, as shown in Figure P8.21. The
5.00-kg mass is released from rest. Using the law of con-
servation of energy, (a) determine the speed of the 3.00-
kg mass just as the 5.00-kg mass hits the ground and (b)
find the maximum height to which the 3.00-kg mass rises.

22. Two masses are connected by a light string passing over
a light frictionless pulley, as shown in Figure P8.21. The

mass my (which is greater than my) is released from rest.

Using the law of conservation of energy, (a) determine
the speed of my just as my hits the ground in terms of
my, my, and h, and (b) find the maximum height to
which mg rises.

Figure P8.21 Problems 21 and 22.

23. A 20.0-kg cannon ball is fired from a cannon with a
muzzle speed of 1 000 m/s at an angle of 37.0° with the
horizontal. A second ball is fired at an angle of 90.0°.
Use the law of conservation of mechanical energy to
find (a) the maximum height reached by each ball and
(b) the total mechanical energy at the maximum height
for each ball. Let y = 0 at the cannon.

24. A 2.00-kg ball is attached to the bottom end of a length
of 10-Ib (44.5-N) fishing line. The top end of the fishing
line is held stationary. The ball is released from rest
while the line is taut and horizontal (6 = 90.0°). At
what angle 6 (measured from the vertical) will the fish-
ing line break?

25. The circus apparatus known as the trapeze consists of a
bar suspended by two parallel ropes, each of length €.
The trapeze allows circus performers to swing in a verti-

2

27.

&

cal circular arc (Fig. P8.25). Suppose a performer with
mass m and holding the bar steps off an elevated plat-
form, starting from rest with the ropes at an angle of 6;
with respect to the vertical. Suppose the size of the per-
former’s body is small compared with the length €, that
she does not pump the trapeze to swing higher, and that
air resistance is negligible. (a) Show that when the ropes
make an angle of 6 with respect to the vertical, the per-
former must exert a force

F= mg(3cosf — 2cos ;)

in order to hang on. (b) Determine the angle 6; at which
the force required to hang on at the bottom of the swing
is twice the performer’s weight.

Figure P8.25

After its release at the top of the first rise, a roller-
coaster car moves freely with negligible friction. The
roller coaster shown in Figure P8.26 has a circular loop
of radius 20.0 m. The car barely makes it around the
loop: At the top of the loop, the riders are upside down
and feel weightless. (a) Find the speed of the roller
coaster car at the top of the loop (position 3). Find the
speed of the roller coaster car (b) at position 1 and

(c) at position 2. (d) Find the difference in height be-
tween positions 1 and 4 if the speed at position 4 is

10.0 m/s.

A light rigid rod is 77.0 cm long. Its top end is pivoted
on a low-friction horizontal axle. The rod hangs straight
down at rest, with a small massive ball attached to its
bottom end. You strike the ball, suddenly giving it a hor-
izontal velocity so that it swings around in a full circle.
‘What minimum speed at the bottom is required to
make the ball go over the top of the circle?

| , 2 \.J__‘\__'J:‘.T____‘__‘.._I f:_.-' L |tl

Figure P8.26

Section 8.5 Work Done by Nonconservative Forces

28. A 70.0-kg diver steps off a 10.0-m tower and drops
straight down into the water. If he comes to rest 5.00 m
beneath the surface of the water, determine the average
resistance force that the water exerts on the diver.

29. A force F,, shown as a function of distance in Figure
P8.29, acts on a 5.00-kg mass. If the particle starts from
restat x = 0 m, determine the speed of the particle at
x = 2.00, 4.00, and 6.00 m.

Qo W Ut
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Figure P8.29

30. A softball pitcher swings a ball of mass 0.250 kg around
avertical circular path of radius 60.0 cm before releas-
ing it from her hand. The pitcher maintains a compo-
nent of force on the ball of constant magnitude 30.0 N
in the direction of motion around the complete path.
The speed of the ball at the top of the circle is 15.0 m/s.
If the ball is released at the bottom of the circle, what is
its speed upon release?

wes The coefficient of friction between the 3.00-kg block
and the surface in Figure P8.31 is 0.400. The system
starts from rest. What is the speed of the 5.00-kg ball
when it has fallen 1.50 m?

Problems 243
3.00 kg
M
5.00 kg

Figure P8.31

32. A 2 000-kg car starts from rest and coasts down from the
top of a 5.00-m-long driveway that is sloped at an angle
of 20.0° with the horizontal. If an average friction force
of 4 000 N impedes the motion of the car, find the
speed of the car at the bottom of the driveway.

A 5.00-kg block is set into motion up an inclined plane
with an initial speed of 8.00 m/s (Fig. P8.33). The block
comes to rest after traveling 3.00 m along the plane,
which is inclined at an angle of 30.0° to the horizontal.
For this motion determine (a) the change in the block’s
kinetic energy, (b) the change in the potential energy,
and (c) the frictional force exerted on it (assumed to be
constant). (d) What is the coefficient of kinetic friction?

v;=8.00m/s

30.0°

Figure P8.33

34. A boy in a wheelchair (total mass, 47.0 kg) wins a race
with a skateboarder. He has a speed of 1.40 m/s at the
crest of a slope 2.60 m high and 12.4 m long. At the bot-
tom of the slope, his speed is 6.20 m/s. If air resistance
and rolling resistance can be modeled as a constant fric-
tional force of 41.0 N, find the work he did in pushing
forward on his wheels during the downhill ride.

35. A parachutist of mass 50.0 kg jumps out of a balloon at
a height of 1 000 m and lands on the ground with a
speed of 5.00 m/s. How much energy was lost to air fric-
tion during this jump?

36. An 80.0-kg sky diver jumps out of a balloon at an alti-
tude of 1 000 m and opens the parachute at an altitude
of 200.0 m. (a) Assuming that the total retarding force



244

3

J

39.

CHAPTER 8 Potential Energy and Conservation of Energy

on the diver is constant at 50.0 N with the parachute
closed and constant at 3 600 N with the parachute open,
what is the speed of the diver when he lands on the
ground? (b) Do you think the sky diver will get hurt? Ex-
plain. (c) Atwhat height should the parachute be opened
so that the final speed of the sky diver when he hits the
ground is 5.00 m/s? (d) How realistic is the assumption
that the total retarding force is constant? Explain.

. A toy cannon uses a spring to project a 5.30-g soft rub-

ber ball. The spring is originally compressed by 5.00 cm
and has a stiffness constant of 8.00 N/m. When it is
fired, the ball moves 15.0 cm through the barrel of the
cannon, and there is a constant frictional force of
0.032 0 N between the barrel and the ball. (a) With
what speed does the projectile leave the barrel of the
cannon? (b) At what point does the ball have maximum
speed? (c) What is this maximum speed?

. A 1.50-kg mass is held 1.20 m above a relaxed, massless

vertical spring with a spring constant of 320 N/m. The
mass is dropped onto the spring. (a) How far does it
compress the spring? (b) How far would it compress the
spring if the same experiment were performed on the
Moon, where g = 1.63 m/s% (c) Repeat part (a), but
this time assume that a constant air-resistance force of
0.700 N acts on the mass during its motion.

A 3.00-kg block starts at a height 4 = 60.0 cm on a
plane that has an inclination angle of 30.0°, as shown in
Figure P8.39. Upon reaching the bottom, the block
slides along a horizontal surface. If the coefficient of
friction on both surfaces is u;, = 0.200, how far does the
block slide on the horizontal surface before coming to
rest? (Hint: Divide the path into two straight-line parts.)

\/m =3.00 kg

h=60.0 cm
0= 30.0"/
Figure P8.39
40. A 75.0kg sky diver is falling with a terminal speed of

S,

60.0 m/s. Determine the rate at which he is losing me-
chanical energy.

Conservative

Forc!

tion 8.6 Relationship B
es and Potential Energy

wes The potential energy of a two-particle system separated

by a distance ris given by U(r) = A/r, where A is a con-
stant. Find the radial force F, that each particle exerts
on the other.

42.

A potential energy function for a two-dimensional force
is of the form U = 3x% — 7x. Find the force that acts at
the point (x, y).

(Optional)
Section 8.7 Energy Diagrams and the Equilibrium of a
System

43. A particle moves along a line where the potential en-

+6

+4

+2

ergy depends on its position 7, as graphed in Figure
P8.43. In the limit as rincreases without bound, U(r)
approaches + 1 J. (a) Identify each equilibrium position
for this particle. Indicate whether each is a point of sta-
ble, unstable, or neutral equilibrium. (b) The particle
will be bound if its total energy is in what range? Now
suppose the particle has energy — 3 J. Determine

(c) the range of positions where it can be found,

(d) its maximum kinetic energy, (e) the location at
which it has maximum kinetic energy, and (f) its bind-
ing energy—that is, the additional energy that it would
have to be given in order for it to move out to r — .

v

44.

45

46.

47.

| L/ | r(mm)
6

0 2 4

Figure P8.43

A right circular cone can be balanced on a horizontal
surface in three different ways. Sketch these three equi-
librium configurations and identify them as positions of
stable, unstable, or neutral equilibrium.

For the potential energy curve shown in Figure P8.45,
(a) determine whether the force F, is positive, negative,
or zero at the five points indicated. (b) Indicate points
of stable, unstable, and neutral equilibrium. (c) Sketch
the curve for F, versus x from x = 0 to x = 9.5 m.

A hollow pipe has one or two weights attached to its in-
ner surface, as shown in Figure P8.46. Characterize
each configuration as being stable, unstable, or neutral
equilibrium and explain each of your choices (“CM” in-
dicates center of mass).

A particle of mass m is attached between two identical
springs on a horizontal frictionless tabletop. The

XCM
]

Figure P8.46

springs have spring constant k, and each is initially un-
stressed. (a) If the mass is pulled a distance x along a di-
rection perpendicular to the initial configuration of the
springs, as in Figure P8.47, show that the potential en-
ergy of the system is

U(x) = kx® + 2kL(L — Nx* + L?)

(Hint: See Problem 66 in Chapter 7.) (b) Make a plot of
U(x) versus x and identify all equilibrium points. As-
sume that L = 1.20 m and k = 40.0 N/m. (c) If the
mass is pulled 0.500 m to the right and then released,
what is its speed when it reaches the equilibrium point
x=0?

k
L
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Top View
Figure P8.47
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(Optional)
Section 8.9 Mass—Energy Equivalence

48.

Find the energy equivalents of (a) an electron of mass
9.11 X 103! kg, (b) a uranium atom with a mass of
4.00 X 107% kg, (c) a paper clip of mass 2.00 g, and
(d) the Earth (of mass 5.99 X 10! kg).

The expression for the kinetic energy of a particle moving

with speed v s given by Equation 7.19, which can be writ-
tenas K = yme? — me?, where y = [1 — (v/¢)?] V2
The term ymc? is the total energy of the particle, and the
term mc? is its rest energy. A proton moves with a speed of
0.990¢, where cis the speed of light. Find (a) its rest en-
ergy, (b) its total energy, and (c) its kinetic energy.

ADDITIONAL PROBLEMS

50.

51.

52.

A block slides down a curved frictionless track and then
up an inclined plane as in Figure P8.50. The coefficient
of kinetic friction between the block and the incline is
- Use energy methods to show that the maximum
height reached by the block is

ok
1+ pycotd

Ymax =

Figure P8.50

Close to the center of a campus is a tall silo topped with
a hemispherical cap. The cap is frictionless when wet.
Someone has somehow balanced a pumpkin at the
highest point. The line from the center of curvature of
the cap to the pumpkin makes an angle 0; = 0° with the
vertical. On a rainy night, a breath of wind makes the
pumpkin start sliding downward from rest. It loses con-
tact with the cap when the line from the center of the
hemisphere to the pumpkin makes a certain angle with
the vertical; what is this angle?

A 200-g particle is released from rest at point ® along
the horizontal diameter on the inside of a frictionless,
hemispherical bowl of radius R = 30.0 cm (Fig. P8.52).
Calculate (a) the gravitational potential energy when
the particle is at point ® relative to point ®, (b) the ki-
netic energy of the particle at point ®, (c) its speed at
point ®, and (d) its kinetic energy and the potential
energy at point ©.
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Figure P8.52 Problems 52 and 53.

wea [53.] The particle described in Problem 52 (Fig. P8.52) is re-

54.

55.

56.

leased from rest at @, and the surface of the bowl is
rough. The speed of the particle at ® is 1.50 m/s.

(a) What is its kinetic energy at ®? (b) How much en-
ergy is lost owing to friction as the particle moves from
@ to ®? (¢) Is it possible to determine u from these re-
sults in any simple manner? Explain.

Review Problem. The mass of a car is 1 500 kg. The
shape of the body is such that its aerodynamic drag co-
efficient is D = 0.330 and the frontal area is 2.50 m2. As-
suming that the drag force is proportional to v and ne-
glecting other sources of friction, calculate the power
the car requires to maintain a speed of 100 km/h as it
climbs a long hill sloping at 3.20°.

Make an order-of-magnitude estimate of your power
output as you climb stairs. In your solution, state the
physical quantities you take as data and the values you
measure or estimate for them. Do you consider your
peak power or your sustainable power?

A child’s pogo stick (Fig. P8.56) stores energy in a
spring (k = 2.50 X 10* N/m). At position ® (xa =
—0.100 m), the spring compression is a maximum and
the child is momentarily at rest. At position ® (xg = 0),
the spring is relaxed and the child is moving upward. At
position ©, the child is again momentarily at rest at the
top of the jump. Assuming that the combined mass of
the child and the pogo stick is 25.0 kg, (a) calculate the
total energy of the system if both potential energies are
zero at x = 0, (b) determine x¢, (c) calculate the speed
of the child at x = 0, (d) determine the value of x for

‘<; 6.00 m ﬂ
©

Potential Energy and Conservation of Energy

Figure P8.56

59.

60.

k=100 N/m

Figure P8.58 Problems 58 and 59.

Review Problem. Suppose the incline is frictionless for
the system described in Problem 58 (see Fig. P8.58).
The block is released from rest with the spring initially
unstretched. (a) How far does it move down the incline
before coming to rest? (b) What is its acceleration at its
lowest point? Is the acceleration constant? (c) Describe
the energy transformations that occur during the de-
scent.

The potential energy function for a system is given by
U(x) = —x* + 2x% + 3x. (a) Determine the force F, as
a function of x. (b) For what values of x is the force
equal to zero? (c) Plot U(x) versus x and F, versus x, and
indicate points of stable and unstable equilibrium.

Q A 20.0-kg block is connected to a 30.0-kg block by a

which the kinetic energy of the system is a maximum,
and (e) calculate the child’s maximum upward speed.
(J[57.] A 10.0-kg block is released from point @ in Figure
P8.57. The track is frictionless except for the portion
between ® and ©, which has a length of 6.00 m. The
block travels down the track, hits a spring of force con-
stant k = 2 250 N/m, and compresses the spring
0.300 m from its equilibrium position before coming to
rest momentarily. Determine the coefficient of kinetic
friction between the block and the rough surface be-
tween ® and ©.

58. A 2.00-kg block situated on a rough incline is connected
to a spring of negligible mass having a spring constant
of 100 N/m (Fig. P8.58). The pulley is frictionless. The
block is released from rest when the spring is un-
stretched. The block moves 20.0 cm down the incline
before coming to rest. Find the coefficient of kinetic
friction between block and incline.

62.

S

Figure P8.57

string that passes over a frictionless pulley. The 30.0-kg
block is connected to a spring that has negligible mass
and a force constant of 250 N/m, as shown in Figure
P8.61. The spring is unstretched when the system is as
shown in the figure, and the incline is frictionless. The
20.0-kg block is pulled 20.0 cm down the incline (so
that the 30.0-kg block is 40.0 cm above the floor) and is
released from rest. Find the speed of each block when
the 30.0-kg block is 20.0 cm above the floor (that is,
when the spring is unstretched).

30.0 k;
20.0 cm

Figure P8.61

20.0 kg

a3

\40.0°

A 1.00-kg mass slides to the right on a surface having a
coefficient of friction u = 0.250 (Fig. P8.62). The mass
has a speed of v; = 3.00 m/s when it makes contact with
a light spring that has a spring constant k = 50.0 N/m.
The mass comes to rest after the spring has been com-
pressed a distance d. The mass is then forced toward the
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left by the spring and continues to move in that direc-
tion beyond the spring’s unstretched position. Finally,
the mass comes to rest at a distance D to the left of the
unstretched spring. Find (a) the distance of compres-
sion d, (b) the speed v of the mass at the unstretched
position when the mass is moving to the left, and

(c) the distance D between the unstretched spring and
the point at which the mass comes to rest.

—
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Figure P8.62

wes A block of mass 0.500 kg is pushed against a horizontal

spring of negligible mass until the spring is compressed
a distance Ax (Fig. P8.63). The spring constant is

450 N/m. When it is released, the block travels along a
frictionless, horizontal surface to point B, at the bottom
of a vertical circular track of radius R = 1.00 m, and
continues to move up the track. The speed of the block
at the bottom of the track is vg = 12.0 m/s, and the
block experiences an average frictional force of 7.00 N
while sliding up the track. (a) What is Ax? (b) What
speed do you predict for the block at the top of the
track? (c) Does the block actually reach the top of the
track, or does it fall off before reaching the top?

64. A uniform chain of length 8.00 m initially lies stretched

out on a horizontal table. (a) If the coefficient of static
friction between the chain and the table is 0.600, show
that the chain will begin to slide off the table if at least
3.00 m of it hangs over the edge of the table. (b) Deter-
mine the speed of the chain as all of it leaves the table,
given that the coefficient of kinetic friction between the
chain and the table is 0.400.



